The invention to applying features to packages, and in particular, to a pressure segment used in connection with application of such features.
Devices for treating packages are known in different embodiments. Among others, DE 10-2009-043-497 shows a device in which the packages are each held on one and the same holding-and-centering unit, or puck, during the entire transport from a package inlet to a package outlet, and the holding-and-centering units only release the packages at the package outlet from which the holding-and-centering units are then returned to the package inlet on a puck return transport section.
Printing systems for printing containers with the use of digital, electrical print heads that operate on the inkjet principle are known to the skilled person. In particular, printing systems or printing machines are also known in which a plurality of treating or printing positions, each for receiving a container that is to be printed, are formed on a transport element driven to rotate about at least one vertical axis, and on which the containers are printed using electronically triggered digital print heads that operate on the inkjet principle.
The object of the invention is to further develop a device for applying furnishings that adapts in a trouble-free way to packages of different type, size, and form with high operational reliability possible, or that can be assembled with little effort in a compact design with high operational reliability.
In further development of the invention, the device is configured, for example, in such a way that a carriage on which at least one print head is disposed and that is height-adjustable, i.e. adjustable in the direction of the machine axis, and that can be tilted to the machine axis is provided in the pressure segment at each of the treatment positions and/or that a plurality of secondary parts adapted to different types, forms and/or sizes of packages are associated with the primary parts of the holding and centering units, which are preferably configured as pucks, and/or that the holding and centering units, preferably their secondary parts, are configured with an RFID tag, and/or that a puck transport section for returning the holding and centering units configured as a puck is configured, at least from the package outlet to the package inlet, in part by those transport-and-treatment elements that are also part of the packages transport section, and/or that positions or mountings to receive the holding and centering units configured as a puck are formed between the treatment positions, and that these mountings are part of the puck transport section, and/or that the holding and centering elements each exhibit at least one holding and centering unit for the passive holding of the packages, for example for holding the packages by spring force, and/or that the holding and centering units are configured for covering the packages in the region of a packages mouth and/or in the region of a thread provided there for a screw cap, for example in the form of a recess to receive the mouth region of the respective packages, and/or that the holding and centering units are held passively at the associated pressure segment, i.e. the required holding force is applied to the primary part passively, and that the holding and centering units are actively removed from the pressure segments, whereby the afore-mentioned features may be provided individually or in any desired combination.
As used herein, the term “packages” includes packaging elements or containers usually used in the food industry and specifically also in the drinks sector, including in particular containers such as for example bottles, cans, also soft packaging, for example those produced from cardboard and/or plastic film and/or metal film.
As used herein, the term “puck” is to be understood to be a holding, centering, and aligning part for the packages on which the respective packages are moved from a package inlet to a package outlet through a package transport section of the transport system and that preferably also provides a controlled orientation of the respective packages for the latter's treatment.
As used herein, the expression “transport elements adjacent to one another for transport purposes” means transport elements or transport-and-treatment elements that are configured and arranged in such a way that, at transfer regions, they receive the pucks from an adjacent transport element that is ahead in a transport direction, hold them, and pass them to a transport element that is behind in a transport direction.
As used herein, the expressions “essentially,” “in essence,” or “around” mean variations from the respective exact value by +/−10%, preferably by +/−5% and/or variations in the form of changes insignificant for the function.
Further embodiments, advantages and possible applications of the invention arise out of the following description of embodiments and out of the figures. All of the described and/or pictorially represented attributes, whether alone or in any combination, are fundamentally the subject matter of the invention independently of their synopsis in the claims or a retroactive application thereof. The content of the claims is also made an integral part of the description.
It is an advantage if use is made of holding-and-centering units having a secondary part in which the package, the bottle, or the container is held, that is mounted on or in a primary part, that can be rotated and driven about a vertical axis, and that can also be driven by a motor. In one embodiment, there can be provision for the secondary part to form the rotor of an electromagnetic direct drive, and for the controlled aligning and/or rotating of the respective packages to be effected in this way. For this, the secondary part will preferably be provided with a permanent magnet array that interacts with a stator of the electromagnetic direct rotary drive or with a solenoid array that forms this stator.
