Information
-
Patent Grant
-
6793454
-
Patent Number
6,793,454
-
Date Filed
Thursday, April 3, 200321 years ago
-
Date Issued
Tuesday, September 21, 200420 years ago
-
Inventors
-
Original Assignees
-
Examiners
Agents
- Ostrolenk, Faber, Gerb & Soffen, LLP
-
CPC
-
US Classifications
Field of Search
US
- 414 764
- 414 765
- 414 766
- 414 767
- 198 431
-
International Classifications
-
Abstract
An apparatus for conveying blanks or sheets that are arranged in piles includes a frame that has an input and an output and a pre-section that aligns the piles of blanks along a longitudinal conveying path. The pile of blanks is conveyed to a turn-over grip that swivels around the horizontal axis that extends transversely to the longitudinal conveying path. The turn-over grip includes two conveying units that are juxtaposed to one another with one of them being used to deliver the piles entering the turn-over grip and the other which is used to remove the piles after the turn-over grip has turned the pile upside down. A tightening mechanism presses one of the conveying units towards the other during the rotation of the turn-over grip. A pusher carriage is situated between the two conveying units and driven by a motor.
Description
BACKGROUND OF THE INVENTION
The present invention relates to a device for turning over piles of sheet-like material. A frame with an input and output aligns the piles according to a longitudinal conveying path of the piles. A turn-over grip, mounted to swivel around a horizontal axis extending transversely to the longitudinal direction, comprises two conveyors that are vertically juxtaposed to each other. These two conveyors sandwich the pile between them, and swivel to turn the pile upside down. One conveyor is used for delivering the piles into the device, and the other for unloading the piles after the turn-over operation has been completed. A pressing device exerts a pressure on the pile through the conveyors during the rotation. In other words, the device of the present invention receives piles of stacked sheets and selectively turns them upside down.
One-sided printed cardboard blanks are cut out with the printed side facing upwards. In the subsequent processing operations leading to a folder-gluer for processing blanks, the printed side must face downwards, which requires turning over of the blank piles. The task is extremely difficult, and more problematic when the blank's surface is wide. The difficulty owing to the need to turn over such piles is aggravated by the fact of having to carry and convey these piles, and have a laborer assigned to the task of turn over several tons of cardboard per day.
A device for turning over piles has already been made available in the prior art. But the available devices are inconvenient and raise various issues pertaining to precision, reliability, process monitoring, the need to mark the first blanks of each pile by two series of rollers between which the pile is strongly pinched during the turning operation, the ability to handle differently sized blanks, and other issues, all of which have been responsible for the prior art devices not becoming a commercial success.
Given the processing speed reached by current folder-gluers, it is imperative to avoid the need for manual operations, particularly ones related to the turning over of the piles, not only to reduce the pain and inconvenience of the job, but also to avoid unnecessary labor, increased production costs and reduced production rates.
SUMMARY OF THE INVENTION
It is an object of the present invention to reliably solve the problem of turning over piles of sheets or sheet-like material, by creating a buffer zone allowing loading freedom for the conductor.
Essentially, in a device according to the present invention, there is provided a frame including an input and an output, that is aligned according to a longitudinal conveying path of the piles. A fold-over or turn-over grip, which swivels around a horizontal axis extending transversely to the longitudinal direction, is constituted as two conveying units that are juxtaposed to one another, with a lower one of the conveying units being deployed for delivering the piles entering the device and the other, upper conveying unit serving for removing the piles after the overall unit has been turned upside down around the horizontal axis.
A pressing unit acts on the piles by resiliently biasing one of the conveying units during the rotation, so that the pile is tightly sandwiched between the two conveying units.
The device further includes telescopic thrusts and a pusher carriage that assist in moving the pile of material between the conveying units, in order to remove the pile from between the conveyor by moving forward, or alternatively, to move the pile backwards, if needed.
