The present invention relates to devices for the in situ delivery of heart valves. More specifically, the invention relates to delivery devices for cardiac valve prostheses using minimally-invasive surgical techniques or endovascular delivery techniques.
Expandable prosthetic valves typically include an expandable and collapsible anchoring structure or armature, which is able to support and fix the valve prosthesis in the implantation position, and prosthetic valve elements, generally in the form of leaflets or flaps, which are stably connected to the anchoring structure and are able to regulate blood flow.
These expandable prosthetic valves enable implantation using various minimally invasive or sutureless techniques. Exemplary applications for such an expandable valve prosthesis include aortic and pulmonary valve replacement. Various techniques are generally known for implanting an aortic valve prosthesis and include percutaneous implantation (e.g., transvascular delivery), dissection of the ascending aorta using minimally invasive thoracic access (e.g., mini-thoracotomy or mini-sternotomy), and transapical delivery wherein the aortic valve annulus is accessed through an opening near the apex of the left ventricle. The percutaneous and thoracic access approaches involve delivering the prosthesis in a direction opposing blood flow (i.e., retrograde), whereas the transapical approach involves delivering the prosthesis in the same direction as blood flow (i.e., antegrade).
The present invention, according to one embodiment, is a device for delivering a cardiac valve prosthesis to an implantation site. The device includes a distal valve holder portion defining a cavity adapted to receive and radially constrain the valve prosthesis therein; a shaft coupled to the valve holder portion, the shaft including a tubular sleeve and a core disposed partially within the tubular sleeve, the core adapted to move axially with respect to the sleeve; a valve support disposed at or near a distal end of the shaft, the valve support including an annular recess adapted to mate with a portion of the valve prosthesis; a deployment mechanism adapted to axially translate the valve support with respect to the distal valve holder, such that the valve prosthesis is selectively deployed at the implantation site; and a deflection mechanism coupled to shaft, the deflection mechanism adapted to selectively vary the spatial orientation of the valve holder portion with respect to the implantation site.
The present invention, according to another embodiment, is a device for delivering a cardiac valve prosthesis to an implantation site, which includes a distal valve holder portion and a shaft coupled to the valve holder portion. The shaft is selectively bendable to a curved shape to selectively vary the spatial orientation of the valve holder portion with respect to the implantation site.
While multiple embodiments are disclosed, still other embodiments of the present invention will become apparent to those skilled in the art from the following detailed description, which shows and describes illustrative embodiments of the invention. Accordingly, the drawings and detailed description are to be regarded as illustrative in nature and not restrictive.
a and 2b are longitudinal sectional views of the device of
While the invention is amenable to various modifications and alternative forms, specific embodiments have been shown by way of example in the drawings and are described in detail below. The intention, however, is not to limit the invention to the particular embodiments described. On the contrary, the invention is intended to cover all modifications, equivalents, and alternatives falling within the scope of the invention as defined by the appended claims.
In the following description, numerous specific details are given to provide a thorough understanding of embodiments. The embodiments can be practiced without one or more of the specific details, or with other methods, components, materials, etc. Reference throughout this specification to “one embodiment” or “an embodiment” means that a particular feature, structure, or characteristic described in connection with the embodiment is included in at least one embodiment. Thus, the appearances of the phrases “in one embodiment” or “in an embodiment” in various places throughout this specification are not necessarily all referring to the same embodiment. Furthermore, the particular features, structures, or characteristics may be combined in any suitable manner in one or more embodiments.
As used herein, “proximal” and “distal” refer to the conditions of handling of the device 100 by a practitioner who manipulates the device via the handle 1 at the “proximal” end in order to permit delivery of the valve V at the “distal” end of the device 100. Thus “proximal” and “distal,” as used herein, have no direct relationship to the approach (retrograde or antegrade) adopted for delivering the valve V.
In one exemplary embodiment, the valve V is of the type disclosed in U.S. Publication 2006/0178740, which is incorporated herein by reference. Such a prosthetic valve includes two annular end portions V1, V2 (i.e. inflow and outflow with respect to the direction of unimpeded flow of blood through the valve).
As shown in
In the exemplary illustrated arrangement, the annular portions V1 and V2 are located “distally” and “proximally,” respectively of each other with reference to the orientation of the device 100. In the following it will be assumed that the valve V is delivered by releasing the annular portion V1 first and then by causing the valve V to gradually expand (e.g. due to its elastic or superelastic nature), starting from the portion V1 and continuing to the portion V2, until expansion is complete.
As further shown in
In various embodiments, the holder unit 10 includes an inner body or valve support 9 integral with or coupled to the tubular core 16 and including an annular groove or similar recessed 90 formation (see
In the embodiments shown in
The sleeve 8 extends over the tubular core 16 and terminates with a distal portion including a terminal enlarged portion 800 adapted to extend around the distal portion of the core 16 to form an external tubular member of the holder unit 10, which is adapted to radially constrain and retain the valve V when disposed therein.
