The disclosed embodiments relate generally to electronic devices with touch-sensitive surfaces, including but not limited to electronic devices with touch-sensitive surfaces for managing folders.
The use of touch-sensitive surfaces as input devices for computers and other electronic computing devices has increased significantly in recent years. Exemplary touch-sensitive surfaces include touch pads and touch screen displays. Such surfaces are widely used to manage folders by manipulating selectable user interface objects on a display.
Exemplary manipulations include creating a folder, displaying a folder view associated with a folder, adding selectable user interface objects (e.g., application icons, document icons, folder icons, etc.) to a folder, removing selectable user interface objects from a folder, repositioning selectable user interface objects within a folder view of a folder, repositioning a folder icon within an arrangement of selectable user interface objects and deleting a folder. Exemplary selectable user interface objects include icons representing applications, digital images, video, text, icons, and other documents, as well as applications icons that are associated with computing applications (e.g., mobile device applications and/or personal computer applications, etc.).
But existing methods for performing these manipulations are cumbersome and inefficient. For example, using a sequence of inputs to create, modify and/or delete folders and content within folders is tedious and creates a significant cognitive burden on a user. In addition, existing methods take longer than necessary, thereby wasting energy. This latter consideration is particularly important in battery-operated devices.
Accordingly, there is a need for computing devices with faster, more efficient methods and interfaces for managing folders. Such methods and interfaces may complement or replace conventional methods for managing folders. Such methods and interfaces reduce the cognitive burden on a user and produce a more efficient human-machine interface. For battery-operated computing devices, such methods and interfaces conserve power and increase the time between battery charges.
The above deficiencies and other problems associated with user interfaces for computing devices with touch-sensitive surfaces are reduced or eliminated by the disclosed devices. In some embodiments, the device is a desktop computer. In some embodiments, the device is portable (e.g., a notebook computer, tablet computer, or handheld device). In some embodiments, the device has a touchpad. In some embodiments, the device has a touch-sensitive display (also known as a “touch screen” or “touch screen display”). In some embodiments, the device has a graphical user interface (GUI), one or more processors, memory and one or more modules, programs or sets of instructions stored in the memory for performing multiple functions. In some embodiments, the user interacts with the GUI primarily through finger contacts and gestures on the touch-sensitive surface.
In some embodiments, the functions may include image editing, drawing, presenting, word processing, website creating, disk authoring, spreadsheet making, game playing, telephoning, video conferencing, e-mailing, instant messaging, workout support, digital photographing, digital videoing, web browsing, digital music playing, and/or digital video playing. Executable instructions for performing these functions may be included in a computer readable storage medium or other computer program product configured for execution by one or more processors.
In accordance with some embodiments, a multifunction device includes a display, one or more processors, memory, and one or more programs. The one or more programs are stored in the memory and configured to be executed by the one or more processors. The one or more programs include instructions for: displaying a plurality of selectable user interface objects on the display; detecting a first input; and in response to detecting the first input, moving a first object in the plurality of selectable user interface objects across the display to a location on the display that is proximate to a second object in the plurality of selectable user interface objects. The one or more programs further include instructions for detecting that the first input meets predefined folder-creation criteria while the first object is proximate to the second object; and, in response to detecting that the first input meets the predefined folder-creation criteria while the first object is proximate to the second object, creating a folder that contains the first object and the second object.
In accordance with some embodiments, a method is performed at a multifunction device with a display. The method includes: displaying a plurality of selectable user interface objects on the display; detecting a first input; and in response to detecting the first input, moving a first object in the plurality of selectable user interface objects across the display to a location on the display that is proximate to a second object in the plurality of selectable user interface objects. The method further includes detecting that the first input meets predefined folder-creation criteria while the first object is proximate to the second object; and, in response to detecting that the first input meets the predefined folder-creation criteria while the first object is proximate to the second object, creating a folder that contains the first object and the second object.
In accordance with some embodiments, a graphical user interface on a multifunction device with a display, a memory, and one or more processors to execute one or more programs stored in the memory includes a plurality of selectable user interface objects. A first input is detected, and in response to detecting the first input, a first object in the plurality of selectable user interface objects is moved across the display to a location on the display that is proximate to a second object in the plurality of selectable user interface objects. It is detected that the first input meets predefined folder-creation criteria while the first object is proximate to the second object; and, in response to detecting that the first input meets the predefined folder-creation criteria while the first object is proximate to the second object, a folder is created that contains the first object and the second object.
