The present invention belongs to the field of the production of industrial vehicles, such as for example commercial vehicles and/or trucks. More precisely the invention refers to a device for water circulation in a cooling circuit of an internal combustion engine, preferably, but not exclusively, of the diesel type. The present invention further relates to a cooling circuit of an internal combustion engine comprising such device and to a commercial and/or industrial vehicle comprising said cooling circuit.
As it is known, any vehicle motorized by an internal combustion engine (e.g. diesel engine) must necessarily comprise a cooling circuit of the engine itself, in order to ensure its correct functioning. A cooling circuit of an internal combustion engine, usually comprises a circulation pump and a cooling line which develops downstream of the circulation pump passing through the cylinder block and the cylinder head of the internal combustion engine in order to cool them.
After the heat exchange with said engine elements, the water circulating in the cooling line flows into a radiator where it is cooled by a water/air heat exchange. The cooled air leaving the radiator is thus brought back to the inlet of the circulation pump in order to pass through the circuit again. Usually the cooling circuit comprises also a bypass line regulated by a the thermal expansion valve. More precisely, such thermal expansion valve has the function of diverting the water directed to the radiator into the bypass line when the temperature of the water is below a predetermined characteristic value, usually when the engine is in its start phase. When the water temperature exceeds such predetermined value, then the thermal expansion valve chokes/splits the water flow from the cooling line in a first fraction circulating in the bypass line and in a second fraction directed to the radiator. When the water temperature exceeds a second predetermined value, then the thermal expansion valve directs the whole water flow rate towards the radiator, blocking the passage in the bypass line.
In the most recent solutions, the water flow rate leaving the circulation pump (in the following indicated also by delivery flow rate) is regulated as a function of the operating conditions of the internal combustion engine, namely as a function of the load and of the speed of the engine itself. In particular, in partial load conditions, the delivery flow rate is reduced in order to limit the cooling of the engine and to avoid an overcooling of the cylinders, namely an overcooling of the oil. Such negative condition, indeed, would result in an increase of its viscosity and thus in an increase of the frictions of the engine. At present, the delivery flow rate regulation is performed according to two different solutions, which, however, are not advantageous in terms of costs, efficiency and reliability.
A first known solution provides the use of a control in order to vary, without depending on the engine, the speed of rotation of the pump. Such control is usually formed by an electric motor with adjustable speed which drives directly the impeller shaft of the pump. The reduction of the delivery flow rate is varied by varying the speed of the electric motor, which results in a variation of the speed of rotation of the impeller. The electric motor is controlled as a function of the water temperature and thus of the operating condition of the internal combustion engine. The variation of the speed of the impeller results in a variation of the pump head, and thus of the delivery flow rate.
Even though this solution is relatively effective in terms of delivery flow rate regulation, it has evident disadvantages in terms of efficiency. In particular, converting the energy that is necessary for the functioning of the electric motor is a very critical factor in terms of efficiency. Moreover, it has to be noted that in case of failure of the electric motor or of the circuit that controls the motor itself, the circulation pump will not work, and thus water will not circulate in the cooling line. In these conditions the risk of burning out the engine is high, since the heat is no longer dissipated. It is thus evident that activating the hydraulic pump without depending on the driving shaft is unacceptable in terms of reliability, above all for heavy industrial vehicles whose life usually exceeds one million kilometers.
An alternative known solution provides the use of an electromagnetic coupling between the pulley driven by the driving shaft by means of a mechanical transmission and the rotating shaft of the impeller of the hydraulic pump. The electromagnetic couplings allows, if necessary, a slipping between pulley and impeller, which implies a variation in the speed of the impeller itself, namely a variation of the delivery flow rate.
Compared to the previous solution, this second solution makes the engine more reliable, since in case of a failure of the electromagnetic coupling, the hydraulic pump keeps working, allowing the circulation of the cooling water. In terms of costs, however, the electromagnetic coupling is extremely expensive, and it has a very low efficiency, from an operating point of view, usually around 60%. This aspect is partially prejudicial to the reduction of absorbed power, above all at low speed. Consequently a relevant part of the power saving at the pump shaft is negatively compensated by the low efficiency of the transmission of the coupling. Even though the energy balance is positive, overall, this second solution is still unsatisfactory.
From these considerations, the need for an alternative technical solution, allowing to overcome the aforementioned limits and the drawbacks of the prior art, emerges.
