DEVICE FOR TRANSPORTING BOTTLES OR SIMILAR CONTAINERS

Information

  • Patent Application
  • 20120279611
  • Publication Number
    20120279611
  • Date Filed
    December 02, 2010
    13 years ago
  • Date Published
    November 08, 2012
    11 years ago
Abstract
The invention relates to a device for transporting bottles or similar containers between a transfer position and a discharge position, comprising a transport element that may be driven in a rotating manner about at least one vertical machine axis and several container receptacles provided on the transport element and having, for example, a gripper-like design for picking up and holding in each case one container during the transport thereof from the transfer position to the discharge position.
Description

The invention relates to a device according to the preamble of patent claim 1.


Devices for transporting bottles or other containers are also known in particular in a transport-star-like configuration in which a plurality of container receptacles are provided on the periphery of a rotor that can be driven to rotate about a vertical machine axis. The containers are each individually transferred to these container receptacles at a transfer position from an upstream machine or an upstream plant component and as the rotor rotates are then transported, while being held at the respective container receptacles, to a discharge position where they are passed to a further machine or plant component.


The containers often have to be turned on the transport path between a first machine or plant component and a second machine or plant component, for example containers which are treated in a rinser in an inverted position or inverted orientation must be turned back to their normal attitude and transferred in that normal attitude to a filling machine for example.


The object of the invention is to propose a device which, while simplified in design and compact in overall size, enables not only the transporting of the containers from a transfer position to a discharge position but which at the same time, and on this transport path, also facilitates a swinging of the containers about an axis perpendicular, or square, to the container axis. A device according to patent claim 1 is configured to achieve this object.


For the purpose of the invention, “container axis” means the vertical axis of the containers and is also usually the axis of the container opening of the respective container.


For the purpose of the invention, “inverted position” or inverted orientation means a container orientation in which the opening of the respective container points downward. For the purpose of the invention, normal attitude or normal orientation is a container orientation in which the respective container opening points upward.


Preferentially the inventive device is configured in such a way that the container receptacles, which are preferably formed of container grippers, are pivoted from an initial position through 180° in a first direction on the transport path between the transfer position and the discharge position and are pivoted back through 180° on the path between the discharge position and the transfer position, i.e. are pivoted in an opposite second direction, so that each container receptacle is back in its initial position at the transfer position.


In a preferred embodiment, the lifting and pivoting movements are each controlled by curves and hence positively controlled synchronously with the motion of the container receptacles.


The lifting movements are preferably equal or essentially equal to the size which the containers exhibit along their container axis, the lifting and pivoting movements again being preferably coordinated with one another so that each container is pivoted about an axis which intersects the container axis at or essentially at its centre.


Further embodiments, advantages and possible applications of the invention arise out of the following description of embodiments and out of the figures. All of the described and/or pictorially represented attributes whether alone or in any desired combination are fundamentally the subject matter of the invention independently of their synopsis in the claims or a retroactive application thereof. The content of the claims is also made an integral part of the description.





The invention is explained in detail below through the use of an embodiment example with reference to the figures.



FIG. 1 shows in a simplified perspective function representation a rinser and a filling machine for containers in the form of bottles, together with a conveyor of the transport star wheel type arranged between these machines or plant components for transferring the bottles from the rinser to the filling machine;



FIG. 2 shows the rinser, the filling machine and the conveyor of FIG. 1 in plan view;



FIGS. 3 and 4 show respectively an enlarged side view and a plan view of the conveyor of the transport star wheel type shown in FIG. 1.





In the figures, 1 is a rotary rinser, for example a wet and/or dry rinser for treating or for rinsing, cleaning and/or disinfecting the interior of bottles 2 with a liquid and/or dry treatment medium. Rinser 1 essentially consists in the manner known to the person skilled in the art of a rotor 3 that can be driven to rotate about a vertical machine or rinser axis MA1 in the direction of arrow A, and on whose periphery treatment stations 6 are disposed mutually spaced at equal angular distances, each of which consisting for example of a gripper-like bottle holder 4 and of a nozzle 5 for discharging the liquid or gaseous and/or vaporous treatment medium into respective bottle 2.


