The present invention relates to a method, a device and a computer readable medium for evaluating a surface of an optical element, and more specifically to a method, a device and a computer readable medium for quantitatively evaluating a processing error of a surface shape of an optical element by image analysis.
During a testing process of optical elements, evaluation values concerning the optical performance, such as a shape and the amount of aberration, are measured. For example, Japanese Patent Provisional Publication No. 2005-241592A (hereafter, referred to as JP2005-241592A) discloses an interference fringe analyzing device which obtains the amount of aberration from an interference fringe image. Specifically, the interference fringe analyzing device disclosed in JP2005-241592A is configured to simultaneously display an original image and an interference fringe image reconfigured with the amount of aberration obtained by analyzing the original image so as to enable a worker to easily understand the effectiveness of a measurement result.
In the testing process for a shape of an optical element, a deviation shape is measured with an interferometer or a shape measuring device. The measured deviation shape is evaluated by a comparison between a tolerance and a deviating amount with respect to an ideal shape (a design shape). When the deviating amount falls within the tolerance, the optical element is evaluated as a shape not having a processing error. When the deviating amount falls outside the tolerance, the optical element is evaluated as a shape having a processing error.
Let us consider a case where the surface shape tolerance is represented as “⅗(0.6)” in accordance with JIS (Japanese Industrial Standards). In this case, the surface shape needs to satisfy the precision that the surface shape corresponds to a code number 3, the sagitta error (Newton fringes) is five, and the wavefront irregularity is 0.6. The wavefront irregularity is one of evaluation values indicating the surface shape deviation. In general, the wavefront irregularity is known as a local distortion of Newton fringes (astigmatism, deformation (F)). In general, of wavefront irregularities, a rotationally symmetric wavefront irregularity is used for the shape evaluation for an optical element having rotational symmetry. There is a case where the rotationally symmetric wavefront irregularity is simply called a deformation.
There is a case where a relatively large deviation shape (e.g., sagging at the peripheral part) is locally caused on a testing surface of an optical element. In the shape evaluation by the rotationally symmetric wavefront irregularity, a defocus component corresponding to the approximation shape of the entire testing surface including the local deviation shape is added.
However, there is a problem that such a visual measurement involves a considerable amount of error. Furthermore, there is a problem that, when the interference fringe is to be adjusted, the error fluctuates depending on a degree of adjustment, and therefore the accuracy of the measurement decreases. There is also a problem that, when the deviation shape includes a rotationally asymmetric component, the degree of a curve of the interference fringe with respect to the adjustment varies depending on the rotationally asymmetric component, and thereby the measurement accuracy decreases.
The present invention is advantageous in that it provides a method, a device and a computer readable medium capable of quantitatively and suitably evaluating a processing error of a surface of an optical element to be inspected.
According to an aspect of the invention, there is provided a method for quantitatively evaluating a processing error of a testing surface of an optical element, comprising: executing polynomial approximation to obtain a deviation shape of the testing surface with respect to an ideal surface; calculating an evaluation shape by extracting a rotationally symmetric irregularity component of the deviation shape from a result of the polynomial approximation; adding one of a 2nd order component and a spherical component to the evaluation shape so that a region including a pupil center of the evaluation shape is deformed to be planar; and calculating the processing error of the testing surface based on the evaluation shape to which one of the 2nd order component and the spherical component has been added.
With this configuration, since the interference fringe of which central region within the observation area is set to be linear can be tentatively obtained by adding one of the spherical component and the 2nd order component to the evaluation shape formed by the rotationally symmetric irregularity component, it is possible to quantitatively obtain the deviating amount with respect to the paraxial spherical surface of the actual product shape (i.e., the amount representing more precisely representing the processing error of the actual product).
In at least one aspect, the method may further comprise: calculating a region which can be deformed to be planar on the evaluation shape, based on the rotationally symmetric irregularity component; and calculating one of the spherical component and the 2nd order component required for deforming the calculated region to be planar. With this configuration, the processing error of the testing surface can be obtained with a high degree of precision.
In at least one aspect, a polynomial used for the polynomial approximation may be one of a Zernike polynomial and a rotationally symmetrical aspherical surface expression.