Consequently the main task of the object of the present invention is to provide a device for water circulation in a cooling circuit of an internal combustion engine, which allows to overcome the drawbacks mentioned above.
In the scope of this task, a first aim of the present invention is to provide a device for water circulation which does not affect negatively the safety of the internal combustion engine in case of failure.
Another aim of the present invention is to provide a device for water circulation which is not based on the use of an electromagnetic coupling or of an electric motor.
Not least, the purpose of the present invention is to provide a device for water circulation which is reliable and easy to manufacture with competitive costs.
The present invention thus refers to a device for water circulation in a cooling circuit of an internal combustion engine, according to what stated in claim 1.
The device according to the invention allows to vary the pump delivery flow rate by varying the conditions of the water flow at the inlet of the pump which results in a variation of the characteristic curves of the pump. In particular such variation of the suction conditions is obtained by a modulation of the flow rate of the first flow in the first duct and of the second flow in the second duct. Compared to the traditional solutions, the device according to the invention ensures a delivery flow rate of the pump even in case of failure of the partition means. At the same time, the device has a high efficiency and a high reduction of the power absorbed by the pump, above all for low delivery flow rates.
Further characteristics and advantages will become more evident from the following detailed description of embodiments of a pump for an industrial vehicle according to the present invention, that is shown in a merely illustrative and not limitative form in the attached drawings wherein:
In the figures the same reference numbers and letters identify the same elements or components.
The present invention thus refers to a device 1 for water circulation in a cooling circuit of an internal combustion engine, preferably, but not exclusively, of the diesel type. In this regard,
Thus with reference to the aforementioned
In addition to the stator duct 16, the body defines also a suction chamber 8 (in the following indicated also by “chamber 8”) which develops substantially in a circular way around the axis 4 of the impeller 15 of the pump. This means that the chamber 8 is shaped so that any cross section of the chamber itself has a circular configuration. In this regard, the expression “cross section” means a section evaluated with respect to a plane defining an orthogonal section of the axis 4 of the impeller 15.
The chamber 8 communicates with the stator duct 16 where the impeller 15 of the pump is placed, substantially defining a suction section 8′ for the impeller itself. In other words, the expression “suction section” means the circular opening, substantially orthogonal to the axis 4 of the impeller 15, that makes the chamber 8 communicating with the stator duct 16.
The device according to the invention comprises a manifold 50 suitable to be placed at the outlet 41 of a radiator 40 of the hydraulic circuit, so that the whole water flow rate leaving the radiator 40 flows into the inlet of the manifold 50. In
The device according to the invention comprises, indeed, also a first supply duct 5 of the chamber 8 connected to a first outlet of the manifold 50, in order to be passed through by a first water flow leaving the manifold itself. Such first duct is hydraulically connected to the suction chamber 8 by means of a first opening 5′ of the chamber 8. The latter defines an “axial inlet” for the first water flow in the chamber itself. The expression “axial inlet” refers to a condition so that said first water flow, passing through the first opening 5′, takes a direction substantially parallel to the axis 4 of the impeller 15.
The device 1 according to the invention comprises also a second supply duct 6 of the chamber 8 connected to a second outlet of the manifold 50, independent of the first, so that it is passed through by a second water flow leaving the manifold itself and independent of the first flow. Such second duct 6 is hydraulically connected to the chamber 8 by means of a first opening 6′ which defines a “tangential inlet” in said chamber 8 for the second water flow in said chamber. In particular the expression “tangential inlet” refers to a condition so that the second water flow, passing through the second opening 6′, enters the chamber by rotating around the axis of rotation 4 according to a whirling motion also called “swirl motion”. In other words the second flow enters the chamber 8 in a tangential way with respect to the surface of the chamber itself. Due to the circularity of such surface, the water of the second flow is brought to rotate around the axis 4 of the impeller 15.
The device 1 according to the invention further comprises flow rate partition means 9 suitable to vary the flow rate of the water circulating in the first duct 5 and in the second duct 6 as a function of the operating conditions of the engine, namely according to the higher or the lower delivery flow rate requirement of the circulation pump. The partition means 9 thus have the function to split the water flow rate from the radiator 40 between the first duct 5 and the second duct 6 as a function of the delivery flow rate requirement of the pump.
