The present application claims the benefit of U.S. patent application Ser. No. 14/143,399 for Device Management Using Virtual Interfaces, filed Dec. 30, 2013 (and published Apr. 17, 2014 as U.S. Patent Publication No. 2014/0108682), now U.S. Pat. No. 8,918,564, which claims the benefit of U.S. patent application Ser. No. 13/267,342 for Device Management Using Virtual Interfaces, filed Oct. 6, 2011 (and published Apr. 11, 2013 as U.S. Patent Application Publication No. 2013/0091310), now U.S. Pat. No. 8,621,123. Each of the foregoing patent applications, patent publications, and patents is hereby incorporated by reference in its entirety.
The invention relates to data communication and more particularly to management of data communication between a host computer system and a peripheral device in communication with the host computer system.
Many types of peripheral devices connect to a host computer system on which one or more applications execute. Those who manage deployment of peripheral devices, for instance a business entity that owns point-of-sale systems comprising host computer systems attached to barcode scanning peripheral devices, routinely face the need to manage their deployed peripheral devices. Peripheral devices connect to host computer system using a variety of wired and/or wireless communication interfaces. Some interface types, for instance those of the RS232 interface standard, have a limitation where only one RS232 interface can be exposed over the physical cable connection between the peripheral device and the host computer. This single interface is commonly owned by a Line of Business application on the host computer, which, in the example involving a barcode scanner peripheral device, typically performs data collection from the scanner. A problem arises when another utility or application on the host computer desires to manage the scanner over the existing interface. Such managing becomes challenging absent interference with normal scanner operation and performance expected by the Line of Business application. For instance, the Line of Business application would release the interface, freeing the interface so that another application, such as a management application, can assume exclusive use of the interface to communicate with the scanner, which can be impractical, problematic, and inefficient.
The shortcomings of the prior art are overcome and additional advantages are provided through a method of managing data communication, which method includes, for instance, opening and controlling, by a processor, a physical interface of a host computer system, the physical interface for communicating data between a peripheral device and a plurality of applications executing on the host computer system, the plurality of applications comprising a first application and a second application; exposing, in the host computer system, a first virtual interface and a second virtual interface to an operating system of the host computer system, wherein the operating system exposes the first virtual interface and the second virtual interface to the first application and the second application, the first virtual interface for communicating data between the peripheral device and the first application through the physical interface, and the second virtual interface for communicating data between the peripheral device and the second application through the physical interface; and managing data communication between the peripheral device and the first application, and between the peripheral device and the second application.
Additional features and advantages are realized through the concepts of the present invention. Other embodiments and aspects of the invention are described in detail herein and are considered a part of the claimed invention.
The features described herein can be better understood with reference to the drawings described below. The drawings are not necessarily to scale, emphasis instead generally being placed upon illustrating the principles of the invention. In the drawings, like numerals are used to indicate like parts throughout the various views.
By way of specific example, peripheral device 100 is an encoded information reading terminal comprising a processor 102 and one or more encoded information reading device 104. Encoded information reading device 104 can be provided, e.g. by a bar code reading device, an RFID reading device, and a card reading device. Encoded information reading device 104 can be operative to output one or more of a decoded message decoded from raw signal or a raw signal comprising an encoded message. Shown in the block view as being provided by a separate unit external to processor 102 processing functionality of encoded information device 104 can be provided by processor 102. In operation of peripheral device 100, image signals can be read out of encoded information reading device 104 and stored into a volatile or non-volatile memory (not pictured), such as random access memory, read only memory, or any other type of storage memory. Processor 102 can be adapted to perform various algorithms including reading out image data stored in memory and/or algorithms supporting communication of data across communications link 108 via one or more I/O component(s) 106.
Host 110 similarly includes I/O component(s) 112. I/O components include one or more physical interfaces for communicating data to/from peripheral device 100. These interfaces comprise one or more hardware components. In the example of an RS232 communications link, a supporting physical interface comprises a hardware serial port, as an example.
Host 110 also includes processor 114 and memory 116. Memory 116 can include one or more volatile or non-volatile memories of one or more types, such as random access memory, read only memory, or any other type of storage memory, such as a hard disk drive. Further details of host 110 are described with reference to
Application 220b in
Aspects of the current invention define a software module for a host computer. The software module opens and owns a physical interface, such as an RS232 I/O port, to which a peripheral device is attached. It also exposes multiple virtual interfaces, such as virtual RS232 interfaces, to the operating system of the host.
The software module can manage data communication between the peripheral device and one or more applications executing on the host computer system by properly routing data coming from the peripheral device to the one or more applications of the host, or data going from the one or more applications of the host to the peripheral device. This facilitates communication between a line of business application and the peripheral device without the line of business application being aware that the physical interface is being shared with other applications, such as a management tool, behind the scenes.
Filtering program code 230 of
Filter program code 230 effectively allows performing device management by management application 220b in parallel with a data collection processes whereby data is communicated to a separate line of business application (e.g. 220a), without affecting the performance or expected operation for a user and line of business application 220a. In a further enhancement, filter program code 230 can also support configuration requests to change its behavior (timeouts, filtering logic described below). In this manner, the code can be reconfigured to, for instance, make the filtering logic be based on a different pattern(s), or change a maximum timeout for the code to remain in a transaction mode giving the management application exclusive access to the device. An example of such a configuration request is a Windows Input/Output Control (IOCTL) call/request, when filter program code 230 comprises a Microsoft® Windows® based driver.