In at least one aspect, in the step of calculating the processing error, a PV (Peak to Valley) value of the evaluation shape to which one of the spherical component and the 2nd order component has been added may be calculated, a rotationally symmetric irregularity to which one of the spherical component and the 2nd order component has been added may be calculated by converting a unit of the PV value, and the processing error may be calculated from the rotationally symmetric irregularity.
In at least one aspect, the method may further comprise: judging whether the testing surface has a positive deformation or a negative deformation with respect to the ideal surface depending on a sign of the PV vale with reference to the region which has been deformed to be planar.
In at least one aspect, the method may further comprise: calculating the deviation shape using a measurement result of the testing surface by a predetermined measuring device.
According to another aspect of the invention, there is provided a computer readable medium having computer readable instruction stored thereon, which, when executed by a processor of a computer, configures the processor to perform the steps of: executing polynomial approximation to obtain a deviation shape of the testing surface with respect to an ideal surface; calculating an evaluation shape by extracting a rotationally symmetric irregularity component of the deviation shape from a result of the polynomial approximation; adding one of a 2nd order component and a spherical component to the evaluation shape so that a region including a pupil center of the evaluation shape is deformed to be planar; and calculating the processing error of the testing surface based on the evaluation shape to which one of the 2nd order component and the spherical component has been added.
With this configuration, since the interference fringe of which central region within the observation area is set to be linear can be tentatively obtained by adding one of the spherical component and the 2nd order component to the evaluation shape formed by the rotationally symmetric irregularity component, it is possible to quantitatively obtain the deviating amount with respect to the paraxial spherical surface of the actual product shape (i.e., the amount representing more precisely representing the processing error of the actual product).
In at least one aspect, the instruction may further cause the processor to perform the steps of: calculating a region which can be deformed to be planar on the evaluation shape, based on the rotationally symmetric irregularity component; and calculating one of the spherical component and the 2nd order component required for deforming the calculated region to be planar. With this configuration, the processing error of the testing surface can be obtained with a high degree of precision.
In at least one aspect, a polynomial used for the polynomial approximation may be one of a Zernike polynomial and a rotationally symmetrical aspherical surface expression.
In at least one aspect, in the step of calculating the processing error, a PV (Peak to Valley) value of the evaluation shape to which one of the spherical component and the 2nd order component has been added may be calculated, a rotationally symmetric irregularity to which one of the spherical component and the 2nd order component has been added may be calculated by converting a unit of the PV value, and the processing error may be calculated from the rotationally symmetric irregularity.
In at least one aspect, the instruction may further cause the processor to perform the step of: judging whether the testing surface has a positive deformation or a negative deformation with respect to the ideal surface depending on a sign of the PV vale with reference to the region which has been deformed to be planar.
In at least one aspect, the instruction may further cause the processor to perform the step of: calculating the deviation shape using a measurement result of the testing surface by a predetermined measuring device.
According to another aspect of the invention, there is provided a device for evaluating a shape of an optical element, comprising: a polynomial approximation unit configured to execute polynomial approximation to obtain a deviation shape of the testing surface with respect to an ideal surface; an evaluation shape calculation unit configured to calculate an evaluation shape by extract a rotationally symmetric irregularity component of the deviation shape from a result of the polynomial approximation; a component addition unit configured to add one of a 2nd order component and a spherical component to the evaluation shape so that a region including a pupil center of the evaluation shape is deformed to be planar; and a processing error calculation unit configured to calculate the processing error of the testing surface based on the evaluation shape to which one of the 2nd order component and the spherical component has been added.
With this configuration, since the interference fringe of which central region within the observation area is set to be linear can be tentatively obtained by adding one of the spherical component and the 2nd order component to the evaluation shape formed by the rotationally symmetric irregularity component, it is possible to quantitatively obtain the deviating amount with respect to the paraxial spherical surface of the actual product shape (i.e., the amount representing more precisely representing the processing error of the actual product).
In at least one aspect, the device may further comprise: a region calculation unit configured to calculate a region which can be deformed to be planar on the evaluation shape, based on the rotationally symmetric irregularity component; and a component calculation unit configured to calculate one of the spherical component and the 2nd order component required for deforming the calculated region to be planar. With this configuration, the processing error of the testing surface can be obtained with a high degree of precision.