The terminal enlarged portion 800 may be either one-piece with the rest of the sleeve 8 or, as shown in
According to various embodiments, the threaded surface/formations 30, 40 comprise a “micrometric” device actuatable by rotating the actuation member 3 to produce and precisely control axial displacement of the sleeve 8, 800 over the core 16. Such a controlled movement may take place along the core 16 starting from an extended position, as shown in
As the sleeves 4, 8 are gradually retracted towards the handle 1 (by operation of the actuation device 30, 40, which are controlled by the rotary member 3), the outer member 800 gradually releases first the annular portion V1 of the valve V, then the portion of the valve located between the annular portion V1 and the annular portion V2, and finally the annular portion V2 of the valve V, thus permitting gradual radial expansion of the valve V. According to other embodiments, the device 100 includes a two-part actuation mechanism of the type disclosed in co-pending, commonly assigned U.S. application 12/465,262, now published as U.S. 2010/0292782, filed on May 13, 2009, entitled “DEVICE FOR THE IN SITU DELIVERY OF HEART VALVES,” which is incorporated herein by reference.
In an exemplary delivery procedure of the valve V, the practitioner introduces the device 100 into the patient's body and advances it through the delivery route or path until the outer member 800 is located at the annulus of the natural valve to be substituted by the valve V. The practitioner may use any of a variety of known techniques for delivering the device 100 to the valve annulus site.
In various embodiments, the radial dimensions of portion 800 are slightly less than the radial dimensions of the annulus of the natural valve intended to be substituted. In these embodiments, the outer member 800 will not unduly move about or “dance,” while being positioned within the natural annulus. In various exemplary embodiments, these radial dimensions are in the range of between about 10 mm and about 27 mm.
In the exemplary case of aortic valve replacement, this may involve the outer member 800 being located immediately distally (with respect to the flow direction blood pumped from the left heart ventricle) of the aortic annulus so that the annular portions V1 and V2 are located on opposite sides (i.e. astride) of the Valsalva sinuses. In other words, the portion V1 is located on one of the ventricle side and the aortic root side of the Valsalva sinuses, and the portion V2 is located on the opposite side of the Valsalva sinuses.
Once the portion 800 is disposed properly at the annulus site, the practitioner will actuate the rotary actuation member 30 by rotating it in such a way that cooperation of the threaded sections 30 and 40 will cause the outer sleeve 8 and the proximal sleeve 4 to start gradually retracting towards the handle 1. As a result of this retraction of the outer sleeve, the outer member 800 will gradually disengage the annular portion V1 of the valve V. The annular portion V1 will thus be allowed to radially expand.
Gradual withdrawal of the sleeves 4, 8 proceeds until the outer member 800 has almost completely disengaged the valve V, while the annular formation V2 is still securely retained by the tubular member 800 of which still forces the annular formation V2 of the valve within the inner body 9 of the a holder portion.
This deployment mechanism of the annular formation V1 and the valve V may be controlled very precisely by the practitioner via the screw-like mechanism 30, 40 actuated by the rotary member 3. Deployment may take place in a gradual and easily controllable manner by enabling the practitioner to verify how deployment proceeds.
Also, so long as the annular formation V2 of the valve V is still constrained within the formation 9 by the tubular member 800, the practitioner still retains firm control of the partially (e.g., “basket-like”) expanded valve V. The practitioner will thus be able to adjust the position of the valve V both axially and radially, that is by rotating the valve V around its longitudinal axis, e.g. to ensure that radially expanding anchoring formations of the valve V are precisely aligned with the Valsalva sinuses to firmly and reliably retain in place the valve V once finally delivered.
In various embodiments, the portion 800 has a marginal outer edge provided with one or more notches 802 providing a reference in angular positioning of the valve V at the implantation site. In various embodiments, these notches are visible during implantation (e.g., using radiography or other common implantation techniques).
According to various embodiment, the annular portion V2 of the valve V is received in the formation 9 and is thus blocked against any significant axial movement, during the retraction of the sleeve 8 and the sleeve 4 over the core 16. In other words, the valve V will not experience any significant axial displacement with respect to the shaft 6. The retraction of the outer sleeve 8 continues until the annular formation V2 (and the valve V as a whole) become disengaged from the device 100 and thus completely deployed at the implantation site.
While a cardiac valve prosthesis including two self-expandable annular portions has been considered herein for exemplary purposes, this disclosure similarly applied to cardiac valve prostheses including further expandable annular portions and/or one or more annular portions that are expandable via an expansion means such as an inflatable balloon.
In various embodiments, the device 100 includes an illuminator device 300 located at the holder unit 10 to provide illumination of the implantation site of the valve V. In minimally-invasive surgical procedures the operation site is observed directly by the practitioner via the (minimally-invasive) access path gained through the thorax of the patient. The action of the illuminator 300 is beneficial in that penetration of ambience light to the implantation site may be reduced or impeded by the body structures of the patient. In various embodiments, the illuminator device 300 is adjustable.
