1. Field of the Invention
The present invention relates to a device and method for the prevention and/or treatment of osteoporosis, fractures of the hip, spine fractures, and/or spine fusions using inductively coupled electric fields generated by coils inserted into a patient's undergarments and powered by a portable power source.
2. Description of the Prior Art
As previously reported in U.S. Pat. No. 4,467,808, issued Aug. 28, 1984, and as reported in three published papers by Brighton et al (Bone, 6:87–97, 1985; J. Orthopaedic Research, 6:676–684, 1988; and J. Bone and Joint Surger, 71A: 228–236, 1989) an appropriate capacitively coupled electric field prevented and/or reversed osteoporosis induced in the rat vertebra or tibia. It has also been previously reported in U.S. Pat. No. 4,535,775, issued Aug. 20, 1985, and in several published papers by Brighton et al (J. Trauma, 24:153–155, 1984; J. Orthopaedic Research, 3:331–340, 1985; and J. Bone and Joint Surgery, 67A: 577–585, 1985) that an appropriate capacitively coupled electric field increased the rate of healing in fresh fractures in the rabbit fibula and healed human fracture nonunions at a rate comparable to that of bone graft surgery (Clin. Orthop. And Related Research, 321: 223–234, 1995). Lastly, it was reported recently that an appropriate capacitively coupled electric field used as an adjunct to lumbar spinal fusion significantly increased the rate of fusion when compared to patients who had spinal fusion without electrical stimulation (Goodwin, Brighton, et al, Spine, 24:1349–1356, 1999).
All of the above studies used capacitive coupling, a method of noninvasively producing an electric field in tissues within the body such as bone and cartilage. Capacitive coupling, as used in those studies, requires the use of a pair of electrodes attached to the surface of the patient's skin adjacent to or near the location of treatment. Capacitive coupling is a very convenient, patient “friendly” method of applying electricity to the patient in the treatment of bone fractures, nonunions, bone defects, and localized lumbar spine fusions. However, capacitive coupling is not a practical way of treating multiple segment spine fusions or to treat a relative large area. This limitation of capacitive coupling led the present inventors to invent a method and device for achieving the same internal electrical fields in vertebrae at multiple levels by using either multiple electrode pairs or by using strip electrodes, as described in U.S. Provisional Patent Application No. 60/302,846. The multiple electrode pairs or strip electrodes (one long electrode on either side of the spine) described therein are designed to be worn 24 hours per day and to be changed periodically for a treatment period of, e.g., 8–12 weeks.
The present inventors also set out to extend the techniques described in the above-mentioned patents and articles to the treatment of osteoporosis, fractures of the hip or spine, and/or spine fusions in humans. However, the present inventors soon discovered that transferring existing data to the application of electric signals to the human spine and hips in patients with osteoporosis, fractures of the hip or spine, and/or spine fusions was far from straightforward. A determination of the proper electric field amplitude and method of applying electricity to the patient for the treatment of osteoporosis, fractures of the hip or spine, and/or spine fusions needed to be developed. Capacitive coupling was substantially eliminated as a method of producing an electric field in the spine to treat osteoporosis because family assistance is required to apply the electrodes. Such assistance is frequently unavailable in this generally older patient population afflicted with osteoporosis and hip and spine injuries. Moreover, such patients typically will require the application of electric fields for months to years and possibly for the duration of the patient's life.
Accordingly, it is desired to develop an equivalent electric field in vertebrae and other bones and tissues, such as the hip, as achieved with capacitive coupling, except that it is desired to use only electromagnetic fields instead of capacitively coupled fields so that electrodes will not need to be applied to the patient. Inductive coupling devices will create the opportunity for the development of garments and the like that can be readily applied to the treatment area by the patient. The present invention addresses the features of such garments.
The present invention addresses the above-mentioned needs in the art by incorporating flexible coils made of wire or conductive thread into a patient's undergarment. A time varying electric field as described herein is produced in the coils by applying electrical signals from a portable power supply worn by the patient. The time varying electric field in the coils produces a time varying magnetic field that readily penetrates into the tissue beneath the coil, and which, in turn, produces a time varying electric field in such tissues. In embodiments described herein, the tissues include the vertebra and the bones of the hip that are treated to prevent or minimize the spread of osteoporosis, to heal and/or prevent fractures of the hip or spine, and/or to treat spine fusion.