In accordance with some embodiments, a computer readable storage medium has stored therein instructions which when executed by a multifunction device with a display, cause the device to: display a plurality of selectable user interface objects on the display; detect a first input; and in response to detecting the first input, move a first object in the plurality of selectable user interface objects across the display to a location on the display that is proximate to a second object in the plurality of selectable user interface objects. The instructions further cause the device to detect that the first input meets predefined folder-creation criteria while the first object is proximate to the second object; and, in response to detecting that the first input meets the predefined folder-creation criteria while the first object is proximate to the second object, create a folder that contains the first object and the second object.
In accordance with some embodiments, a multifunction device includes: a display; means for displaying a plurality of selectable user interface objects on the display; means for detecting a first input; and means, responsive to detecting the first input, for moving a first object in the plurality of selectable user interface objects across the display to a location on the display that is proximate to a second object in the plurality of selectable user interface objects. The device further includes means for detecting that the first input meets predefined folder-creation criteria while the first object is proximate to the second object; and, means, responsive to detecting that the first input meets the predefined folder-creation criteria while the first object is proximate to the second object, for creating a folder that contains the first object and the second object.
In accordance with some embodiments, an information processing apparatus for use in a multifunction device with a display includes: means for detecting a first input; and means, responsive to detecting the first input, for moving a first object in the plurality of selectable user interface objects across the display to a location on the display that is proximate to a second object in the plurality of selectable user interface objects. The information processing apparatus further includes means for detecting that the first input meets predefined folder-creation criteria while the first object is proximate to the second object; and, means, responsive to detecting that the first input meets the predefined folder-creation criteria while the first object is proximate to the second object, for creating a folder that contains the first object and the second object.
In accordance with some embodiments, a multifunction device includes a display, one or more processors, memory, and one or more programs. The one or more programs are stored in the memory and configured to be executed by the one or more processors. The one or more programs include instructions for: concurrently displaying one or more action icons and one or more folder icons on the display. The multifunction device has a normal operation mode for activating applications and a user interface reconfiguration mode for rearranging the action icons and the folder icons on the display. The one or more programs further include instructions for detecting a first input; and in response to detecting the first input: when the first input corresponds to a request to select a respective folder icon of the one or more folder icons, displaying contents of a folder associated with the respective folder icon without regard for whether the multifunction device is in the normal operation mode or the user interface reconfiguration mode; and when the first input corresponds to a request to select a respective action icon of the one or more action icons: when the multifunction device is in the normal operation mode, activating an application associated with the respective action icon; and, when the multifunction device is in the user interface reconfiguration mode, continuing to display the respective action icon without activating the application associated with the respective action icon.
In accordance with some embodiments, a method is performed at a multifunction device with a display. The method includes: concurrently displaying one or more action icons and one or more folder icons on the display. The multifunction device has a normal operation mode for activating applications and a user interface reconfiguration mode for rearranging the action icons and the folder icons on the display. The method further includes detecting a first input; and in response to detecting the first input: when the first input corresponds to a request to select a respective folder icon of the one or more folder icons, displaying contents of a folder associated with the respective folder icon without regard for whether the multifunction device is in the normal operation mode or the user interface reconfiguration mode; and when the first input corresponds to a request to select a respective action icon of the one or more action icons: when the multifunction device is in the normal operation mode, activating an application associated with the respective action icon; and, when the multifunction device is in the user interface reconfiguration mode, continuing to display the respective action icon without activating the application associated with the respective action icon.
In accordance with some embodiments, a graphical user interface on a multifunction device with a display, a memory, and one or more processors to execute one or more programs stored in the memory includes one or more action icons and one or more folder icons. The one or more action icons and one or more folder icons are concurrently displayed on the display. The multifunction device has a normal operation mode for activating applications and a user interface reconfiguration mode for rearranging the action icons and the folder icons on the display. A first input is detected; and in response to detecting the first input: when the first input corresponds to a request to select a respective folder icon of the one or more folder icons, contents of a folder associated with the respective folder icon are displayed without regard for whether the multifunction device is in the normal operation mode or the user interface reconfiguration mode; and when the first input corresponds to a request to select a respective action icon of the one or more action icons: when the multifunction device is in the normal operation mode, an application associated with the respective action icon is activated; and, when the multifunction device is in the user interface reconfiguration mode, the respective action icon continues to be displayed without activating the application associated with the respective action icon.