Alternatively, the secondary part may also comprise an infinitely controllable electric motor, in particular a servomotor, or it may consist of such a motor in a main component. In this case the primary part in a main component comprises the motor housing or consists essentially of the motor housing of an infinitely controllable motor.
Because the angular position of the rotor or packages is variable, at least one coding for the rotational angle position is ideally provided on the secondary part, and if necessary also on the primary part. The coding interacts with a suitable sensor or reading unit, in particular one or a plurality of incremental sensors at the respective working position. Moreover, alternatively or additionally, the primary part can always be uniquely defined or definably executed in its rotational angle position relative to the respective treatment positions by a form-fitting mounting, centering unit or a coupling element provided such that only the relative rotational angle position of the secondary part to the primary part must be configured to be detectable by a sensor, reading unit etc. The position relative to the pressure segment or print head can then be derived from this.
During the printing of empty packages, especially PET, PEN, PE or PP empty bottles, which represents the normal case, the packages should preferably be under a slight positive pressure. For this purpose, on the holding-and-centering unit, there is provided a locking piece for a coupling element on the machine or pressure segment that is configured as a quick-acting coupling. With this, a vaporous or gaseous medium, e.g. compressed air, can be fed into the packages through an inner line, in this case the hollow interior space of the puck. The lower outlet of this inner line forms a central centering element/taper. For this, at least one transport-and-treatment unit, ideally the first, is connected to a vapor or gas source or comprises a suitable compressor.
The locking element of the coupling is advantageously configured as a non-return valve. In the alternative, a non-return valve is provided in the inner line. After the preloading with a vaporous and/or gaseous medium, e.g. compressed air, this pressure can be maintained in the packages over the entire package transport section or printing section in this way.
The invention is explained in detail below through the use of embodiment examples with reference to the figures. In the figures:
For printing, packages 2 are fed standing upright to the device 1 or its package inlet by an external transporter in a transport direction A. The packages then move within the device 1 on a transport section 3 having multiple arcuate deviations. After printing, packages 2 are fed, still standing upright, by an outer transporter to a subsequent use at a package outlet 1.2. The transport section 3 of the packages 2, when feeding, when moving through device 1, and when exiting device 1 is represented schematically in
In detail, device 1 comprises a plurality of modules 4.1-4.n arranged immediately contiguously in the transport direction A. In the depicted embodiment, there are eight modules 4.1-4.8, each being formed of an identical base unit 5 that is equipped with the functional elements necessary for the special task of respective modules 4.1-4.8.
Each base unit 5 comprises a drive and control unit accommodated in a module housing 6 and a transport-and-treatment element 7, 7a that is arranged on the top of module housing 6 and that can be driven by the drive-and-control to rotate about a vertical machine axis of a respective module 4.1-4.8, and that has a plurality of mountings or treatment positions 8 that are provided distributed at equal angular distances about the periphery of transport-and-treatment element 7 or 7a, and of which each mounting or treatment position 8 is configured to reliably pick up one packages 2.
For transport purposes, transport-and-treatment elements 7, 7a of individual modules 4.1-4.8 are arranged immediately adjacent to one another, and driven in counter-rotation but synchronously such that these transport-and-treatment elements 7, 7a, in their totality, form a transport device by which packages 2 are moved within the device 1 on the multiply deviated package transport section 3 shown in
In the representation in
In the embodiment shown in the figures, individual modules 4.1-4.8 are again provided sequentially such that the vertical machine axes of all modules 4.1-4.8 lie in a common vertical plane in which are also located the transfer regions where packages 2 are transferred from transport-and-treatment element 7a or 7 of one module 4.1-4.7 to transport-and-treatment element 7 or 7a respectively of module 4.2-4.8, which follows in transport direction A.