In at least one aspect, a polynomial used for the polynomial approximation may be one of a Zernike polynomial and a rotationally symmetrical aspherical surface expression.
In at least one aspect, the processing error calculation unit may be configured to calculate a PV (Peak to Valley) value of the evaluation shape to which one of the spherical component and the 2nd order component has been added, and to calculate the rotationally symmetric irregularity value by converting a unit of the PV value.
In at least one aspect, the device may further comprise: a judgment unit configured to judge whether the testing surface has a positive deformation or a negative deformation with respect to the ideal surface depending on a sign of the PV vale with reference to the region which has been deformed to be planar.
In at least one aspect, the device may further comprise: a deviation shape calculation unit configured to calculate the deviation shape using a measurement result of the testing surface by a predetermined measuring device.
Hereinafter, an embodiment according to the invention is described with reference to the accompanying drawings. An actual product is produced such that a shape has a deviating amount falls within a tolerance with respect to an ideal shape. That is, a shape of an actual product (hereafter, referred to as an “actual product shape”) does not exactly coincide with the ideal shape. However, in this embodiment, the shape falling within the tolerance is regarded to be equivalent to the ideal shape not having a processing error. Since a testing surface of an optical element to be observed is processed with a high degree of precision, almost all of the entire region of the testing surface including an area around an optical axis is regarded as falling within the tolerance. Under such a premise, in this embodiment, the deviating amount with respect to a paraxial spherical surface of the actual product shape is measured and is subjected to image analysis so as to quantitatively evaluate the processing error.
A reference wavefront (reference wavefront light) reflected by the reference surface 18a is reflected by the half mirror 14, and is incident on an imaging lens 20. The reference wavefront light is incident on an imaging surface of an imaging camera 22 through the imaging lens is 20. A subject wavefront (subject wavefront light) which has passed through the reference surface 18a is made into a converging light beam by the reference lens 18, and is incident on a subject (lens) 1. The subject 1 is positioned such that the curvature of a testing surface 1a coincides with the curvature of the subject wavefront light. Adjustment for adjusting the position of the subject 1 as described above is referred to as “alignment”. The subject wavefront light is reflected by the testing surface 1a of the subject 1 and returns to the half mirror 14 along an optical path. The subject wavefront light is then reflected by the half mirror 14, and is incident on the imaging surface of the imaging camera 22 through the imaging lens 20. On the imaging surface of the imaging camera 22, the interference fringe is formed by interference between the reference wavefront light and the subject wavefront light. The interference light becomes bright when an optical path difference between the reference wavefront light and the subject wavefront light is equal to an integral multiple of the wavelength of the laser beam being used, and becomes dark when the optical path difference shifts by a half of the wavelength from an integral multiple of the wavelength. The interference fringe captured by the imaging camera 22 is displayed on a monitor 26 after being subjected to an image processing by an image processing apparatus 24. The image processing apparatus 24 may be a PC (Personal Computer) including a CPU (Central Processing Unit), a memory storing various types of data and programs, and a user interface.
The interference fringe displayed on the monitor 26 includes various types of components, such as a component caused by the alignment (a tilt component or a defocus component by the remaining alignment), a coma, astigmatism, a spherical aberration and high order aberrations. Therefore, it is difficult to measure the processing error with a high degree of precision by the visual measurement. For this reason, the optical element evaluation system 100 obtains the spatial phase distribution of the testing surface 1a by using a known interference fringe analyzing method, such as a fringe scanning method or a temporal phase shift method.
In this embodiment, an interference fringe analysis using the fringe scanning method is performed, for example. Specifically, a drive control unit (not shown) moves the reference lens 18 in a direction of an optical axis AX. As a result, the interval between the reference surface 18a and the testing surface 1a changes, and thereby the light and shade of the interference fringe periodically changes. The drive control unit moves the reference lens 18 so that the interference fringe changes by one cycle (2π). The image processing apparatus 24 captures a plurality of pieces of reference fringe image data while the reference lens 18 is moved, and calculates the initial phase based on the phase variation (the intensity variation) of each pixel on an interference fringe image. The image processing apparatus 24 obtains presence/absence of continuity between adjacent pixels and presence/absence of the phase shift corresponding to one cycle, in addition to the initial phase of each pixel, and associates them with information of each pixel. As a result, the spatial phase distribution of the testing surface 1a is obtained. The image processing apparatus 24 displays the obtained spatial phase distribution on the monitor 26 as a digital analysis result of the interference fringe. The obtained spatial phase distribution represents the deviation shape of the testing surface 1a.