In accordance with some embodiments, a computer readable storage medium has stored therein instructions which when executed by a multifunction device with a display, cause the device to: concurrently display one or more action icons and one or more folder icons on the display. The multifunction device has a normal operation mode for activating applications and a user interface reconfiguration mode for rearranging the action icons and the folder icons on the display. The instructions further cause the device to detect a first input; and in response to detecting the first input: when the first input corresponds to a request to select a respective folder icon of the one or more folder icons, display contents of a folder associated with the respective folder icon without regard for whether the multifunction device is in the normal operation mode or the user interface reconfiguration mode; and when the first input corresponds to a request to select a respective action icon of the one or more action icons: when the multifunction device is in the normal operation mode, activate an application associated with the respective action icon; and, when the multifunction device is in the user interface reconfiguration mode, continue to display the respective action icon without activating the application associated with the respective action icon.
In accordance with some embodiments, a multifunction device includes: a display; means for concurrently displaying one or more action icons and one or more folder icons on the display. The multifunction device has a normal operation mode for activating applications and a user interface reconfiguration mode for rearranging the action icons and the folder icons on the display. The device further includes means for detecting a first input; and means, responsive to detecting the first input, for: when the first input corresponds to a request to select a respective folder icon of the one or more folder icons, displaying contents of a folder associated with the respective folder icon without regard for whether the multifunction device is in the normal operation mode or the user interface reconfiguration mode; and when the first input corresponds to a request to select a respective action icon of the one or more action icons: when the multifunction device is in the normal operation mode, activating an application associated with the respective action icon; and, when the multifunction device is in the user interface reconfiguration mode, continuing to display the respective action icon without activating the application associated with the respective action icon.
In accordance with some embodiments, an information processing apparatus for use in a multifunction device with a display includes: means for concurrently displaying one or more action icons and one or more folder icons on the display. The multifunction device has a normal operation mode for activating applications and a user interface reconfiguration mode for rearranging the action icons and the folder icons on the display. The information processing apparatus further includes means for detecting a first input; and means, responsive to detecting the first input, for: when the first input corresponds to a request to select a respective folder icon of the one or more folder icons, displaying contents of a folder associated with the respective folder icon without regard for whether the multifunction device is in the normal operation mode or the user interface reconfiguration mode; and when the first input corresponds to a request to select a respective action icon of the one or more action icons: when the multifunction device is in the normal operation mode, activating an application associated with the respective action icon; and, when the multifunction device is in the user interface reconfiguration mode, continuing to display the respective action icon without activating the application associated with the respective action icon.
In accordance with some embodiments, a multifunction device includes a display, one or more processors, memory, and one or more programs. The one or more programs are stored in the memory and configured to be executed by the one or more processors. The one or more programs include instructions for: receiving an input that corresponds to a request to create a folder that contains a first item and a second item; and in response to receiving the input: creating the folder that contains the first item and the second item; determining a first plurality of descriptors that are associated with the first item; and determining a second plurality of descriptors that are associated with the second item. The one or more programs further include instructions for, when the first plurality of descriptors and the second plurality of descriptors share at least a first common descriptor: automatically generating a folder name for the folder based on the first common descriptor; and displaying an icon for the folder with the automatically generated folder name on the display.
In accordance with some embodiments, a method is performed at a multifunction device with a display. The method includes: receiving an input that corresponds to a request to create a folder that contains a first item and a second item; and in response to receiving the input: creating the folder that contains the first item and the second item; determining a first plurality of descriptors that are associated with the first item; and determining a second plurality of descriptors that are associated with the second item. The method further includes, when the first plurality of descriptors and the second plurality of descriptors share at least a first common descriptor: automatically generating a folder name for the folder based on the first common descriptor; and displaying an icon for the folder with the automatically generated folder name on the display.
In accordance with some embodiments, a graphical user interface on a multifunction device with a display, a memory, and one or more processors to execute one or more programs stored in the memory includes a first item and a second item. An input that corresponds to a request to create a folder that contains the first item and the second item is received; and in response to receiving the input: the folder that contains the first item and the second item is created; a first plurality of descriptors that are associated with the first item are determined; and a second plurality of descriptors that are associated with the second item are determined. When the first plurality of descriptors and the second plurality of descriptors share at least a first common descriptor: a folder name for the folder is automatically generated based on the first common descriptor; and an icon for the folder is displayed with the automatically generated folder name on the display.