In the exemplary embodiment shown in
Various embodiments include features to facilitate spatial orientation of the valve V with respect to the implantation site. In various embodiments, the shaft 6 is flexible and adapted to be imparted specific curved shapes. The shaft 6 being flexible and selectively bendable makes it possible to deflect or “steer” the holder unit 10 with respect to the handle 1. Due to such delectability or steerability the practitioner can select a desired spatial orientation of the holder unit 10 (and thus of the valve V) which facilitates positioning the valve V at the implantation site with a desired spatial orientation. This orientation may correspond to an orientation that avoids or minimizes the application of undesired mechanical stresses to the implantation site (i.e. to the heart tissues of the patient), while achieving the desired orientation of the valve V.
Steerability of the holder unit 10 permits a main axis X10 of the holder unit 10 to be arranged at a desired orientation which is generally skew or bent with respect to the axis X1 of the proximal portion of the device. The axis X1 essentially corresponds to the main axis of the handle 1 and the parts of the device adjacent thereto (i.e. the proximal sleeve 4 and the rotary actuation member 3).
It will likewise be appreciated that any desired “radial” or “polar” orientation of the axis X10 with respect to the axis X1 may be simply achieved by the practitioner by rotating the device 100, as a whole, around the axis X1, by rotating the handle 1 within the practitioner's hand.
In various embodiments, the shaft 6 is made adjustable or “steerable” by means of a wire member 12 extending through the axial cavity 60 in the tubular core 16 and cooperating with a tensioning mechanism (see
The tubular member 13 includes a distal end 130 coupled and integral with a proximal end of the core 16, a radially expanded portion 132 and a proximal portion 134 provided with an outer thread 136.
The rotary element 14 is coupled to the outer thread 136 by means of an inner thread. The second tubular element 15 is slidably mounted over the outer thread 136 of the member 13 and is fixed in rotation (e.g., by means of a radial pin engaging a groove provided in the member 13).
The wire member 12 is anchored at the distal portion of the core 16 (e.g. in proximity of the inner body 9 carrying the annular portion 90 into which the portion V2 of the valve V is constrained) and extends within the shaft towards the mechanism 13, 14, 15.
With reference to
Moreover, in various embodiments, the member 13 is provided with a longitudinal groove 1300 (see
In various embodiments, the radially expanded portion 132, which is surrounded by the rotary actuation member 3 and the outer thread 136, as well as the whole proximal portion 134, is located inside the handle 1. In various embodiments, the member 13 has an elongated shape permitting it to extend within the handle 1 to be secured thereto (e.g., by means of radial screws), while also acting as a support member for the shaft 6. This ensures no rotation of the member 13 inside the device 100, since the handle 1 is firmly held by the practitioner's hand.
The mechanism 13, 14, 15 is intended to pull (i.e., to apply a longitudinal, tensile force to) the wire member 12 towards the handle 1 so that a longitudinal tensile force is applied to the core 16 to produce controlled bending of the shaft 6.
In various embodiments, the core 16 includes a proximal portion 20 and a distal portion 21. The proximal portion 20 (see, e.g.,
The distal portion 21 (see, e.g.,
The coil element 24 and the braided tubular element 34 define an axial cavity, such as, for instance, the axial cavity 60, wherein the wire 12 extends from the distal portion of the core 6 to the member 15, where a proximal portion 120 of the wire member 12 is securely fixed.
In various embodiments, the wire 12 includes a proximal portion 120 which passes through a slot 1340 provided in the member 13 (see
In various embodiments, the member 14 is a rotary ring-like member. Rotating the member 14 will thus cause the element 15 to slide axially relative to the member 1 in either direction depending on the direction the member 14 is rotated.
When rotated, the member 14 moves longitudinally in a proximal or distal direction, depending on the direction of rotation, along the outer thread 136 of member 13, thereby producing displacement of the member 15 over the member 13, proximally or distally depending on the direction of rotation of member 14.
In the case of a displacement of the member 14 in the proximal direction (i.e., towards or into the handle 1), the element 15 will be urged proximally to produce/increase longitudinal tensioning of the wire-like member 12, which, in turn, will translate into (increased) bending of the shaft 6.
In the case of a displacement of the member 14 in the distal direction (i.e., away or outwardly of the handle 1), the member 15 will correspondingly be able to slide distally thus releasing the tensile force on the wire-like element 12. This will gradually release its longitudinal tension, thereby reducing the amount of bending between the axes X10 and X1. The members 14, 15 will remain in contact with each other as long as there is a longitudinal tension in the wire-like element 12, acting as a sort of bias on members 14, 15. This ensures correspondence between the displacements of members 14 and 15 (i.e., smooth adjustment of the amount of bending). The amount of bending (i.e., the resulting angle a between the axes X10 and X1 in
In the embodiments considered herein the distal portion 21 of the tubular core 16 is intended to achieve the desired amount of bending with respect to the axis X1 having a minimum flexibility, while the proximal portion 20 is given a certain amount of flexibility substantially without being angularly displaced from the axis X1.