The basic and also known function of individual modules 4.1-4.8 is, for example, as follows:
Module 4.1 constitutes an inlet module or package inlet 1.1 of the device 1. In module 4.1, a pretreatment is also preferably carried out on packages 2, at least in the region of the packages that is to be printed. An example would be a plasma or corona treatment, which is practicable particularly if the application of the multiple-pass print in the subsequent modules is effected with the use of print stations or print heads in those modules that operate according to the known inkjet print head principle or so-called Tonejet principle. The pressurizing of the packages (2) is also advantageously effected in module 4.1.
Modules 4.2-4.5 following module 4.1 constitute the actual print modules in which the multiple-pass print is effected, preferentially as a colored print in which one of each of the four primary colors (yellow, magenta, cyan, and black) is printed at each of the modules 4.2-4.5.
Module 4.6, which then follows in the transport direction A, is configured as a drying module in which the respective previously generated multiple-pass print is finally dried in a suitable manner, for example by the application of energy e.g. by heat and/or by UV radiation.
Module 4.7 is configured as an inspection module through which each package 2 passes after the drying of the multiple-pass print and in which the multiple-pass print concerned is examined for possible errors so that incorrectly printed packages 2 can be separated out at module 4.7 or subsequently on the onward transport section.
Finally, module 4.8 is outlet module or package outlet 1.1 of the device 1 at which the fully printed packages 2 leave the device 1. Module 4.8 is preferentially also configured as a drying module.
As seen in
In greater detail, modules 4.1-4.n, but at least modules 4.2-4.7, which are used for the printing of packages 2, or circulating transport-and-treatment element 7 of said modules, comprises a plurality of pressure segments 11 that are each mounted interchangeably as complete functional assembly units on a rotor 12 driven to rotate about a respective vertical machine axis MA. The rotor is mounted rotatably about vertical machine axis MA on a respective module housing 6 or on a central pillar 13. Pressure segments 11 which are provided on the periphery of rotor 12, are adjacent to one another in peripheral direction of rotor 12 and are configured as wedges when seen in plan view. Each pressure segment 11 encloses a space in which are accommodated a plurality of functional elements, such as electronic control elements or computers 14 (
On their side which is radially outward relative to machine axis MA, each pressure segment 11 forms a recess 15, shown in
Holding-and-centering units 16 are in turn each held on a carrier 17 that is fastened in associated lateral slots 18. Optionally, the carrier 17 can be traversed or displaced like a carriage in slots 18, or driven by a motor if applicable (
The function of secondary part 20 includes suspending respective packages 2. The secondary part 20 is configured like a gripper, for example as a mechanical and/or pneumatically actuated gripper and/or as a vacuum gripper. In respective pressure segment 11, the required holding force is ideally passively applied to primary part 19 and actively removed or released, for example by way of one or a plurality of permanent magnets, so as to increase safety in the absence of flow or media.
The secondary part 20 comprises the active components, i.e. all components needed for the aligning and controlled rotating or pivoting of packages 2 during treatment, such as elements required for aligning and/or rotating the packages during printing, and/or elements for supplying compressed air and/or vacuum etc.
Thus, secondary part 20, which is mounted in the primary part 19 so as to be able to rotate or pivot about the pressure segment axis DA, constitutes, in the depicted embodiment, the rotor of an electric positioning or angular drive for the aligning and controlled rotating or pivoting of packages 2 during treatment. The secondary part 20 is provided for this purpose with among, other things, a permanent magnet array 21 that exhibits a plurality of permanent magnets. Permanent magnet array 21, which in a peripheral direction exhibits alternately north and south poles, interacts with a solenoid array 22 that is provided on carrier 17 and that forms the stator of the positioning drive or electromagnetic direct drive.
