In the following, the invention is explained in greater detail using the embodiments represented in the drawings. The drawings show in:
Alternatively, the substances may also be placed directly in a receptacle with depressions. In the following description, any means to hold the actual sample substances 3 are called the receptacle 7. In the shown embodiment, the receptacle 7 includes the containers 5 and cup-shaped sample plate 9, which is insulated at the bottom and at the outer walls with a heat insulation 11. The heat insulation 11 is made of a sufficiently well heat-insulating material and exhibits a sufficient thickness.
Located at least at the bottom of the sample plate 9 is a hollow space, for example in the shape of channel 13 (
With the rotational duct 15 inside the coaxial stud 17 of the sample plate 9, the sample plate 9 can be propelled in rotational motion around its axis in order to move each container 5, from which a sample is to be taken, into the dispensing position. In doing so, the rotational duct 15 guarantees that a connection of the channel 13 with the flow port and the return port of the rotational duct 15 and all associated connecting lines 19 is maintained independently of the sample plate's angular position.
The spatial separation between the integrated liquid cooling unit 21 and the sample plate 9 and the receptacle 7 and the transport of heat via the liquid cooling medium from the receptacle 7 to the liquid cooling unit 21 leads to the advantage of a flexible configuration of the liquid cooling unit 21 within the joint body (not shown) of the device 1. In contrast to known sample plates 9 being cooled from the bottom directly via a Peltier cooling module this provides the advantage of a low installation height of such a device.
Furthermore, the spatial separation of the integrated liquid cooling unit 21 from the receptacle 7 achieves the advantage of low-level feedback of the heat dissipated by the liquid cooling unit 21 to the receptacle 7. In any case, even when the liquid cooling unit 21 is positioned directly next to the receptacle 7, an insulation can be used to avoid such feedback. In many cases such insulation is not required since the liquid cooling unit 21 can be positioned at a sufficient distance from the receptacle 7. For example, the warm side of the liquid cooling unit 21 can be positioned at the back or another outside wall of the housing of the device 1.
The centrifugal pump exhibits at its pump housing 25 an intake port 31 and an outlet port 33. The intake port 31 and the outlet port 33 may be connected to the flow and return port of the receptacle 7 or the rotational duct 15 via connecting lines 90 (
The impeller 35 is located in a volume inside the pump housing 25, which is located directly adjacent to the area in the body wall, through which the heat transport in the direction of the cold side of the Peltier cooling unit 27 takes place. This generates in the vicinity of this area of the body wall a turbulent flow, causing the cooling medium already cooled by the Peltier cooling module and the incoming, relatively warm cooling medium to be mixed well. This significantly improves the heat transfer from the Peltier cooling module and therefore the overall efficiency of the entire system.
The shaft 37 can preferably be made of a ceramic material to keep the wearing of the bearings in the pump housing to a minimum. The lower heat conductance in comparison to metallic materials prevents the introduction of heat energy into the inner area of the pump and the transfer of this heat into the liquid cooling medium 29.
As shown in
The storage container 39 may be filled via a filling port 43. By filling the storage container 39 only partially with cooling medium, the remaining volume of the storage container 39 filled with air acts simultaneously as compensation reservoir for the thermal expansion of the cooling liquid, which is dependent on the operating status. If the overall temperature of the cooling medium is increased the cooling medium requires more volume, so that the liquid level in the storage container 39 rises and the air located above the liquid is being compressed.
The warm side of the Peltier cooling module 27 is directly connected to a radiator 45. This radiator may exhibit the usual cooling ribs 47 to increase the surface for the transfer of the discharged heat energy into the ambient air.
In order to improve the heat discharge from the radiator 45 a fan 49 may be installed at its exhaust side. The fan 49 includes preferably a stand-alone electric motor drive for the rotating drive of the fan disk 51.
The pump is driven by an electric motor drive 53, consisting of permanent magnets 55 on the shaft 37, which form the rotor of the electric motor drive 53 inside the pump housing 25, and stator coils 47, which generate the alternating electromagnetic field required for the rotor to move. The electric motor drive 53 is according to
Other types of electric drives for the centrifugal pump 23 are, of course, also conceivable. For example, in place of the stator coils 57 an outer rotor could be used, which can be rotated coaxially to the shaft 37. This outer rotor may include permanent magnets, whose rotation would generate the alternating field required to drive the pump-internal rotor with the permanent magnets 55. The outer rotor can be coupled to the electric motor drive of the fan 49, and may be driven by this drive.
According to another (not shown) embodiment of the invention, the pump shaft 37 can extend from the back of the radiator 45 and be coupled to the fan disk 51. In this way, a stand-alone electric drive for the fan 49 is not required.
Between the radiator 45 and the pump housing may be insulation material 59. The pump housing may, as shown in
The integrated liquid cooling unit shown in
a shows a schematic sectional view of a horizontal section of the bottom of the sample plate 9 from
After the area of return 63, the cooling medium essentially flows in parallel to the first section of channel 13 between the flow port and the area of reversal 63 back to the return port of the rotational duct 15 (direction of arrow Y in
As shown in
The double-helix structure may, of course, be replaced by any other structure provided that a first channel section from a flow port to a point of reversal and a second channel section from the point of reversal to a return port are essentially running in parallel.
In order to be able to maintain a constant temperature of the receptacle 7 within tight limits, a temperature sensor 71 may be installed at the receptacle, especially at or inside the bottom of the sample plate 9, whose temperature signal will be forwarded to a control unit 73. The controller 73 can then regulate the liquid cooling unit 21, especially the output of the pump 23 and the output of the Peltier cooling module 27 in such manner that the temperature at the receptacle 7 is regulated to a constant target value.
Number | Date | Country | Kind |
---|---|---|---|
102004037341.8 | Aug 2004 | DE | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/DE05/01264 | 7/18/2005 | WO | 00 | 2/1/2007 |