The device of the invention allows and enables entirely automatic feeding of the material in the folder-gluer machine. The sole manual operation remaining is the setting or loading of the piles of cardboard sheets on a belt conveyor located upstream. This enables continuous feeding from a pre-feeder arranged between the turning over device and the folder-gluer. Overall, the device and system of the present invention facilitate attaining much faster processing rates of the folder-gluer.
Other features and advantages of the present invention will become apparent from the following description of the invention which refers to the accompanying drawings.
BRIEF DESCRIPTION OF THE DRAWINGS
FIG. 1
is a lateral side view of the device of the present invention.
FIGS. 2 through 6
are simplified diagrams of the device illustrated in
FIG. 1
, describing various stages in the processing cycles of the machine.
DETAILED DESCRIPTION OF PREFERRED EMBODIMENTS OF THE INVENTION
The device for turning piles of material upside down that is illustrated in
FIG. 1
comprises a substantially parallelepiped-shaped frame
1
defined by two parallel side walls connected by two walls or spacers, and a lower and upper wall. The entire device is arranged on four wheels
2
connected to guiding rails
3
through break units
4
. The front end of an endless belt conveyor
5
of a feeding unit penetrates this parallelepiped-shaped frame
1
, through an aperture created in a transverse wall of the frame, arranged relative to the conveying direction of the piles of cardboard sheets
6
, which is parallel to the view of FIG.
1
.
The output of this frame
1
is located on the opposite transverse wall of the frame
1
and is coupled to a pre-feeder
7
with a slanted surface comprising a belt conveyor
8
located below the output level of the device for receiving the turned-over piles. A turn-over grip
12
is arranged between two parallel supporting plates
15
, and the entire structure is assembled to swivel inside this frame
1
. These parallel support plates
15
swivel about a horizontal pivoting axis
13
that extends transversely to the path of the sheet piles
6
, along a circular run
9
. These two parallel supporting plates
15
are connected to one another through transverse spacers so as to jointly swivel about the pivoting axis
13
.
The turn-over grip
12
comprises a plurality of aligned rollers
10
that transversely extend between the two parallel supporting plates
15
and which carry the pile under a belt conveyor
11
. See FIG.
3
. The belt conveyor
11
is freely conveyed around the part of the spacers connecting the two parallel supporting plates
15
. These rollers
10
are arranged to swivel on a fame
16
which is slidingly mounted by means of four guiding slides
14
, respectively and interdependently between the parallel supporting plates
15
. These guiding slides
14
are vertically arranged at the time that the turn-over gripper is in a position for delivering or unloading these piles.
A frame
16
is intercoupled with a transmission shaft
17
that is joined to a pivoting member
18
that is in turn connected to the rod of a jack
19
intended to move the frame
16
along the guiding slides
14
. The series of rollers
10
are intended to deliver piles of sheets
6
at the time that they are being inputted into the turning device, and then to press them against the belt conveyor
11
that is coupled to the parallel supporting plates
15
, for the purpose of pressing securely holding them during the process of being turned over.
The belt conveyor
11
is an intercoupled component of the turn-over grip
12
and is so arranged within the overall turn-over grip
12
that the distal ends of the conveyor
11
constitute points which lie on the notional circle
9
formed by the turning of the turn-over gripper around the axis
13
. The belt conveyor
11
is driven by a motor
21
and the belt conveyor
11
is instrumental in moving a pusher carriage
25
, arranged slidingly on two lateral guiding wheels
26
which are intercoupled to the related parallel supporting plates
15
. The pusher carriage
25
to which is attached a telescopic thrust
27
, extends between the belt conveyor
11
and the series of rollers
10
. A pull-back spring
28
adapts the length of the telescopic thrust
27
to the spacing between the belt conveyor
11
and the series of rollers
10
.
One of the supporting plates
15
is intercoupled with a crown gear
22
connected to a chain
22
associated with driving motor
24
that is intercoupled with the frame
1
.