As shown in FIG. 1, at treatment positions 6 which are each formed by one bottle gripper 4 and one nozzle 5, bottles 2 are orientated in inverted position, i.e. with the container axis or bottle axis orientated vertically and therefore parallel to machine axis MA1 of rinser 1 but with its bottle opening 2.1 pointing downward and bottle base 2.2 pointing upward. Bottles 2 are transferred in this orientation for example to individual treatment positions 6 via a container or bottle entry (not shown), whereby the turning of bottles 2 from their original normal attitude, with the bottle axis vertically orientated and with bottle opening 2.1 pointing upward, into the inverted position taking place for example in the region of the bottle or container entry.


After bottles 2 have been treated, they are passed by rotationally driven rotor 3 to a transfer position 7 where each bottle 2 in inverted position is picked up and/or gripped by a bottle gripper 8 of transport-star-wheel-like conveyor 9 and transported by conveyor 9 such that finally each bottle 2 is transferred at a discharge position 10 to a treatment position 11 of filling machine 12 after it has been turned into the normal attitude, i.e. with the bottle axis vertically orientated and with bottle opening 2.1 at the top.


Filling machine 1 is of the rotary type which in the manner known to the person skilled in the art exhibits inter alia a rotor 13 which can be driven to rotate about a vertical machine axis MA2 of filling machine 12 in the direction of arrow B and on whose periphery is disposed a plurality of treatment positions 11 spaced apart at equal angular distances and comprising inter alia a container carrier 14.1 for holding bottles 2 suspended by a mouth flange 2.3 configured beneath bottle mouth 2.1 and of one filling element 14 each for the controlled filling of bottles 2 with a liquid filling material.


The particularity of the illustrated plant resides in the configuration of transport element 9. This also has a rotor 15 which can be driven to rotate about a vertical machine axis MA3 in the direction of arrow C and hence opposite to the direction of rotation of rotors 3 and 13 (arrows A and B respectively), and on whose periphery a plurality of bottle grippers 8 is provided. These bottle grippers 8 are configured for example like tongs having two gripping or clamping jaws movable relative to one another and pretensioned by spring means in a closed position and which at transfer position 7 each grip and hold by clamping a bottle 2 by its part-region of the bottle neck formed between bottle mouth 2.1 and mouth flange 2.3 until, after turning back or swinging into its normal attitude with rotating rotor 15, the respective bottle 2 reaches discharge position 10 where it is transferred to a container carrier 14 of a treatment position 11 of filling machine 12. At each of positions 7 and 10, bottle grippers 8 are opened by controlling means (not shown) to receive a bottle 2 from rinser 1 or to transfer a bottle 2 to filling machine 12.


In the depicted embodiment of conveyor 9, bottle grippers 10 [sic] are provided in pairs each on a common plate 8.1 (auxiliary carrier) and pivotably with the latter on a bottle gripper carrier 16 about a common axis that is formed inter alia by the axis of a pivot pin 17 and orientated tangentially to the periphery or direction of rotation of rotor 15 or to a notional circular cylinder concentrically surrounding machine axis MA3.


Bottle gripper carriers 16 are provided on guide bars 18 and can be displaced vertically, i.e. parallel to machine axis MA3, on the periphery of rotor 15. Guide bars 18 which relative to machine axis MA3 are offset radially inwards from gripper carriers 16 each extend between an upper rotor element 15.1 and a lower rotor element 15.2 of rotor 15, so that the rotor exhibits a circular cage-like structure which offers high strength or stability despite its relatively lightweight construction. Guide bars 18 are also provided in pairs and in such a way that each two guide bars 18 radially spaced apart from one another relative to machine axis MA3 are provided to guide one bottle gripper carrier 16, each bottle gripper carrier can therefore be moved vertically on the guide formed by the two guide bars 18 vertically [sic] but is guided in a manner that prevents twisting.