The present invention relates to a device and method of preventing and/or treating osteoporosis, fractures of the hip, spine fractures and/or spine fusions in a patient by incorporating at least one conductive coil into a garment adapted to be worn adjacent the patient's skin, whereby the garment, when worn, causes the coil to be located over a treatment area of the patient, and applying an electrical signal to the coil effective to produce a magnetic flux that penetrates the treatment area so as to produce an electric field in the bones and tissues of the treatment area effective to treat osteoporosis, fractures, or fusion of the bones of the treatment area. Preferably, a portable power device creates the electrical signal for application to the coil and is sufficiently small and light to be carried on the patient's body when the garment is being worm. The portable power device is adapted to provide a 60 kHz sinusoidal electrical current with a sine wave amplitude of 100 mA to the coil in the representative embodiments, although other types of electric signals may also be applied to provide suitable treatments.
In a first embodiment, the garment is an undershirt and the coil is configured in a racetrack design having a long axis along the treatment area of the patient's spine when incorporated into the undershirt. The coil may be woven into the undershirt, placed in a pouch in the undershirt, or attached to the undershirt by VELCRO®.
In a second embodiment, the garment is underpants and the coil is circular in shape and centered over the patient's hip when incorporated into the underpants. The coil may be woven into the underpants, placed in a pouch in the underpants, or attached to the underpants by VELCRO®. The underpants may accept a circular-shaped coil over one or both hips of the patient.
A system and method for prevention and treatment of osteoporosis, hip or spine fractures, and/or spine fusion with electric fields in accordance with the invention is further described below with reference to the accompanying drawings, in which:
a) and 1(b) illustrates side and front views, respectively, of N-turns of a coil of wire made in the shape of a racetrack and incorporated into a garment worn by the patient so that the coil is placed over a treatment area of the patient's spine.
a) and 2(b) illustrate front and side views, respectively, of N-turns of a coil of wire in a circular configuration and incorporated into a garment worn by the patient so that the coil is placed over a treatment area of one of the patient's hips. Two coils could be used to treat both hips simultaneously.
a) illustrates an undershirt modified to include the conductive flexible coil of
b) illustrates an undershirt modified to include a pouch for receiving the conductive flexible coil of
c) illustrates an undershirt modified to include VELCRO® strips at the desired treatment location of the patient's spine for receiving the conductive flexible coil of
a) illustrates women's panties modified to include the conductive flexible coil of
b) illustrates women's panties modified to include a pouch for receiving the conductive flexible coil of
c) illustrates women's panties modified to include VELCRO® strips for receiving the conductive flexible coil of
Device Geometry
Instead of self-adhering electrodes being attached to the surface of the patient's skin and receiving an electrical signal for generating a time varying electromagnetic field in the tissue beneath the electrodes as in the case of prior art capacitive coupling systems, the present invention utilizes flexible coils made of wire or conductive thread that are incorporated into a garment to be worn for about eight hours per day. A time varying electric field is produced in the coils from a small, portable power supply worn by the patient that produces a time varying electromagnetic field that readily penetrates into the tissue beneath the coil, which, in turn, produces a time varying electric field in such tissues. In the exemplary embodiments described herein, such tissues include the vertebra and the bones of the hip. The problem of determining how to produce an equivalent electromagnetic field as in the case of capacitive coupling requires an analysis of the time varying currents to be applied to the appropriately designed coils of conducting material.
a) and 1(b) together show N-turns of a coil 10 preferably made of insulated copper wire or other suitable conductor in the shape of a “race track”. In accordance with a first embodiment of the invention, coil 10 is incorporated into a garment (not shown) and worn by a patient so that the coil 10 is placed over a treatment area of the patient's spine 20. A time varying current in the coils, produced by a power unit (not shown), in turn produces the magnetic flux, B, which readily penetrates the patient's skin 30 to the tissues of the spine 20. This flux B in turn produces the transverse electric field, E, in the bones of the spine 20 and results in effective treatment of osteoporosis and bone fusion, repair or growth. In
a) and 2(b) together show N turns of coil 40 of radius R preferably made of insulated copper wire or other suitable conductor in the shape of a circle. In accordance with a second embodiment of the invention, coil 40 is incorporated into a garment 50 and worn by a patient so that the coil 40 is placed over the treatment area of the hip of the patient. The power unit (not shown) produces a time varying current to the coil 40 on the hip resulting in the flux, B, and, in turn, the transverse electric field, E, in the tissues, which field E causes the repair/growth process in the bones of the hip.
