The disclosure relates generally to a tensioning device for composite material component formation and more particularly to a tensioning system and device for forming tensioned reinforcement material components.
Generally, in composite frame fabrication, a fiber preform or layup is prepared. A selected plurality of tackified cloth, dry cloth or prepreg laminae may be superimposed or stacked together to provide a preform of a member, part, or component. The preform is then debulked and impregnated, if dry or tackified cloth, prior to final curing under pressure. This can be accomplished by using a pressure bag in which the preform is encased, typically in a vacuum bag. In order to maintain the preform in a desired shape, the preform can be secured to a rigid, appropriately shaped mandrel, sometimes called a preform tool, frame, or a fixture. This can occur prior to enclosure in a vacuum bag or other enclosure. The impregnated preform may be cured at room temperature or may be placed in an oven or autoclave which applies pressure to the preform through the bag under curing temperature.
During fabrication of these composite parts, it is often the case that excess axial fiber length develops into an aberration or wrinkle in the composite material layup or preform during compaction or debulking of the layup or preform. This is especially true when using braided or woven materials like two-dimensional (“2D”) and/or three-dimensional (“3D”) 5-harness and/or 8-harness fabrics or braids in plain or diamond patterns Aberrations can include, at least, warping, wrinkling, undulations, slippage, bends, or the like in the layup that may adversely affect the appearance of the resulting components.
Many of the previously known methods for anchoring preforms use anchoring portions that are raised or provided as separate parts of a more elaborate, multi-part tool. The clamping mechanism in these devices typically remains with the tool during the cure cycle. Additionally, these multi-part tools often fail to evenly compress the preform along the length of the mandrel. For example, caul plates are often utilized to compress the preform on to the mandrel. Unfortunately, near the edges or interface between the caul plates, pressure inconsistencies or misalignments may occur. This results in dimensional inaccuracies, added defects and aberrations, additional resin bleed, increased tool maintenance and higher operating costs.
Additionally, in most instances only the outermost layers of the laminate may be extended and gripped by the anchor and the resulting outer layer tensioning may be done by the vacuum bag itself, when the vacuum may be applied. This results essentially in tensioning only on the outer layer. With these methods tensioning may be applied by ply bridging when the vacuum bag forces outer plies which may be cut longer into a void created by the inner plies being cut shorter and the area between the longer plies and the tool is thus “bridged” to apply the tension on the lower plies. Thus, tension may not be applied throughout the layers. Moreover, in addition to the added complexities of the multi-part tools noted above, the likelihood of failures due to bag ruptures may be increased and the resulting part can be dangerously flawed.
Accordingly, it is desirable to provide a layup tensioning device and method that is capable of overcoming the disadvantages described herein at least to some extent.
The foregoing needs are met, to a great extent, by at least one embodiment of disclosure, wherein one aspect of the apparatus includes a frame braid tensioning device providing support along the entirety of a braided composite preform and necessary tension to remove excess braid length through the layers of the preform. An embodiment is provided that has, for example, a tensioning groove and tensioning mechanism to tension the layers of the preform layup and, thus, remove aberrations that may occur, essentially to “pull out” aberrations.
An embodiment relates to an apparatus for preparing a preform. The apparatus includes a mandrel, anchoring groove, anchoring device, tensioning groove, and tensioning device. The mandrel receives the preform. The mandrel has a first mandrel end and a second mandrel end. The preform has a first preform end and a second preform end. The anchoring groove is disposed at the first mandrel end. The anchoring device is configured and located to urge the first preform end towards the anchoring groove to secure the first preform end therebetween. The tensioning groove is disposed between the first mandrel end and the second mandrel end. The tensioning device is configured and located to urge at least a portion of the preform into the tensioning groove.
