This application claims the benefit of priority under 35 U.S.C. § 119 (a) and (b) to French Patent Application No. 1854815, filed Jun. 4, 2018, the entire contents of which are incorporated herein by reference.
The invention relates to a device for supplying pressurized fluid.
The invention relates more particularly to a device for supplying pressurized fluid, notably pressurized gas, comprising at least one pressurized fluid reservoir provided with an orifice connected to a first valve, the first valve housing an internal fluid circuit fitted with at least one shut-off member, the device comprising a second valve mechanically and detachably connected to the first valve, the second valve comprising an internal circuit for the transfer of pressurized fluid when the second valve is in the position in which it is coupled to the first valve, the internal circuit of the second valve being fluidically connected to the internal circuit of the first valve, the second valve comprising a mobile actuating member intended to open the at least one shut-off member of the first valve, the second valve further comprising a control member that is mobile, notably by hand, intended to command the movement of the actuating member and command the opening or non-opening of the shut-off member of the first valve, the device comprising a residual-pressure valve configured to prevent the at least one reservoir from emptying fully below a determined pressure threshold when the at least one shut-off member is open.
The invention relates in particular to a device for distributing fluid, notably pressurized gas, of a modular type. The invention relates notably to the filling of high-pressure gas cylinders (for example at a pressure of between 200 and 700 bar).
Examples of modular fluid distribution devices are illustrated in documents FR2892799A1, FR2979687A1, FR2970313A1, FR3022972A1 or FR303386A1.
In order to prevent the contamination of the cylinders or collections of cylinders, it is known practice to provide residual-pressure valves in the cylinder or in the valve attached thereto, cf. for example FR303386A1.
Such a residual-pressure valve conventionally prevents the cylinder from being completely emptied below a predetermined pressure threshold. That then prevents the ingress of air and moisture notably when the cylinder (the valve thereof) is kept open until the cylinder is completely empty.
This solution, although satisfactory, may sometimes complicate the structure and cost of the cylinder or of its valve attached to it, and may prove complex.
In addition, such a residual-pressure valve housed in the cylinder may be subjected to abrupt emptying operations (withdrawals with Joule-Thompson effect) and rapid filling operations. Thus, such a valve may be subjected to extreme conditions with fluid passing in both directions.
It is an objective of the present invention to propose a fluid supply device that has a simple and compact structure, good ergonomics of use and good safety with regard to the possible contamination of the inside of the reservoir.
One objective of the present invention is to mitigate all or some of the above-mentioned drawbacks of the prior art.
To this end, the device according to the invention, in other respects in accordance with the generic definition thereof given in the above preamble, is essentially characterized in that the residual-pressure valve is situated inside the second valve.
Moreover, some embodiments of the invention may include one or more of the following features:
The invention may also relate to any alternative device or method comprising any combination of the above or following features within the scope of the claims.
Further particular features and advantages will become apparent from reading the following description, given with reference to the figures, in which:
The device 1 for supplying pressurized fluid illustrated in
The first valve 3 houses an internal fluid circuit 4 provided with at least one shut-off member 5. This internal circuit 4 comprises for example a first upstream end in communication with the storage volume of the reservoir 2 and a downstream end 13 opening for example onto one end of the body of the first valve 3.
The device 1 further comprises a second valve 6 mechanically and detachably (removably) connected to the first valve 3.
For example, the first valve 3 and the second valve 6 comprise respective coupling members 8, 9 forming a quick-connection system for detachably connecting the second valve 6 to the first valve (cf.
The second valve 6 also comprises an internal circuit 7 for transferring pressurized fluid. In the position in which the second valve 6 is connected to the first valve 3, the internal circuit 7 of the second valve 6 is fluidically connected to the internal circuit 4 of the first valve 3. For example, an upstream end 12 of the internal circuit 7 of the second valve 6 is connected to the downstream end 13 of the circuit 4 of the first valve 3.
The second valve 6 comprises a mobile actuating member 9 preferably forming a valve driver intended through mechanical actuation to open the at least one shut-off member 5 of the first valve 3. In addition, the second valve 6 comprises a mobile control member 10, preferably one which can be actuated by hand, intended to command the movement of the actuating member 9 in order to command the opening or non-opening of the shut-off member 5 of the first valve.
As illustrated in the figures, the mobile control member 10 may comprise or consist of at least one of the following: a lever mounted in articulated fashion on the second valve 6 (cf.
The device 1 further comprises a residual-pressure valve 11 configured to prevent the reservoir 2 from being fully emptied below a determined pressure threshold (for example comprised between 1.5 and 10 bar, notably between 2 and 10 bar).
According to one advantageous particular feature, the residual-pressure valve 11 is situated in the second valve 6. What that means to say is that the function of maintaining the residual pressure is performed only by the second valve 6 which connects to the first valve 3. That makes it possible to simplify the design of the first valve 3 without detracting from the protection of the contents of the reservoir 2.
