The invention relates to an apparatus for the continuous casting of metals, especially steel materials, to elongated products in a multistrand casting plant [multiple casting plant], with several strand casting molds, each of which is mounted to oscillate separately in an oscillating frame which is driven to oscillate in the casting direction by plate or leaf spring pairs on both sides of the cast strand and which extend transversly to the casting direction for guiding and weight compensation on a base frame.
From EP 0 468 607 B2, a liquid-cooled mold for the continuous casting of metals is known, with which billet-shaped, bloom-shaped and round strands can be cast by means of a tubular mold. For that purpose the mass of the mold depends upon the particular strand format or shape and is determined based thereon so that for a slab format or shape the mold can weigh about 30 metric tons while the weight of a mold for round or rectangular cross section strands can be about 1.3 to 2.5 tons. With the reduction of mold weight, higher oscillation numbers (oscillations per unit time) can be reached with the smallest utilization of applied force.
The present invention is concerned however with so-called multiple casting units, i.e. multiple strand casting plants, in which a plurality of cast strands are produced simultaneously alongside one another. With such multistrand casting plants, it is desirable to have the smallest possible strand spacing or interstrand spacing from cast strand to cast strand as measured form mold center to mold center. For newly constructed continuous casting plant, such multistrand casting systems reduce the cost of producing the product and with conversation of single strand plants to multistrand plants, the capital cost for such production can be reduced as well. At the same time in such conversions, stirring or agitation coils which can have an inductive effect on the liquid core of the cast strand, can be incorporated as well.
It is the object of the invention to provide in continuous casting plants, also with so-called resonance molds, as described at the outset and whose significant feature is a leaf spring casing or unit or stack, the smallest possible strand spacing between the cast strands.
This object is achieved in accordance with the invention in that in an apparatus as described at the outset, on an elongated base frame and in the strand travel direction the compact flat-cassette housings are secured in which the upper and lower leaf spring pairs run transversely to the cast strands and upon which the oscillating drive act on the leaf spring pairs whereby a front oscillating drive operates synchronously with the rear oscillating drive. The advantage in such a transverse arrangement with a crossing of the cast strand by comparison with prior longitudinal arrangements is a significant place and space saving so that the distance from cast strand to cast strand can be held as small as possible. The arrangement of the flat cassettes one behind the other with the respective oscillating drives in the casting direction and a crossing transverse arrangement of the plate or leaf spring transverse to the casting axes or the casting strands enables the formation of a sufficiently large space for the continuous casting mold to be built in between the two flat cassettes. At the same time sufficient free space is obtained for the incorporation of a so-called zero support roll segment. Close to the entire strand spacing “A” can thereby be used.
According to further features it is proposed that the front oscillation drive be adjusted with respect to the rear oscillation drive with different strokes for an arcuate pattern of the casting strands. In that case, the rear oscillation drive can be set to a higher stroke relative to the front oscillation drive.
Another advantage resides in that the oscillation drives may be comprised of hydraulic drive units. The oscillation drives can be arranged in protected space below the base or foundation frame.
Further features include that the flat cassettes are comprised of two rectangular frames disposed one behind the other in the strand travel direction and each of which has two plate spring or leaf spring pairs of plate or leaf springs spaced apart in their heights, and that between the rectangular frames, a mold-seating frame is surprisingly arranged. In this manner the two rectangular frames can simultaneously form a guide for the mold receiving frame.
The special protection for the drives can be achieved by locating the oscillating drive units each in the median plane of the continuous strand below the two rectangular frames and between longitudinal beams of the base or foundation frame. Apart from a protected location, this arrangement provides advantages in attachment location.
Other features include that the foundation or base frame can have suspension elements between the longitudinal beam and upon which the suspenders for a support or guide roll segment can be mounted. In this manner the introduction of a support or guide roll segment prior to mounting of the continuous casting mold can be facilitated.
In a further feature it is provided that the suspension elements comprise a double-arm lever rotationally journaled on the longitudinal beams and a suspension trough formed at one lever end and an adjustment device on another lever end.
The configuration of the apparatus can be further developed in that a water clamping plate for supplying the continuous casting mold with cooling medium can be disposed on the rear flat cassette and in that the cooling medium feed and the cooling medium discharge run away from the casting strand rearwardly.
In the drawing, embodiments of the invention have been illustrated which are described in greater detail hereinafter.
The drawing shows:
In a multistrand casting plant or operation (
So that a plurality of cast strands 3 or casting lines can be provided to adjoin one another as closely as possible, that is to achieve a spacing A which is as small as possible (
At the rear end and at the front end of the base frame 5 there are respective compact flat cassettes 6 which extend in their respective longitudinal directions transversely to the casting lines 3 and bridge the space between the two longitudinal beams 5a and 5b. Each flat cassette 6 is comprised of a closed housing 6a, whereby a rear flat cassette 6b and a front flat cassette 6c define a space between them for receiving a continuous casting mold.
Each flat cassette 6 is formed by the housing 6a together with protective covers 7 on both sides. Within the housing 6a are base frames 8, two of which are provided parallel to one another and spaced apart, together with the leaf springs or plate springs which will be described in greater detail hereinafter and are formed as upper and lower plate springs or leaf spring pairs 4a and 4b transverse to the longitudinal direction and which form articulations. Between the two base frames 8 of each cassette 6, a water clamping plate 9 is provided for the cooling of the continuous casting mold and is connected from below with a cooling medium supply 10.
The configuration of each flat cassette 6 with its housing 6a open, that is with the cover protectors 7 removed, has been shown. In each flat cassette 6, that is in each case two pairs of upper plate spring pairs 4a and lower plate spring pairs 4b are associated with an oscillating drive 11 acting on or fastened to a bridge 12 connecting the upper and lower pairs of springs. The front oscillating drive 11a and the rear oscillating drive 11b which together form the oscillating drive 11 are synchronized to effect an arcuate travel 13 of the strands with unequal strokes but the same frequency. The oscillating drives 11a and 11b are for example configured as hydraulic oscillating drive units 14 which are fed by hydraulic lines 15.
As can also be seen from
The oscillation drive units 14 are located in the median plane 19 (
According to
According to
In the plan view of
In the front view of
In the plan view from below,
Number | Date | Country | Kind |
---|---|---|---|
102-44-596.6 | Sep 2002 | DE | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/EP03/09710 | 9/2/2003 | WO | 3/16/2005 |