In various embodiments, the handle 1 is provided with an opening or window 140 through which the rotary member 14 can be actuated by the practitioner (e.g., by alternate action of the thumb). This exemplary mechanism provides the benefit of being actuatable by the practitioner by rotating the rotary member 14 while retaining a firm hold of the handle 1.
Rotation can be, as previously described, in either direction, so that the amount of longitudinal tension applied on the member 12 can be selectively varied while the bending angle of the shaft 6 will correspondingly vary based an the amount of tension applied by the member 12. The angle between the axes X10 and X1 (i.e. the spatial orientation of the holder portion 10 and the valve V located therein) can thus be selectively varied depending on the practitioner's needs and preferences during the intervention.
Those skilled in the art will appreciate that the action of applying a longitudinal tension onto the member 12 can be achieved by resorting to different mechanisms (e.g., by means of screw mechanism actuated by rotating the handle 1).
The embodiment of
In various embodiments, the shaping member 5 (
In various embodiments, the shaping member 5 is one of an assortment of otherwise similar shaping member having different values for the “steering” angle α between X1 and X10 to be imparted to the shaft 6. Accordingly, once access to the implantation size is gained, the practitioner may evaluate the desired orientation of the holder portion 10 which will allow optimal delivery of the valve V at the implantation site. The practitioner will then select a positioning member 5 out of the assortment as the one providing such desired orientation. The shaping member thus selected will then be inserted into the shaft 6 to impart to the shaft the desired mutual orientation of the axes X10 to the axes X1.
Various modifications and additions can be made to the exemplary embodiments discussed without departing from the scope of the present invention. Accordingly, the scope of the present invention is intended to embrace all such alternatives, modifications, and variations as fall within the scope of the claims, together with all equivalents thereof.
Number | Name | Date | Kind |
---|---|---|---|
3671979 | Moulopoulos | Jun 1972 | A |
4011947 | Sawyer | Mar 1977 | A |
4056854 | Boretos et al. | Nov 1977 | A |
4477930 | Totten et al. | Oct 1984 | A |
4601706 | Aillon | Jul 1986 | A |
4624822 | Arru et al. | Nov 1986 | A |
4684364 | Sawyer et al. | Aug 1987 | A |
4722725 | Sawyer et al. | Feb 1988 | A |
4732152 | Wallsten et al. | Mar 1988 | A |
4758151 | Arru et al. | Jul 1988 | A |
4777951 | Cribier et al. | Oct 1988 | A |
4784644 | Sawyer et al. | Nov 1988 | A |
4994077 | Dobben | Feb 1991 | A |
5057092 | Webster, Jr. | Oct 1991 | A |
5084151 | Vallana et al. | Jan 1992 | A |
5123919 | Sauter et al. | Jun 1992 | A |
5133845 | Vallana et al. | Jul 1992 | A |
5181911 | Shturman | Jan 1993 | A |
5201757 | Heyn et al. | Apr 1993 | A |
5287848 | Cubb | Feb 1994 | A |
5304189 | Goldberg et al. | Apr 1994 | A |
5332402 | Teitelbaum | Jul 1994 | A |
5370684 | Vallana et al. | Dec 1994 | A |
5370685 | Stevens | Dec 1994 | A |
5387247 | Vallana et al. | Feb 1995 | A |
5397351 | Pavcnik et al. | Mar 1995 | A |
5411552 | Andersen et al. | May 1995 | A |
5423886 | Arru et al. | Jun 1995 | A |
5433723 | Lindenberg et al. | Jul 1995 | A |
5445646 | Euteneuer et al. | Aug 1995 | A |
5545214 | Stevens | Aug 1996 | A |
5554185 | Block et al. | Sep 1996 | A |
5556414 | Turi | Sep 1996 | A |