However, the spatial phase distribution still includes various types of components.
Specifically, in
In general, Zernike polynomial is developed in 36 terms. In Zernike polynomial, the rotationally symmetric irregularity component is represented with the 3rd term, the 8th term, the 15th term, the 24th term and the 35th term indicated by the following expression (1). The 3rd term represents the defocus component. The 8th term, the 15th term, the 24th term and the 35th term represent the 3rd order, the 5th order, the 7th order and the 9th order spherical aberrations, respectively.
The deviation shape W(r) composed only of the rotationally symmetric irregularity component can be expressed by the following expression (2) which is obtained by multiplying each term n indicated in the expression (1) by a coefficient an. A variable r in the expression (1) is a normalized value (0≦r≦1), and represents the pupil coordinate of the subject 1.
Since the deviation shape W(r) includes a plurality of types of components, the deviation shape W(r) shows a complex shape. Therefore, depending on the amount of each component or the balance between components, there is a case where the deviation at the pupil center becomes large, as shown by the graph F in
In order to precisely measure the processing error, it is preferable to add a defocus component corresponding to the actual product shape so that the interference fringe becomes linear in the central region of the observation area as shown, for example, in
For this reason, according to the embodiment, the image processing apparatus 24 executes a processing error calculation program 24a to execute a process (hereafter, referred to as a planarization process) in which the central region (a region including the pupil center) of the deviation shape W(r) is deformed to be planer so as to coincide with a reference plane (the X-Y plane in the example of
The processing error calculation program 24a adjusts the defocus component of the deviation shape W(r) to planarize the central region of the deviation shape W(r). As shown in the expressions (1) and (2), the defocus component is the 2nd order component. Therefore, it is considered that, by setting all the 2nd order components contained in the deviation shape W(r) to be zero, the central region is planarized and the liner interference fringe can be obtained. However, the deviation shape W(r) includes the high order components larger than or equal to 4th order. Therefore, the interference fringe can not be set to be linear by merely setting the 2nd order components to be zero. It should be noted that the defocus component may be set as a spherical component in place of the second order component.
The processing error calculation program 24a operates to planarize the central region by adjusting the 2nd order components depending on the deviation shape W(r). Specifically, the processing error calculation program 24a obtains the pupil coordination rs at which the sign of the second derivative of the deviation shape W(r) changes first, starting from the starting point of the pupil coordinate 0 (W(0)). In a region of the pupil coordinate falling within the absolute value of the obtained value rs, the planarization can be executed. The second derivative of the deviation shape W(r) is shown in the following expression (3).
Next, the 2nd order component required for the planarization of the pupil coordinate region rs (i.e., the coefficient a3 which is the term of the defocus) is obtained. The following expression (4) is the first derivative of the deviation shape W(r). The following expression (5) is an expression obtained by decomposing the expression (4) into the spherical aberration component Wsa and the defocus component Wdefo.
The processing error calculation program 24a calculates the coefficient a3 by which the first derivative of the deviation shape W(r) is minimized (i.e., the adjusting amount of the 2nd order components required for the planarization), by using the least squares approximation.
The processing error calculation program 24a obtains a PV (Peak to Valley) value of the deviation shape W(r) by assigning the calculated coefficient a3 to the expression (2) (i.e., by planarizing the pupil coordinate region rs by adding the 2nd order component to the deviation shape W(r)). The PV value (unit: X) represents an optical path difference at the pupil coordinate (e.g., r≈1) at which the deviation is maximized when W(0)=0. The sign of the PV value is defined with reference to the planarized pupil coordinate region rs. The PV value takes a negative value when the actual product shape has a negative deformation (i.e., a recessed part of the deviation shape with respect to the paraxial spherical surface of the actual product shape (e.g., sagging)), and takes a positive value when the actual product shape has a positive deformation (a protruded part of the deviation shape with respect to the paraxial spherical surface of the actual product shape (e.g., a turned-up part)). The processing error calculation program 24a judges whether the sagging or the turn-up part (or a deviation shape of some kind caused by a processing error, including sagging or the turned-up part) is caused on the testing surface 1a depending on the sign of the PV value, and displays a judgment result on the monitor 26.