In one example, filter program code 230 comprises a device driver, such as a filter driver for the Windows® operating system offered by Microsoft Corporation. The software can be a driver such as a “driver service” which is a kernel-level filter driver implemented as a Windows® service.
The driver installation can be made non-intrusive with no dialog prompts and no security warnings for the user. The actual driver can internally be comprised of multiple drivers, depending on the operating system requirements. The driver can be written as a kernel-level driver for a kernel of operating system 218, whereby the driver exposes the two or more (depending on the number of applications to support) virtual interfaces in the operating system. Additionally, an installation tool can allow a user to preselect what the desired virtual interface (port) numbers should be.
Continuing with
Filter logic rules can be in any format recognizable to the software module (e.g. filter program code) to enable it to properly filter data communications to the appropriate destination. In this respect, the rules can describe one or more of:
As noted, filter logic rules are employed in facilitating management of data communication.
Management of data communication between a peripheral device and host applications is described and depicted in further detail with reference to
In conjunction with the logic of the software module, the peripheral device identifies the type of data that it is sending to the host. In one example, data is ‘wrapped’ in one or more packets having a format recognizable by the software module. This format can be the format described in one or more filter logic rules on the host computer, to facilitate identification by the host of the proper application executing thereon to which the data is to be provided. For instance, the peripheral device can identify that data being sent to the host is data intended for the line of business application. Identification of the type of data wrapped in a packet and/or the application to which the data is intended can be provided through one or more indicators (e.g. bits) in the data packet, and, in one example, in a header of the data packet. In the context of
Advantageously, aspects of the present invention can enable the management of data communications as described above without the need to modify and/or recompile the applications executing on the host. Instead, the applications need only be configured to use the appropriate virtual interface dedicated to data communication for that particular application, rather than to use the physical interface. In many instances, the appropriate interface for the application to use is provided by a single configuration setting in the application which enables the selection of an interface from a list of interfaces presented by the operating system to the application. The single configuration setting would be simply to point the application to the appropriate virtual interface rather than the physical interface.
Aspects of the present invention can be applied to any type of interface used by a peripheral device. The software module in the host can simply virtualize the original physical interface and expose two (or more) new virtual interfaces as described above. Thus, aspects of the present invention are applicable for Universal Serial Bus physical interfaces, as well as many other physical interfaces as will be appreciated by those having ordinary skill in the art.
As will be appreciated by one skilled in the art, aspects of the present invention may be embodied as a system, method, or computer program product. Accordingly, aspects of the present invention may take the form of an entirely hardware embodiment, an entirely software embodiment (including firmware, resident software, micro-code, etc.) or an embodiment combining software and hardware aspects that may all generally be referred to herein as a “circuit,” “module” or “system.” Furthermore, aspects of the present invention may take the form of a computer program product embodied in one or more computer readable medium(s) having computer readable program code embodied thereon.
Any combination of one or more computer readable medium(s) may be utilized. The computer readable medium may be a computer readable storage medium. A computer readable storage medium may be, for example, but not limited to, an electronic, magnetic, optical, or semiconductor system, apparatus, or device, or any suitable combination of the foregoing. More specific examples (a non-exhaustive list) of the computer readable storage medium include the following: an electrical connection having one or more wires, a portable computer diskette, a hard disk, a random access memory (RAM), a read-only memory (ROM), an erasable programmable read-only memory (EPROM or Flash memory), an optical fiber, a portable compact disc read-only memory (CD-ROM), an optical storage device, a magnetic storage device, or any suitable combination of the foregoing. In the context of this document, a computer readable storage medium may be any tangible medium that can contain or store a program for use by or in connection with an instruction execution system, apparatus, or device.
Program code embodied on a computer readable medium may be transmitted using any appropriate medium, including but not limited to wireless, wireline, optical fiber cable, RF, etc., or any suitable combination of the foregoing.
Computer program code for carrying out operations for aspects of the present invention may be written in any combination of one or more programming languages, including an object oriented programming language such as Java, Smalltalk, C++ or the like and conventional procedural programming languages, such as the “C” programming language or similar programming languages. The program code may execute entirely on the user's computer, partly on the user's computer, as a stand-alone software package, partly on the user's computer and partly on a remote computer or entirely on the remote computer or server. In the latter scenario, the remote computer may be connected to the user's computer through any type of network, including a local area network (LAN) or a wide area network (WAN), or the connection may be made to an external computer (for example, through the Internet using an Internet Service Provider).
Referring now to
Aspects of the present invention are described herein with reference to flowchart illustrations and/or block diagrams of methods, apparatus (systems) and computer program products according to embodiments of the invention. It will be understood that each block of the flowchart illustrations and/or block diagrams, and combinations of blocks in the flowchart illustrations and/or block diagrams, can be implemented by computer program instructions. These computer program instructions may be provided to a processor of a general purpose computer, special purpose computer, or other programmable data processing apparatus to produce a machine, such that the instructions, which execute via the processor of the computer or other programmable data processing apparatus, create means for implementing the functions/acts specified in the flowchart and/or block diagram block or blocks.
