The invention relates to a device for switching inductive fuel injection valves as claimed in claim 1 or 6.
Tighter statutory emission standards and the obligation to achieve increasingly efficient utilization of fuel have been critical factors over the last several years in advancing the introduction of high-pressure direct injection systems for diesel and gasoline engines, since by this means the quality of the fuel mixture generation is significantly improved.
Features of said systems are very high fuel injection pressures of up to 2000 bar and more (diesel) and in excess of 100 bar (gasoline), as well as the metering of the fuel in a plurality of partial injections per injection cycle.
As a result of this adaptation of the fuel metering to the dynamics of the combustion cycle, a host of functional improvements can be achieved:
In many diesel engines fuel is still injected at periodic intervals even during the exhaust stroke in order for instance to achieve the regeneration of a particle filter in the exhaust system by burning off the soot particles.
The multiplicity of said functions that are possible using modern direct-injection systems has subsequently resulted in a massive tightening of the requirements in terms of the precision and dynamics of the injection valves. Thus, for example, valve switching times of 100 to 500 μs are now required in order to be able to inject even minimum fuel quantities down to a few μg with high precision and high timing accuracy at the high system pressures.
This has finally enabled piezoelectric technology to make the breakthrough, since this technology permits a much faster and more precise valve actuation compared to traditional solenoid technology. It has meanwhile become standard for diesel engines in passenger cars.
Since the piezoelectric ceramic used here reacts spontaneously to a change in control voltage with a change in the volume of the injected fuel quantity, a very fast, almost delay-free actuation of the injection valves is possible. In contrast thereto, in the case of the conventional solenoid valve a current flow must first be built up in the inductance-susceptible exciter winding, which current flow can then actuate the valve, though only after reaching a specific current value.
Admittedly, however, the advantages of piezoelectric technology for high-pressure injection valves are associated with considerable costs, so that there is an urgent need to continue using solenoid injection valves as well for less demanding high-pressure direct-injection systems.
A typical example of this are large-volume, slow-running diesel truck engines, such as, say, 6-cylinder engines with a cylinder volume of 9 liters and maximum operating speeds of about 1800 rpm. In addition to the low speed, the requirements in terms of minimum injection quantities are also reduced owing to the large engine displacement. The number of injection pulses per injection cycle is also lower, since e.g. a pre-injection to reduce the typical diesel “rattling” due to the already very high running noise of the truck engine can be dispensed with.
Studies have meanwhile shown that solenoid injection valves, while suitable in principle for such applications, still require some further developments. Thus, in order for standard solenoid valves which have a coil (winding) for magnetically opening and a spring for closing the valve to be made suitable for use in direct-injection systems, the closing delay must be reduced.
The main obstacle during the closing of a standard solenoid valve of this kind are the eddy currents in the magnetic material of the valve which decay only slowly after the actuation current has been turned off and prevent a fast closing of the valve. This behavior defines the minimum valve opening time and consequently increases the smallest possible fuel injection quantity.
In the case of bistable injection valves having two windings and fixing of the valve in the respective end position by means of remanence forces, a reduction is required both in the turn-on time for opening the valve and in the turn-off time for closing the valve.
The circuit according to
Upon reaching a predefined upper current setpoint value at which the valve opens, switching transistor T1 is switched to non-conducting by means of the PWM unit PWM and the coil current now flows through the coil L1 via the freewheeling diode D1 and switching transistor T2, slowly decreasing in the process. If the current now reaches a lower predefined setpoint value, switching transistor T1 is again switched to conducting, whereupon the coil current increases once again.
By repeated switching of switching transistor T1 between the conducting and non-conducting state the coil current can thus be held at an approximately constant value during the turn-on time of the valve. At the end of the turn-on time (falling edge of the opening signal EO) both switching transistors T1 and T2 (in the case of a standard valve with closing spring) are switched to non-conducting simultaneously, whereupon the coil L1 discharges via the freewheeling diode D1 and the recuperation diode D2 into the supply voltage source V and the valve closes.