As the figures show, in the case of the depicted embodiment, bottle gripper carriers 16 are arm-like in configuration so that relative to machine axis MA3 they project with their longitudinal extension radially outward from their guide formed by the two guide bars 18. At the outer end, bottle grippers 8 with the auxiliary carriers or plates 8.1 are articulated to the respective bottle carrier 16.


By way of a control curve 19 that is static, i.e. it does not rotate with rotor 15, and by way of curve rollers 20 which engage in said control curve 19 and which are mounted on bottle gripper carriers 16 so as to be able to rotate freely, as rotor 15 rotates, bottle gripper carriers 16 are compelled to move vertically up and down along their guide bars 18, and in the case of the depicted embodiment in such a manner that bottle gripper carriers 16 are in their lowest travel position at transfer position 7 and in their highest travel position at discharge position 10. Consequently bottle gripper carriers 16 are moved upward between transfer position 7 and discharge position 10 over the angular range of the rotational motion of rotor 15, and are moved back downward again between discharge position 10 and transfer position 7 over the angular range of the rotational motion of the rotor. To this end, control curve 19 exhibits a rising profile between transfer position 7 and discharge position 10 and a falling profile between discharge position 10 and transfer position 7.


As the figures show, the control and lifting curve 19 that is static, i.e. it does not rotate with rotor 15, is disposed within the area of movement in which guide bars 18 move as the rotor rotates, and is attached to a central pillar 21 which does not rotate with the rotor and which is also disposed within the area of movement of guide bars 18 and on the same axis as machine axis MA3. This is made possible in that the lower rotor section 15.2 is configured as a ring which concentrically surrounds machine axis MA3 and which is connected by guide bars 18 to the upper spoked-wheel-like rotor section 15.1. Curve rollers 20 are each located at the radially inner end of bottle gripper carriers 16 at a short distance from guide bars 18 and hence at a short distance from the sliding bushes by which bottle gripper carriers 16 are guided on the guide bars, so creating optimum drive conditions. The two bottle grippers 8 of each bottle gripper pair are provided on the common plate 8.1 by which the two bottle grippers 8 of each bottle gripper pair are provided so as to be able to pivot on bottle gripper carrier 16 about the common horizontal pivoting axis that is orientated tangentially to the rotation direction (arrow C) of rotor 15 and that is constituted essentially by a pivot pin 17.


A control arm 22 is attached by one end to each plate 8.1 between the two bottle grippers 8 and such that this control arm is orientated with its longitudinal extension radially to the respective pivoting axis of plate 8.1 formed by pivot pin 17. At its end lying away from the associated plate 8.1, each control arm 22 is configured with a guide piece 23 which engages fork-like over a closed guide curve 24 that is static, i.e. it does not rotate with rotor 15, formed in the depicted embodiment by a tubular section, said guide piece being displaceably guided on this control curve 24. In order to ensure a secure engagement of the respective guide piece in guide curve 24, each control arm 22 in the depicted embodiment is configured telescopically with axially acting spring means which press the associated guide piece 23 against guide curve 24.


The path followed by control curve 24 encloses the trajectory of pivot pin 17 spiral-like at a distance, with a half turn or 180° turn between transfer position 7 and discharge position 10 and with an equally half turn or 180° turn in the opposite path or direction of turn between transfer position 10 and transfer position 7. The distance of control curve 24 from the trajectory of pivot pin 17 is equal to the length of control arms 22. Control curve 24 is further configured so that on the transport path between transfer position 7 and discharge position 10 the containers are first swung outward with their container base and then are swung back inward again relative to machine axis MA3, and preferentially in such a way that half way along the transport path or angular range of the rotational motion of rotor 15, each bottle 2 is orientated with its bottle axis radial or approximately radial to machine axis MA3 between transfer position 7 and discharge position 10.