On the primary part 19, there is provided a coding 23 that, in interaction with an incremental sensor 24 provided on the carrier 17, constitutes an encoder system that determines the respective random orientation of the primary part 19 and hence of the holding-and-centering unit 16. The aligning and controlled rotating of packages 2 during printing is then effected taking account of this orientation as determined by the encoder system and taking account of the association, known from the design or defined, between the primary part 19 and the rotational position of the secondary part 20, and solely by rotating the secondary part 20 while the primary part 19 does not rotate. Incremental sensor 24 is static relative to rotor 12 or pillar 13 and rotates with these. The aligning and controlled rotating of packages 2 about the pressure segment axis DA is effected relative to respective pressure segment 11 or relative to functional elements located there, in particular print heads, which are used for the treatment.
In the secondary part 20, a centering-and-holding element 28 is arranged to be axially displaceable relative to the pressure segment axis DA. In the illustrated embodiment, centering-and-holding element 28 has an outer sleeve body 29 that is preloaded by way of a compression spring 30 in a lower position in that lies with its lower end face against the carrier plate 26 and, in the case of packages 2 in the form of a bottle held at holding-and-centering unit 16, against the upper side of a package 2 that faces away from carrier plate 26 or against the mouth edge 2.2 of packages 2 there located, such that the latter is clamped firmly, and in particular so that it cannot rotate, by the force of the compression spring 30 between sleeve body 29 and carrier plate 26. A centering sleeve 31 that is also arranged on the pressure segment axis DA is provided in the sleeve body 29 so as to be axially displaceable. The centering sleeve 31 is also preloaded by a compression spring 32 in a lower position.
In order to receive a packages 2 or bottle, the centering-and-holding element 28, which includes a sleeve body 29, a first compression spring 30, a centering sleeve 31, and a second compression spring 32, is raised against the action of the first compression spring 30 (step 1) by a lifting element that engages behind a collar or an annular slot 33 of the sleeve body 29 and that is provided at least on package inlet 1.1 and package outlet 1.2, as was shown in
After the introduction of the packages into holding-and-centering unit 16 (
In the process, the package 2 is centered with the centering sleeve 31 or with its lower outwardly tapered end in such a way that the package axis is then arranged on the same axis as pressure segment axis DA. As shown in
In the case of alternative embodiments (not shown) other equivalent drives are conceivable for the clamping of the packages. These equivalent drives include pneumatically or electrically driven gripping and/or clamping elements.
Packages 2 are picked up in a protected manner by their mouth region between mouth flange 2.1 and mouth edge 2.2 in the interior 25.1 of the sleeve 25. In particular, with a very hygienic variant, it is an advantage to configure holding-and-centering units 16 or their secondary parts 20 in such a way that the mouth 2.2 of a package 2, and nearby structures such as the mouth region and a thread located in the mouth regions, are all protected from dirt and ink spray during the printing operation
In order to stabilize the still-empty packages 2, it is expedient to fill them with a pressure medium, such as a pressurized gaseous and/or vaporous medium, for example with compressed air. This filling occurs during or after the packages 2 are fixed to their respective holding-and-centering units 16. As shown in
The secondary part 20 is preferentially configured in such a way that a format-dependent mounting-and-base part 20.1 is detachably connected with the secondary part 20 so that, for the processing of packages 2 of different types, shapes, and/or sizes, mounting-and-base parts 20.1 on holding-and-centering units 16 can simply be exchanged for suitably matching ones. Mounting-and-base parts 20.1 that are adapted to suit the type, shape, and/or size of packages 2 that are to be handled are then connected with the secondary part 20 in a torsion-proof manner, for example with the help of a quick-change mechanism, a quick-acting coupling, a screw fastener, and/or a clamp-fastener.
Holding-and-centering units 16, and preferably secondary parts 20 of these units, are in turn provided with a unique identification facility, preferably with a with an RFID code that identifies the respective holding-and-centering unit 16. The RFID code can include information about the unit's type and/or information about the particular secondary part 20. The corresponding information can then be read out by at least one reading unit of device 1 and/or of respective print module 4.1-4.n, for example for monitoring or inspection purposes.