In this position the path is free for the highly pressurized fuel to pass from the inlet a (in the direction of the arrow) to the outlets b and c and on to the valve nozzles (not shown), which are thereby opened. In the following description the term “fuel” can also refer to a “hydraulic medium”, in which case instead of a fuel circuit a hydraulic circuit can be provided by means of which a fuel injection valve is controlled by means of hydraulic pressure transmission.
In order to close the valve an actuation current is now conducted through the closing coil C-D such that the valve needle 1 moves to the right-hand magnetic yoke 3. After the closing current is switched off, the valve needle 1 is held in the “CLOSED” position by the magnetization of the right-hand magnetic yoke 3.
This causes the path from the inlet a to the outlets b and c to be closed. At the same time the outlets b and c are connected to the return lines r which are implemented as circular lines and reduce the fuel pressure between the outlets b, c and the valve nozzles (not shown), as a result of which the valve is closed.
Since a bistable valve has two coils, namely an opening and a closing coil, the circuit arrangement according to
DE 100 18 175 A1 discloses a circuit arrangement for operating a lift armature actuator for a charge cycle valve, wherein at the end of the actuation cycle a current is sent through the coil in the opposite direction to the actuation current in order to initiate a faster changeover of the switching state.
Methods of this kind are also known for example from DE 199 21 938 A1, DE 195 26 681 A1 and DE 40 16 816 A1.
The object of the invention is to provide an improved device for faster switching of inductive fuel injection valves which
This object is achieved according to the invention by a device according to the features of claim 1 or 6.
Advantageous developments of the invention may be derived from the dependent claims.
As is well-known, the valve switching times are reduced in the case of a bistable valve when the magnetic holding forces generated during the activation of a coil are eliminated by selective quenching of the remanence of the other coil, and in the case of a standard valve (with closing spring) when the magnetic holding forces—induced by the decaying eddy currents—are eliminated during the deactivation of the coil.
In both cases it is necessary for this purpose to impress a negative current pulse into the respective coil, whereby the current level and time characteristic of said current pulse must correspond as exactly as possible to the magnetic requirements of the valve.
Exemplary embodiments according to the invention are explained in more detail below with reference to a schematic drawing, in which:
a: shows voltage and current profile at the current mirror of the inventive circuit arrangement,
b: shows the time characteristic of operating current and negative current during the opening and closing of a bistable valve,
As described there, one terminal of the coil L1, for example the opening coil of the valve, is connected by means of the first switching transistor T1 to the positive pole V+ of the supply voltage source V and the other terminal is connected by means of the second switching transistor T2 to reference potential GND. The source terminal of the first switching transistor T1 is connected to one terminal of the coil L1, and its drain terminal to the positive pole V+. The source terminal of the second switching transistor T2 is connected to reference potential GND, and its drain terminal to the other terminal of the coil L1.
The freewheeling diode D1 is arranged to conduct current from reference potential GND to one terminal of the coil L1 and the recuperation diode D2 is arranged to conduct current from the other terminal of the coil L1 to the positive pole V+ of the supply voltage source.
In addition, the circuit has been extended by five transistors T3 to T7, five resistors R1 to R5, one capacitor C1 and one diode D3, as well as by the integration of the onboard voltage source Vbat present in the vehicle.
The third transistor T3 is connected in parallel with the freewheeling diode D1: its source terminal is connected to reference potential GND, and its drain terminal to the connecting point of freewheeling diode D1 and one terminal of the coil L1. Said transistor serves in the current-conducting state to connect the terminal of the coil L1 connected to the first switching transistor T1 to reference potential GND.
