This application claims the priority of Italian Patent Application No. TO2002A 000118 entitled A DEVICE INTEGRATING A NONVOLATILE MEMORY ARRAY AND A VOLATILE MEMORY ARRAY, filed Feb. 8, 2002, which is hereby incorporated by reference.
The present invention relates to a device integrating a nonvolatile memory array and a volatile memory array.
As is known, in various sectors of microelectronics there is an ever increasing need to integrate, in a single chip, various devices, which are specifically designed and optimized for a particular application, so as to obtain efficient and extremely compact dedicated systems (System-on-Chip). By way of example, it may be recalled that in important fields of use, such as that of mobile telephones, microprocessor cards (smart cards), image-acquisition devices (digital videocameras and cameras), palm-top computers, in which fundamental objectives are the reduction of overall dimensions, the reduction of supply voltages, and the reduction of consumption in general.
To achieve this purpose, it is particularly important to succeed in integrating logic devices for processing and control, generally referred to as digital-signal processors (DSPs), and memory devices (the so-called “embedded memories”). Furthermore, an individual integrated system must normally comprise both nonvolatile memories and volatile memories. The nonvolatile memories, which are usually of the EEPROM or flash type, are in fact necessary for permanent storage, on the one hand, of portions of program code that are to be executed by the processing and control devices, and on the other, data acquired during operation, such as, for example, digital images. The volatile memories, for example of the DRAM type, are instead used as work memories, on account of their performance in reading and writing, which is considerably higher than the performance of nonvolatile memories.
The integration, in a single device, of logic, of volatile memories, and of nonvolatile memories involves, however, problems that are chiefly due to the fact that the memory cells of the two types have different structures and must therefore be made with different technologies. For each type of cell, it is thus necessary to envisage specific process steps which generally cannot be executed simultaneously, but only in succession. Consequently, the processes of fabrication of a device that incorporates logic and both types of memory are complex and have a high cost.
An embodiment of the present invention provides an integrated device that is free from the drawbacks described above. Specifically, the embodiment of the present invention provides a device that integrates a nonvolatile memory array and a volatile memory array.
For a better understanding of the invention, there are now described some embodiments, purely by way of non-limiting example and with reference to the attached drawings, in which:
a and 3b show simplified electrical diagrams of the architecture of the memory arrays of
In
The nonvolatile memory array 2 and the volatile memory array 3 comprise, respectively, a plurality of nonvolatile cells 15 and a plurality of volatile cells (DRAMs) 16. According to a first aspect of the invention, both the nonvolatile cells 15 and the volatile cells 16 are of a ferro-electric type and have the same structure.
In both of the memory arrays 2, 3, the nonvolatile cells 15 and the volatile cells 16 are preferably organized according to the architecture illustrated in
The memory cells 14 are preferably made as ferro-electric cells of stacked structure, of the type described in U.S. Pat. No. 6,300,654, granted on Oct. 9, 2001, in the name of the present applicant, as regards a nonvolatile cell 15.
In detail,
Drain-extension regions 38, which are less heavily doped, are formed in the substrate 31 underneath the spacers, and a protective oxide layer 40 covers the surface of the substrate 31.
A first insulating layer 41 (for example made of Boron Phosphorous Silicon Glass—BPSG) extends on top of the protective oxide layer 40 and has openings in which there extend first contacts 43 and second contacts 44 made of conductive material, for the contact of the source regions 33 and of the drain regions 34, respectively.
On top of the first insulating layer 41 bottom plates 50 are formed (corresponding to the first plates 18a of
On top of the strips of ferro-electric material 51 are formed first strips of conductive material 52 forming top plates (corresponding to the second plates 18b of
Protective layers 53, for example made of alumina (Al2O3), coat both the strips of ferro-electric material 51 and the first strips of conductive material 52, so as to prevent, during fabrication, the ferro-electric material from being exposed to environments rich in hydrogen that would degrade them.
On top of the first insulating layer 41, there are moreover first contact regions 54 overlying and connected directly to the second contacts 44. The first contact regions 54 are preferably made with a double layer of titanium and platinum.
A second insulating layer 55 is formed on top of the first insulating layer 41 and coats the first strips of conductive material 52. Through the second insulating layer 55 are formed openings in which there extend third contacts 56 (
On top of the second insulating layer 55, which completely covers the metallization lines 60, a third insulating layer 63 extends, having openings, in which there extend fifth contacts 65 (
A passivation layer 70 covers the device completely.