Pressure segments 11a are again provided adjacent to one another on the rotor 12, which in turn is mounted on the pillar 13 of the base unit 5a that corresponds to the base unit 5 so as to be rotatable and drivable about the vertical machine axis MA.
In the interior of its segmented housing 11a.1, each pressure segment 11a has the functional segments needed for printing packages 2. These include, for example, at least one inkjet print head 35 having electronically controllable discharge jets, for printing color or printing ink and other media, that are arranged in at least one row parallel to the printing-segment axis DA. A drying device 36 for the immediate drying of the printing color or corresponding printed image applied to packaging element 2 is associated with each print head 35. In the depicted embodiment, the drying device 36 is an infrared and/or UV emitter discharging a linear field of UV and/or infrared radiation 37 that covers at least the entire printed image applied with print head 35. The drying device 36 is offset by some angle against print head 35 relative to the printing-segment axis DA. During printing of a package 2, the print head is subjected to a controlled rotation about the printing-segment axis DA in such a way that the printing color applied with the print head 35 is dried or at least largely dried with the UV and/or infrared radiation 37 immediately following application.
In a way not otherwise represented, drying device 36 is cooled, for example using air and/or water as the cooling medium.
The print head 35, the drying device 36, as well as electronics 38 configured at least as a driver stage for the print head 35, are all provided on a common carriage 39 that is adjustably guided in the direction of the printing-segment axis DA on a pillar 40 by way of a positioning drive 41. In the depicted embodiment, by way of a positioning or angular drive 42 that is provided on carriage 39, print head 35 and drying device 36 can again be adjusted by pivoting, preferably by pivoting about at least one axis that is square to the printing-segment axis DA and tangential to the periphery of transport and treatment element 7b as formed by the pressure segments 11a. As a result, the position of the print head 35 can be matched to the position of the packaging element surface that is to be printed such that the jet openings of the print head 35 are as close as possible to the package's surface and so that the centerlines of the jet openings are square as possible relative to the package surface that is to be printed upon.
To avoid fouling of the pressure segment 11a by sprayed ink, respective print head 35 is configured with a protective element 35.1. The protective element 35 can be blade-like, scale-like and/or rubber-ball-like. During printing, the protective element 35.1 lies against the package 2 being printed upon to outwardly limit the printed space.
To configure the bundled linear infrared beam 37, the drying device 36 is executed with an optical beam forming element 36.1 in the form of a cylinder lens and with a protective and guiding aperture 36.2.
Accommodated in the interior of housing 11a.1 are other functional elements of the pressure segment 11. These include a pressure balancing tank 43 for the colored ink, pumps 44 for feeding ink and for removing surplus ink, as well as other functional elements that are not depicted, such as electronic control elements for the controlling of the respective pressure segment 11 and the controlling of drives 41 and 42 etc. The underside of the housing 11a.1 is provided with a coupling unit 45 by which all necessary electrical connections (in particular also for drives and controlling and monitoring data) and all fluid connections (for cooling functional elements and for feeding ink) can be made by plugging into a matching coupling unit (coupling panel) provided on the rotor 12.
On the narrow rear side, which lies radially inward relative to machine axis MA, mechanical holding-and-centering elements 46 are provided on the housing 11a.1 of each pressure segment 11a. With these holding-and-centering elements 46, a secure and exact connecting of the print module 11a with the rotor 12 or with a rotor element concentrically surrounding machine axis MA is at least partially possible by plugging in the pressure segment 11a.
An aperture-like wall 49 is provided on the inside of the recess or mounting 15. The aperture-like wall 49 closes off the interior space of housing 11 except for openings for the carrier 17, the print head 35 and UV and/or infrared drying unit 36.