Another embodiment pertains to a composite curing mandrel. The composite curing mandrel includes a surface, a plurality of anchors, a corresponding plurality of anchor clamps, a tensioning groove, and a tensioning device. The surface receives a layered preform. The surface has a first surface end, a second surface end, and a surface width. The layered preform has a first preform end, a second preform end, and a preform width. The plurality of anchoring grooves spans the surface width. A first anchoring groove of the plurality of anchoring grooves is disposed at the first surface end. A second anchoring groove of the plurality of anchoring grooves is disposed at the second surface end. The corresponding plurality of anchor clamps are configured and located to secure the first preform end and the second preform end respectively to the first surface end and the second surface end. The tensioning groove is disposed between the first surface end and the second surface end and spans the surface width. The tensioning device is configured and located to urge a portion of the preform into the tensioning groove to increase an amount of tension in the layered preform between the plurality of anchoring grooves.
Yet another embodiment relates to a composite tensioning device. The device includes a mandrel, wire, and tensioning device. The mandrel receives a preform. The wire is coupled to an end of the preform. The tensioning device is coupled to the wire. The tensioning device is configured to draw the wire from the preform to increase an amount of tension in the preform.
Yet another embodiment pertains to a method of fabricating a composite item. In this method, a preform is positioned on a mandrel, the preform is anchored to the mandrel, and the preform is urged into a tensioning groove with a tensioning device to increase an amount of tension in the preform.
Yet another embodiment relates to a method of fabricating a composite item. In this method, a plurality of composite layers is laid on a mandrel. The composite layers have a first end and a second end. In addition, the first end is fastened to the mandrel, a tensioning device is coupled to the second end, and tension is applied to the composite layers.
There has thus been outlined, rather broadly, certain embodiments in order that the detailed description thereof herein may be better understood, and in order that the present contribution to the art may be better appreciated. There are, of course, additional embodiments that will be described below and which will form the subject matter of the Claims appended hereto.
In this respect, before explaining at least one embodiment in detail, it is to be understood that the embodiments are not limited in its application to the details of construction and to the arrangements of the components set forth in the following description or illustrated in the drawings. The disclosure may have embodiments in addition to those described and of being practiced and carried out in various ways. Also, it is to be understood that the phraseology and terminology employed herein, as well as the abstract, are for the purpose of description and should not be regarded as limiting.
As such, those skilled in the art will appreciate that the conception upon which this disclosure is based may readily be utilized as a basis for the designing of other structures, methods and systems for carrying out the several purposes of the disclosure. It is important, therefore, that the Claims be regarded as including such equivalent constructions insofar as they do not depart from the spirit and scope of the disclosure.
The embodiments will now be described with reference to the drawing figures, in which like reference numerals refer to like parts throughout. An embodiment in provides an apparatus that includes a mandrel, an anchoring groove and an anchoring device cooperatively coupled to the anchoring groove, and a tensioning groove and a tensioning device cooperatively coupled to the tensioning groove. The anchoring groove and anchoring device anchors a layered preform to the mandrel and the tensioning groove and tensioning device applies tension throughout all the layers in the layered preform.
It is an advantage of various embodiments that sufficient tension may be applied in a preform to remove wrinkles or similar aberrations from the layup. It is an additional advantage that tension may be applied to internal or underlying layers and/or external layers of the preform or layup. Furthermore, embodiments may be performed economically during the fabrication process. It is another advantage that a single mandrel may be configured to provide support for the preform. It is yet another advantage of an embodiment that bulk or similar aberrations may be removed from the composite. These and other attributes of various embodiments may be especially beneficial in developing curved shapes. In addition, anchoring and tensioning devices of the various embodiments may be used to hold and support the preform and to provide tension in the outer layer and/or underlying layers before and/or during a vacuum debulking process. In some embodiments, the anchor and/or tension devices may be applied over, and hence through the pressure or vacuum bag. This may facilitate removal of the anchor and/or tension devices prior to curing, so as to reduce resin bleed and tool maintenance costs. The apparatus may include a one part tool, resulting in less complicated tooling, less resin bleed, and improved dimensional accuracy. These embodiments may reduce costs associated with tool maintenance and composite item fabrication. The tensioning device of various embodiments may be equally effective for autoclave and atmospheric pressure cures.
