The present invention relates to a device and a method for transferring a band-shaped weft material from a feed unit to an insertion element of a weaving machine. The device includes a clamping device for clamping a free end of the weft material.
In the state-of-the-art, a variety of devices for weaving machines have become known, for transferring a weft material to an insertion element, for example, a gripper of a gripper weaving machine.
In the WO 2008/009332 A1, for carrying out weft selection, needle-shaped rods are provided with eyelets through which respectively the weft thread is guided and which can be brought from a resting position to an active position depending on which weft thread is selected. The selected weft thread is then as brought by a movable feeder into a transfer position for the gripper.
The EP 0 240 075 B1 describes a device with a weft thread selection device, which is equipped with a movable weft thread clamp for each weft thread. By a pivoting or swiveling motion of the weft thread clamp in a plane perpendicular to the feed direction or to the weft insertion direction, the weft thread is respectively brought into a transfer position for the gripper. The weft threads are thus deflected several times in different directions and then finally laid before the insertion element so that they cross it at an angle and thereby can be inserted into the clamping device of the insertion element. These kinds of devices are not suitable for band-shaped weft material because the deflections would result in damage to the weft bands.
The U.S. Pat. No. 5,455,107 shows a device for delivering or feeding a weft material, which is also meant to be suitable for band-shaped weft materials. Here, the free end of the weft material is clamped into a clamp which is fixedly or rigidly attached to the weaving machine. To deliver or feed the weft material to the insertion element, a feeder is provided, which is movable in the warp direction along the edge of the fabric. The weft material is laid before the insertion element at an angle, just as for the above described devices, so that damage may occur, particularly when using weft bands containing reinforcing fibers.
The WO 2006/075961 A1 describes a device for feeding a band-shaped weft material in which the weft material is fed by a feed unit with a pair of rollers into an insertion channel, where it is clamped by a clamping device. To feed the weft material into the insertion element, the clamping device is opened and the weft material is positioned by means of the feed unit in the direction of the gripper, which grasps the band-shaped weft material directly at its front end. The weft material can thus be delivered or fed to the gripper essentially without deflection. Due to the relative movement of the band-shaped weft material between the rollers, the weft material may nonetheless be damaged.
The DE 528 345 as well as the DE 5 53 886 show devices for transferring a weft thread to a gripper weaving shuttle, which, however, require large structural space, and which are mechanically driven with complex means.
The objective of the present invention is thus to create a device for delivering or feeding a weft material that is also suitable for a band-shaped weft material while reducing the risk of damaging the band-shaped weft material. Furthermore, a corresponding method for delivering or feeding a weft material shall be suggested.
The objective is fulfilled by the characteristics of the independent claims.
A device for transferring a band-shaped weft material from a feed unit to an insertion element of a weaving machine comprises a clamping device for clamping the free end of the weft material.
In this regard, the feed unit can be a driven spool, which unwinds the weft material required for a weft insertion, or a feeder can be provided as a feed unit, which respectively unwinds from the spool the amount of band material required for a weft insertion. The feed unit can also be formed by a reservoir, from which the weft material runs into the device for transferring the weft material.
It is provided that the clamping device is conveyable essentially in the direction of motion of the insertion element between at least two different operating positions and the device includes a drive for conveying the clamping device. Due to the motion of the clamping device solely in the weft direction or respectively in the motion direction of the insertion element, the band assumes a mostly stretched, twist-free and deflection-free course or path from the feed unit to its transfer to the insertion element. Due to this, shearing forces that could damage the band do not arise. No deflection takes place in the direction of the width extension of the band-shaped weft material. If the clamping device is conveyable along the extension of the insertion element's line of motion, then the device can be used to perform different feed movements without any deflection occurring in the direction of the width extension of a band-shaped weft material. Thus, band materials with reinforcing fibers can also be fed without being damaged. In a corresponding method for transferring a band-shaped weft material, a free end of the weft material is clamped into a clamping device. The free end is transferred to the insertion element and then the clamping device opens and the weft material is inserted. The clamping device is moved by means of a drive essentially in the direction of motion of the insertion element between at least two different operating positions.