In accordance with some embodiments, a computer readable storage medium has stored therein instructions which when executed by a multifunction device with a display, cause the device to: receive an input that corresponds to a request to create a folder that contains a first item and a second item; and in response to receiving the input: create the folder that contains the first item and the second item; determine a first plurality of descriptors that are associated with the first item; and determine a second plurality of descriptors that are associated with the second item. The instructions further cause the device to, when the first plurality of descriptors and the second plurality of descriptors share at least a first common descriptor: automatically generate a folder name for the folder based on the first common descriptor; and display an icon for the folder with the automatically generated folder name on the display.
In accordance with some embodiments, a multifunction device includes: a display; means for receiving an input that corresponds to a request to create a folder that contains a first item and a second item; and means, responsive to receiving the input, for: creating the folder that contains the first item and the second item; determining a first plurality of descriptors that are associated with the first item; and determining a second plurality of descriptors that are associated with the second item. The device further includes means for, when the first plurality of descriptors and the second plurality of descriptors share at least a first common descriptor: automatically generating a folder name for the folder based on the first common descriptor; and displaying an icon for the folder with the automatically generated folder name on the display.
In accordance with some embodiments, an information processing apparatus for use in a multifunction device with a display includes: means for receiving an input that corresponds to a request to create a folder that contains a first item and a second item; and means, responsive to receiving the input, for: creating the folder that contains the first item and the second item; determining a first plurality of descriptors that are associated with the first item; and determining a second plurality of descriptors that are associated with the second item. The information processing apparatus further includes means for, when the first plurality of descriptors and the second plurality of descriptors share at least a first common descriptor: automatically generating a folder name for the folder based on the first common descriptor; and displaying an icon for the folder with the automatically generated folder name on the display.
In accordance with some embodiments, a multifunction device includes a display, one or more processors, memory, and one or more programs. The one or more programs are stored in the memory and configured to be executed by the one or more processors. The one or more programs include instructions for: displaying a plurality of icons on the display. A first icon in the plurality of icons is displayed at a first location on the display. A second icon in the plurality of icons, distinct from the first icon, has an activation region with a default size. The one or more programs further include instructions for detecting an input that corresponds to a request to move the first icon; changing a size of the activation region for the second icon from the default size based on a distance from the first location to a location of the second icon; and in response to detecting the input, moving the first icon across the display away from the first location. The one or more programs also includes instructions for detecting that the input meets predefined trigger criteria; and, in response to detecting that the input meets predefined trigger criteria: when the first icon is at least partly within the activation region of the second icon, performing a first operation that is associated with the second icon; and when the first icon is outside of the activation region of the second icon, performing a second operation that is distinct from the first operation.
In accordance with some embodiments, a method is performed at a multifunction device with a display. The method includes: displaying a plurality of icons on the display. A first icon in the plurality of icons is displayed at a first location on the display. A second icon in the plurality of icons, distinct from the first icon, has an activation region with a default size. The method further includes detecting an input that corresponds to a request to move the first icon; changing a size of the activation region for the second icon from the default size based on a distance from the first location to a location of the second icon; and in response to detecting the input, moving the first icon across the display away from the first location. The method also includes detecting that the input meets predefined trigger criteria; and, in response to detecting that the input meets predefined trigger criteria: when the first icon is at least partly within the activation region of the second icon, performing a first operation that is associated with the second icon; and when the first icon is outside of the activation region of the second icon, performing a second operation that is distinct from the first operation.
In accordance with some embodiments, a graphical user interface on a multifunction device with a display, a memory, and one or more processors to execute one or more programs stored in the memory includes a plurality of icons displayed on the display. A first icon in the plurality of icons is displayed at a first location on the display. A second icon in the plurality of icons, distinct from the first icon, has an activation region with a default size. An input that corresponds to a request to move the first icon is detected. A size of the activation region is changed for the second icon from the default size based on a distance from the first location to a location of the second icon. In response to detecting the input, the first icon is moved across the display away from the first location. It is detected that the input meets predefined trigger criteria; and, in response to detecting that the input meets predefined trigger criteria: when the first icon is at least partly within the activation region of the second icon, a first operation that is associated with the second icon is performed; and when the first icon is outside of the activation region of the second icon, a second operation that is distinct from the first operation is performed.