An embodiment of the apparatus and method is illustrated in
As shown in step 1 of
As shown in step 2 of
As shown in step 3 of
As shown in step 4 of
An example embodiment of a cross-sectional detailed view of the mandrel 10 and preform 100 is shown in
The preform layers 101-105 may include any suitable composite material such as braided preforms, layers of prepreg, foil, film, fabric, unidirectional tape, and the like or any combination thereof.
The tensioning groove 40 and the preform layers 101-105 may be engaged by the tensioning device 20, here shown as a tapered block and clamp. Clamping layers 101-105 into the tensioning grooves applies tension forces substantially across the cross section of the preform 100 and the preform layers 101-105. This effectively “pulls” excess material out of the preform 100 and stretches out or draws taut wrinkles or other aberrations.
It is an advantage of this and other embodiments of the disclosure that the tension generated by the tensioning device 20 and tensioning groove 40 may be essentially spread through the preform 100. As a result, the preform 100 may be drawn down onto the mandrel 10. Furthermore, in layered preforms 100, each layer 100-105 of the preform 100 may be subjected to essentially the same tension which may reduce internal aberrations.
Also shown in
The mandrel 10 shown in
Extending from an end of the preform 100 may be a wire 200. The wire 200 may be coupled to a tensioning device 20, herein shown as a wire tensioning device. An optional clamping device 250 may clamp the preform 100 and provide a means of attaching the wire 200 to the preform 100. The tensioning device 20 draws the wire 200 and thereby translates tension through the clamping device 250 and to the preform 100. The tensioning device 20 draws tension on the wire 200 and thus stretches or draws taut the layers of the preform 100. The mandrel 10 may include an anchoring groove 50 which accommodates an anchoring device 30, a tapered block and clamp for example. Alternatively, both ends of the preform 100 may be coupled through respective clamping devices 250 and wires 200 to respective tensioning devices 20, and thus tensioned through both ends of the preform 100.
The tensioning device 20 may be incorporated as part of the mandrel 10, within the mandrel 10, or as a separate device from the mandrel 10. The anchoring device 30 and the tensioning device 20 may be applied to hold the preform 100 on the mandrel 10 using the vacuum bag 60. The tensioning device 20 may stretch out, draw taut or otherwise aids in removing both the observed and unobserved aberrations, voids, wrinkles, and the like through the tensioning of the wire 200. Alternatively, the tensioning device 20 can be applied to hold the preform 100 without departing from the spirit of the disclosure.
Although an example of the device is shown using a braided preform, it will be appreciated that other preforms can be used. Also, although the device may be useful to draw tension in preforms of braided material it can also be used to draw tension in any suitable preform.
An example embodiment of a mandrel 610 is shown in
Additionally, embodiments of the disclosure are not limited to the block 654 and clamp 634 and the anchoring device 630 and anchoring groove 650, but rather, any suitable fastener may be included in various embodiments of the disclosure. Suitable fasteners include, at least, clamps, presses, and the like. Furthermore, suitable fasteners may include affixing, chemical or heat welding, and the like.
The preform layers 701-705 may include any suitable composite material such as braided preforms, layers of prepreg, foil, film, fabric, unidirectional tape, and the like or any combination thereof.
The tensioning groove 640 and the preform layers 701-705 may be engaged by the tensioning device 620, here shown as a tapered block and clamp. Clamping layers 701-705 into the tensioning grooves applies tension forces substantially across the cross section of the preform 700 and the preform layers 701-705. This effectively “pulls” excess material out of the preform 700 and stretches out or draws taut wrinkles or other aberrations.
It is an advantage of this and other embodiments of the disclosure that the tension generated by the tensioning device 620 and tensioning groove 640 is essentially spread through the preform 700. As a result, the preform 700 may be drawn down onto the mandrel 610. Furthermore, in layered preforms 700, each layer 701-705 of the preform 700 may be subjected to essentially the same tension which may reduce internal aberrations.