These computer program instructions may also be stored in a computer readable medium that can direct a computer, other programmable data processing apparatus, or other devices to function in a particular manner, such that the instructions stored in the computer readable medium produce an article of manufacture including instructions which implement the function/act specified in the flowchart and/or block diagram block or blocks.
The computer program instructions may also be loaded onto a computer, other programmable data processing apparatus, or other devices to cause a series of operational steps to be performed on the computer, other programmable apparatus or other devices to produce a computer implemented process such that the instructions which execute on the computer or other programmable apparatus provide processes for implementing the functions/acts specified in the flowchart and/or block diagram block or blocks.
The flowchart and block diagrams in the Figures illustrate the architecture, functionality, and operation of possible implementations of systems, methods, and computer program products according to various embodiments of the present invention. In this regard, each block in the flowchart or block diagrams may represent a module, segment, or portion of code, which comprises one or more executable instructions for implementing the specified logical function(s). It should also be noted that, in some alternative implementations, the functions noted in the block may occur out of the order noted in the figures. For example, two blocks shown in succession may, in fact, be executed substantially concurrently, or the blocks may sometimes be executed in the reverse order, depending upon the functionality involved. It will also be noted that each block of the block diagrams and/or flowchart illustration, and combinations of blocks in the block diagrams and/or flowchart illustration, can be implemented by special purpose hardware-based systems that perform the specified functions or acts, or combinations of special purpose hardware and computer instructions.
Further, a data processing system suitable for storing and/or executing program code is usable that includes at least one processor coupled directly or indirectly to memory elements through a system bus. The memory elements include, for instance, local memory employed during actual execution of the program code, bulk storage, and cache memory which provide temporary storage of at least some program code in order to reduce the number of times code must be retrieved from bulk storage during execution.
Input/Output or I/O devices (including, but not limited to, keyboards, displays, pointing devices, DASD, tape, CDs, DVDs, thumb drives and other memory media, etc.) can be coupled to the system either directly or through intervening I/O controllers. Network adapters may also be coupled to the system to enable the data processing system to become coupled to other data processing systems or remote printers or storage devices through intervening private or public networks. Modems, cable modems, and Ethernet cards are just a few of the available types of network adapters.
The terminology used herein is for the purpose of describing particular embodiments only and is not intended to be limiting of the invention. As used herein, the singular forms “a”, “an” and “the” are intended to include the plural forms as well, unless the context clearly indicates otherwise. It will be further understood that the terms “comprises” and/or “comprising”, when used in this specification, specify the presence of stated features, integers, steps, operations, elements, and/or components, but do not preclude the presence or addition of one or more other features, integers, steps, operations, elements, components and/or groups thereof.
The corresponding structures, materials, acts, and equivalents of all means or step plus function elements in the claims below, if any, are intended to include any structure, material, or act for performing the function in combination with other claimed elements as specifically claimed. The description of the present invention has been presented for purposes of illustration and description, but is not intended to be exhaustive or limited to the invention in the form disclosed. Many modifications and variations will be apparent to those of ordinary skill in the art without departing from the scope and spirit of the invention. The embodiment was chosen and described in order to best explain the principles of the invention and the practical application, and to enable others of ordinary skill in the art to understand the invention for various embodiments with various modifications as are suited to the particular use contemplated.
A small sample of methods that are described herein is as follows:
A1. A method of managing data communication, the method comprising: opening and controlling, by a processor, a physical interface of a host computer system, the physical interface for communicating data between a peripheral device and a plurality of applications executing on the host computer system, the plurality of applications comprising a first application and a second application; exposing, in the host computer system, a first virtual interface and a second virtual interface to an operating system of the host computer system, wherein the operating system exposes the first virtual interface and the second virtual interface to the first application and the second application, the first virtual interface for communicating data between the peripheral device and the first application through the physical interface, and the second virtual interface for communicating data between the peripheral device and the second application through the physical interface; and managing data communication between the peripheral device and the first application, and between the peripheral device and the second application.
A2. The method of A1, wherein the peripheral device comprises an encoded information reading terminal comprising an encoded information reading device configured to output a decoded message, wherein the first application comprises a line of business application for receiving the decoded message from the encoded information reading terminal, and wherein the second application comprises a management application for managing the encoded information reading terminal.
A3. The method of A1, wherein the managing data communication between the peripheral device and the first application and between the peripheral device and the second application comprises filtering data received from the peripheral device through the physical interface to the first application and the second application, the filtering comprising: identifying one or more appropriate applications of the first application and the second application to which the received data is to be provided; identifying one or more appropriate virtual interfaces of the first virtual interface and the second virtual interface through which the received data is to be provided; and providing the received data through the appropriate one or more virtual interfaces to the appropriate one or more applications, wherein received data is provided to the first application through the first virtual interface and wherein received data is provided to the second application through the second virtual interface.
A4. The method of A3, wherein one or more filter logic rules define one or more rules for filtering received data to one or more appropriate applications of the first application and the second application.
A5. The method of A4, wherein the one or more filter logic rules describe a format of incoming data from the peripheral device to distinguish between data intended for different applications of the first application and the second application.
A6. The method of A5, wherein the received data is provided by the peripheral device through the physical interface in the described format to facilitate identifying the one or more appropriate applications to which the received data is to be provided, and wherein the identifying identifies the one or more appropriate applications based on the description of the format provided by the one or more filter logic rules.