By way of the control arms 22 interacting with control curve 24, as rotor 15 rotates a forced pivoting through 180° C. [sic] of bottle grippers 8 about the pivoting axis of the associated pivot pin 17 is brought about so that the bottles 2, which at transfer position 7 are initially received by bottle grippers 8 in the inverted position, are turned or swung back to their normal attitude as they are moved to discharge position 10. The two control curves 19 and 24 are preferably coordinated with one another so that the lifting motion controlled by control curve 20 and the pivoting motion of bottle grippers 8 about their pivoting axes or pivot pins 17 controlled by control curve 24 produce a resulting motion such that during the transport from transfer position 7 to discharge position 10, i.e. over the corresponding angular range of the rotational movement of rotor 15, each bottle 2 is effectively pivoted about its bottle centre, i.e. about an axis which intersects the respective bottle axis at its centre. In addition to the general advantage of a compact design and the swinging of bottles 2 back to their normal attitude, this configuration also has the advantage that there is practically no height offset between bottles 2 at the rinser and bottles 2 at the filling machine.


In the depicted embodiment, control curve 24 specifically follows a path such that the longitudinal extension of each control arm 22 is radially orientated to machine axis MA3 at positions 7 and 10. In the depicted embodiment, guide curve 24 is moreover configured such that it exhibits a different vertical height level at positions 7 and 10, i.e. at transfer position 7 a lower height level which at that position also essentially corresponds to the lower level or initial position of bottle grippers 8 at transfer position 7, and at transfer 10 [sic] a higher level which roughly corresponds to the higher level of bottle grippers 8 at discharge position 10. In direction of rotation C of rotor 5, the height level of control curve 24 first rises vertically from transfer position 7 to discharge position 10 and then falls back from transfer position 10 to transfer position 7 to the lower height level. Control curve 24 also follows a path such that the radial distance from machine axis MA3 at transfer position 7 is greater than at discharge position 10 by twice the length of control arms 22.


It goes without saying that rotors 3, 13 and 15 are driven synchronously in such a way that whenever a treatment position 6 of rinser 1 has reached transfer position 7, a bottle gripper 8 also stands ready there, and that whenever a bottle gripper 8 has reached discharge position 10, a container carrier 14.1 also stands ready there to receive the respective bottle 2.


The invention has been described hereinbefore by reference to one embodiment. It goes without saying that numerous variations as well as additions are possible without departing from the inventive concept underlying the invention.


