The invention concerns a device for the treatment of varicose veins.
Alongside surgical procedures and sclerotherapy, endovenous procedures (laser, radio frequency, ClariVein®) have increasingly become more important in the treatment of varicose veins in recent years. These procedures reveal themselves to be efficient for the ablation of saphenous veins and to have fewer side effects for the patients than conventional surgical procedures. However, laser, radio frequency as well as ClariVein® require relatively expensive equipment. Alongside the catheters, devices for producing the laser or the radio frequency waves are required. For ClariVein® (cf. e.g. WO 2013/090563 A1), a quickly rotating wire with a specially angled tip within the catheter which strikes against the inner wall of the vessel causes a vessel spasm. At the same time, a liquid sclerosing agent, polidocanol, is injected. The quickly rotating tip also causes swirling of the sclerosing agent and thus brings it evenly into contact with the entire inner wall of the vein and sclerotizes it.
All in all, the known endovenous procedures use expensive devices which make the treatment expensive.
Therefore, the problem addressed by the present invention is to provide for a device with a simpler design which allows for the effective treatment of varicose veins.
A device which solves this problem comprises a catheter, which has a balloon with at least one cutting element (“cutting balloon”) and which has side openings. A sclerosing agent can get into the vein through these. Using the “cutting balloon,” at least part of the inner wall of the vein can be cut in order to bring about the destruction of the intima and media of the vein. The device thus allows for treatment in the form of endovenous chemomechanical catheter ablation. As a result of the combination of sclerotherapy with mechanical destruction of the insufficient veins, the effectiveness of the treatment can be increased in comparison with sclerotherapy alone. In comparison with conventional endovenous procedures, no additional use of expensive supplementary equipment is required. All in all, the design of the device according to the invention is relatively simple and the equipment requirements can be reduced, wherein a treatment which is efficient as well as time and cost-effective is made possible.
Other specific design features of the device and their benefits can be seen from the following description and illustrations of embodiments. In the following, the directional terms “proximal” and “distal” refer to these directions relative to the human body, in which the device for the treatment of varicose veins is used.
In the drawings:
The catheter 1 is fenestrated. For this purpose, it has an intermediate section 1c between the two end sections 1a and 1b which is equipped with side openings 7a-7c (“catheter windows”). These are distributed around the circumference of catheter 1 and have a fluid connection with intake opening 4 via the main channel 1d. During use, a sclerosing agent can be injected into the vein to be treated via the side openings 7a-7c. Two neighboring side openings 7a-7c are arranged offset axially and radially from one another. The offset allows for a more homogeneous distribution of sclerosing agent in the vein.
Along the intermediate section 1c, there are markings 8 on the catheter shaft which are placed at regular intervals for instance and, among other things, provide information about how far the catheter 1 has been inserted into the vein. In the variant according to
The side openings 7a-7c are arranged in groups so that the intermediate section 1c is divided into sections which each have the same arrangement of side openings 7a-7c. In the variant according to
A second catheter 20 (hereinafter also referred to as the “inner catheter”) can be inserted via the intake opening 4 in the outer catheter 1, as shown in
Between the two end sections 20a and 20b, the catheter 20 has an intermediate section 20c which has an inner channel (“lumen”) and which is provided with side openings 27. The latter have a fluid connection to connection 24 via the inner channel. As can be seen in
Along the intermediate section 20c, there are markings 28 on the catheter 20 which are placed at regular intervals for instance and, among other things, provide information about how far the catheter 20 has been inserted into the outer catheter 1. Lines, numbers, etc. are used for instance as markings 28.
During use, the inner catheter 20 is inserted into the outer catheter 1 and is then withdrawn section by section. As a result, the side openings 27 are first located near the side openings 7a, then near the side openings 7b, etc. Thereby, the closed end section 20a of the inner catheter 20 seals the main channel 1d in the outer catheter 1 between the ends 6 and 26. A sclerosing agent can thus be introduced into the vein to be treated section by section via the connection 24 and the side openings 27 and 7a-7c.
The balloon 2 is a “cutting balloon” and, to this end, has one or more cutting elements 3 (“blades”).
A wide variety of path forms are possible. For example, the cutting edge 3c can be curved so that it winds around the axis A, e.g. in a spiral. It is also possible that, viewed in the direction of the axis A, the cutting edge 2a has a section with a straight axial path which segues into another straight section via a curved intermediate section. It is also possible to design just a single cutting element 3 which runs around the axis A.
The uneven path of a cutting element 3 has the result that, viewed in the axial direction A, the ends 3a and 3b of a cutting element 3 are arranged radially offset at an angle which is greater than 0 degrees. Preferably, the angle is at least 10 degrees, and an angle of at least 20 degrees is particularly preferred. Furthermore, the path can be designed so that the aforesaid angle is smaller than 360 degrees. Preferably, the angle is at most 180 degrees, and an angle of at most 90 degrees is particularly preferred.