In accordance with some embodiments, a computer readable storage medium has stored therein instructions which when executed by a multifunction device with a display, cause the device to: display a plurality of icons on the display. A first icon in the plurality of icons is displayed at a first location on the display. A second icon in the plurality of icons, distinct from the first icon, has an activation region with a default size. The instructions further cause the device to detect an input that corresponds to a request to move the first icon; change a size of the activation region for the second icon from the default size based on a distance from the first location to a location of the second icon; and in response to detecting the input, move the first icon across the display away from the first location. The instructions also cause the device to detect that the input meets predefined trigger criteria; and, in response to detecting that the input meets predefined trigger criteria: when the first icon is at least partly within the activation region of the second icon, perform a first operation that is associated with the second icon; and when the first icon is outside of the activation region of the second icon, perform a second operation that is distinct from the first operation.
In accordance with some embodiments, a multifunction device includes: a display; means for displaying a plurality of icons on the display. A first icon in the plurality of icons is displayed at a first location on the display. A second icon in the plurality of icons, distinct from the first icon, has an activation region with a default size. The device further includes means for detecting an input that corresponds to a request to move the first icon; means for changing a size of the activation region for the second icon from the default size based on a distance from the first location to a location of the second icon; and means, responsive to detecting the input, for moving the first icon across the display away from the first location. The device also includes means for detecting that the input meets predefined trigger criteria; and, means, responsive to detecting that the input meets predefined trigger criteria, for: when the first icon is at least partly within the activation region of the second icon, performing a first operation that is associated with the second icon; and when the first icon is outside of the activation region of the second icon, performing a second operation that is distinct from the first operation.
In accordance with some embodiments, an information processing apparatus for use in a multifunction device with a display includes: means for displaying a plurality of icons on the display. A first icon in the plurality of icons is displayed at a first location on the display. A second icon in the plurality of icons, distinct from the first icon, has an activation region with a default size. The information processing apparatus further includes means for detecting an input that corresponds to a request to move the first icon; means for changing a size of the activation region for the second icon from the default size based on a distance from the first location to a location of the second icon; and means, responsive to detecting the input, for moving the first icon across the display away from the first location. The information processing apparatus also includes means for detecting that the input meets predefined trigger criteria; and, means, responsive to detecting that the input meets predefined trigger criteria, for: when the first icon is at least partly within the activation region of the second icon, performing a first operation that is associated with the second icon; and when the first icon is outside of the activation region of the second icon, performing a second operation that is distinct from the first operation.
In accordance with some embodiments, a multifunction device includes a display, one or more processors, memory, and one or more programs. The one or more programs are stored in the memory and configured to be executed by the one or more processors. The one or more programs include instructions for: displaying a plurality of icons on the display in a first arrangement; detecting an input that corresponds to a request to move a first icon in the plurality of icons from a first position on the display to a second position on the display; and in response to detecting the input: moving the first icon from the first position to the second position; and maintaining positions of each respective icon in the plurality of icons other than the first icon until automatic reconfiguration criteria have been met. The device further includes instructions for, when the automatic reconfiguration criteria have been met, moving one or more of the icons in the plurality of icons other than the first icon to form a second arrangement that is distinct from the first arrangement.
In accordance with some embodiments, a method is performed at a multifunction device with a display. The method includes: displaying a plurality of icons on the display in a first arrangement; detecting an input that corresponds to a request to move a first icon in the plurality of icons from a first position on the display to a second position on the display; and in response to detecting the input: moving the first icon from the first position to the second position; and maintaining positions of each respective icon in the plurality of icons other than the first icon until automatic reconfiguration criteria have been met. The method further includes when the automatic reconfiguration criteria have been met, moving one or more of the icons in the plurality of icons other than the first icon to form a second arrangement that is distinct from the first arrangement.
In accordance with some embodiments, a graphical user interface on a multifunction device with a display, a memory, and one or more processors to execute one or more programs stored in the memory includes a plurality of icons on the display in a first arrangement. An input that corresponds to a request to move a first icon in the plurality of icons from a first position on the display to a second position on the display is detected; and in response to detecting the input: the first icon is moved from the first position to the second position; and positions of each respective icon in the plurality of icons other than the first icon are maintained until automatic reconfiguration criteria have been met. When the automatic reconfiguration criteria have been met, one or more of the icons in the plurality of icons other than the first icon are moved to form a second arrangement that is distinct from the first arrangement.