More precisely, when the engine 3 works in full load conditions, namely when the highest pump delivery flow rate is required, the partition means 9 have a first operating configuration so that the water can leave the manifold only through the first duct, consequently cancelling the flow rate of the second flow in the second duct 6. In other words, with the engine in full load condition, the partition means 9 inhibit the passage of water through the second duct 6 so that only the first flow 5 can enter the suction chamber 8 in axial direction. In these conditions, the hydraulic pump works as a traditional centrifugal pump with axial suction providing, being the speed of the impeller 15 the same, the highest head, namely the highest delivery flow rate.
As the engine load decreases, namely when the highest pump delivery water flow rate is not required, the partition means 9 have at least a second operating configuration such that the flow rate of the first flow circulating in the first duct 5 is decreased and, consequently, the flow rate of the second flow in the second duct 6 is increased. This second operating configuration substantially make the partition means 9 increase the water flow rate passing through the tangential opening 6′ of the chamber 8 by decreasing the water flow rate passing through the axial opening 5′.
The partition means may advantageously have a third operating configuration so that the flow rate leaving the manifold 40 passes only through the second duct 6, substantially cancelling the first flow passing through the first duct 5. This third operating condition is characteristics of an engine operating condition where the minimum water delivery flow rate is required to the centrifugal pump.
Compared to the full load conditions, when the engine is in partial load conditions the partition means 9 allow to vary the conditions of the flow within the chamber 8 and consequently the conditions in correspondence of the suction sections 8′ of the impeller 15. Indeed, the speed components that are characteristics of the “swirl motion” of the second flow are added to the speed axial components that are characteristics of the first flow. It has been observed that this variation in the conditions of the flow results in an advantageous variation of the characteristic operating curves of the pump. In particular, it has been observed that the “swirl motion” of the second flow determines, being the speed of rotation of the pump the same, a decrease in the head provided by the pump and consequently a decrease of the delivery flow rate.
In this regard,
The head ΔHE of the centrifugal pump, namely the increase of specific energy provided by the pump impeller to the water, may be calculated, in an ideal fluid dynamics model, by means of the known Euler equation below:
ΔHE=u2Cu2c−u1Cu1c;
wherein Cu2c and Cu1c are respectively the tangential components of the absolute speeds c1, c2 of the fluid in correspondence of, respectively, the external diameter De and of the internal diameter Di of the bladed impeller. The component Cu2c depends on the geometry of the impeller, while the component Cu1c depends on the conditions of the water entering the impeller.
From what is indicated above, it emerges that the partition of the two flows performed by the partition means 9 of the device according to the invention allows to vary, in fact, the characteristic curve “head-flow rate” of the centrifugal pump as a function of the pump delivery flow rate actually required. Unlike the traditional solutions, this variation of the characteristic curve is advantageously obtained without any intervention on the centrifugal pump activation, namely without varying the speed of rotation of the latter.
In this regard,
More precisely,
The diagram of
In this sense
It is thus evident that the device 1 according to the invention allows to vary the pump delivery flow rate by a modulation of the conditions of the water flow within the chamber 8, namely at the inlet of the impeller 15. In particular, the variation of the conditions of the water flow within the chamber is obtained by modulating, by means of the partition means 9, the flow rate of the first and of the second flow entering the chamber itself, namely by decreasing or cancelling, depending on the cases, the swirl motion within the chamber itself. As already explained above, this principle is completely different from the traditional solutions, where a variation of the flow rate is obtained by varying the speed of the impeller all the time.
In this regard
As the diagram of
As indicated above,
With particular reference to the section views in
With reference again with
With reference again to the view in
According to a first aspect of the present invention, the area of the second opening 6′ is smaller than the area of the first opening 5′ in order to advantageously increase the speed of the second flow entering the chamber 8, namely in order to increase the intensity of the rotation (swirl motion) within the chamber itself. The different area of the two openings 5′ and 6′ can be seen in the perspective section views shown in
According to a preferred embodiment of the invention, the first duct 5 has, along its extension from the manifold 50 to the chamber 8, a substantially constant section for the passage of water. On the contrary, the second duct 6, has at least an end segment 6″, communicating with the second opening 6′ of the chamber 8, which has a passage section which reduces progressively up to a minimum value in the proximity of the second opening 6′ of the chamber 8. In other words, such end segment 6″ of the second duct 6 is substantially “nozzle-shaped” namely the water passage section reduces progressively between a maximum and a minimum value with a trend, for example, of the parabolic type. In this regard, reference H1 in
The different shape provided for the passage section of the two ducts 5, 6 of the device 1 is such that the first duct 5 constitutes a preferential path for the water addressed to the suction chamber 8, since the flow resistance in it are relatively limited. On the contrary, the second duct is subject to high flow resistance, above all due to its nozzle-shaped end segment 6″. This means that if the partition means 9 do not split the flow rate, the whole water flow rate leaving the manifold 50 tends “naturally” to pass through the first duct 5, since it is easier to pass through it. As a consequence, the flow rate in the second duct 6 is almost equal to zero. As already indicated above, such condition is characteristic of a full load operating condition of the engine, namely a condition wherein the highest pump delivery flow rate is required.