The process for the fabrication of the nonvolatile cells 15 and of the volatile cells 16, illustrated in the
In this way, the nonvolatile cells 15 and the volatile cells 16 are fabricated simultaneously and have the same structure. Nevertheless, the former can be used for permanent storage of binary information and the latter for temporary storage, as explained in what follows.
In particular, a nonvolatile cell 15 is able to store binary information in a permanent way thanks to the characteristics of hysteresis of the ferro-electric material which is comprised between the plates 18a, 18b and which can assume, in the absence of an applied voltage, two polarization states depending upon the sign of the voltage applied previously across the capacitor 18. In greater detail, a ferro-electric material comprises a plurality of domains, each of which can assume, selectively, one of two possible polarization states. The polarization state of the domains can moreover be modified by applying an electric field having an intensity higher than a switching threshold. At a macroscopic level, the overall polarization state of the ferro-electric material is determined by the number of domains biased uniformly.
In particular,
For storing a “0”, a positive write voltage VWRP higher than a positive switching voltage VSWP is applied across the capacitor 18. In this case, the polarization P of the nonvolatile cell 15 assumes a second saturation state PS2 irrespective of the initial polarization state, insofar as all the domains of the ferro-electric material are uniformly oriented. Then, when the voltage V is removed, the polarization P of the nonvolatile cell 15 goes to the second stable state P2. In a dual manner, to store a “1”, a negative write voltage VWRN is applied across the capacitor 18, which is higher in absolute value than a negative switching voltage VSWN. The polarization P of the nonvolatile cell 15 reaches a first saturation value PS1, irrespective of the initial state, and goes to the first stable state P1 when the voltage V is removed. The positive switching voltage VSWP and the negative switching voltage VSWN increase in absolute value as the thickness of the strips made of ferro-electric material 51 increases.
In the case of the volatile memory array 3, the capacitors 18 of the volatile cells 16 are used for storing information in a way similar to what occurs normally for memories of the DRAM type. In particular, all the volatile cells 16 are previously brought to one and the same stable state, preferably to the second stable state P2. For this purpose, the volatile cells 16 are supplied with biasing voltages of the same sign higher in absolute value than the switching voltage of the volatile cells 16 themselves. Next, when a read/write operation of a volatile cell 16a is carried out, the latter is supplied with a positive voltage lower in value than the positive switching voltage VSWP, hence so as not to modify significantly the polarization state of the volatile cells 16 themselves. For example, a linear-ramp read/write positive voltage is used. In practice, in this case a segment of the branch of the characteristic of
It is evident that the device described is very simple to build. In this case, in fact, the nonvolatile memory array 2 and the volatile memory array 3 are made up of identical memory cells 14, obtained simultaneously using the very same fabrication steps. The device according to an embodiment of the invention can hence be obtained by means of a considerably simplified process, which is less expensive and affords a higher yield.
A second embodiment of the invention is illustrated in
In a third embodiment of the invention illustrated in
The volatile cells 216 are made substantially following the same process steps adopted for fabricating the nonvolatile cells 15, except in that the layer of ferro-electric material 51 is removed from the area where the volatile cells 216 are to be made. In addition, special steps of deposition, photolithography and etching are envisaged for defining the strips of para-electric material 251, which is removed completely from the area of the nonvolatile cells 15.
According to a further embodiment of the invention illustrated in
Finally, it is evident that modifications and variations can be made to the device described, without thereby departing from the scope of the present invention.
Number | Date | Country | Kind |
---|---|---|---|
TO2002A0118 | Feb 2002 | IT | national |
Number | Name | Date | Kind |
---|---|---|---|
5303186 | Yamauchi | Apr 1994 | A |
5539279 | Takeuchi et al. | Jul 1996 | A |
5675547 | Koga | Oct 1997 | A |
5768182 | Hu et al. | Jun 1998 | A |
6141238 | Forbes et al. | Oct 2000 | A |
6337805 | Forbes et al. | Jan 2002 | B1 |
6440754 | Hayashi et al. | Aug 2002 | B1 |
6441415 | Moise et al. | Aug 2002 | B1 |
Number | Date | Country | |
---|---|---|---|
20030174531 A1 | Sep 2003 | US |