The clamping device can, for instance, be moved by means of a linear drive between a transfer position and a feed position on the line of motion of the insertion element, as will be described in more detail below. The clamping device can, however, also be moved by means of a rotational movement. Since only a small portion of the complete rotation is used in this case, the movement of the clamping device is nonetheless essentially in the direction of motion of the insertion element. The clamping device is conveyable by means of a pivot or swivel unit, which includes at least one pivot or swivel arm and is drivable by the drive.
In accordance with the invention, the swivel unit includes two parallel swivel arms, which are connected by a coupling element. The clamping unit is arranged on the coupling element and thus is held essentially in the weft direction or rather in a plane parallel to the weft direction, so that the weft material to be fed always assumes a substantially stretched, deflection-free course or path.
In a first embodiment of the invention, the clamping device is conveyable between a transfer position on the extension of the line of motion of the insertion element and a parked position outside of the line of motion of the insertion element. In this regard, in the transfer position, the band-shaped weft material can be delivered or fed to the insertion element by opening and closing of the clamping device, while in the parked position, an exchange of the supply package or feed spool of the weft material and other maintenance tasks can be performed.
An especially advantageous development of the invention provides that the device includes a second swivel unit with a second clamping device for feeding a second weft material, and the clamping devices are selectively conveyable between their individual parked positions and a shared or common transfer position. This makes it possible to feed two different weft materials in a freely selectable manner to create a certain pattern or to make it possible to change a supply package without stopping the weaving machine. In order to feed a second weft material to the insertion element, advantageously after the insertion and cutting of a first weft material, the closed first clamping device is moved into its parked position and the closed second clamping device is moved out of its parked position and into the shared transfer position. This allows the weft material to be fed to the insertion element at a defined transfer position, even after a change of the weft material to be fed.
Another development of the invention provides that the clamping device is conveyable from the transfer position in the line of motion of the insertion element into a feed or delivery position in the line of motion of the insertion element. Thus, in the feed position, the weft material can be actively fed into the opened clamp of the insertion element. Subsequently, the clamping device is opened and the weft material is inserted.
Another advantageous development provides that, during or after the insertion of the weft material, the clamping device is moved from the transfer position or the feed position to a cutting position in the line of motion of the insertion element, and after completion of the weft insertion, the inserted weft material is cut off. This makes it possible to reduce to a minimum, the length of the protruding free end which is transported by the gripper to the other side of the fabric and there results in waste material.
In this regard, it is particularly advantageous if the location of the feed position and/or of the cutting position can be freely set or adjusted. The length of the protruding free end can thus be set so that the free end, on the one hand, can still just be grasped by the gripper and, on the other hand, barely protrudes past the opposite edge of the fabric after the weft insertion. The amount of the weft material arising as waste can thus be further reduced.
It is furthermore particularly advantageous if the drive is formed by an independent electric motor drive, e.g. a servomotor. This allows for the free selection of the weft material to be inserted and the transfer of the clamping device into the different positions independent of the drive of the weaving machine. It is, however, also possible to drive the clamping device or the swivel unit using the weaving machine's main drive.
Furthermore it is advantageous if the swivel unit with the clamping device can be driven in reverse to apply a tension to the weft material. Thus, by means of the drive, the inserted weft material can be put under tension when the clamping device is closed. The inventive method is characterized in that after the insertion of the weft material, the clamping device for clamping the inserted weft material is closed and the weft material is put under tension. The weft material is thus kept under tension while it is brought to the binding or interlacing point so that damage to the weft material is avoided. Likewise, the weft material can be kept under tension for cutting after the weft insertion.
According to a particularly advantageous embodiment of the invention, the clamping device is embodied as a parallel gripper with two movable clamping jaws. Because both of the clamping jaws move away from the weft material when the clamping device is opened, the weft material runs or extends essentially freely between the feed unit and the insertion element during the weft insertion. Thus a free weft insertion is possible, in which the weft material is subjected to only a few friction or rubbing points. This also contributes to avoiding damage of the weft material. Preferably, the clamping device is activated pneumatically because compressed air is already available on the machine anyway.