A7. The method of A4, wherein the first application comprises a line of business application, wherein the second application comprises a management application, wherein a filter logic rule of the one or more filter logic rules defines how a peripheral device reboot event is to be handled to shield the line of business application from the reboot event in order to facilitate preservation of a connection handle of the line of business application to the peripheral device, and wherein another filter logic rule of the one or more filter logic rules identifies how to freeze data communication to or from the line of business application during performance of peripheral device management by the management application.
A8. The method of A4, wherein the received data comprises simultaneous requests for the first application and for the second application, and wherein at least one filter logic rule of the one or more filter logic rules identifies how the host computer system is to handle the simultaneous requests.
A9. The method of A3, wherein the filtering is performed by a filter driver of the operating system, and wherein one or more filter logic rules are maintained in a filter logic rules file external to the filter driver to facilitate updating the filter logic rules separately from the filter driver absent a need to recompile the filter driver upon updating the filter logic rules.
A10. The method of A9, wherein the filter driver supports configuration requests to change behavior of the filter driver in performing the filtering.
A11. The method of A9, wherein the filter driver comprises a kernel-level driver of a kernel of the operating system, the kernel-level driver for exposing the first virtual interface and the second virtual interface to the operations system.
A12. The method of A1, wherein a driver of the operating system opens and owns the physical interface and exposes the first virtual interface and the second virtual interface to the operating system, and wherein the first application is configured to utilize the first virtual interface for data communication with the peripheral device, and wherein the second application is configured to utilize the second virtual interface for data communication with the peripheral device.
A13. The method of A1, wherein the physical interface comprises an RS232 interface supporting only a single interface connection between the RS232 interface and the peripheral device.
A14. The method of A1, wherein the peripheral device comprises an encoded information reading device configured to output a decoded message, wherein data communicated between the peripheral device and the host computer system comprises the decoded message and wherein the decoded message is communicated to a line of business application of the multiple applications executing on the host computer system.
While the present invention has been described with reference to a number of specific embodiments, it will be understood that the true spirit and scope of the invention should be determined only with respect to claims that can be supported by the present specification. Further, while in numerous cases herein wherein systems and apparatuses and methods are described as having a certain number of elements it will be understood that such systems, apparatuses and methods can be practiced with fewer than or greater than the mentioned certain number of elements. Also, while a number of particular embodiments have been described, it will be understood that features and aspects that have been described with reference to each particular embodiment can be used with each remaining particularly described embodiment.
Number | Name | Date | Kind |
---|---|---|---|
5109486 | Seymour | Apr 1992 | A |
5261044 | Dev et al. | Nov 1993 | A |
5402316 | Volz et al. | Mar 1995 | A |
5463742 | Kobayashi | Oct 1995 | A |