The transistors T4 to T6 together with the resistors R2 to R4 form a complementary Darlington current mirror which supplies a negative current. Said current mirror T4-T6 is connected via a first resistor R1 to the positive pole V+ of the supply voltage V. The source terminal of the fourth transistor T4 is connected to the other terminal of the coil L1, while the source terminal of the sixth transistor T6 is connected via the series circuit of the seventh transistor T7 and the fifth resistor R5 to reference potential GND. The gate terminals of the third transistor T3 and the seventh transistor T7 are connected to one another and to the output of a control device, which is shown in
Connected into the circuit between the terminal of the first resistor R1 connected to the current mirror T4-T6 and reference potential GND is a capacitor C1 which is charged up by the vehicle onboard voltage source Vbat via a protection diode D3 and supplies the current mirror T4-T6 with energy, said current mirror being controlled by the seventh transistor T7 which is connected as a current source.
As long as the control signal NSC has low level (0V) at the gate terminal of the third transistor T3, said transistor T3 and also the seventh transistor T7 are switched to the non-conducting state, with the result that no current flows at the output of the current mirror formed by the source terminal of the fourth transistors T4 either. The circuit is inactive; no current flows through the coil L1 in the negative direction (in the direction from transistor T4 to transistor T3).
If the control signal NSC jumps to high level (e.g. +5V), the third transistor T3 is switched to conducting and connects one terminal of the coil L1 to reference potential GND. Simultaneously, a current begins to flow through the seventh transistor T7, the magnitude of said current being determined by the value of the fifth resistor R5 and the base voltage (+5V) of the seventh transistor T7 minus its base-emitter voltage (5V−0.7V≈4.3V).
Furthermore, said current also flows through the sixth transistor T6 and the third resistor R3, at which transistors it generates a voltage drop. According to the principle of operation of a current mirror comprising emitter resistors (for negative current feedback), the same voltage drop will develop between the base terminal of the fifth transistor T5 and the second resistor R2. If the value of resistor R2 is now chosen to be substantially less than the value of R3, a correspondingly higher current through R3 is required for that purpose:
I
R2
/I
R3
=R3/R2
The fifth transistor T5 together with the fourth transistor T4 forms a complementary Darlington transistor. Accordingly, the major portion of the current IR2 flowing through the second resistor R2 will flow through the fourth transistor T4.
No current flow is necessary for static control of the fourth transistor T4, which is embodied as a MOS FET; instead, a gate-source voltage corresponding to the drain current and the control characteristic must be set. If the value of the fourth resistor R4 is selected such that ID(T4)=IR2 (drain current through T4=current through the second resistor R2) the condition applies:
U
GS(T4)
/R4=IR3,
where UGS(T4)=gate-source voltage of the fourth transistor T4 and IR3=current through the third resistor R3, then approximately identical currents flow through the two transistors T5 and T6. This improves the accuracy of the current transmission ratio IR2/IR3 in the current mirror to such an extent that even large transmissions of, for example, >1000:1 can be represented stably and reproducibly. In the illustrated example, an output current of 2 A through transistor T4 is controlled by means of a control current of, for example, 2 mA through transistor T7. The current mirror is supplied from the capacitor C1.
At the beginning of a negative current pulse initiated by the signal NSC, capacitor C1 is charged up by means of the first resistor R1 to the potential of the supply voltage V+ (e.g. +48V). In this case a current through the opening or closing coil in the opposite direction to the direction of the actuation current is defined as the negative current.
The value of R1 is chosen here as high enough so that its current flow is substantially less than the negative current flowing through the second resistor R2 and the fourth transistor T4. The value of R1 must nonetheless be small enough to permit a charging-up of the capacitor C1 to the potential V+ in the intervals between two successive negative current pulses.
Capacitor C1 is now discharged by the (negative) current flowing through the second resistor R2 and the fourth transistor T4 through the coil L1 and the third transistor T3 and its voltage becomes less than the vehicle onboard voltage Vbat. This causes the protection diode D3 to become conducting and capacitor C1 to be clamped to the vehicle onboard voltage Vbat. What is achieved thereby is that at the beginning of a negative current pulse the high supply voltage V+ enables a fast current buildup in the coil L1 and subsequently is low enough so as not to allow any unnecessary power dissipation to occur in the fourth transistor T4.
a shows the voltage and current profiles at the current mirror T4-T6, the upper track showing the voltage UC1 at the capacitor C1. As the negative current pulse IL1 grows, the voltage UC1 drops until it is clamped at approx. 11.3V. Following termination of the negative current pulse the voltage UC1 increases once again to V+. The lower track shows the negative current pulse IL1. The setpoint value of 2 A is reached already after 38 μs.