Another advantageous development provides that the clamping jaws in the area of the clamping surfaces comprise a semi-circular cross-section or a cross-section curved in some other way in the direction of the width of the weft material. The weft material is thus slightly deformed in regards to its transverse direction by the clamp shape so that during the transfer, the freely protruding end is stiffened by the clamping device's clamp. Devices of the type in accordance with the invention especially offer advantages in the processing of band-shaped weft material in the width range from 1 mm to 50 mm.
Furthermore it is advantageous if the shape of the clamping device is adapted to the shape of the insertion element. The insertion element can thus be moved very close to the clamping device for transferring the weft material.
Furthermore it is advantageous if the device includes a sensor, which detects the presence of a weft material and/or the position of the free end of the weft material. This kind of sensor can be installed for example in the area of the transfer position to make threading the weft material into the clamping device easier for an operator during an exchange of the supply package. Preferably, after a preset position of the end of the weft material has been reached, the clamping device is automatically closed, so that the device is again available for the weft insertion. Similarly, by means of a sensor, the running-out of a weft material can be registered and an error notification can be generated, the switch to the other weft material can be performed, or the weaving machine can be stopped.
In addition, it is advantageous if the device includes guide means, preferably guide bolts, for the weft material. In particular during the motion of the clamping device, the weft material can be constantly held in a stretched condition within the device. Due to the arrangement of the guide bolts and the clamps, the weft material moves essentially freely, meaning without or with very little deflection between the feed unit and the insertion element.
Furthermore it is advantageous if the weaving machine is equipped with a rotating shear or thread cutter, which is conveyable in the warp direction, as a cutting device for the weft material. Due to the embodiment of the cutting device as a rotating shear, a jamming of the weft material in the cutting device can be avoided, making it especially suitable for band-shaped weft materials. Due to the motion of the rotating shear in the warp direction during the cutting process, band-shaped materials can be cut particularly surely or reliably. Preferably, the cutting device comprises a fixed counter-blade or anvil-blade that is mounted on the weaving machine.
According to an advantageous development of the invention, the rotating shear can be driven by the main drive of the weaving machine via a cam disk transmission or gearbox in order to be moved in the warp direction. It can, however, also be advantageous if the rotating shear is moved by a servomotor because the timing and duration of the cutting process can be freely adjusted or set independently of the weaving machine's drive.
Further advantages of the invention are described in connection with the following example embodiments. It is shown by:
It is provided that the clamping device 5 is conveyable between at least two different operating positions, as shown here by a dashed line. The movement of the clamping device in this regard is essentially in the direction of motion BR of the insertion element 4 and thus in the weft direction. A drive 8 is provided for conveying the clamping device 5.
According to the embodiment of a device shown in
In a variation not shown here, the clamping device 5 can however also be arranged on a coupling element 9 similar to the one shown in
According to the illustrated embodiment of the invention, after weft insertion has been completed, the band-shaped weft material 6 is cut in the feed position (dashed illustration) and is then again moved into the transfer position (solid lines) by the swivel unit 2 swiveling or pivoting back.
The device 1 as well as the feed unit and, if applicable, additional handling equipment for the weft material 6 are preferably aligned flush with each other so that the weft material 6 runs or extends from the feed unit to the insertion element 4 essentially in a straight line without deflection elements or friction or rubbing points. The clamping device 5 is preferably embodied as a parallel gripper with two movable clamping jaws so that after the clamping device 5 has opened, there are no friction points for the weft band here, and a free weft insertion is possible. The clamping device 5 can, for example, be activated pneumatically, so that it can be activated independently of a drive 8 of the device 1 in a simple manner. Because no relative movement occurs between the weft material 6 and the device 1, the device 1 is also suitable for feeding or delivering sensitive materials with low slippage resistance as well as for fiber-reinforced bands. Damages to the weft material 6 can thus be avoided.