5662712 | Pathak et al. | Sep 1997 | A |
5693083 | Baker et al. | Dec 1997 | A |
5766151 | Valley et al. | Jun 1998 | A |
5772693 | Brownlee | Jun 1998 | A |
5782811 | Samson et al. | Jul 1998 | A |
5824064 | Taheri | Oct 1998 | A |
5840081 | Andersen et al. | Nov 1998 | A |
5849005 | Garrison et al. | Dec 1998 | A |
5855597 | Jayaraman | Jan 1999 | A |
5855601 | Bessler et al. | Jan 1999 | A |
5871489 | Ovil | Feb 1999 | A |
5925063 | Khosravi | Jul 1999 | A |
5951600 | Lemelson | Sep 1999 | A |
5954766 | Zadno-Azizi et al. | Sep 1999 | A |
5957949 | Leonhardt et al. | Sep 1999 | A |
5980570 | Simpson | Nov 1999 | A |
6010530 | Goicoechea | Jan 2000 | A |
6010531 | Donlon et al. | Jan 2000 | A |
6029671 | Stevens et al. | Feb 2000 | A |
6030360 | Biggs | Feb 2000 | A |
6090099 | Samson et al. | Jul 2000 | A |
6106497 | Wang | Aug 2000 | A |
6125852 | Stevens et al. | Oct 2000 | A |
6139572 | Campbell et al. | Oct 2000 | A |
6168614 | Andersen et al. | Jan 2001 | B1 |
6251093 | Valley et al. | Jun 2001 | B1 |
6299638 | Sauter | Oct 2001 | B1 |
6309382 | Garrison et al. | Oct 2001 | B1 |
6346071 | Mussivand | Feb 2002 | B1 |
6402780 | Williamson, IV et al. | Jun 2002 | B2 |
6416474 | Penner et al. | Jul 2002 | B1 |
6425916 | Garrison et al. | Jul 2002 | B1 |
6454799 | Schreck | Sep 2002 | B1 |
6458153 | Bailey et al. | Oct 2002 | B1 |
6482228 | Norred | Nov 2002 | B1 |
6572642 | Rinaldi et al. | Jun 2003 | B2 |
6582462 | Andersen et al. | Jun 2003 | B1 |
6607553 | Healy et al. | Aug 2003 | B1 |
6641558 | Aboul-Hosn et al. | Nov 2003 | B1 |
6645197 | Garrison et al. | Nov 2003 | B2 |
6652578 | Bailey et al. | Nov 2003 | B2 |
6685739 | DiMatteo et al. | Feb 2004 | B2 |
6726648 | Kaplon et al. | Apr 2004 | B2 |
6726712 | Raeder-Devens et al. | Apr 2004 | B1 |
6730118 | Spenser et al. | May 2004 | B2 |
6733525 | Yang et al. | May 2004 | B2 |
6767362 | Schreck | Jul 2004 | B2 |
6769434 | Liddicoat et al. | Aug 2004 | B2 |
6805711 | Quijano et al. | Oct 2004 | B2 |
6830584 | Seguin | Dec 2004 | B1 |
6830585 | Artof et al. | Dec 2004 | B1 |
6875231 | Anduiza et al. | Apr 2005 | B2 |
6893460 | Spenser et al. | May 2005 | B2 |
6908481 | Cribier | Jun 2005 | B2 |
6913618 | Denardo et al. | Jul 2005 | B2 |
6945957 | Freyman | Sep 2005 | B2 |
6964673 | Tsugita et al. | Nov 2005 | B2 |
6974464 | Quijano et al. | Dec 2005 | B2 |
6981942 | Khaw et al. | Jan 2006 | B2 |
6991646 | Clerc et al. | Jan 2006 | B2 |
7001423 | Euteneuer et al. | Feb 2006 | B2 |
7018406 | Seguin et al. | Mar 2006 | B2 |
7018408 | Bailey et al. | Mar 2006 | B2 |
7041132 | Quijano et al. | May 2006 | B2 |
7044966 | Svanidze et al. | May 2006 | B2 |
7077801 | Haverich | Jul 2006 | B2 |
7101396 | Artof et al. | Sep 2006 | B2 |
7144364 | Barbut et al. | Dec 2006 | B2 |
7156872 | Strecker | Jan 2007 | B2 |
7195641 | Palmaz et al. | Mar 2007 | B2 |
7201761 | Woolfson et al. | Apr 2007 | B2 |
7329279 | Haug et al. | Feb 2008 | B2 |
7338467 | Lutter | Mar 2008 | B2 |
7338520 | Bailey et al. | Mar 2008 | B2 |
7374571 | Pease et al. | May 2008 | B2 |
RE40377 | Williamson, IV et al. | Jun 2008 | E |
7399315 | Iobbi | Jul 2008 | B2 |
7544206 | Cohn | Jun 2009 | B2 |
7556646 | Yang et al. | Jul 2009 | B2 |
7591843 | Escano et al. | Sep 2009 | B1 |
7618432 | Pedersen et al. | Nov 2009 | B2 |
7708775 | Rowe et al. | May 2010 | B2 |
7993392 | Righini et al. | Aug 2011 | B2 |
8057539 | Ghione et al. | Nov 2011 | B2 |
8070799 | Righini et al. | Dec 2011 | B2 |
8114154 | Righini et al. | Feb 2012 | B2 |
20010002445 | Vesely | May 2001 | A1 |