As a consequence of the decrease of the delivery flow rate required (partial load operating condition), a fraction of the water flow rate leaving the manifold 50 will be “forced”, by intervention of the partition means, to pass through the second duct 6. The “nozzle-shaped” end segment 6″ of the second duct 6 results, from the one end, in an increase of the speed of the water entering the chamber 8, and from the other end in an increase of the flow resistance of the cooling circuit as a whole. Both effects are advantageously synergic in terms of a decrease of the pump delivery flow rate. The increase of the speed of the second flow entering the chamber 8 amplifies the “swirl” effect within the chamber 8 itself, provoking, as discussed above, a variation of the curve P-Q in terms of a decrease of the characteristics values of the curve itself. At the same time, however, the increase in the flow resistance, due to the passage of water in the second duct 6, provokes a variation also of the system curve, and thus of the “point of work” of the centrifugal pump indicated above. In this sense in
With reference to the schematization in
With reference to
The “tangential” shape of the third opening 7′ and the “converging” shape of the end segment 7″ allow, during the activation of the by-pass duct 7, to obtain an advantageously reduction of the delivery flow rate of the circulation pump for the same principle indicated above regarding the second duct 6 and the second opening 6′. In particular, thanks to the “swirl motion” of the by-pass flow within the chamber 8, the pump will provide a lower flow rate, an effect adds to the flow resistance increase due to the passage in the same by-pass duct. As it will be explained better below, the reduction of the pump delivery flow rate during the activation of the by-pass circuit 7, namely during the starting of the engine, allows a fast engine warming, since the decrease of the flow rate reduces the heat dissipation. The section view of
In this regard, an arrow in
With reference again to
In a condition of fully closed throttle valve, all the water leaving the manifold is “forced” to pass through the second duct 6. This condition amplifies the “swirl” effect in the chamber 8 to the utmost, since all the water flow rate leaving the manifold enters the suction chamber 8 only through the second opening 6′. At the same time, there will be an increase of the flow resistance since the water passes through the second duct 6, which, as said, is a synergetic effect in terms of decrease of the flow rate.
The present invention relates also to a cooling circuit for internal combustion engine of a vehicle comprising the device 1 according to the invention. In this sense,
In addition to the device 1 described above, the cooling circuit comprises a cooling line 12 connected from one side to the delivery section 16′ of the pump of the device 1 and from the other side to a thermal expansion valve 78 already indicated above. The cooling line 12 is defined within the engine crankcase 3 and is the only inlet of the thermal expansion valve 78. The latter, on the contrary, has a first outlet 78′ connected to the by-pass line 7 and a second outlet 78″ connected to a return line 12′. The latter hydraulically connects the thermal expansion valve 78 with the inlet of a radiator 40. The outlet 41 of the radiator 40 is connected with the inlet of the manifold 50 of the device 1 according to the invention.
The cooling circuit 11 according to the invention is regulated as a function of the operating conditions of the engine and by means of the intervention of a thermal expansion valve and/or of the partition means 9 of the device described above. In this regard, a method for the regulation of the cooling circuit 11 will be described below supposing the use of a throttle valve (in the following indicated as valve 9) placed in the first duct 5 of the device 1 as a partition means 9.
Until the water temperature is below a first predetermined value T1, the thermal expansion valve 78 has a first operating configuration according to which the first outlet 78′ of the valve 78 is open and the second outlet 78″ connected to the return line 12′, is closed. This regulation step is characteristic of a condition when the engine has just been started. In such condition, the water sent at the pump delivery (cold) passes through the cooling line 12′ defined in the body/crankcase of the engine 3 and returns back to the suction flowing only in the by-pass duct 7. As indicated above, the third opening 7′ of the chamber 8 is shaped so that it makes the by-pass flow rotate within the chamber itself in the same direction of the pump impeller 15. According to the operating principle described above, the rotation of the water within the chamber 8 results in a reduced head provided by the centrifugal pump, this effect being added to the flow resistance due to the throttle-shaped end part 77 of the by-pass duct 7. Both effects are synergetic and bring to a reduction of the flow rate in the cooling line 12, namely to a fast warming up of the engine 3. Being the warming up of the engine 3 fast, the production of smoke is minimized and the oil reaches its operating temperature in a short time, the latter condition ensuring low friction and thus low fuel consumption.
