Many devices accept inputs of multiple pieces of media and generally process a single piece of media at a time. For example, printers may include an input tray which accepts more than one piece of paper as the media. In other examples, a scanner may include an automatic document feeder to accept multiple sheets of paper as the media. The automatic document feeder may provide an individual sheet of the media to the scanner.
The following detailed description references the drawings, wherein:
In the following discussion and in the claims, the term “couple” or “couples” is intended to include suitable indirect and/or direct connections. Thus, if a first component is described as being coupled to a second component, that coupling may, for example, be: (1) through a direct electrical or mechanical connection, (2) through an indirect electrical or mechanical connection via other devices and connections, (3) through an optical electrical connection, (4) through a wireless electrical connection, and/or (5) another suitable coupling. The term “approximately” as used herein to modify a value is intended to be determined based on the understanding of one of ordinary skill in the art, and can, for example, mean plus or minus up to 20% of that value.
The number of pieces of media that may be loaded into an electronic device for use may vary. The speed at which electronic devices process the media has been increasing. For example, printing speeds and scanning speeds of devices are increasing. However, most electronic devices process a single piece of media at a time. There is a need to consistently pick one piece of media for processing by the electronic device. For example, a printer may have an input tray to accept hundreds of sheets of paper but will need to pick a single sheet of paper from the input tray at a time for printing. Various pick mechanisms have been developed to pick a single medium from a stack of media. However, such pick mechanisms may fail resulting in more than one piece of the media entering the device for processing.
To address these issues, in the examples described herein, a device is described which includes a separation unit to separate media for processing. The separation unit includes two independent separator biased towards a roller by two independent springs. The roller may move media along a media travel direction to separate a medium from the media. A separation force applied by the first separator to the medium is independent of a separation force applied by the second separator which may increase media pick accuracy.
Referring now to the drawings,
In examples, device 10 may be any device to receive media and transport such media which may be stacked, such as a printer, a scanner, a fax machine, a finisher, etc. In examples, media 15 may be any type of media which may be stacked and includes medium 5 which may be received by device 10 and transported through separation unit 100. For example, media 15 may be any type of paper, fabric, plastic, envelop, card stock, etc., which may be stacked to be fed into device 10. In examples, separation unit 100 may receive more than one piece of media from another component of device 10, such as an input tray, and may be configured to separate the media such that a single medium emerges from separation unit 100 for processing by device 10. In some examples, device 10 may include a roller 110 to pick up the medium 5 from media 15 for transport along media travel direction 50.
In examples, roller 110 rotates about a central axis in the direction indicated by the arrow in
In examples, spring 112 may be coupled to separator 102 to bias separator 102 towards roller 110 and spring 114 may be coupled to separator 104 to bias separator 104 towards roller 110. Spring 112 and spring 114 may be any type of spring to provide a spring force, such as tension spring, extension spring, compression spring, torsion spring, constant spring, variable spring. In some examples, spring 112 and spring 114 may provide sufficient force to bias separator 102 and separator 104 to contact a first side of medium 5 as it travels along the media travel direction 50. In the examples, roller 110 may contact the opposite side of medium 5 as it travels along the media travel direction 50.
In some examples, separator 102 and separator 104 may be any component with a surface area to engage or contact medium 5 as it travels through media travel direction 50. In examples, separator 102 and separator 104 may be a separation pad with a first surface to contact medium 5. In such examples, the surfaces of separator 102 and separator 104 in contact with medium 5 may be a substantially flat or curved surface to contact a surface area of medium 5. In some examples, separator 102 and separator 104 may be substantially the same size and shape. In other examples, separator 102 and separator 104 may be of different size and shape. In the example of
In examples, a force applied by separator 102 and/or separator 104 to medium 5 may provide sufficient force to separate medium 5 from media 15 in combination with a force applied by roller 110. In the examples, the force applied by separator 102 and/or separator 104 to medium 5 is provided by spring 112 and spring 114 to separator 102 and separator 104, respectively. In such examples, the spring constant of spring 112 and spring 114 may be chosen to provide sufficient force to separate medium 5 from media 15. In examples, separator 102 and separator 104 are independent components of separation unit 100 such that a separation force applied by separator 102 to medium 5 is independent of separator 104. Similarly, a force applied by separator 104 to medium 5 is independent of a force applied to medium 5 by separator 102. In such an example, if one of separator 102 and separator 104 fails to provide a separation force to medium 5, the other one of separator 102 and separator 104 may continue to apply a separation force to medium 5. In such an example, a spring constant of spring 112 and spring 114 may be chosen to optimize the separation force applied by separator 102 and separator 104 to pick a single medium 5 from media 15 to exit separation unit 100. In the example of
As depicted in the example of
Although depicted in
In the example of
In the examples, separator 132 and separator 134 are independent rollers. In such an example, a force applied by separator 132 to medium 5 is independent of separator 134. Similarly, a force applied by separator 134 to medium 5 is independent of separator 132. In examples, spring 112 and spring 114 may be chosen to optimize the separation force applied by separator 132 and separator 134, respectively. The separation force applied by separator 132 and/or separator 134 may be sufficient to separate medium 5 from media 15. As described with respect to
In the example of
While certain implementations have been shown and described above, various changes in form and details may be made. For example, some features that have been described in relation to one implementation and/ or process can be related to other implementations. In other words, processes, features, components, and/or properties described in relation to one implementation can be useful in other implementations. Furthermore, it should be understood that the systems, apparatuses, and methods described herein can include various combinations and/or sub-combinations of the components and/or features of the different implementations described. Thus, features described with reference to one or more implementations can be combined with other implementations described herein.
The above discussion is meant to be illustrative of the principles and various embodiments of the present disclosure. Numerous variations and modifications will become apparent to those skilled in the art once the above disclosure is fully appreciated. It is intended that the following claims be interpreted to embrace all such variations and modifications.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/US16/15830 | 1/29/2016 | WO | 00 |