In both embodiments, the power unit is preferably small, light in weight, and carried in a pouch somewhere on the patient.
Current in Coil Required to Generate Therapeutic Electric Field
In this section, the values of the current in the coil 10 or the coil 40 and the frequency of such current are calculated that will generate an electric field in the range of amplitude and frequency with a proven therapeutic value for the treatment of osteoporosis, hip or bone fractures, spine fusions, and the like. For the geometry shown in
where /E/ is the magnitude of E shown in
is the partial derivative of the magnetic flux, B, shown in
In accordance with the invention, there are at least two possible coil configurations that can be used. In the case of the hip coil 40, a circular coil would facilitate anatomical compliance, while for the spine coil 10, a “race track” configuration designed to fit over the spine 20 would be desirable. Although those skilled in the art will appreciate that alternative configurations are possible, the electric field amplitude will be calculated for the two presently preferred configurations shown in
Case #1 Circular Coil of N-Turns (
As shown in
where μo is the magnetic permeability of free space (and human tissue) and N is the number of turns of the coil. If the hip bones are located in the region where r<<R and at a distance z=R, then the approximate value of Bz is given by Equation 2:
Using Equations (1) and (2) together results in Equation 3:
where
is the partial derivative of the coil current I(t) with respect to time. The time dependence of the current is chosen to be sinusoidal and of a frequency of 60 kHz in order to match the successful time dependence of capacitive coupling. Accordingly, I is given by Equation 4:
I=I0eiwt (4)
where I0 is the sine wave amplitude and w=2πf where f is the frequency equal to 60 kHz. Then, substituting Equation 4 in Equation 3 gives Equations 5 and 6:
where /E0/ is the electric field amplitude. For the case where f=6×104 Hz, and for μo=1.26×10−6 Hz/m, r−2 cm=2×10−2 m, and π=3.14, then Equation 6 reduces Equation 7:
For example, for a coil having the following parameters, the electric field amplitude value /E0/ would be 22.4 mV/cm or 2.24 V/m:
R=7.5 cm=7.5×10−2 m;
N=2000 Turns=2×103 I0=100 mA
Those skilled in the art will appreciate that a greater number of turns of the coil and/or a higher current in the coil can increase these values for the electric field amplitude. Also, the use of magnetic material inside of the coil can increase the flux density, B, and therefore the value of /E/. In addition, square pulsed current with high 60 kHz harmonics can also be used to increase the signal strength.
Case #2: The “Race Track” Coil of N Turns (
In the case of the spine coil 10 of
where I is the current in the racetrack coil 10 and b and L are as shown in
Utilizing Equation (9) in Equation (1) gives Equation 10:
If I=N·I0·eiwt, a sine wave at 60 kHz with N turns, then:
Taking r=a and a=b (from
/E0/=μo·N·f·I0 (12)
If μo=1.26·10−6 Hz/m, then /E0/=2.26 V/m=22.6 mV/cm if:
Power Device Design
The power unit is light (approximately 8 ounces), and small (approximately the size of a cigarette pack), and runs on a rechargeable battery pack.
In the case of the hip, the power unit has resistors/transistors (or circuit chip) so designed to deliver a 60 kHz, sinusoidal electrical current with a sine wave amplitude of 100 mA to a coil of 2000 turns of conductive material. This produces an internal electric field in the hip of 22.4 mV/cm.
In the case of the spine, the same power unit design delivers a 60 kHz sinusoidal electrical current with a sine wave amplitude of 100 mA to a coil with 300 turns of conductive material. This produces an internal electric field in the vertebrae of 22.6 mV/cm.
