The invention relates to an apparatus for winding up of a thread.
A generic device for winding up a thread is known from DE 81 16 938 UI. Such devices are preferably used for the continuous winding up of an incoming thread. The thread is wound into a coil on the periphery of a spool housing. The spool housing is fixed on the circumference of a drivable spool spindle, wherein the spool spindle is preceded by a changing device for leading the threads back and forth. After the changing device, the thread is continuously stored by a pressure roller on the periphery of the coil to be wound.
Before the thread can be wound into a coil on the spool housing, it is necessary to catch the running thread and to wind it up. The thread is usually led by an auxiliary device, which takes over the thread from the changing device. These operations are required at each process start to wind the spool or, if two spool spindles held on a spool turret are used, at each exchange of the spool.
As an auxiliary means, the known device comprises a moveable metal guide, which has a guide edge and a guide groove, wherein the guide edge leads into the guide groove. By moving the moveable metal guide from a parking position, which is located laterally to the changing device, into a receiving position, which is located in the area of the changing device, the takeover of the thread by the changing device is initiated. After the thread slides over the guide edge into the guide groove of the moveable metal guide, the moveable metal guide is held in the catching position and moved back into the parking position. The parking position of the moveable metal guide is chosen such that the thread gets into contact with the thread-catching device at the spool spindle so that a new spool travel can begin. After the catch of the thread in the thread-catching device, the moveable metal guide is led again from the parking position into the receiving position. After reaching the receiving position, the moveable metal guide is led into the release position so that the thread is taken from the changing device. The back and forth movement of the moveable metal guide between the receiving position and the parking position for receiving and passing on the thread is relatively time consuming, which results in long changeover times.
Since the thread reserve held in the lateral region of a spool ultimately serves to tie the thread end of the spool with the thread beginning of a next spool to continue the process, the thread reserve winding is essentially determined by a minimum length of a piece of thread, which allows an unproblematic knotting. In that regard, the dwell time of the thread after its catching in the thread catching device until the takeover by the changing device governs the formation of the winding up of the thread reserve.
In the known device, in addition to the long dwell time there exist additional problems in that the release of the thread is done by the moveable metal guide in the region of the changing device. Thus, during the retraction of the moveable metal guide, the thread of the changing device could re-enter the thread-guiding groove of moveable metal guide.
The technical task of the invention is to further develop a device for winding up a thread of the generic type in such a way that only pieces of thread as short as possible must be wound up on the circumference of a spool housing as a thread reserve.
Another goal of the invention is to provide a generic apparatus with the shortest possible change times of the spool change.
This technical task is resolved by the invention in that the moveable metal guide in the parking position is associated with a stationary thread-guide pin, which cooperates with a guide shaft for guiding the thread by the guide edge or by the guide groove of the moveable metal guide.
The advantage of the present invention is that after the catching in the thread-catching device, the thread can be released directly into the parking position. The guiding for transferring the thread and to form a thread reserve is essentially performed by the guide shaft of the pin thread guide, wherein the thread passes automatically from the deflected position back to a traversing center. The rapid release of the thread already within the parking position of the moveable metal guide has the added advantage that the thread-pulling forces on the thread caused by deflection are immediately effective to move the thread back to the traverse center. This effect is particularly advantageous for thread-catching devices that are formed on the periphery of the spool spindle so that after being caught, the thread must be led over the sleeve edge. In that regard, the apparatus of the invention is preferably suitable for such thread-catching devices that are formed directly on the spool spindle laterally adjacent to the spool housing.
At the storing and forming of the thread reserve, i.e., the storing of the piece of thread required for the knotting, that further development of the invention has proved particularly effective, in which the pin thread guide forms a thread guide track with the projecting guide shaft, in which the thread can be guided after having been released from the guide groove of the moveable metal guide. Thus, essentially a winding time for storing a thread after the catching of the piece of the thread in the thread-catching device can be determined. A complete release of the thread occurs only after passing the thread-guiding track on the guide shaft.