In the case of bistable valves it has been shown that the duration of the negative current pulse should be set to the time period that the current in the other coil needs to reach its operating value. This enables the control signal NSC to be obtained in a simple manner. All that is required is a flip-flop which can be set at the start of the valve activation and reset in turn when the operating current is reached for the first time.
Said circuit consists solely of a flip-flop IC1A. The flip-flop IC1A (terminal CLK) is set by means of the rising edge e.g. of the closing signal ES for the closing coil (not shown), such that the flip-flop's output Q, at which the signal NSC appears, assumes high level.
At this point in time the output of the PWM unit PWM (see
For a bistable valve, a circuit according to
For a standard valve with opening coil and closing spring, the negative current of the single coil L1 must be controlled at the end of the opening signal EO, as shown in
In the case of the control unit according to
Only one circuit according to
In a further advantageous embodiment of the circuit according to
The advantages of the inventive circuit according to
For bistable valves having two actuation windings, the negative current is controlled by means of a signal from the drive electronics which controls the current profile in the opposite coil in each case.
For standard valves with closing spring, the negative current is controlled by means of the falling edge of the actuation (opening) signal.
In the further course of the negative current the capacitor voltage is clamped to the vehicle onboard voltage Vbat.
In a further advantageous exemplary embodiment, the energy required for the demagnetization can also be applied in an accelerated manner. This is beneficial when the fastest possible start of the valve movement is required. For this purpose the negative current is specified not by means of a predefined, largely constant value for a specific time period, as
The speed of the current rise is therein determined by the inductance of the coil and the supply voltage V. The peak value of the current is also higher than in the case of the first embodiment variant, since the demagnetization energy is produced in a shorter time.
In
A circuit diagram for a circuit arrangement of this kind is shown in
In addition, the current source T4-T6 is now configured for a substantially higher constant current—for example 8 A—by the choice of the value ratio of the resistors R2 and R3.
When the negative current control signal NSC is activated by means of the closing signal, the transistor T3 assigned to the opening coil is switched—as described with reference to FIG. 4—to the conducting state, and simultaneously the current source T4 to T6 by means of transistor T7. According to the inductance of the coil L1 (opening coil), the current through it will now rise over time (
The valve switching time determined in a measured exemplary embodiment of the circuit according to
The valve coils are located in the injection valve (not shown) on the engine block of the internal combustion engine outside the electronic control device, and a shorting of the feed lines to vehicle ground is a common fault. This must not, however, result in damage to the electronics.
The negative current sense voltage NSS is evaluated and the negative current control signal NSC is controlled by means of a suitable control unit, which is described in
The control unit according to
The signal NSS (negative current sense) tapped at the resistor R7 in
The output Q of the monoflop IC2 is connected to a second input of the AND element, whose third input is connected to the inverting output Q-Not of the flip-flop IC1A.
The signal NSC (negative current control) appears at the output of the AND element IC3A, and a signal NSD (negative current diagnosis) appears at the non-inverting output Q of the flip-flop IC1A.
The control signal already described in
The signal profiles of the control unit shown in
The rising edge of the control signal ES clocks the monoflop IC2, whose output Q now assumes high level for the duration of the monoflop time. The AND element IC3A combines the signals ES, Q of IC2 and Q-Not von IC1A. Since all these signals now have high level, the signal NSC at the output of AND element IC3A likewise assumes high level by means of the rising edge of the control signal ES. The negative current begins to increase.