List of Reference Signs


1 Rinser



2 Bottle



2.1 Bottle opening



2.2 Bottle base



2.3 Mouth flange



3 Rotor of rinser 1



4 Bottle holder or bottle gripper on rinser 1



5 Treatment nozzle



6 Treatment position at rinser 1



7 Transfer position between rinser and conveyor 9



8 Bottle gripper



8.1 Plate for two bottle grippers 8



9 Conveyor



10 Transfer position between conveyor 9 and filling machine



11 Treatment position at filling machine 12



12 Filling machine



13 Rotor



14 Filling element



14.1 Container carrier



15 Rotor



15.1, 15.2 Rotor element



16 Bottle gripper carrier



17 Pivot pin



18 Guide bar



19 Control curve



20 Curve roller



21 Central pillar



22 Control arm



23 Guide piece



24 Control curve


A Direction of rotation of rotor 3


B Direction of rotation of rotor 13


C Direction of rotation of rotor 15


MA1 Vertical machine axis of rinser 1


MA2 Vertical machine axis of rotor 13

Claims
  • 1-11. (canceled)
  • 12. An apparatus comprising a device for transporting containers between a transfer position and a discharge position, said device comprising a transport element configured to be driven to rotate about a vertical machine axis, and container receptacles provided on said transport element, each of said container receptacles being configured as a gripper for picking up and holding one container during the transport thereof from the transfer position to the discharge position, first control means for causing a lifting movement of each container receptacle along an axis parallel to the machine axis, second control means for causing a controlled pivoting of each container receptacle out of an initial position thereof, said pivoting being about a pivoting axis that is oriented square to the machine axis between the transfer position and the discharge position and for causing controlled return pivoting of each container receptacle into the initial position about the pivoting axis between the discharge position and the transfer position, wherein the first and second control means are configured synchronously with the movement of the container receptacles for controlling said lifting and pivoting.
  • 13. The apparatus of claim 12, wherein said transport element comprises a rotor configured to be driven to rotate about said vertical machine axis.
  • 14. The apparatus of claim 12, wherein said first control means are formed by a first control curve surrounding said machine axis and by first guide pieces that engage said first control curve, that are provided on carriers carrying the container receptacles, and that are displaceably guided parallel to said machine axis, and wherein said second control means is formed by at least one second control curve and by second guide pieces that interact with said at least one second control curve and that are provided on one of said container receptacles and an auxiliary carrier pivotable about a respective pivoting axis and having at least one container receptacle, wherein said at least one second control curve surrounds a trajectory of said pivoting axes in the manner of one of a coil and a spiral.
  • 15. The apparatus of claim 14, wherein said at least one second control curve surrounds said trajectory of said pivoting axes with a partial turn corresponding to a pivoting angle of said container receptacles, wherein a turn direction between said discharge position and said transfer position is opposite to a turn direction between said transfer position and said discharge position.
  • 16. The apparatus of claim 15, wherein said partial turn is a half turn.
  • 17. The apparatus of claim 14, wherein said first control curve is arranged inside a trajectory of one of said container receptacles and said carriers.
  • 18. The apparatus of claim 14, wherein relative to said vertical machine axis, said at least one second control curve runs radially outside a trajectory of guides for lifting movement of one of said container receptacles and carriers thereof.
  • 19. The apparatus of claim 17, wherein relative to said vertical machine axis, said at least one second control curve runs radially outside a trajectory of guides for lifting movement of one of said container receptacles and carriers thereof.
  • 20. The apparatus of claim 14, wherein a structure selected from a group consisting of said container receptacles and auxiliary carriers carrying said container receptacles is configured to pivot about said at least one pivoting axis on a carrier that is provided by the first control means such that said structure is displaceable on said transport element for lifting movement in an axial direction parallel to said machine axis.
  • 21. The apparatus of claim 20, wherein said transport element comprises a rotor having an upper rotor element and a lower rotor element, said upper rotor element being rotatably mounted on a central machine element and said lower rotor element comprising a ring enclosing said central machine element, and wherein said upper and lower rotor elements are interconnected by guide bars to form a cage-like structure, wherein said guide bars form a guide for said carriers of said container receptacles.
  • 22. The apparatus of claim 21, wherein said central machine element comprises a pillar.
  • 23. The apparatus of claim 12, wherein said lifting movement and said pivoting of said container receptacles are coordinated having regard to a size that said containers exhibit on container axes thereof so that said containers are pivoted about a central axis running square to said container axes.
  • 24. The apparatus of claim 12, wherein a maximum stroke of said lifting movement is equal or approximately equal to a size that a container exhibits on a container axis thereof.
  • 25. The apparatus of claim 14, wherein a path of at least one of said first control curve and said at least one second control curve is selected such that at said transfer position, said container receptacles are at a lower lifting position to receive containers in an inverted position and at said discharge position said container receptacles are in an upper lifting position to discharge said containers in normal attitude.
  • 26. The apparatus of claim 14, further comprising a common auxiliary carrier configured for controlled pivoting about said pivoting axis, wherein two container receptacles are provided on said common auxiliary carrier.
  • 27. The apparatus of claim 14, wherein at least one of said guide pieces interacting with said at least one second control curve is on a control arm that projects radially away from the pivoting axis from one of a respective container receptacle and a respective auxiliary carrier.
  • 28. The apparatus of claim 12, further comprising a first plant component for cleaning said containers, and a second plant component for filling said containers with liquid filling material, wherein said device is disposed to function as a conveyor to convey said containers from said first plant component to said second plant component.
Priority Claims (1)
Number Date Country Kind
102010008387.9 Feb 2010 DE national
PCT Information
Filing Document Filing Date Country Kind 371c Date
PCT/EP2010/007311 12/2/2010 WO 00 7/2/2012