It has been found that the length of the guide shaft of the pin thread guide can directly influence the length of the thread piece stored in the thread reserve winding. In that regard, the further development of the invention is preferably designed such that the shaft of the pin thread guide has an adjustable length.
For this purpose, the guide shaft is preferably arranged on a body, which can be guided within a snap holder in several clip-stop positions.
In order to design the auxiliary device with a minimum of moving means, a further development of the invention is preferably used, in which the moveable metal guide has a guide edge laterally to the guide groove and in which the moveable metal guide can be moved into a catching position to catch the thread, and into a release position to release the thread. This means that all movements to catch and release the thread can be carried out by moving the moveable metal guide. Thus, the moveable metal guide in the receiving position can be transferred from the release position into the catching position in order to release the thread from the changing device. After transferring the thread into the parking position, the moveable metal guide in the parking position can be returned from the catching position into the release position to pass the thread to the thread guide pin.
Alternatively, it is possible to design the catching and transferring of the thread to the pin thread guide in the form of several moveable metal guides according to a further advantageous embodiment of the invention. This allows two moveable metal guides with two guide edges to be formed that cooperate in the catching and guiding of the thread. It is especially advantageous here that each moveable metal guide is moved back and forth only in one direction of motion. Thus, one of the moveable metal guides with a first guide edge can be moved into a catching position to catch the thread and into a release position to release the thread.
The second guide edge on the second moveable metal guide is preferably formed perpendicular to the first guide edge of the first moveable metal guide and transversely to the guide shaft of the pin thread guide in order to lead the thread from the receiving position into the parking position and to release it.
The apparatus of the invention is thus characterized in particular in that with a continuous winding up of an incoming thread with multiple spool spindles, very short changeover times and secure thread handover can be achieved. This allows the pieces of thread stored on the spool housing pieces to be limited to a minimum.
The apparatus of the invention is explained below with reference to the accompanying drawings.
The apparatus for winding up an incoming thread 1 includes a spool spindle 10. The spool spindle 10 is mounted on one side by a bearing 14 in a support and is coupled with a spindle motor 13. The support is not shown in this embodiment, and is usually formed by a rotary plate having a second spool spindle, which is offset by 180° with respect to the first spool spindle. Such supports are particularly useful to continuously wind up an incoming thread onto a spool. For this purpose, the spool spindles are alternately moved into a winding position and a change position. Since, however, it is irrelevant for the explanation of the invention, whether one spool spindle or two spool spindles are held on the support, only one spool spindle 10 is explained on the illustrated embodiment.
On the periphery of the spool spindle 10 is clamped a spool housing 11. The spool housing 11 is associated at the free end of the spool spindle 10 with a thread-catching device 12, which is directly formed on the circumference of the spool spindle 10. Such thread-catching devices 12 are generally known and preferably include one or more catch hooks to catch an incoming thread.
A pressure roller 8 is located, axis-parallel to the spool spindle 10, at a short distance from the spool housing 11. The pressure roller 8 is rotatably mounted by a shaft 9 in a machine frame. Above the spool spindle 10 and the pressure roller 8 is provided a changing device 3. In this embodiment, the changing device 3 includes a traversing drive 4, which is connected to two oppositely driven rotors 5.1 and 5.2. To each of the rotors 5.1 and 5.2 are fixed traversing wings 6.1 and 6.2. The traversing wings 6.1 and 6.2 are driven by the rotors 5.1 and 5.2 in an opposite sense of rotation, wherein the free ends of the wings 6.1 and 6.2 respectively are guided along a guide plate 7, on which a thread 1 can be guided back and forth by the traversing wings 6.1 and 6.2 within a traverse hub.
Above the changing device 3 is arranged a stationary pin thread guide 2, which feeds the incoming thread 1 into the changing device 3. The stationary pin thread guide 2 is held in a traversing middle of the changing device 3 and forms the top of a so-called changing triangle.