The processing error calculation program 24a executes conversion of the unit of the PV value (2) to convert the PV value into the deviation observed as the interference fringe (i.e., the rotationally symmetric irregularity Ne to which the second component has been added (represented as h/s)). Specifically, using the following expression (11), the processing error calculation program 24a executes the wavelength conversion while defining the PV value as the round-trip optical path length (i.e., doubling), and calculates the rotationally symmetric irregularity Ne to which the second component has been added. The reason why the PV value is defined as the round-trip value is that the visually observed interference fringe corresponds to the round-trip optical path length of the deviation. It should be noted that λinf is the wavelength of the laser beam emitted from the laser source 10, and is, for example, 632.8 nm λe is an evaluation wavelength defined in JIS, and is, for example, 546.1 nm. The thus calculated rotationally symmetric irregularity Ne to which the second component has been added represents quantitatively the processing error with respect to the paraxial spherical surface of the actual product shape.
As described above, according to the optical element evaluation system 100 of the embodiment, the interference fringe which becomes liner in the central region within the observation area is tentatively obtained, and the PV value corresponding to the deviation h (see
Next, a concrete example (a first example) is explained. The quantitative measurement of the processing error in the first example is visually illustrated in the spatial distribution diagrams of
The 3rd term obtained by executing the polynomial approximation is the defocus component caused by the remaining alignment during the measurement. In the first example, the defocus component caused by the remaining alignment is not considered (i.e., a3=0) for the purpose of clarifying the feature of the invention.
When the pupil coordinate rs of the deviation shape W(r) of
The processing error calculation program 24a assigns the calculated coefficient a3 to the expression (2). That is, the processing error calculation program 24a adds together the deviation shape W(r) and the 2nd order component shown in
Although the present invention has been described in considerable detail with reference to certain preferred embodiments thereof, other embodiments are possible. For example, the shape of the testing surface 1a may be measured with a contact-type or non-contact type three dimensional scanning shape measurement device in place of the interferometer.
In the above described embodiment, Zernike polynomial is used. However, in another embodiment, another type of polynomial may be used. For example, a rotationally symmetric aspherical surface expression may be used. In this case, the deviation shape W(r) composed only of the rotationally symmetric irregularity is represented by the following expression (12). In the expression (12), the deviation shape W(r) is expressed by components up to 10th order for the sake of simplicity.
W(r)=A2r2+A4r4+A6r6+A8r8+A10r10 (12)
The following expression (13) represents the second derivative of the deviation shape W(r) for obtaining the pupil coordinate region rs. The following expression (14) represents the first derivative of the deviation shape W(r) for obtaining the 2nd order component required for planarization of the pupil coordinate region rs. In the following expression (15), the expression (14) is decomposed into the 2nd order component W2 and the high order components Wh larger than 2nd order.
The processing error calculation program 24a calculates the coefficient A2 by which the first derivative of the deviation shape W(r) is minimized within the range 0<r<rs (i.e., the adjusting amount of the 2nd order component required for the planarization), by using the least-squares approximation. By assigning the calculated coefficient A2 to the expression (12), the PV value of the deviation shape W(r) is obtained. By converting the PV value into the wavelength, the rotationally symmetric irregularity Ne to which the 2nd order component has been added is obtained as in the case of Zernike polynomial.
This application claims priority of Japanese Patent Applications No. P2010-102887, filed on Apr. 28, 2010, and No. P2011-51373, file on March 9, 2011. The entire subject matter of the applications is incorporated herein by reference.
Number | Date | Country | Kind |
---|---|---|---|
2011-051373 | Mar 2010 | JP | national |
2010-102887 | Apr 2010 | JP | national |