The present invention concerns an innovative device for transforming rotary motion into rectilinear motion for use with mechanical rectilinear operators or actuators.
Ball screws are well known in the rectilinear operator or actuator field, where a turning screw is linked to a translating element, such as a nut screw, with the interposition of balls and where the translating element can be associated with a device to be actuated and subject to linear movements.
In a ball screw, however, problems relating to friction between the balls due to difference in speed in some points of contact and the use of lubrication to limit wear and reduce play so as to safeguard the functionality of the device, cannot be excluded.
The objective of this invention is to provide a new, original, linking system between a nut and a turning screw or bolt, to form a mechanical rectilinear operator, without relying on balls and, however without the drawbacks complained about above, reliable and longer lasting and, above all, simple and economic to produce and to use.
The objective is reached with a device to transform rotary motion into rectilinear motion, which comprises basically a trapezoidal thread rotating screw and a translating nut screw, the latter equipped with pairs of driving teeth, radially orientated to the screw and each having a truncated cone portion that engages with one side of the threading of the screw, and where each tooth is supported in the nut screw and made to turn on its axis and is subject to axial preloading so as to have constant coupling with the threading of the screw.
The most outstanding advantages of this innovative embodiment lie in a substantial and permanent absence of sliding friction between driving teeth and threading of the screw nut, given that the axial preloading on each driving tooth interacting with the nut screw can be self-regulated so as to eliminate coupling play, in particular during each inversion of direction, and by the fact that the connection can be airtight or function in an oil bath, even if the absence of sliding friction already helps to limit wear of the components.
Furthermore, the device proposed here can be straightforwardly applied to any system, commanded by rectilinear motion with the use of normal support profiles (also available on the market) without the need of any mechanical machining and enables self-compensation of alignment errors and a simplified assembly method depending on the drive capacity required to command the device it is connected to.
Greater details of the invention will however become evident from the following description made in reference to the attached indicative and not limiting drawings, in which,
As shown, the device comprises a screw 11 supported and controlled to turn without translating and a nut screw 12 translating, without turning, along the screw 11. The body of the nut screw can be provided with any external configuration.
The screw 11 has trapezoidal thread 13 with given angled sloping sides. The body of the nut screw 12 has a bore 14 in which the screw 11 extends and couples with the threading of the latter by means of pairs of rotating driving teeth 15.
These driving teeth 15 are on board the nut screw 12, and in the example illustrated are they are arranged in pairs orientated radially, in opposite directions to the screw to balance the components applying force on the screw itself. Each driving tooth 15 has a cylindrical assembly portion 16, a truncated cone portion 17 facing towards, and engaging with the thread 13 of the screw and it is positioned to turn on its geometric axis.
The driving teeth 15 can be assembled individually and turning directly in corresponding housings provided in the body of the nut screw 12. But in preference, and as shown in
The capsule 18 is stopped and held axially in its respective housing 19 by means of a stop ring 21 and interposition of a flexible seal 22 and a closing disk 23 placed between said capsule and said ring.
This arrangement, and thanks to the seal 22, provides an airtight seal for each capsule with relative driving tooth and confers a coupling preload between the driving tooth 15 and the threading 13 of the screw 11 able to self ad just during functioning of the device. Furthermore, with the addition of protection elements—not shown—at the opposite ends of the bore 14 of the nut screw 12 the screw extends into, the coupling can be preset and function in an oil bath to have lifelong lubrication of the device. In addition, the screw can also be protected by a casing along all its length.
Basically the angle of the surface of the conical portion 17 of each driving tooth 15 corresponds to the surface of the sides of the threading 13 of the screw 11 and each time engagers with a side of said threading for the translation of the nut screw 12 in a direction, when the screw 11 turns in one direction, and with the opposite side of said threading for the translation of the nut screw 12 in the opposite direction when the screw is also turning in the opposite direction.
The device described above can be used, for example, to move a guided and sliding saddle 25 rectilinearly on a fixed part 26 of any tool 27. In this way, and as shown in
Also worthy of note is that two or more nut screws can be coupled modularly to the screw depending on the power required to drive the tool in question.
Number | Date | Country | Kind |
---|---|---|---|
BS 2006 A 000220 | Dec 2006 | IT | national |