As can be seen in
The balloon 2 extends axially along a length L which is typically in the range of 5 to 30 mm.
The axially and/or radially variable shape of a cutting element 3 allows for a comprehensive mechanical effect on the inner wall of the vein when the catheter 1, inserted into the vein, is withdrawn again. In doing so, the tapering cutting edges 3c gradually dig into the inner wall of the vein like a plough. An abrupt mechanical effect is thus avoided so that a less painful treatment is possible which, in some circumstances, can even be carried out without local anesthetic in the form of a tumescent anesthetic. This is the case, for example, if Aethoxysklerol® is used as a sclerosing agent since this is also a local anesthetic.
The balloon 2 is formed of an envelope which runs around the outer wall 1f and which encloses a compartment 2a. The latter is connected to the subchannel 1e, which leads to the intake opening 4, via at least one passage opening 1g formed in the outer wall 1f. The cutting elements 3 are attached to the envelope 2. The envelope of the balloon 2 is folded together in a non-inflated state so that it shows the smallest possible spread in a radial direction.
The device with the catheters 1 and 20 according to
If the inner catheter 20′ is inserted into the outer catheter 1′ then the sclerosing agent can be introduced into the main channel 30 via the connection 24, from where it can then get into the vein to be treated through the discharge opening 27′ and through the side openings 7a-7c in the outer catheter 1′. As in the first embodiment, a vein can be treated in sections by switching between injecting sclerosing agent and withdrawing the inner catheter 20′ by one section. As a result, the discharge opening 27′ moves into the vicinity of the side openings 7a, 7b, 7c, etc.
Common materials which can be sterilized can be used to manufacture the catheters 1, 1, 20, 20′. The walls which define the channels in the catheters 1, 1, 20, 20′ can be made from plastic, for example, so that a flexible tube can be designed. Preferably, the catheters 1, 20 and 1′, 20′ are designed to be single-use and are provided in a sterile form in packaging.
A possible application of the device with the catheters 1 and 20 is explained in more detail below on the basis of
The catheter 1 is inserted through the access port S, advanced through the saphenous vein VSM under ultrasound monitoring and the tip is placed 1.5 cm caudal to the saphenofemoral junction. The balloon 2 is then inflated using a syringe 51 connected to the connection 5. It remains so during the entire sclerosing phase (2nd step).
If direct advancement of the catheter 1 is difficult, a wire (not shown in
Any dissection during insertion of the catheter 1 and/or of the wire is unproblematic since the vein will be destroyed anyway.
After placement of the outer catheter 1, the wire, where applicable, is removed and the inner catheter 20 is inserted into the main channel 1d. If no wire is used then the inner catheter 20 can already have been inserted into the outer catheter 1 so that both catheters 1, 20 can be inserted into the vein together.
The sclerosing is performed. The sclerosing agent is fed in (preferably as foam, e.g. Aethoxysklerol® 1% or another agent containing polidocanol) through the inner catheter 20 using a syringe S2 connected to the connection 24. The inner catheter 20 is withdrawn in 10 cm sections. 1 ml of Aethoxysklerol® 1% is applied as foam for each 10 cm and you should wait approx. 1 minute. This process is repeated until the entirety of the inner catheter 20 has been removed.
In
In
The effect of the sclerosing agent has caused a vasospasm. In addition, the sensitivity to pain should be reduced. The balloon 2 is deflated for approx. 20 seconds and is then inflated again. The vein VSM can thus “drain” itself. The catheter 1 with the inflated balloon 2 is now slowly withdrawn (approx. 3 seconds per 10 cm). The resistance should be readily detectable during withdrawal, however “ripping out” should be avoided. The intima and media of the vein are destroyed by the mechanical effect of a cutting element 3 on the balloon 2. The special shape of a cutting element 3 allows for the effective destruction of the inner wall of the vein, which is cut into multiple fragments when the balloon 2 is withdrawn.
The device according to the second embodiment can be used in an analogous manner as set out above. Here, the inner catheter 20′ can already be inserted into the outer catheter 1′ from the beginning even if a wire is used since the wire can run through the end openings 6, 27′ and the one-way valve 11 in the inside of the catheter 20′ while the catheters 1′, 20′ are inserted into the vein.
A wide variety of modifications are available to the person skilled in the art from the description above without leaving the scope of protection for the invention which is defined by the claims.
In a simpler embodiment, for example, it is possible to leave the inner catheters 20, 20′ out and simply design a catheter with a “cutting balloon” 2, 3 and the side openings 7a-7c.
Although the present invention has been described in relation to particular embodiments thereof, many other variations and modifications and other uses will become apparent to those skilled in the art. It is preferred, therefore, that the present invention be limited not by the specific disclosure herein, but only by the appended claims.
Number | Date | Country | Kind |
---|---|---|---|
15183162.5 | Aug 2015 | EP | regional |