20010007956 | Letac et al. | Jul 2001 | A1 |
20010010017 | Letac et al. | Jul 2001 | A1 |
20010039450 | Pavcnik et al. | Nov 2001 | A1 |
20010044591 | Stevens et al. | Nov 2001 | A1 |
20020029075 | Leonhardt | Mar 2002 | A1 |
20020042651 | Liddicoat et al. | Apr 2002 | A1 |
20020045846 | Kaplon et al. | Apr 2002 | A1 |
20020058995 | Stevens | May 2002 | A1 |
20020099431 | Armstrong et al. | Jul 2002 | A1 |
20020107531 | Schreck et al. | Aug 2002 | A1 |
20020117264 | Rinaldi et al. | Aug 2002 | A1 |
20020123802 | Snyders | Sep 2002 | A1 |
20020138138 | Yang | Sep 2002 | A1 |
20020151970 | Garrison et al. | Oct 2002 | A1 |
20020198594 | Schreck | Dec 2002 | A1 |
20030014104 | Cribier | Jan 2003 | A1 |
20030023300 | Bailey et al. | Jan 2003 | A1 |
20030023303 | Palmaz et al. | Jan 2003 | A1 |
20030033000 | DiCaprio et al. | Feb 2003 | A1 |
20030036795 | Andersen et al. | Feb 2003 | A1 |
20030055495 | Pease et al. | Mar 2003 | A1 |
20030109924 | Cribier | Jun 2003 | A1 |
20030130729 | Paniagua et al. | Jul 2003 | A1 |
20030153974 | Spenser et al. | Aug 2003 | A1 |
20030163194 | Quijano et al. | Aug 2003 | A1 |
20030191521 | Denardo et al. | Oct 2003 | A1 |
20030191528 | Quijano et al. | Oct 2003 | A1 |
20040034411 | Quijano et al. | Feb 2004 | A1 |
20040039371 | Tockman et al. | Feb 2004 | A1 |
20040039436 | Spenser et al. | Feb 2004 | A1 |
20040039442 | St. Goar et al. | Feb 2004 | A1 |
20040049266 | Anduiza et al. | Mar 2004 | A1 |
20040055606 | Hendricksen et al. | Mar 2004 | A1 |
20040078072 | Tu et al. | Apr 2004 | A1 |
20040093060 | Seguin et al. | May 2004 | A1 |
20040093063 | Wright et al. | May 2004 | A1 |
20040106976 | Bailey et al. | Jun 2004 | A1 |
20040127848 | Freyman | Jul 2004 | A1 |
20040147993 | Westlund et al. | Jul 2004 | A1 |
20040186563 | Lobbi | Sep 2004 | A1 |
20040215333 | Duran et al. | Oct 2004 | A1 |
20040236170 | Kim | Nov 2004 | A1 |
20040249413 | Allen et al. | Dec 2004 | A1 |
20050075584 | Cali | Apr 2005 | A1 |
20050075712 | Biancucci et al. | Apr 2005 | A1 |
20050075713 | Biancucci et al. | Apr 2005 | A1 |
20050075717 | Nguyen et al. | Apr 2005 | A1 |
20050075718 | Nguyen et al. | Apr 2005 | A1 |
20050075719 | Bergheim | Apr 2005 | A1 |
20050075720 | Nguyen et al. | Apr 2005 | A1 |
20050075724 | Svanidze et al. | Apr 2005 | A1 |
20050075726 | Svanidze et al. | Apr 2005 | A1 |
20050075728 | Nguyen et al. | Apr 2005 | A1 |
20050075729 | Nguyen et al. | Apr 2005 | A1 |
20050075730 | Myers et al. | Apr 2005 | A1 |
20050075731 | Artof et al. | Apr 2005 | A1 |
20050080476 | Gunderson et al. | Apr 2005 | A1 |
20050096993 | Pradhan et al. | May 2005 | A1 |
20050104957 | Okamoto et al. | May 2005 | A1 |
20050137686 | Salahieh et al. | Jun 2005 | A1 |
20050137687 | Salahieh et al. | Jun 2005 | A1 |
20050137688 | Salahieh et al. | Jun 2005 | A1 |
20050137689 | Salahieh et al. | Jun 2005 | A1 |
20050137690 | Salahieh et al. | Jun 2005 | A1 |
20050137691 | Salahieh et al. | Jun 2005 | A1 |
20050137692 | Haug et al. | Jun 2005 | A1 |
20050137693 | Haug et al. | Jun 2005 | A1 |
20050137694 | Haug et al. | Jun 2005 | A1 |
20050137695 | Salahieh et al. | Jun 2005 | A1 |
20050137696 | Salahieh et al. | Jun 2005 | A1 |
20050137697 | Salahieh et al. | Jun 2005 | A1 |
20050137698 | Salahieh et al. | Jun 2005 | A1 |
20050137699 | Salahieh et al. | Jun 2005 | A1 |
20050137701 | Salahieh et al. | Jun 2005 | A1 |
20050137702 | Haug et al. | Jun 2005 | A1 |
20050143809 | Salahieh et al. | Jun 2005 | A1 |
20050165480 | Jordan et al. | Jul 2005 | A1 |
20050197695 | Stacchino et al. | Sep 2005 | A1 |
20050240200 | Bergheim | Oct 2005 | A1 |