In accordance with some embodiments, a computer readable storage medium has stored therein instructions which when executed by a multifunction device with a display, cause the device to: display a plurality of icons on the display in a first arrangement; detect an input that corresponds to a request to move a first icon in the plurality of icons from a first position on the display to a second position on the display; and in response to detecting the input: move the first icon from the first position to the second position; and maintain positions of each respective icon in the plurality of icons other than the first icon until automatic reconfiguration criteria have been met. The instructions further cause the device to when the automatic reconfiguration criteria have been met, move one or more of the icons in the plurality of icons other than the first icon to form a second arrangement that is distinct from the first arrangement.
In accordance with some embodiments, a multifunction device includes: a display; means for displaying a plurality of icons on the display in a first arrangement; means for detecting an input that corresponds to a request to move a first icon in the plurality of icons from a first position on the display to a second position on the display; and means, responsive to detecting the input, for: moving the first icon from the first position to the second position; and maintaining positions of each respective icon in the plurality of icons other than the first icon until automatic reconfiguration criteria have been met. The device further includes means for, when the automatic reconfiguration criteria have been met, moving one or more of the icons in the plurality of icons other than the first icon to form a second arrangement that is distinct from the first arrangement.
In accordance with some embodiments, an information processing apparatus for use in a multifunction device with a display includes: means for displaying a plurality of icons on the display in a first arrangement; means for detecting an input that corresponds to a request to move a first icon in the plurality of icons from a first position on the display to a second position on the display; and means, responsive to detecting the input, for: moving the first icon from the first position to the second position; and maintaining positions of each respective icon in the plurality of icons other than the first icon until automatic reconfiguration criteria have been met. The information processing apparatus further includes means for, when the automatic reconfiguration criteria have been met, moving one or more of the icons in the plurality of icons other than the first icon to form a second arrangement that is distinct from the first arrangement.
In accordance with some embodiments, a multifunction device includes a display, one or more processors, memory, and one or more programs. The one or more programs are stored in the memory and configured to be executed by the one or more processors. The one or more programs include instructions for: displaying a dynamic folder icon. The dynamic folder icon includes a visual indication of current content in a folder that is associated with the dynamic folder icon. The device further includes instructions for detecting an input that corresponds to a request to modify content in the folder; and in response to detecting the input: modifying the content in the folder; and updating the dynamic folder icon to include a visual indication of a spatial arrangement of the modified content within the folder.
In accordance with some embodiments, a method is performed at a multifunction device with a display. The method includes: displaying a dynamic folder icon. The dynamic folder icon includes a visual indication of current content in a folder that is associated with the dynamic folder icon. The method further includes detecting an input that corresponds to a request to modify content in the folder; and in response to detecting the input: modifying the content in the folder; and updating the dynamic folder icon to include a visual indication of a spatial arrangement of the modified content within the folder.
In accordance with some embodiments, a graphical user interface on a multifunction device with a display, a memory, and one or more processors to execute one or more programs stored in the memory includes a dynamic folder icon. The dynamic folder icon includes a visual indication of current content in a folder that is associated with the dynamic folder icon. An input that corresponds to a request to modify content in the folder is detected; and in response to detecting the input: the content in the folder is modified; and the dynamic folder icon is updated to include a visual indication of a spatial arrangement of the modified content within the folder.
In accordance with some embodiments, a computer readable storage medium has stored therein instructions which when executed by a multifunction device with a display, cause the device to: display a dynamic folder icon. The dynamic folder icon includes a visual indication of current content in a folder that is associated with the dynamic folder icon. The instructions further cause the device to detect an input that corresponds to a request to modify content in the folder; and in response to detecting the input: modify the content in the folder; and update the dynamic folder icon to include a visual indication of a spatial arrangement of the modified content within the folder.
In accordance with some embodiments, a multifunction device includes: a display; means for displaying a dynamic folder icon. The dynamic folder icon includes a visual indication of current content in a folder that is associated with the dynamic folder icon. The device further includes means for detecting an input that corresponds to a request to modify content in the folder; means, responsive to detecting the input, for: modifying the content in the folder; and updating the dynamic folder icon to include a visual indication of a spatial arrangement of the modified content within the folder.