Additional features of this power supply may include physician read out, compliance monitoring, stabilization circuitry, and other capabilities consistent with state of the art electronics.
Garment Design:
The garment for the spine looks like an undershirt that has the conductive, flexible coil 10 either woven into the garment over the appropriate area of the spine 20 or the coil 10 may slip into a pouch in the undershirt at the appropriate level. On the other hand, the coil 10 may be attached to VELCRO® strips at the desired location.
a) illustrates an undershirt 60 modified to include a flexible conductive coil 70 of the type shown in
b) illustrates an undershirt 90 modified to include a pouch 100 for receiving the conductive flexible coil 110 of the type shown in
c) illustrates an undershirt 150 modified to include VELCRO® loops (L) 160 spaced along the spine at desired distances and attached to undershirt 150 in a conventional manner as shown. Conductive flexible coil 170 of the type shown in
The garment for the hip will look like form fitting panties or men's shorts with the conductive, flexible coil of
a) illustrates panties or shorts 200 modified to include a flexible conductive coil 210 of the type shown in
b) illustrates panties or shorts 230 modified to include a pouch 240 for receiving the conductive flexible coil 250 of the type shown in
c) illustrates panties or shorts 290 modified to include VELCRO® loops (L) 300 spaced along the hip(s) at desired distances and attached to panties or shorts 290 in a conventional manner as shown. Conductive flexible coil 310 of the type shown in
Although exemplary implementations of the invention have been described in detail above, those skilled in the art will readily appreciate that many additional minor modifications are possible in the exemplary embodiments without materially departing from the novel teachings and advantages of the invention. For example, other electric signals with different characteristics and different characteristic frequencies (e.g., in the range of 30 kHz to 250 kHz) may be applied to the coils for providing treatment in accordance with the invention. Any such minor modifications are intended to be included within the scope of this invention as defined by the following exemplary claims.
This application is the National Stage of International Application No. PCT/US02/21881, filed Jul. 10, 2002, which claims the benefit of U.S. Provisional Application No. 60/342,450, filed Dec. 21, 2001, the disclosure of which is incorporated herein by reference in its entirety.
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/US02/21881 | 7/10/2002 | WO | 00 | 6/17/2004 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO03/057312 | 7/17/2003 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
4430999 | Brighton et al. | Feb 1984 | A |
4442846 | Brighton et al. | Apr 1984 | A |
4467808 | Brighton et al. | Aug 1984 | A |
4487834 | Brighton | Dec 1984 | A |
4506674 | Brighton et al. | Mar 1985 | A |
4509520 | Dugot | Apr 1985 | A |
4535775 | Brighton et al. | Aug 1985 | A |
4549547 | Brighton et al. | Oct 1985 | A |
4600010 | Dugot | Jul 1986 | A |
4998532 | Griffith | Mar 1991 | A |
5014699 | Pollack et al. | May 1991 | A |
5038797 | Batters | Aug 1991 | A |
5269746 | Jacobson | Dec 1993 | A |
5273033 | Hoffman | Dec 1993 | A |
5338286 | Abbott et al. | Aug 1994 | A |
5374283 | Flick | Dec 1994 | A |
5743844 | Tepper et al. | Apr 1998 | A |
5792209 | Varner | Aug 1998 | A |
5882292 | Miyaguchi | Mar 1999 | A |
6083149 | Wascher et al. | Jul 2000 | A |
6132362 | Tepper et al. | Oct 2000 | A |
6186940 | Kirschbaum | Feb 2001 | B1 |
6261221 | Tepper et al. | Jul 2001 | B1 |
6560487 | McGraw et al. | May 2003 | B1 |
20020052634 | March | May 2002 | A1 |
20030211084 | Brighton et al. | Nov 2003 | A1 |
Number | Date | Country |
---|---|---|
WO 0162336 | Aug 2001 | WO |
WO 2005070136 | Aug 2005 | WO |
Number | Date | Country | |
---|---|---|---|
20050228462 A1 | Oct 2005 | US |
Number | Date | Country | |
---|---|---|---|
60342450 | Dec 2001 | US |