5504921 | Dev et al. | Apr 1996 | A |
5546145 | Bernardi et al. | Aug 1996 | A |
5552959 | Penniman et al. | Sep 1996 | A |
5579001 | Dempsey et al. | Nov 1996 | A |
5579529 | Terrell et al. | Nov 1996 | A |
5579775 | Dempsey et al. | Dec 1996 | A |
5587560 | Crooks et al. | Dec 1996 | A |
5615625 | Cassidy et al. | Apr 1997 | A |
5640953 | Bishop et al. | Jun 1997 | A |
5655081 | Bonnell et al. | Aug 1997 | A |
5687734 | Dempsey et al. | Nov 1997 | A |
5724509 | Starkweather et al. | Mar 1998 | A |
5752917 | Fuchs | May 1998 | A |
5774793 | Cooper et al. | Jun 1998 | A |
5793967 | Simciak et al. | Aug 1998 | A |
5798951 | Cho et al. | Aug 1998 | A |
5805442 | Crater et al. | Sep 1998 | A |
5815735 | Baker | Sep 1998 | A |
5819110 | Motoyama | Oct 1998 | A |
5825617 | Kochis et al. | Oct 1998 | A |
5832244 | Jolley et al. | Nov 1998 | A |
5835733 | Walsh et al. | Nov 1998 | A |
5848253 | Walsh et al. | Dec 1998 | A |
5862349 | Cho et al. | Jan 1999 | A |
5867714 | Todd et al. | Feb 1999 | A |
5875312 | Walsh et al. | Feb 1999 | A |
5878256 | Bealkowski et al. | Mar 1999 | A |
5889964 | Cho et al. | Mar 1999 | A |
5921459 | Heraly et al. | Jul 1999 | A |
5931909 | Taylor | Aug 1999 | A |
5935244 | Swamy et al. | Aug 1999 | A |
5941965 | Moroz et al. | Aug 1999 | A |
5961337 | Kordes | Oct 1999 | A |
5978591 | Bartholomew et al. | Nov 1999 | A |
6032202 | Lea et al. | Feb 2000 | A |
6037788 | Krajec et al. | Mar 2000 | A |
6049454 | Howell et al. | Apr 2000 | A |
6070012 | Eitner et al. | May 2000 | A |
6085244 | Wookey | Jul 2000 | A |
6086430 | Amoni et al. | Jul 2000 | A |
6088752 | Ahern | Jul 2000 | A |
6091602 | Helot | Jul 2000 | A |
6098097 | Dean et al. | Aug 2000 | A |
6108717 | Kimura et al. | Aug 2000 | A |
6109039 | Hougham et al. | Aug 2000 | A |
6142593 | Kim et al. | Nov 2000 | A |
6151643 | Cheng et al. | Nov 2000 | A |
6158430 | Pfeiffer et al. | Dec 2000 | A |
6160719 | May et al. | Dec 2000 | A |
6161133 | Kikinis | Dec 2000 | A |
6171559 | Sanders et al. | Jan 2001 | B1 |
6188572 | Liao et al. | Feb 2001 | B1 |
6195265 | Choi | Feb 2001 | B1 |
6199108 | Casey et al. | Mar 2001 | B1 |
6202209 | Bartholomew et al. | Mar 2001 | B1 |
6226739 | Eagle | May 2001 | B1 |
6240297 | Jadoul et al. | May 2001 | B1 |
6247074 | Shin et al. | Jun 2001 | B1 |
6256691 | Moroz et al. | Jul 2001 | B1 |
6267475 | Lee et al. | Jul 2001 | B1 |
6279059 | Ludtke et al. | Aug 2001 | B1 |
6279154 | Davis | Aug 2001 | B1 |
6285911 | Watts, Jr. et al. | Sep 2001 | B1 |
6297963 | Fogle | Oct 2001 | B1 |
6301106 | Helot et al. | Oct 2001 | B1 |
6311321 | Agnihotri et al. | Oct 2001 | B1 |
6324692 | Fiske | Nov 2001 | B1 |
6330597 | Collin et al. | Dec 2001 | B2 |
6341274 | Leon | Jan 2002 | B1 |
6341320 | Watts, Jr. et al. | Jan 2002 | B1 |
6360362 | Fichtner et al. | Mar 2002 | B1 |
6378128 | Edelstein et al. | Apr 2002 | B1 |
6407335 | Franklin-Lees et al. | Jun 2002 | B1 |
6407915 | Derocher et al. | Jun 2002 | B1 |
6425126 | Branson et al. | Jul 2002 | B1 |
6442639 | McElhattan et al. | Aug 2002 | B1 |
6452325 | Dupont | Sep 2002 | B1 |
6457076 | Cheng et al. | Sep 2002 | B1 |
6461181 | Goh et al. | Oct 2002 | B1 |
6467088 | alSafadi et al. | Oct 2002 | B1 |
6477588 | Yerazunis et al. | Nov 2002 | B1 |
6484315 | Ziese | Nov 2002 | B1 |
6489932 | Chitturi et al. | Dec 2002 | B1 |
6505121 | Russell | Jan 2003 | B1 |
6506009 | Nulman et al. | Jan 2003 | B1 |
6511031 | Lin | Jan 2003 | B2 |
6519143 | Goko et al. | Feb 2003 | B1 |
6539358 | Coon et al. | Mar 2003 | B1 |
6542943 | Cheng et al. | Apr 2003 | B2 |
6558049 | Shin | May 2003 | B1 |
6560643 | Shepherd et al. | May 2003 | B1 |
6584336 | Ali et al. | Jun 2003 | B1 |
6584499 | Jantz et al. | Jun 2003 | B1 |
6587874 | Golla et al. | Jul 2003 | B1 |
6593528 | Franklin-Lees et al. | Jul 2003 | B2 |
6594534 | Crowell | Jul 2003 | B1 |
6606678 | Nakamura et al. | Aug 2003 | B1 |