In accordance with some embodiments, an information processing apparatus for use in a multifunction device with a display includes: means for displaying a dynamic folder icon. The dynamic folder icon includes a visual indication of current content in a folder that is associated with the dynamic folder icon. The information processing apparatus further includes means for detecting an input that corresponds to a request to modify content in the folder; means, responsive to detecting the input, for: modifying the content in the folder; and updating the dynamic folder icon to include a visual indication of a spatial arrangement of the modified content within the folder.
In accordance with some embodiments, a multifunction device includes a display, one or more processors, memory, and one or more programs. The one or more programs are stored in the memory and configured to be executed by the one or more processors. The one or more programs include instructions for: displaying a folder icon over a wallpaper background on the display, the folder icon corresponding to a folder that contains content, the content including one or more selectable user interface objects. The one or more programs further include instructions for detecting a first input that corresponds to a request to display content of the folder; and in response to detecting the first input: dividing the wallpaper background into a first portion and a second portion; moving the second portion away from the first portion; and displaying content of the folder in an area between the first portion and the second portion.
In accordance with some embodiments, a method is performed at a multifunction device with a display. The method includes: displaying a folder icon over a wallpaper background on the display, the folder icon corresponding to a folder that contains content, the content including one or more selectable user interface objects. The method further includes detecting a first input that corresponds to a request to display content of the folder; and in response to detecting the first input: dividing the wallpaper background into a first portion and a second portion; moving the second portion away from the first portion; and displaying content of the folder in an area between the first portion and the second portion.
In accordance with some embodiments, a graphical user interface on a multifunction device with a display, a memory, and one or more processors to execute one or more programs stored in the memory includes a folder icon displayed over a wallpaper background on the display, the folder icon corresponding to a folder that contains content, the content including one or more selectable user interface objects. A first input that corresponds to a request to display content of the folder is detected; and in response to detecting the first input: the wallpaper background is divided into a first portion and a second portion; the second portion is moved away from the first portion; and content of the folder is displayed in an area between the first portion and the second portion.
In accordance with some embodiments, a computer readable storage medium has stored therein instructions which when executed by a multifunction device with a display, cause the device to: display a folder icon over a wallpaper background on the display, the folder icon corresponding to a folder that contains content, the content including one or more selectable user interface objects. The instructions further cause the device to detect a first input that corresponds to a request to display content of the folder; and in response to detecting the first input: divide the wallpaper background into a first portion and a second portion; move the second portion away from the first portion; and display content of the folder in an area between the first portion and the second portion.
In accordance with some embodiments, a multifunction device includes: a display; means for displaying a folder icon over a wallpaper background on the display, the folder icon corresponding to a folder that contains content, the content including one or more selectable user interface objects. The device further includes means for detecting a first input that corresponds to a request to display content of the folder; and means, responsive to detecting the first input for: dividing the wallpaper background into a first portion and a second portion; moving the second portion away from the first portion; and displaying content of the folder in an area between the first portion and the second portion.
In accordance with some embodiments, an information processing apparatus for use in a multifunction device with a display includes: means for displaying a folder icon over a wallpaper background on the display, the folder icon corresponding to a folder that contains content, the content including one or more selectable user interface objects. The information processing apparatus further includes means for detecting a first input that corresponds to a request to display content of the folder; and means, responsive to detecting the first input for: dividing the wallpaper background into a first portion and a second portion; moving the second portion away from the first portion; and displaying content of the folder in an area between the first portion and the second portion.
Thus, multifunction devices with displays are provided with faster, more efficient methods and interfaces for managing folders, thereby increasing the effectiveness, efficiency, and user satisfaction with such devices. Such methods and interfaces may complement or replace conventional methods for managing folders.
For a better understanding of the aforementioned embodiments of the invention as well as additional embodiments thereof, reference should be made to the Description of Embodiments below, in conjunction with the following drawings in which like reference numerals refer to corresponding parts throughout the figures.
Reference will now be made in detail to embodiments, examples of which are illustrated in the accompanying drawings. In the following detailed description, numerous specific details are set forth in order to provide a thorough understanding of the present invention. However, it will be apparent to one of ordinary skill in the art that the present invention may be practiced without these specific details. In other instances, well-known methods, procedures, components, circuits, and networks have not been described in detail so as not to unnecessarily obscure aspects of the embodiments.