20050251251 | Cribier | Nov 2005 | A1 |
20050267493 | Schreck et al. | Dec 2005 | A1 |
20060004436 | Amarant et al. | Jan 2006 | A1 |
20060004439 | Spenser et al. | Jan 2006 | A1 |
20060020333 | Lashinski et al. | Jan 2006 | A1 |
20060020334 | Lashinski et al. | Jan 2006 | A1 |
20060025844 | Majercak et al. | Feb 2006 | A1 |
20060030922 | Dolan | Feb 2006 | A1 |
20060063199 | Elgebaly et al. | Mar 2006 | A1 |
20060064054 | Sakakine et al. | Mar 2006 | A1 |
20060074271 | Cotter | Apr 2006 | A1 |
20060074484 | Huber | Apr 2006 | A1 |
20060085060 | Campbell | Apr 2006 | A1 |
20060095025 | Levine et al. | May 2006 | A1 |
20060100639 | Levin et al. | May 2006 | A1 |
20060135962 | Kick et al. | Jun 2006 | A1 |
20060142838 | Molaei et al. | Jun 2006 | A1 |
20060142848 | Gabbay | Jun 2006 | A1 |
20060178740 | Stacchino et al. | Aug 2006 | A1 |
20060195134 | Crittenden | Aug 2006 | A1 |
20060195184 | Lane et al. | Aug 2006 | A1 |
20060229659 | Gifford et al. | Oct 2006 | A1 |
20060241656 | Starksen et al. | Oct 2006 | A1 |
20060271081 | Realyvasquez | Nov 2006 | A1 |
20060276775 | Rosenberg et al. | Dec 2006 | A1 |
20070010850 | Balgobin et al. | Jan 2007 | A1 |
20070027534 | Bergheim et al. | Feb 2007 | A1 |
20070032850 | Ruiz et al. | Feb 2007 | A1 |
20070055357 | Pokorney et al. | Mar 2007 | A1 |
20070088431 | Bourang et al. | Apr 2007 | A1 |
20070100302 | Dicarlo et al. | May 2007 | A1 |
20070100356 | Lucatero et al. | May 2007 | A1 |
20070100440 | Figulla et al. | May 2007 | A1 |
20070112355 | Salahieh et al. | May 2007 | A1 |
20070112422 | Dehdashtian | May 2007 | A1 |
20070118207 | Amplatz et al. | May 2007 | A1 |
20070118209 | Strecker | May 2007 | A1 |
20070156225 | George et al. | Jul 2007 | A1 |
20070162100 | Gabbay | Jul 2007 | A1 |
20070162103 | Case et al. | Jul 2007 | A1 |
20070162107 | Haug et al. | Jul 2007 | A1 |
20070162111 | Fukamachi et al. | Jul 2007 | A1 |
20070162113 | Sharkawy et al. | Jul 2007 | A1 |
20070173861 | Chu | Jul 2007 | A1 |
20070203503 | Salahieh et al. | Aug 2007 | A1 |
20070203561 | Forster et al. | Aug 2007 | A1 |
20070203575 | Forster et al. | Aug 2007 | A1 |
20070219630 | Chu | Sep 2007 | A1 |
20070250097 | Weitzner et al. | Oct 2007 | A1 |
20070265702 | Lattouf | Nov 2007 | A1 |
20080021546 | Patz et al. | Jan 2008 | A1 |
20080065011 | Marchand et al. | Mar 2008 | A1 |
20080082165 | Wilson et al. | Apr 2008 | A1 |
20080097595 | Gabbay | Apr 2008 | A1 |
20080140189 | Nguyen et al. | Jun 2008 | A1 |
20080147160 | Ghione et al. | Jun 2008 | A1 |
20080147180 | Ghione et al. | Jun 2008 | A1 |
20080147181 | Ghione et al. | Jun 2008 | A1 |
20080147182 | Righini et al. | Jun 2008 | A1 |
20080147188 | Steinberg | Jun 2008 | A1 |
20080183097 | Leyde et al. | Jul 2008 | A1 |
20080208216 | Cerier | Aug 2008 | A1 |
20080262507 | Righini et al. | Oct 2008 | A1 |
20090069886 | Suri et al. | Mar 2009 | A1 |
20090069887 | Righini et al. | Mar 2009 | A1 |
20090069889 | Suri et al. | Mar 2009 | A1 |
20090069890 | Suri et al. | Mar 2009 | A1 |
20090105794 | Ziarno et al. | Apr 2009 | A1 |
20090118580 | Sun et al. | May 2009 | A1 |
20090157174 | Yoganathan et al. | Jun 2009 | A1 |
20090164004 | Cohn | Jun 2009 | A1 |
20090164006 | Seguin et al. | Jun 2009 | A1 |
20090171363 | Chocron | Jul 2009 | A1 |
20090171456 | Kveen et al. | Jul 2009 | A1 |
20090177275 | Case | Jul 2009 | A1 |
20090228093 | Taylor et al. | Sep 2009 | A1 |
20090234443 | Ottma et al. | Sep 2009 | A1 |
20090240326 | Wilson et al. | Sep 2009 | A1 |
20090254165 | Tabor et al. | Oct 2009 | A1 |