Part of the overall turning device also comprises a sliding, holding and supporting device
28
used for the unloading of the turned over pile
6
towards and onto the pre-feeder
7
. This holding and supporting device
28
comprises two parallel arms of which only one arm
29
is visible. Each of these arms
29
is slidingly movable in a guide rail
31
, each one of which is attached to a respective one of the side walls of frame
1
. The arms
29
are connected together at their front end by means of a spacer
20
, and each arm
29
is provided with a toothed rack engaged with a pinion
30
that is intercoupled with a transverse axis driven by a motor (not shown). Pile supports
32
are also interassembled with the spacer
20
, connecting one end of arms
29
.
A detection mechanism, such as a photoelectric detector or detectors
34
(
FIG. 2
) is or are located at the input of the turning device, allowing the delivery of a pile
6
to be turned over only when the turning device is ready to receive it. Prior to entering the turn-over grip
12
, the piles
6
are aligned on the belt conveyor
5
of the feeding unit with the assistance of a longitudinal wall
33
whose side position can be set according to the width of the cardboard blanks of the piles
6
, so as to precisely locate the lateral position of these piles on the conveyor belt
5
. This guiding wall
33
also defines the height limits of the piles that are capable of being handled with the turning device of the present invention.
The piles
6
that have been aligned on the belt conveyor
5
are then conveyed towards a position located at the input into the turning device, that position being determined by the photoelectric detector
34
. The piles await the end of the ongoing turning cycle of the prior pile
6
. Thereafter, the current pile
6
is allowed to be introduced into the turn-over grip
12
by the motive force of the belt conveyor
5
. When the pile
6
leaves this belt conveyor
5
, it rolls gravitationally onto rollers
10
until it comes to stop against the telescopic thrust
27
(FIG.
2
).
The position of the telescopic thrust
27
is precisely set according the size of the piles
6
in its conveying direction, with the aid of the driving motor
21
of the belt conveyor
11
to which the pusher carriage
25
is connected.
With the pile
6
is in the position shown in
FIG. 3
, the jack
19
is activated to move the series of rollers
10
towards the belt conveyor
11
, thereby tightly sandwiching and pressing on the pile
6
between the conveying units
10
and
11
, as illustrated in FIG.
3
.
The motor
24
is then operated to cause the turn-over grip
12
to turn 180° in a counterclockwise direction, causing the pile
6
to assume the position illustrated in FIG.
4
.
In the next step, the jack
19
is operated to withdraw the series of rollers
10
away from the belt conveyor
11
, releasing the tight hold on the pile
6
and on the telescopic thrust
27
, allowing the pile
6
to be pushed on the conveying unit
10
forwardly towards the belt conveyor
8
of the pre-feeder
7
.
However, the pusher carriage
25
, which is intercoupled with the belt conveyor
11
, is enabled to carry out an unloading of the pile
6
only if the pre-feeder
7
is able and ready to receive it. To this end, a detection mechanism, such as in the form of photoelectric sensors
35
(FIG.
4
), is located at the output of the turning device to detect the presence or non-presence of the previously handled pile
6
, whose cardboard blanks are continuously being moved towards a folder-gluer (not shown) located downstream of the pre-feeder
7
. As soon as these detectors
35
sense that the prior pile
6
moving on the belt conveyor
8
of pre-feeder
7
has gone below a limit determined by the detectors
35
, the piles supporting arm
32
which conveyed the previous pile
6
, and which could not previously return to its input position before the level of the pile
6
ensures its traveling, is then allowed to be removed by the pinions
30
in touch with the toothed racks
29
, as illustrated in FIG.
4
.
The belt conveyor
11
is then enabled to begin moving to remove the pile
6
by conveying it until it reaches the level of the piles supporting arm
32
which, at that moment, moves in synchronism with the belt conveyor
11
until it reaches the height of the gauges
36
of the pre-feeder
7
. The piles supporting arm
32
continues to travel until the part of the support under the pile
6
is released, so that the pile
6
moves onto residual blanks remaining on the pre-feeder
7
.
Then, as illustrated in
FIG. 6
, the piles supporting arm
32
waits until the level of the pile
6
comes down. However, during this process, the pusher carriage
25
returns to its relative position and the turn-over grip
12
turns clockwise 180° to return to its initial position in order to be ready to receive the next pile
6
.