For example, the internal circuit 7 of the second valve 6 comprises an upstream end 12 intended to be connected to the downstream end 13 of the internal circuit 4 of the first valve 3 and a first downstream end 14 opening onto an outlet coupling 15. The outlet coupling 15 is, for example, intended to be fluidically connected to a receiver of the gas withdrawn from the reservoir 2.
The residual-pressure valve 11 is situated in the internal circuit 7 of the second valve 6 between the upstream end 12 and the downstream end 13, preferably near the outlet coupling 15.
As visible in
The residual-pressure valve 11 may also incorporate a non-return function (“NRV”=“Non Return Valve”) preventing gas from flowing between the downstream end 14 and the upstream end 12 (thus preventing unwanted filling).
As illustrated in the figures, the internal circuit 7 of the second valve 6 may comprise a separate second downstream end 16 opening onto the body of the second valve 6. The two downstream ends 16, 14 may be connected in parallel to the upstream end 12 of the internal circuit 7.
This second downstream end 16 may be equipped with a purge valve 17 that can be actuated, preferably mechanically (for example by hand), in order to open the second downstream end 16 of the circuit to the outside of the second valve 6 in order to purge the said internal circuit 7. This then allows the internal circuit 7 of the second valve for example to be depressurized before the second valve 6 is detached from the first valve 3.
Of course, the invention is not restricted to the exemplary embodiment described hereinabove.
Thus, as depicted in
In the closed position, a first 17 of the shut-off members may lie flush with one end of the first valve 3.
The actuating member 9 may be translationally mobile to form a valve driver configured to open the shut-off members 17, 5 in series by mechanical actuation of a first shut-off member 17 so that the movement of this first shut-off member 17 (movement inside the body of the first valve 3) pushes on or allows the movement of the next shut-off member 5 (cf.
Likewise, the first valve 3 could comprise three shut-off members in series (or more and/or other components). For the sequence for opening three shut-off members in series, reference may for example be made to the example in document WO2016139404A1.
Thus, when the second valve 6 (which provides for the opening of the shut-off member(s) 17, 5) is detached from the first valve 3, the shut-off member(s) 17, 5 automatically (under the action of return member(s) such as springs) re-close the internal circuit 4 of the first valve 3. Thus, contamination or full emptying of the reservoir 2 is avoided. When the second valve 6 is connected to the first valve 3 and opens the internal circuit 4 of the first valve (via the movement of the shut-off member(s) 17, 5), full emptying or contamination of the reservoir 2 is impossible even if the user forgets to move the control member 10 into the position for closing the internal circuit 4.
As illustrated schematically in
In the example of
Likewise, the invention has been described with just one reservoir 2 but could apply to a collection of reservoirs (a rack of cylinders for example) connected to the first valve 3. In addition, the second valve may comprise an adjustable or non-adjustable pressure regulator to reduce the pressure of the gas to a determined level. For example, the regulator is situated in the internal circuit 7 or at the outlet coupling 15.
It will be understood that many additional changes in the details, materials, steps and arrangement of parts, which have been herein described in order to explain the nature of the invention, may be made by those skilled in the art within the principle and scope of the invention as expressed in the appended claims. Thus, the present invention is not intended to be limited to the specific embodiments in the examples given above.
Number | Date | Country | Kind |
---|---|---|---|
18 54815 | Jun 2018 | FR | national |
Number | Name | Date | Kind |
---|---|---|---|
6167908 | Röttger | Jan 2001 | B1 |
20080308181 | Denis et al. | Dec 2008 | A1 |
20120006445 | Frenal et al. | Jan 2012 | A1 |
20160091144 | Wales | Mar 2016 | A1 |
20170122497 | Bernard | May 2017 | A1 |
20180038551 | Frenal et al. | Feb 2018 | A1 |
20180073679 | Roberge et al. | Mar 2018 | A1 |
20190178399 | Takeda | Jun 2019 | A1 |
Number | Date | Country |
---|---|---|
2 434 561 | Jan 2005 | CA |
2 049 829 | Apr 2011 | EP |
2 792 387 | Oct 2000 | FR |
2 892 799 | May 2007 | FR |
2 970 313 | Jul 2012 | FR |
2 979 687 | Mar 2013 | FR |
3 033 866 | Mar 2015 | FR |
3 022 972 | Jan 2016 | FR |
WO 2012 004481 | Jan 2012 | WO |
WO 2013 076263 | May 2013 | WO |
WO 2016 139404 | Sep 2016 | WO |
Entry |
---|
French Search Report and Written Opinion of corresponding FR 1854815, dated Jan. 30, 2019. |
Number | Date | Country | |
---|---|---|---|
20190368661 A1 | Dec 2019 | US |