20090281609 | Benichou et al. | Nov 2009 | A1 |
20090281619 | Le et al. | Nov 2009 | A1 |
20100191326 | Alkhatib | Jul 2010 | A1 |
20100292782 | Giannetti | Nov 2010 | A1 |
20100292783 | Giannetti | Nov 2010 | A1 |
20120053684 | Righini | Mar 2012 | A1 |
Number | Date | Country |
---|---|---|
19546692 | Nov 2002 | DE |
19857887 | May 2005 | DE |
133420 | Feb 1988 | EP |
0155245 | May 1990 | EP |
0592410 | Oct 1995 | EP |
0512359 | Dec 1996 | EP |
0515324 | Dec 1996 | EP |
0850607 | Jul 1998 | EP |
1057460 | Dec 2000 | EP |
1356763 | Oct 2003 | EP |
1356793 | Oct 2003 | EP |
0852481 | Feb 2004 | EP |
1440671 | Jul 2004 | EP |
1088529 | Jun 2005 | EP |
955895 | Aug 2005 | EP |
1488735 | Jun 2007 | EP |
1212989 | Jan 2008 | EP |
1653884 | Jun 2008 | EP |
1935377 | Jun 2008 | EP |
1955643 | Aug 2008 | EP |
1570809 | Jan 2009 | EP |
2033581 | Mar 2009 | EP |
2033597 | Mar 2009 | EP |
2828091 | Feb 2003 | FR |
WO 9724989 | Jul 1997 | WO |
WO 9817202 | Apr 1998 | WO |
WO 9829057 | Jul 1998 | WO |
WO 9904728 | Feb 1999 | WO |
WO 9956665 | Nov 1999 | WO |
WO 0018303 | Apr 2000 | WO |
WO 0041525 | Jul 2000 | WO |
WO 0041652 | Jul 2000 | WO |
WO 0121244 | Mar 2001 | WO |
WO 0162189 | Aug 2001 | WO |
WO 0164137 | Sep 2001 | WO |
WO 0176510 | Oct 2001 | WO |
WO 0241789 | May 2002 | WO |
WO 0247575 | Jun 2002 | WO |
WO 02076348 | Oct 2002 | WO |
WO 03003943 | Nov 2003 | WO |
WO 03094797 | Nov 2003 | WO |
WO 2004089253 | Oct 2004 | WO |
WO 2005046525 | May 2005 | WO |
WO 2005065200 | Jul 2005 | WO |
WO 2005096993 | Oct 2005 | WO |
WO 2005104957 | Nov 2005 | WO |
WO 2006054107 | May 2006 | WO |
WO 2006063199 | Jun 2006 | WO |
WO 2006086135 | Aug 2006 | WO |
WO 2006116558 | Nov 2006 | WO |
WO 2006135551 | Dec 2006 | WO |
WO 2006138173 | Dec 2006 | WO |
WO 2007071436 | Jun 2007 | WO |
WO 2007076463 | Jul 2007 | WO |
WO 2008097589 | Aug 2008 | WO |
WO 2008125153 | Oct 2008 | WO |
Entry |
---|
European Search Report Issued in EP Application No. 09160183, dated Oct. 2, 2009, 6 pages. |
European Search Report Issued in EP Application No. 09160186, dated Oct. 6, 2009, 5 pages. |
European Search Report Issued in EP Application No. 07115951, dated Sep. 24, 2009, 8 pages. |
Extended European Search Report issued in EP Application 06126552, dated Jun. 6, 2007, 7 pages. |
Extended European Search Report issued in EP Application 06126556, dated Jul. 6, 2007, 13 pages. |
Extended European Search Report Issued in EP Application 07115960, dated Jan. 24, 2008, 8 pages. |
Extended European Search Report issued in EP Application 09158822, dated Sep. 9, 2009, 5 pages. |
Ho, Paul C., “Percutaneous aortic valve replacement: A novel design of the delivery and deployment system”, Minimally Invasive Therapy, 2008; 17:3; 190-194. |
Huber, Christoph H. et al., “Direct-Access Valve Replacement: A Novel Approach for Off-Pump Valve Implantation Using Valved Stents”, Journal of the American College of Cardiology, vol. 46, No. 2, 2005, pp. 366-370. |
Partial European Search Report issued in EP App No. 06126556, mailed Apr. 16, 2007, 6 pages. |
European Search Report and Search Opinion of European Patent Application No. 07115960.2, dated Jan. 24, 2008. |
European Search Report issued in EP Application 08163752, dated Dec. 29, 2008. |
European Search Report Issued in EP 09160184 dated Oct. 22, 2009. |
European Search Report issued in EP Application No. 08159301, mailed Dec. 30, 2008, 6 pages. |
Partial European Search Report issued in EP Application No. 10155332, dated Jun. 9, 2011, 7 pages. |
Number | Date | Country | |
---|---|---|---|
20100292784 A1 | Nov 2010 | US |