Also shown in
The many features and advantages of the embodiments are apparent from the detailed specification, and thus, it is intended by the appended Claims to cover all such features and advantages of the embodiments which fall within the true spirit and scope of the disclosure. Further, since numerous modifications and variations will readily occur to those skilled in the art, it is not desired to limit the disclosure to the exact construction and operation illustrated and described, and accordingly, all suitable modifications and equivalents may be resorted to, falling within the scope of the embodiments.
The present application is a divisional application of and claims priority to U.S. application Ser. No. 11/633,075 filed on Dec. 4, 2006 and entitled TENSIONING DEVICE FOR COMPOSITE STRUCTURES, now U.S. Pat. No. 8,303,757, the entire contents of which is expressly incorporated by reference herein.
Number | Name | Date | Kind |
---|---|---|---|
955266 | Heldmann | Apr 1910 | A |
2441097 | Hicks | May 1948 | A |
2859936 | Warnken | Nov 1958 | A |
2934317 | Warnken | Apr 1960 | A |
3349157 | Parsons | Oct 1967 | A |
3434181 | Benzies | Mar 1969 | A |
3492392 | Akabane et al. | Jan 1970 | A |
3663326 | Wanesky | May 1972 | A |
3673295 | Winchklhofer | Jun 1972 | A |
3955266 | Honami et al. | May 1976 | A |
4155791 | Higuchi | May 1979 | A |
4608220 | Caldwell et al. | Aug 1986 | A |
4718961 | Yamato et al. | Jan 1988 | A |
4740417 | Tornero | Apr 1988 | A |
4743323 | Hettinga | May 1988 | A |
4786351 | Elliott et al. | Nov 1988 | A |
4883632 | Goto et al. | Nov 1989 | A |
4943222 | Nathoo | Jul 1990 | A |
4944822 | Ishikawa et al. | Jul 1990 | A |
4946640 | Nathoo | Aug 1990 | A |
4973234 | Swenson | Nov 1990 | A |
5035758 | Degler et al. | Jul 1991 | A |
5128090 | Fujii et al. | Jul 1992 | A |
5209891 | Guarriello et al. | May 1993 | A |
5225027 | Diekwisch | Jul 1993 | A |
5286211 | McIntosh | Feb 1994 | A |
5318422 | Erland | Jun 1994 | A |
5348602 | Makarenko | Sep 1994 | A |
5380480 | Okine et al. | Jan 1995 | A |
5394906 | Farley | Mar 1995 | A |
5433165 | McGuiness et al. | Jul 1995 | A |
5449429 | Langenbrunner | Sep 1995 | A |
5463794 | Erland | Nov 1995 | A |
5468331 | Makarenko | Nov 1995 | A |
5641525 | Yakel | Jun 1997 | A |
5714179 | Goodridge et al. | Feb 1998 | A |
5743979 | Lorbiecki | Apr 1998 | A |
5882462 | Donecker et al. | Mar 1999 | A |
5900093 | Langenbrunner | May 1999 | A |
5900193 | Rivers et al. | May 1999 | A |
5925302 | Oono et al. | Jul 1999 | A |
6132666 | Foley et al. | Oct 2000 | A |
6709995 | Dyksterhouse | Mar 2004 | B1 |
20050051262 | Erickson | Mar 2005 | A1 |
20060073309 | Hogg | Apr 2006 | A1 |
20060108055 | Pham et al. | May 2006 | A1 |
20060249868 | Brown et al. | Nov 2006 | A1 |
Number | Date | Country |
---|---|---|
10296864 | Nov 1998 | JP |
2001038752 | Feb 2001 | JP |
Entry |
---|
Lee, S.M., Handbook of Composite Reinforcements, 1993, pp. 630-633. |
European Application No. 12170577.6-1253, “Extended European Search Report”, dated Jul. 20, 2012. |
Number | Date | Country | |
---|---|---|---|
20120263818 A1 | Oct 2012 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 11633075 | Dec 2006 | US |
Child | 13532729 | US |