6614979 | Bourdeau et al. | Sep 2003 | B2 |
6615405 | Goldman et al. | Sep 2003 | B1 |
6628517 | Helot et al. | Sep 2003 | B1 |
6633482 | Rode | Oct 2003 | B2 |
6658659 | Hiller et al. | Dec 2003 | B2 |
6668296 | Dougherty et al. | Dec 2003 | B1 |
6683786 | Yin et al. | Jan 2004 | B2 |
6684241 | Sandick et al. | Jan 2004 | B1 |
6697032 | Chitturi et al. | Feb 2004 | B2 |
6722192 | Benedict et al. | Apr 2004 | B2 |
6725260 | Philyaw | Apr 2004 | B1 |
6725281 | Zintel et al. | Apr 2004 | B1 |
6728956 | Ono | Apr 2004 | B2 |
6742025 | Jennery et al. | May 2004 | B2 |
6751681 | Torli et al. | Jun 2004 | B2 |
6754723 | Kato et al. | Jun 2004 | B2 |
6760761 | Sciacca | Jul 2004 | B1 |
6763403 | Cheng et al. | Jul 2004 | B2 |
6766175 | Uchiyama | Jul 2004 | B2 |
6766956 | Boylan, III et al. | Jul 2004 | B1 |
6770028 | Ali et al. | Aug 2004 | B1 |
6772264 | Dayan et al. | Aug 2004 | B1 |
6778824 | Wonak et al. | Aug 2004 | B2 |
6779068 | Kim et al. | Aug 2004 | B2 |
6784855 | Matthews et al. | Aug 2004 | B2 |
6806813 | Cheng et al. | Oct 2004 | B1 |
6832082 | Ramaswamy et al. | Dec 2004 | B1 |
6832373 | O'Neill | Dec 2004 | B2 |
6833787 | Levi | Dec 2004 | B1 |
6833989 | Helot et al. | Dec 2004 | B2 |
6850158 | Williams | Feb 2005 | B1 |
6854112 | Crespo et al. | Feb 2005 | B2 |
6857013 | Ramberg et al. | Feb 2005 | B2 |
6863210 | Becker et al. | Mar 2005 | B2 |
6864891 | Myers | Mar 2005 | B2 |
6868468 | Boz et al. | Mar 2005 | B2 |
6886104 | McClurg et al. | Apr 2005 | B1 |
6889263 | Motoyama | May 2005 | B2 |
6895261 | Palamides | May 2005 | B1 |
6895445 | Ying et al. | May 2005 | B2 |
6898080 | Yin et al. | May 2005 | B2 |
6904457 | Goodman | Jun 2005 | B2 |
6907603 | Scott | Jun 2005 | B2 |
6915514 | Machida et al. | Jul 2005 | B1 |
6920631 | Delo | Jul 2005 | B2 |
6928493 | Motoyama | Aug 2005 | B2 |
6944854 | Kehne et al. | Sep 2005 | B2 |
6944858 | Luu | Sep 2005 | B2 |
6954142 | Lieberman et al. | Oct 2005 | B2 |
6955517 | Nulman et al. | Oct 2005 | B2 |
6959172 | Becker et al. | Oct 2005 | B2 |
6961586 | Barbosa et al. | Nov 2005 | B2 |
6966058 | Earl et al. | Nov 2005 | B2 |
6968550 | Branson et al. | Nov 2005 | B2 |
6970952 | Motoyama | Nov 2005 | B2 |
6973799 | Kuehl et al. | Dec 2005 | B2 |
6976062 | Denby et al. | Dec 2005 | B1 |
6981086 | Wetzel et al. | Dec 2005 | B2 |
6987988 | Uchiyama | Jan 2006 | B2 |
6990549 | Main et al. | Jan 2006 | B2 |
6990660 | Moshir et al. | Jan 2006 | B2 |
6993615 | Falcon | Jan 2006 | B2 |
6993760 | Peev et al. | Jan 2006 | B2 |
6996634 | Herrod et al. | Feb 2006 | B1 |
6999898 | King et al. | Feb 2006 | B2 |
7000035 | Uchizono et al. | Feb 2006 | B1 |
7000228 | Mortazavi | Feb 2006 | B2 |
7003560 | Mullen et al. | Feb 2006 | B1 |
7013331 | Das | Mar 2006 | B2 |
7020571 | Lee et al. | Mar 2006 | B2 |
7024189 | Wonak et al. | Apr 2006 | B2 |
7039688 | Matsuda et al. | May 2006 | B2 |
7043537 | Pratt | May 2006 | B1 |
7054423 | Nebiker et al. | May 2006 | B2 |
7054977 | Kadambi et al. | May 2006 | B2 |
7069006 | Wonak | Jun 2006 | B2 |
7072675 | Kanakubo | Jul 2006 | B1 |
7076536 | Chiloyan et al. | Jul 2006 | B2 |
7080371 | Arnaiz et al. | Jul 2006 | B1 |
7085805 | Ruberg et al. | Aug 2006 | B1 |
7085824 | Forth et al. | Aug 2006 | B2 |
7086049 | Goodman | Aug 2006 | B2 |
7089551 | Fordemwalt et al. | Aug 2006 | B2 |
7099152 | Gasbarro et al. | Aug 2006 | B2 |
7100271 | Baulier | Sep 2006 | B2 |
7107380 | Mohan | Sep 2006 | B1 |
7111055 | Falkner | Sep 2006 | B2 |
7114021 | Seshadri | Sep 2006 | B2 |
7117239 | Hansen | Oct 2006 | B1 |
7117286 | Falcon | Oct 2006 | B2 |
7130896 | Engel et al. | Oct 2006 | B2 |
7133939 | Desai et al. | Nov 2006 | B1 |
7149792 | Hansen et al. | Dec 2006 | B1 |
7159016 | Baker | Jan 2007 | B2 |
7185014 | Hansen | Feb 2007 | B1 |
7188160 | Champagne et al. | Mar 2007 | B2 |
7188171 | Srinivasan et al. | Mar 2007 | B2 |
7191435 | Lau et al. | Mar 2007 | B2 |