Below the changing device 3 is arranged an auxiliary device 15, which is formed of a movably guided metal guide 16 and a stationary pin thread guide 19. As is particularly shown in
In the situations illustrated in
In the embodiment of the inventive apparatus shown in
In order to be able to start a new winding cycle, the thread 1 is therefore first led out of the changing device 3. For this purpose, the moveable metal guide 16 is transferred from the parking position laterally beside the changing device 3 into a receiving position in the changing device 3. In
As can especially be seen in
In the event that a second spool spindle is held with a full spool on the spindle support, the thread guiding on the outlet side of the spool spindle 10 is carried out by additional thread guide means. Thus, the thread 1 is captured by the catch means of the thread-catching device 12. In this situation, the moveable metal guide 16 in the parking position is transferred from the catching position back into the release position so that the thread 1 slides from the thread-guiding groove 18 and at first is held on the guide shaft 20 of the pin thread guide 19. This situation is particularly clear from the diagram in
In particular at the initial stage, in which the thread reserve is formed, the initial winding of thread is substantially affected by the slowed-down guiding of the thread on the guide shaft 20 of the pin thread guide 19. The sliding of the thread along the guide shaft 20 of the pin thread guide 19 is acted upon mainly by the thread pulling forces caused by the deflection, which lead the thread back to the middle of traversing.
It has been found that, depending on the thread titer and the process, the length of the guide shaft has a significant impact on the length of the thread stored in the thread reserve. In that regard, the guide shaft 20 is preferably constructed to be variable in length.
The embodiment of the pin thread guide shown in
The embodiment illustrated in
As can be seen in the particular representations shown in
The first moveable metal guide 16.1 is associated with a second moveable metal guide 16.2, which includes, on an outwardly facing side, a second guide edge 17.2. The guide edge 17.2 on the moveable metal guide 16.2 is aligned transverse to the guide edge 17.1 of the moveable metal guide 16.1 and transverse to the guide shaft 20 of the pin thread guide 19. The second moveable metal guide 16.2 can be moved back and forth between a receiving position and a parking position.
The moveable metal guide 16.2 includes, on the side facing away from the guide edge 17.2, a sliding edge 27, along which the thread slides to the takeover to enter the area of the guide edge 17.2.
To explain the operation of the auxiliary device 15, reference is first made to
Regarding the release of the thread, we refer to the representation of the auxiliary device shown in
In the embodiment shown in
Number | Date | Country | Kind |
---|---|---|---|
10 2010 052 091 | Nov 2010 | DE | national |
10 2011 008 971 | Jan 2011 | DE | national |
This application is a continuation-in-part of and claims the benefit of priority from PCT application PCT/EP2011/070365 filed Nov. 17, 2011; German Patent Application DE 10 2010 052 091.8 filed Nov. 20, 2010; and German Patent Application DE 10 2011 008 971.3 filed Jan. 20, 2011, the disclosure of each is hereby incorporated by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
4040572 | Melan et al. | Aug 1977 | A |
4057195 | Jones et al. | Nov 1977 | A |
4062501 | Eisenberg et al. | Dec 1977 | A |
4069984 | Klink et al. | Jan 1978 | A |
4085901 | Sanders | Apr 1978 | A |
4193557 | Melan et al. | Mar 1980 | A |
4205800 | Melan et al. | Jun 1980 | A |
5653395 | Iwade et al. | Aug 1997 | A |
6629660 | Yamaguchi et al. | Oct 2003 | B1 |
20050082416 | Brenk | Apr 2005 | A1 |
Number | Date | Country |
---|---|---|
81 16 938 | Oct 1982 | DE |
38 31 341 | Apr 1989 | DE |
195 20 285 | Jun 1996 | DE |
0 650 914 | May 1995 | EP |
58 078964 | May 1983 | JP |
Entry |
---|
PCT/EP2011/070365 International Search Report dated Mar. 7, 2012 (8 pages including 3 page English translation). |
PCT/EP2011/070365 International Preliminary Report on Patentability dated May 21, 2013 (5 pages including 4 page English translation). |
Number | Date | Country | |
---|---|---|---|
20130248639 A1 | Sep 2013 | US |
Number | Date | Country | |
---|---|---|---|
Parent | PCT/EP2011/070365 | Nov 2011 | US |
Child | 13893815 | US |