As a result the transistors T3 and T4 (
If NSS<Vref, then the output of the comparator Comp1 has low level. If the value of NSS exceeds the value of Vref, the output of the comparator Comp1 jumps to high level and sets the downstream flip-flop IC1A. The latter's inverting output Q-Not jumps to low level and switches the signal NSC to low level via the AND element IC3A, thereby causing the negative current in the opening coil L1 to be turned off. Similarly, the signal NSD at the non-inverting output Q jumps to high level.
A potential malfunction can be detected by observation of the instant in time at which said voltage jump occurs or of whether it occurs. The type of fault can also be detected. If there is a shorting to reference potential in one of the feed lines of the coils, no current will flow through resistor R7 and the signal NSD remains at low level. This also applies in the case of a line break.
It is therefore sufficient to interrogate the signal NSD 3 immediately before the opening signal EO or closing signal ES is turned on.
The time constant of the monoflop IC2 is chosen such that the desired value of the negative current is reliably reached, yet a thermal overloading of the power transistor T4 of the current source is avoided in the event of shorting to reference potential.
If the signal NSS (negative current sense) has not exceeded the value of Vref before the time constant has expired, the downstream flip-flop IC1A will not be triggered. The signal NSD at the non-inverting output Q remains at low level. The output Q of the monoflop IC2 goes to low level again and blocks the AND element IC3A, with the result that the latter's output signal NSC goes to low level.
In the case of a bistable valve, a circuit according to
For a standard valve with closing spring, the control unit of which is shown in
As shown in
For this purpose, however, an additional selection circuit (not shown) is required which selects the current path desired in each case by suitable control of T3, T3b, T7, T7b.
The main obstacle during closing are, as already explained, the eddy currents in the magnetic material of the valve, which decay slowly after the actuation current is turned off and prevent fast closing of the valve. For this reason steel with low electric conductance is generally used.
In order to reduce the closing delay in the case of standard solenoid valves even further, according to the invention, in addition to the use of a negative current pulse, use is also made of the different decay times of eddy currents in magnetic materials having different electric conductances.
For that purpose, contrary to the above-described rule, according to the invention a material having the highest possible conductance is chosen for the armature S6 in order to allow the eddy currents to decay as slowly as possible in the armature. The magnetic yoke S5, on the other hand, consists as in the prior art of material having low electric conductance.
In this way it is possible, during the closing of the valve through application of a negative current pulse to the coil S4 to temporarily achieve a field reversal in the magnetic yoke S5 while the original exciter field in the armature S6 has not yet completely decayed.
This temporarily results in a repulsive force between magnetic yoke S5 and magnetic armature S6 in the gap between magnetic yoke and magnetic armature, which significantly accelerates the commencement of the closing movement and the closing cycle of the valve.
The bottom diagram shows the time characteristic of the negative current pulse applied to the coil during the closing cycle of the injection valve.
The field strengths or holding forces generated due to eddy currents are shown in the top diagram. The respective value of the eddy current is assigned a magnetic field strength and hence a holding force.
The top curve 15a shows the profile of the field strength effective in the armature S6—which consists of material having the highest possible electric conductance—while the bottom curve 15b shows the profile of the field strength effective in the magnetic yoke S5—which is made of material having low electric conductance.
Also shown is the line 15c, which represents the holding force of the closing spring S3.
At the instant in which the field strength influenced by the negative current pulse—curve 15b—becomes negative and so reverses its direction, the repulsive force between magnetic yoke S5 and armature S6 begins to take effect. This force is at its greatest at the point marked by a double arrow.
The combination of negative current pulse at the end of the exciter current and suitable choice of the magnetic material properties therefore produces overall a substantial reduction in the turn-off delay in the case of standard solenoid valves.
Number | Date | Country | Kind |
---|---|---|---|
10 2006 003 388.4 | Jan 2006 | DE | national |
10 2006 025 360.4 | May 2006 | DE | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/EP07/50643 | 1/23/2007 | WO | 00 | 7/24/2008 |