7194526 | Kanemitsu et al. | Mar 2007 | B2 |
7216343 | Das et al. | May 2007 | B2 |
7272711 | Suda et al. | Sep 2007 | B2 |
7289995 | Motoyama et al. | Oct 2007 | B2 |
7290258 | Steeb et al. | Oct 2007 | B2 |
7316013 | Kawano et al. | Jan 2008 | B2 |
7409478 | Kreiner et al. | Aug 2008 | B2 |
7413129 | Fruhauf | Aug 2008 | B2 |
7543080 | Schade | Jun 2009 | B2 |
7769914 | Kim et al. | Aug 2010 | B2 |
7857222 | Kosecki et al. | Dec 2010 | B2 |
7966622 | Purser et al. | Jun 2011 | B1 |
7996896 | Durie | Aug 2011 | B2 |
8297508 | Kosecki et al. | Oct 2012 | B2 |
8621123 | Caballero | Dec 2013 | B2 |
8918564 | Caballero | Dec 2014 | B2 |
20010042112 | Slivka et al. | Nov 2001 | A1 |
20020073304 | Marsh et al. | Jun 2002 | A1 |
20020083160 | Middleton | Jun 2002 | A1 |
20020083432 | Souissi et al. | Jun 2002 | A1 |
20020086703 | Dimenstein et al. | Jul 2002 | A1 |
20020087392 | Stevens | Jul 2002 | A1 |
20020087668 | San Martin et al. | Jul 2002 | A1 |
20020087960 | Hisatake | Jul 2002 | A1 |
20020092008 | Kehne et al. | Jul 2002 | A1 |
20020092013 | Delo | Jul 2002 | A1 |
20020094208 | Palumbo | Jul 2002 | A1 |
20020095484 | Pagani et al. | Jul 2002 | A1 |
20020100036 | Moshir et al. | Jul 2002 | A1 |
20020109665 | Matthews et al. | Aug 2002 | A1 |
20020129350 | Wang et al. | Sep 2002 | A1 |
20020129355 | Velten et al. | Sep 2002 | A1 |
20020147974 | Wookey | Oct 2002 | A1 |
20020184349 | Manukyan | Dec 2002 | A1 |
20020184350 | Chen | Dec 2002 | A1 |
20020187024 | Nulman | Dec 2002 | A1 |
20020191940 | Bourdeau | Dec 2002 | A1 |
20020198969 | Engel et al. | Dec 2002 | A1 |
20030018694 | Chen et al. | Jan 2003 | A1 |
20030031539 | Nulman et al. | Feb 2003 | A1 |
20030046675 | Cheng et al. | Mar 2003 | A1 |
20030051235 | Simpson | Mar 2003 | A1 |
20030059022 | Nebiker et al. | Mar 2003 | A1 |
20030084436 | Berger et al. | May 2003 | A1 |
20030088651 | Wilson | May 2003 | A1 |
20030097427 | Parry | May 2003 | A1 |
20030111245 | Haggerty | Jun 2003 | A1 |
20030154471 | Teachman et al. | Aug 2003 | A1 |
20030188306 | Harris et al. | Oct 2003 | A1 |
20030198015 | Vogt | Oct 2003 | A1 |
20030217357 | Parry | Nov 2003 | A1 |
20030217358 | Thurston et al. | Nov 2003 | A1 |
20030221190 | Deshpande et al. | Nov 2003 | A1 |
20030225939 | Ying et al. | Dec 2003 | A1 |
20040002943 | Merrill et al. | Jan 2004 | A1 |
20040015949 | Taylor | Jan 2004 | A1 |
20040020974 | Becker et al. | Feb 2004 | A1 |
20040024933 | Billington et al. | Feb 2004 | A1 |
20040049233 | Edwards | Mar 2004 | A1 |
20040050247 | Topping | Mar 2004 | A1 |
20040078502 | Hsin et al. | Apr 2004 | A1 |
20040083471 | Nam et al. | Apr 2004 | A1 |
20040098571 | Falcon | May 2004 | A1 |
20040103172 | Chen et al. | May 2004 | A1 |
20040123281 | Olrik et al. | Jun 2004 | A1 |
20040127210 | Shostak | Jul 2004 | A1 |
20040139757 | Kuehl et al. | Jul 2004 | A1 |
20040143032 | Auschra et al. | Jul 2004 | A1 |
20040148600 | Hoshino | Jul 2004 | A1 |
20040154014 | Bunger | Aug 2004 | A1 |
20040168167 | Ono | Aug 2004 | A1 |
20040176072 | Gellens | Sep 2004 | A1 |
20040177380 | Hamel et al. | Sep 2004 | A1 |
20040181593 | Kanojia et al. | Sep 2004 | A1 |
20040192329 | Barbosa et al. | Sep 2004 | A1 |
20040199615 | Philyaw | Oct 2004 | A1 |
20040205709 | Hiltgen et al. | Oct 2004 | A1 |
20040210897 | Brockway et al. | Oct 2004 | A1 |
20040212822 | Schinner | Oct 2004 | A1 |
20040216099 | Okita et al. | Oct 2004 | A1 |
20040235532 | Matthews et al. | Nov 2004 | A1 |
20040243991 | Gustafson et al. | Dec 2004 | A1 |
20040243995 | Sheehy | Dec 2004 | A1 |
20040255023 | Motoyama et al. | Dec 2004 | A1 |
20040268340 | Steeb et al. | Dec 2004 | A1 |
20050044544 | Slivka et al. | Feb 2005 | A1 |
20050050538 | Kawamata et al. | Mar 2005 | A1 |
20050052156 | Liebenow | Mar 2005 | A1 |
20050060862 | Baulier | Mar 2005 | A1 |
20050065822 | Ying et al. | Mar 2005 | A1 |
20050086328 | Landram et al. | Apr 2005 | A1 |