In the following, in connection with
In the illustration shown in
Parallel to the weft insertion by the insertion element 4, the opened clamping device 5 is moved out of the transfer position (
It is especially advantageous if the cutting device 12 is formed by a rotating shear that is conveyable in the warp direction and which cooperates with a stationary counter-blade or anvil-blade. The band-shaped weft material 6 can thus be separated reliably and cleanly with a reduced risk of the weft material getting caught or jammed in the cutting device 12. To this end, the rotating shear comprises a rotatable round or curved blade and in the simplest case can be driven by the main drive of the weaving machine via a transmission. For this purpose, a spring-loaded cam disk or a complimentary cam disk can be provided, and a mechanical step-down or step-up transmission of power can be achieved via a multiple articulated gearbox.
It can be equally advantageous, however, to move the rotating shear in the warp direction using an independent electric motor drive, e.g. a servomotor, so that the cut can be made independently. Hereby, the rotating shear can be linearly slidably driven or driven slidably by a swivel or pivoting motion in the warp direction.
To bring the inserted weft material 6 into contact with the binding or interlacing point, a fabric formation can be executed by a movement of the fabric before the cutting. To this end, when the loom shed is closing, the fabric is moved in the direction of the stationary weft material 6 which is being kept under tension by the drive 8, so that the band-shaped weft material 6 is bound in. Hereby even band-shaped weft materials 6, which would be damaged by a conventional weft beat-up by means of a reed, can also be woven and still produce a tight woven fabric. After the binding of the weft material 6, the weft material 6 is then cut near the fabric edge 7 by means of the cutting device 12 as described above and the clamp 10 of the insertion element 4 is opened on the opposite side of the fabric.
In addition, a driven compaction roller can be provided below the fabric formation area, which roller touches the fabric from below and spreads the weft material 6 across the entire fabric width in the direction of the binding point. To this end, the compaction roller can be provided with cams or dogs that are adapted to the weave binding type and the lateral position of the warp threads or warp bands. This allows a very tight spacing of the weft bands in the woven fabric.
After the weft material 6 has finally been cut off near the fabric edge 7 in the cutting position shown in
The drawing-off of the fabric is preferably achieved simply by a fabric roller or winder without a separate feeding or draw-in roll. The fabric thus runs over a deflecting roll, which deflects the fabric in the direction of the fabric roller or winder, and which at the same time is pivotably driven about a rotation or pivot point in order to execute the aforementioned fabric movement for the fabric formation. At the same time, the deflecting roll is embodied as a measuring roll to determine the current fabric speed. With the help of the fabric speed signal, the drive of the fabric roller or winder is ultimately regulated in such a manner so that a defined weft density arises.
The location of the feed position as well as of the cutting position of the clamping device 5 are preferably freely adjustable so that the weft material 6 can reliably be fed to the insertion element 4 in every operating state of the weaving machine, and on the other hand, so that as little weft material as possible is brought to the opposite side of the fabric as waste. It is thus especially advantageous if, during or after the weft insertion, the swivel unit 2 with the clamping device 5 moves in the direction of the fabric edge 7 into the cutting position as described in
Alternatively, the device in
In order to completely avoid adhesive joint or splice spots both in the woven fabric as well as in the edge area, however, even after switching over to the second supply package or swivel unit 2′, both the almost empty bobbin with the first weft material 6 as well as the remnant piece of the weft material 6 still located in the device 1 can be removed. After a full bobbin has been mounted, the weft material 6 of the new bobbin is threaded through the guide bolts 11 and the clamping device 5 into the device 1, during which the clamping device 5 can be manually actuated by corresponding operating buttons or keys. In order to make the free end E of the weft material 6 available to the insertion element 4 with the exact length, the position of the front end of the weft material 6 can be monitored by a sensor 13, for instance a light barrier, as it is being threaded into the device 1. Closing the clamping device 5 is not done manually in this case, but instead when the correct position of the free end E is reached. This kind of sensor 13 can be arranged on the device 1, for example, near the clamping device 5 in the parked position as illustrated in
It is, however, also possible to stop the weaving machine for the bobbin exchange. In this regard, after stopping the weaving machine, the bobbin exchange is carried out as described above, in that the almost empty spool as well as the weft material 6 still located in the device 1 are completely removed and the beginning of the new weft material 6 is threaded into the device 1 as described. After threading and closing the clamping device 5, the weaving machine can then be restarted. This process is thus also suitable for a device 1, by means of which only one single weft material is feedable. In this regard, it is especially advantageous that no adhesive joint or splice spots arise in the woven fabric.