In departure from the operation of known turning devices, the printed side of the cardboard blanks forming the pile
6
does not touch any rollers, but rather only the belt conveyor
11
, so that the first blank of the pile is marked any more by rollers. Furthermore, the pile
6
is not moved forward, as in the prior art, but is always positively conveyed.
During the unloading of the pile
6
onto the slanted surface
8
of the pre-feeder
7
, the pile
6
which previously had straight parallelepiped shape assumes the shape of a parallelepiped, of which one straight section is parallel to the longitudinal run axis of the pile
6
is shaped like a parallelogram. While changing from a straight parallelepiped to the right section shaped like a parallelogram, the angles of the right section of the pile, in the longitudinal conveying direction of the piles, change. This brings about a slipping of the adjacent blanks, facilitating the separation of these blanks from prior blanks.
At the time that the pile
6
are turned over, they abut against the telescopic thrust
27
, so that they are supported by this thrust and not maintained only by the pressure of the rollers
10
and the belt conveyor
11
. See FIG.
3
.
The position of the pusher carriage
25
and its thrust
28
can be precisely controlled by the motor
21
, according to the size of the cardboard blanks of
In several cases, the box blanks leaving the machine after the processing are in a position that does not need any turning over. In such instances, the present invention permits controlling of the various turning and conveying motors to assure that the piles of blanks travel through the device without being turned over. At the same time, these blanks are still subject to the benefits and advantages of the positive conveying of blanks disclosed in the present description.
Although the present invention has been described in relation to particular embodiments thereof, many other variations and modifications and other uses will become apparent to those skilled in the art. It is preferred, therefore, that the present invention be limited not by the specific disclosure herein, but only by the appended claims.
Claims
- 1. A device for turning over piles of sheet material, comprising:a frame including an input and an output aligned on a longitudinal conveying direction of the piles; a turn-over grip mounted to swivel about a horizontal axis extending transversely to the longitudinal conveying path, the turn over grip including two conveying units juxtaposed to one another forming a first conveyor situated for delivering the piles entering the device and a second conveyor which is configured for unloading the piles after a pile has been turned over; a pressing device that is located to exert a pressure on a pile located between the first and second conveyors during the turning over of a pile; and a pushing mechanism operable and adapted to form a stop for the piles in one position of the turn-over grip and to move to assist the unloading of a turn-over pile off the second conveyor in another position of the turn-over grip.
- 2. The device of claim 1, in which the first conveyor comprises a series of rollers.
- 3. The device of claim 1, in which the second conveyor is a belt conveyor.
- 4. The device of claim 1, in which the pushing mechanism comprises a pusher carriage that is coupled to telescopic thrusts extending between the conveying units and are moveable therebetween.
- 5. The device of claim 4, in which the pusher carriage is moveable back and forth between the conveying units.
- 6. The device of claim 1, further comprising a supporting device located at the output of the turn-over grip; a guide for guiding the supporting device along a predetermined path; and a driver to move the supporting device along the guide to move it forward in synchronism with the pusher mechanism.
- 7. The device of claim 6, further including a detector to detect a pile after its unloading and to control the return back of the supporting unit to an original position.
- 8. The device of claim 7, wherein the turn-over grip has an unloading end that is intercoupled with a feeding station of a prefeeder and the prefeeder includes a delivery surface having a level lower than that of the second conveyor, the detector for detecting piles after unloading being configured to detect the level of piles after unloading.
- 9. The device of claim 8, in which the delivery surface is slanted and extends at an angle to a plane passing through the second conveyor.
- 10. The device of claim 1, including a pile detector located at an input of the frame to detect the presence of a pile at the input.
- 11. The device of claim 1, including a wheel assembly situated underneath and supporting the frame.
- 12. The device of claim 11, including a wheel guide, the wheel assembly traveling on the wheel guide.
Priority Claims (1)
Number |
Date |
Country |
Kind |
0561/02 |
Apr 2002 |
CH |
|
US Referenced Citations (11)