20050093821 | Massie et al. | May 2005 | A1 |
20050097543 | Hirayama | May 2005 | A1 |
20050097544 | Kim | May 2005 | A1 |
20050108700 | Chen et al. | May 2005 | A1 |
20050132348 | Meulemans et al. | Jun 2005 | A1 |
20050132349 | Roberts et al. | Jun 2005 | A1 |
20050132350 | Markley et al. | Jun 2005 | A1 |
20050132351 | Randall et al. | Jun 2005 | A1 |
20050144612 | Wang et al. | Jun 2005 | A1 |
20050144614 | Moslander et al. | Jun 2005 | A1 |
20050159847 | Shah et al. | Jul 2005 | A1 |
20050204353 | Ji | Sep 2005 | A1 |
20050210458 | Moriyama et al. | Sep 2005 | A1 |
20050210459 | Henderson et al. | Sep 2005 | A1 |
20050210466 | Carter et al. | Sep 2005 | A1 |
20050223372 | Borchers | Oct 2005 | A1 |
20050223373 | Gage et al. | Oct 2005 | A1 |
20050229171 | Henry et al. | Oct 2005 | A1 |
20050235076 | Winarski et al. | Oct 2005 | A1 |
20050246703 | Ahonen | Nov 2005 | A1 |
20050251799 | Wang | Nov 2005 | A1 |
20050254776 | Morrison et al. | Nov 2005 | A1 |
20050257205 | Costea et al. | Nov 2005 | A1 |
20050257209 | Adams et al. | Nov 2005 | A1 |
20050273229 | Steinmeier et al. | Dec 2005 | A1 |
20050278001 | Qin et al. | Dec 2005 | A1 |
20060010437 | Marolia | Jan 2006 | A1 |
20060013646 | Baulier et al. | Jan 2006 | A1 |
20060029489 | Nulman et al. | Feb 2006 | A1 |
20060031617 | Falcon | Feb 2006 | A1 |
20060031828 | Won et al. | Feb 2006 | A1 |
20060041881 | Adkasthala | Feb 2006 | A1 |
20060049677 | Lawrence et al. | Mar 2006 | A1 |
20060069813 | Biamonte et al. | Mar 2006 | A1 |
20060070055 | Hodder et al. | Mar 2006 | A1 |
20060082965 | Walker et al. | Apr 2006 | A1 |
20060106965 | Falcon | May 2006 | A1 |
20060130037 | Mackay | Jun 2006 | A1 |
20060132964 | Lau et al. | Jun 2006 | A1 |
20060136893 | Blossom et al. | Jun 2006 | A1 |
20060142129 | Siaperas | Jun 2006 | A1 |
20060149321 | Merry et al. | Jul 2006 | A1 |
20060149322 | Merry et al. | Jul 2006 | A1 |
20060149323 | Merry et al. | Jul 2006 | A1 |
20060150177 | Liu et al. | Jul 2006 | A1 |
20060156302 | Yamamoto et al. | Jul 2006 | A1 |
20060168578 | Vorlicek | Jul 2006 | A1 |
20060168581 | Goger et al. | Jul 2006 | A1 |
20060172873 | Beard | Aug 2006 | A1 |
20060179431 | Devanathan et al. | Aug 2006 | A1 |
20060200812 | Mizutani et al. | Sep 2006 | A1 |
20060206888 | Mavrinac et al. | Sep 2006 | A1 |
20060218545 | Taguchi | Sep 2006 | A1 |
20060236518 | Baulier | Oct 2006 | A1 |
20060238384 | Hess et al. | Oct 2006 | A1 |
20060248522 | Lakshminarayanan et al. | Nov 2006 | A1 |
20060248524 | Seely | Nov 2006 | A1 |
20070006207 | Appaji | Jan 2007 | A1 |
20070006213 | Shahidzadeh et al. | Jan 2007 | A1 |
20070006214 | Dubal et al. | Jan 2007 | A1 |
20070038990 | White et al. | Feb 2007 | A1 |
20070055969 | Yang | Mar 2007 | A1 |
20070055970 | Sakuda et al. | Mar 2007 | A1 |
20070074201 | Lee | Mar 2007 | A1 |
20070083630 | Roth et al. | Apr 2007 | A1 |
20070169073 | O3 Neill et al. | Jul 2007 | A1 |
20070169089 | Bantz et al. | Jul 2007 | A1 |
20070169090 | Kang | Jul 2007 | A1 |
20070169092 | Lee | Jul 2007 | A1 |
20070169093 | Logan et al. | Jul 2007 | A1 |
20070174834 | Purkeypile et al. | Jul 2007 | A1 |
20070220505 | Bukovec et al. | Sep 2007 | A1 |
20070234331 | Schow et al. | Oct 2007 | A1 |
20070245333 | Ferlitsch | Oct 2007 | A1 |
20090045922 | Kosecki et al. | Feb 2009 | A1 |
20100268857 | Bauman et al. | Oct 2010 | A1 |
20110090057 | Kosecki et al. | Apr 2011 | A1 |
20120000984 | Kosecki et al. | Jan 2012 | A1 |
20130013936 | Lin et al. | Jan 2013 | A1 |
20130091311 | Caballero | Apr 2013 | A1 |
Number | Date | Country |
---|---|---|
0217073 | Feb 2002 | WO |
2005033964 | Apr 2005 | WO |
Number | Date | Country | |
---|---|---|---|
20150095527 A1 | Apr 2015 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 14143399 | Dec 2013 | US |
Child | 14566824 | US | |
Parent | 13267342 | Oct 2011 | US |
Child | 14143399 | US |