The invention is not limited to the illustrated example embodiments. Derivations and combinations of the various different features in the scope of the patent claims are also encompassed by the invention.
Number | Date | Country | Kind |
---|---|---|---|
10 2009 036 589 | Aug 2009 | DE | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/DE2010/000776 | 7/6/2010 | WO | 00 | 1/30/2012 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2011/015173 | 2/10/2011 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
3665975 | Kokkinis | May 1972 | A |
3717182 | Sparling | Feb 1973 | A |
3927699 | Volpe | Dec 1975 | A |
3998251 | Hadam | Dec 1976 | A |
4040454 | Genini | Aug 1977 | A |
4188980 | Muller | Feb 1980 | A |
4540028 | Gehring et al. | Sep 1985 | A |
4558722 | Gehring et al. | Dec 1985 | A |
4699183 | Menzel | Oct 1987 | A |
4785856 | Gehring et al. | Nov 1988 | A |
4905741 | Wahhoud et al. | Mar 1990 | A |
4919171 | Dornier | Apr 1990 | A |
4922970 | Gehring et al. | May 1990 | A |
4958664 | Oppl et al. | Sep 1990 | A |
5088525 | Zimmermann | Feb 1992 | A |
5183084 | Moeneclaey | Feb 1993 | A |
5303747 | Arndt et al. | Apr 1994 | A |
5455107 | Homma et al. | Oct 1995 | A |
5566725 | Jaeger | Oct 1996 | A |
5664609 | Herrlein et al. | Sep 1997 | A |
6026865 | Krumm et al. | Feb 2000 | A |
6382262 | Herzig | May 2002 | B1 |
7992596 | Khokar | Aug 2011 | B2 |
8129294 | Khokar | Mar 2012 | B2 |
20060169347 | Wahhoud | Aug 2006 | A1 |
20080257443 | Khokar | Oct 2008 | A1 |
20090007981 | Khokar | Jan 2009 | A1 |
20090065090 | Bachofen et al. | Mar 2009 | A1 |
20120125475 | Oppl | May 2012 | A1 |
Number | Date | Country |
---|---|---|
528 345 | Jun 1931 | DE |
553 886 | Jul 1932 | DE |
645 465 | May 1937 | DE |
25 17 011 | May 1976 | DE |
25 41 990 | Aug 1976 | DE |
299 08 543 | Aug 1999 | DE |
0 240 075 | Oct 1987 | EP |
0 863 237 | Sep 1998 | EP |
2 037 023 | Mar 2009 | EP |
2 072 718 | Oct 1981 | GB |
55-051845 | Apr 1980 | JP |
WO 06075961 | Jul 2006 | WO |
WO 08009332 | Jan 2008 | WO |
Entry |
---|
PCT Examiner Daniela Iamandi, International Search Report of the International Searching Authority for International Application PCT/DE2010/000776, mailed Sep. 22, 2010, 3 pages, European Patent Office, HV Rijswijk, Netherlands. |
PCT Examiner Agnès Wittmann-Regis, PCT International Preliminary Report on Patentability including English Translation of PCT Written Opinion of the International Searching Authority for International Application PCT/DE2010/000776, issued Feb. 7, 2012, 8 pages, International Bureau of WIPO, Geneva, Switzerland. |
English translation of Japanese Office Action issued Apr. 23, 2013 in Japanese Patent Application 2012-523198. |
Number | Date | Country | |
---|---|---|---|
20120125476 A1 | May 2012 | US |