It has been assumed above that the holding-and-centering units 16 are part of individual modules 4.1-4.n or pressure segments 11 and 11a. In a preferred embodiment of the invention however, holding-and-centering units 16 are pucks that pick up respective packages 2 at the package inlet 1.1 and only release the packages 2 again at the package outlet 1.2. This means that each package 2 is held constantly on one and the same holding-and-centering unit 16 on the transport path 3 between package inlet 1.1 and the package outlet 1.2. In the course of traversing the transport path 3, the holding-and-centering unit is passed on from a transport-and-treatment element 7, 7a, 7b or from a mounting 15 located there to a transport-and-treatment element 7, 7a, 7b following in transport direction A or to a mounting 15 located there. Mechanisms for holding and releasing the holding-and-centering units 16 are provided on the carriers 17 of the pressure segments 11 or on the pressure segments 11a for this purpose.
From the package outlet 1.2, the holding-and-centering units 16 are returned on a puck transport path to the package inlet 1.1. This puck transport path, which is schematically and/or functionally suggested in
The dummy segments 50, 51b are arranged on transport and treatment elements 7b between pressure segments 11a in order to reduce the number of handling positions 8 formed by pressure segments 11a on transport and treatment elements 7b if, for example, only a reduced throughput (number of packages 2 handled per unit of time) is required for the corresponding device 1. The dummy segments 50, 51 can also be used to return holding-and-centering units 16, which are configured as pucks, from the package outlet 1.2 to the package inlet 1.1, with holding-and-centering units 16 being held either at the receptacles 15 or at regions of the dummy segments 50, 51 that correspond to receptacles 15a.
This applies equally to a dummy segment 50, 51 (not shown) which is constituted in the constructional form according to
Among the advantages of the are that the relationship of packages 2 to the basic machine or device 1 is decoupled, i.e. in particular holding-and-centering units 16, including in their configuration as puck, can be adapted to different shapes, sizes, etc. of packages 2 and that in particular a height adjustment of carriers 17 and/or of carriages 39 carrying print heads 35 is also possible for adapting to the different shapes, sizes, and forms of packages 2.
Another advantage of the invention is that pressure segments 11 and 11a are configured as fully functional assembly units or modules. This means that not only is the assembly of the respective device 1 simplified, but it is also possible to replace, for example, faulty pressure segments 11 or 11a and to repair such printing segments 11 or 11a outside the device 1.
Yet another advantage is simplification of stock-keeping by the manufacturer of the device 1.
Yet another advantage is that the use of dummy segments 50 and 51 makes it possible to adapt device 1 to a reduced throughput.
Another advantage is that structurally identical base units 5 can be used with structurally identical pressure segments 11 to realize the device 1. This generally results in a compact design for the device 1.
The invention has been described hereinbefore by reference to embodiments. It goes without saying that numerous variations as well as modifications are possible, in particular including in regard to holding-and-centering units 16, pressure segments 11, 11a and the device as a whole, without departing from the inventive concept underlying the invention. So, for example, instead of coding 23 on the primary part 19, this coding can be provided on the part 20, or on both to then together constitute, with an incremental sensor disposed on the pressure segment 11 or 11a, an encoder system for the aligning and/or controlled rotating of packages 2.
The invention has also been described hereinbefore in the context of packages 2 that are bottles. The inventive device, its holding-and-centering units, and its printing segments are however also suited to the applying of a furnishing, for example of a print or multiple-pass print, also polychrome print, onto other containers or packages.
Number | Date | Country | Kind |
---|---|---|---|
10 2011 112 106.8 | Sep 2011 | DE | national |
10 2011 112 281.1 | Sep 2011 | DE | national |
10 2012 009 873.1 | May 2012 | DE | national |
This application is the national stage entry under 35 USC 371 of PCT application PCT/EP2012/002928, filed on Jul. 12, 2012, which claims the benefit of the Sep. 2, 2011 priority date of German applications DE 102011112281.1 and DE 102011112106.8, as well as the May 21, 2012 priority date of German application DE 102012009873.1. The contents of all the foregoing applications are incorporated herein by reference.
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/EP2012/002928 | 7/12/2012 | WO | 00 | 3/3/2014 |