Control units, which essentially include a switching element and a controller, are normally used for triggering heating elements in motor vehicles. Transistors are preferably used as switching means. Normally very high currents occur in such heating elements. In the event of a fault, such a device shuts off automatically, i.e., the current flow is interrupted by a suitable fuse. However, if a fault occurs in the triggering of the transistors or if the transistors themselves are defective, i.e., broken down in particular, switching off the current is very difficult and complicated. A damaged power transistor results in overheating of the control unit.
Such overheating may be reliably prevented by designing a connecting means, at least in part, as an element installed under mechanical stress and connecting the element, at least at a first contact, in such a way that it detaches when a limit temperature is exceeded. Such a thermal fuse operates completely independently of the electronics.
The electrical connection in particular is interrupted by the detachment.
a and 2b show an element installed under mechanical stress.
Control unit 200 includes, among other things, at least one controller 230, which triggers a switching means 240. A first terminal 241 of switching means 240 is connected to plug-in contact 120 via a first connecting means 260. A second terminal 242 of the switching means is connected to first plug-in contact 110 of control unit 200 via a second connecting means 250.
Normally, controller 230 triggers switching means 240 in such a way that a desired current flows through heating element 100 or that the heating element attains a defined temperature.
Heating element 100 is preferably a glow plug of a diesel engine. Similar control units are, however, also used for other heating elements such as, for example, a heating element for heating a sensor, for example, a lambda sensor. Furthermore, such heating elements may also be used for heating other elements such as, for example, a rear window heater or an additional heater.
Switching means 240 is preferably designed as an appropriate transistor, in particular as a high-power field-effect transistor. Normally, first connecting means 260 and second connecting means 250 are designed using more or fewer solid conductors. For this purpose, suitable metal sheets or other track conductors are preferably used.
a and 2b show two advantageous specific embodiments of a connecting means according to the present invention. The connecting means illustrated in
The second part of the connecting means is labeled 310 and is preferably connected to plug-in contact 120 of the control unit. The second part of connecting means 310 is preferably also plug-in contact 120. The same applies to the first part of connecting means 300. This may also be the terminal pin of switching means 240. It is, however, also possible that appropriate metal parts are provided to form the first and second connecting means.
It is provided according to the present invention that the first part of connecting means 300 is connected to an element 320 via first contact 305 and the second part of connecting means 310 is connected to an element 320 via a second contact 315. According to the present invention, element 320 is installed in such a way that it is under mechanical stress. This means that element 320 is in the position illustrated only when contacted. As soon as one of the two contacts is detached, element 320 assumes a position such that the electrical connection between the first part of the connecting means and the second part of the connecting means is cut off.
This may be accomplished, for example, by designing element 320 as a spring which is contacted under stress. If one of the contacts is detached, the element separates from the other contact because of the stress and the current flow is interrupted.
It is preferably provided that first contact 305 is designed in such a way that it detaches when a limit temperature is exceeded. This is accomplished, for example, by implementing the first contact as a solder using solder tin, which has a relatively low melting point. In contrast, the second contact is implemented by a weld which detaches only at very high temperatures.
Alternatively to a weld, other permanent contacts may also be provided, for example, by screw joint or riveted joint. Instead of soldering, bonding with the aid of a conductive bond which detaches again at a higher temperature may also be provided.
It is important that the first contact is implemented in such a way that it detaches at a limit temperature. Due to the element installed under stress, this element 320 detaches from first part 300 of the connecting means due to the mechanical stress and interrupts the electrical connection between the switching means and plug 120.
It is advantageous in particular if the component that gives off the most heat loss is mounted on the elastic element. This is preferably the switching means. In this way, overheating of the switching means results in a temperature increase of the elastic element and thus in the contact. In other words, at an excessive temperature of the switching means, the first contact detaches and the current flow is automatically interrupted.
According to the present invention, element 320 may assume two positions. In a first position, element 320 is not under mechanical stress. No current flow is possible in this first position. In a second position, the element is under mechanical stress. Current flows in this second position. The element is installed in the second position and held with the aid of the two contacts. In the event of non-admissible heating, at least one of the contacts detaches. Due to the mechanical stress, element 320 moves into the second position without being further acted upon and the current flow is interrupted.
The element under stress may be implemented in different ways. It may thus be provided, for example, that an elastic element is used which is contacted under stress. If one of the contacts is detached, the elastic element returns to its original position and interrupts the connection.
It may furthermore be provided that an external force acts upon the element and interrupts the connection by detaching the contact. The force of gravity in particular is to be considered such an external force, i.e., the element is situated underneath the connecting means of the second part of the connecting means. If the contact is detached due to the elevated temperature, the element moves downward due to the force of gravity and detaches the connection.
Such an embodiment is depicted in
In this case it is advantageous in particular if both contacts are designed in such a way that they detach when a limit temperature is exceeded. As a result, if the limit temperature is exceeded, both contacts detach and the element drops due to the force of gravity, interrupting the connection.
The procedure according to the present invention in this connection is not limited to the fact that the first connecting means is designed accordingly. It may also be provided that, alternatively or additionally, the second connecting means 250, which connects first plug 110 and second terminal 242 of switching means 240, is similarly designed. It may be furthermore provided that only the connecting means are partially designed as illustrated in
It may be furthermore also provided that multiple heating elements are connected to a control unit.
The advantage of this procedure is that this thermal fuse is fully independent of the electronics or of an outside influence. When a limit temperature is exceeded, the electrical connection is detached only by the mechanical pre-stress and/or by an externally acting force such as the force of gravity. By using suitable contacts such as, for example, suitable soldering means or conductive bonds, any desired temperature range in which the connection is detached may be set.
Number | Date | Country | Kind |
---|---|---|---|
10 2005 005 549.4 | Feb 2005 | DE | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/EP2006/050208 | 1/13/2006 | WO | 00 | 4/24/2008 |