The regulation method according to the invention comprises a second step according to which when the temperature of the water exceeds said first predetermined value T1 and until the temperature is below a second predetermined value T2, higher than T1, the valve 78 passes gradually from a first operating configuration to a second operating configuration according to which the first outlet 78′ is closed and the second outlet 78″ is closed. The expression “gradually” means an operating variation of the valve such that the first opening (towards the by-pass 7) of the valve is “gradually closed”, while the second opening (towards the radiator 40) of the valve is “gradually opened” up to the second operating configuration. This second regulation step is characteristic of a condition when the engine has reached its “average temperature”. In other words, when T1 is exceeded, the thermal expansion valve starts to gradually open the outlet towards the radiator 40 and to gradually close the one of the by-pass. In these conditions, the throttle valve 9 is still kept closed. This means that the water from the radiator 40 will be diverted to the second duct 6 of the device 1. Until the temperature of the water will be comprised between T1 and T2, the water flow returning back to the pump intake will be split between the by-pass 7 and the second duct 6. Consequently all the water within the chamber 8 will be subject to a “swirl motion”, so that the pump delivery flow rate will be kept low. The temperature of the water will be advantageously modulated by the “hot” water coming from the engine 3 and by the “cold” water coming from the radiator 50.
The regulation of the circuit 11 also provides that, when the water temperature exceeds T2, the thermal expansion valve 78 keeps said second operating configuration. When, on the contrary, the water temperature exceeds a second predetermined value T3, higher than T2, then the partition means 9 (throttle valve) are activated in order to slip the water flow rate addressed to the pump intake between the first duct 5 and the second duct 6 of the device 1. More precisely, according to the present invention, the distribution of the flow rates in the two ducts 5 and 6 is made so that the flow rate in the first duct 5 is increased in a way proportional to the temperature reached by the water at the outlet of the cooling line 12.
In other words, when the temperature of the water exceeds T2, the thermal expansion valve 78 keeps the second operating configuration by closing the passage through the bypass 7. Consequently the whole flow rate is sent to the radiator and then to the chamber 8 of the pump only through the second duct 6.
From this moment on, the regulation of the circuit is performed only by the partition means 9. In particular, when the temperature of the water exceeds a third predetermined value T3, higher than T2, the partition means 9 split the water flow rate leaving the manifold 50 partially in the first duct 5 and partially in the second duct 6. The throttle valve 9, when the temperature T3 is reached, substantially takes a position wherein both ducts 5, 6 are passed through a certain predetermined flow rate. This, of course, results in an increase of the pump delivery flow rate.
The third value T3 corresponds to an optimal temperature determined as the maximum temperature for which the engine reliability is ensured and the oil of the engine itself does not deteriorate. When T3 is reached, the partition means increase the pump delivery flow rate and keep the water temperature at a value near to T3.
A further step of the regulation method of the cooling circuit according to the invention provides that, when the water temperature exceeds a fourth predetermined value T4, higher than T3, the regulation means act so that the whole water flow rate passes through the first duct 5. Namely when T4 is reached, the throttle valve 9 takes a fully open position, allowing water to pass through the “preferential path” made by the first duct 5. In these conditions, the hydraulic pump works as a traditional centrifugal pump with a water inlet completely axial. Reaching temperature T4 means that the engine works in full load condition, which requires the highest pump delivery flow rate in order to effectively cool the engine.
The device according to the invention allows to fulfil the purposes set forth above. In particular, the device allows to vary the pump delivery flow rate as a function of the operating conditions of the engine. In particular, such variation of the flow rate is obtained by a variation of the conditions of the water flow at the pump intake. The device according to the invention is reliable and easy to manufacture with competitive costs.
The device according to the invention can be subjected to numerous variations or modification, without departing from the scope of the invention; moreover all the details may be replaced by others that are technically equivalent. In practice, the material used and also the dimensions and the shapes may be any, according to the needs and to the state of the art.
Number | Date | Country | Kind |
---|---|---|---|
11194335.3 | Dec 2011 | EP | regional |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/EP2012/075980 | 12/18/2012 | WO | 00 | 6/10/2014 |