It will also be understood that, although the terms first, second, etc. may be used herein to describe various elements, these elements should not be limited by these terms. These terms are only used to distinguish one element from another. For example, a first contact could be termed a second contact, and, similarly, a second contact could be termed a first contact, without departing from the scope of the present invention. The first contact and the second contact are both contacts, but they are not the same contact.
The terminology used in the description of the invention herein is for the purpose of describing particular embodiments only and is not intended to be limiting of the invention. As used in the description of the invention and the appended claims, the singular forms “a”, “an” and “the” are intended to include the plural forms as well, unless the context clearly indicates otherwise. It will also be understood that the term “and/or” as used herein refers to and encompasses any and all possible combinations of one or more of the associated listed items. It will be further understood that the terms “includes,” “including,” “comprises,” and/or “comprising,” when used in this specification, specify the presence of stated features, integers, steps, operations, elements, and/or components, but do not preclude the presence or addition of one or more other features, integers, steps, operations, elements, components, and/or groups thereof.
As used herein, the term “if” may be construed to mean “when” or “upon” or “in response to determining” or “in response to detecting,” depending on the context. Similarly, the phrase “if it is determined” or “if [a stated condition or event] is detected” may be construed to mean “upon determining” or “in response to determining” or “upon detecting [the stated condition or event]” or “in response to detecting [the stated condition or event],” depending on the context.
As used herein, the term “resolution” of a display refers to the number of pixels (also called “pixel counts” or “pixel resolution”) along each axis or in each dimension of the display. For example, a display may have a resolution of 320×480 pixels. Furthermore, as used herein, the term “resolution” of a multifunction device refers to the resolution of a display in the multifunction device. The term “resolution” does not imply any limitations on the size of each pixel or the spacing of pixels. For example, compared to a first display with a 1024×768-pixel resolution, a second display with a 320×480-pixel resolution has a lower resolution. However, it should be noted that the physical size of a display depends not only on the pixel resolution, but also on many other factors, including the pixel size and the spacing of pixels. Therefore, the first display may have the same, smaller, or larger physical size, compared to the second display.
As used herein, the term “video resolution” of a display refers to the density of pixels along each axis or in each dimension of the display. The video resolution is often measured in a dots-per-inch (DPI) unit, which counts the number of pixels that can be placed in a line within the span of one inch along a respective dimension of the display.
Embodiments of computing devices, user interfaces for such devices, and associated processes for using such devices are described. In some embodiments, the computing device is a portable communications device, such as a mobile telephone, that also contains other functions, such as PDA and/or music player functions. Exemplary embodiments of portable multifunction devices include, without limitation, the iPhone® and iPod Touch® devices from Apple Inc. of Cupertino, California. Other portable devices, such as laptops or tablet computers with touch-sensitive surfaces (e.g., touch screen displays and/or touch pads), may also be used. It should also be understood that, in some embodiments, the device is not a portable communications device, but is a desktop computer with a touch-sensitive surface (e.g., a touch screen display and/or a touch pad).
In the discussion that follows, a computing device that includes a display and a touch-sensitive surface is described. It should be understood, however, that the computing device may include one or more other physical user-interface devices, such as a physical keyboard, a mouse and/or a joystick.
The device supports a variety of applications, such as one or more of the following: a drawing application, a presentation application, a word processing application, a website creation application, a disk authoring application, a spreadsheet application, a gaming application, a telephone application, a video conferencing application, an e-mail application, an instant messaging application, a workout support application, a photo management application, a digital camera application, a digital video camera application, a web browsing application, a digital music player application, and/or a digital video player application.
The various applications that may be executed on the device may use at least one common physical user-interface device, such as the touch-sensitive surface. One or more functions of the touch-sensitive surface as well as corresponding information displayed on the device may be adjusted and/or varied from one application to the next and/or within a respective application. In this way, a common physical architecture (such as the touch-sensitive surface) of the device may support the variety of applications with user interfaces that are intuitive and transparent to the user.
The user interfaces may include one or more soft keyboard embodiments. The soft keyboard embodiments may include standard (QWERTY) and/or non-standard configurations of symbols on the displayed icons of the keyboard, such as those described in U.S. patent application Ser. No. 11/459,606, “Keyboards For Portable Electronic Devices,” filed Jul. 24, 2006, and Ser. No. 11/459,615, “Touch Screen Keyboards For Portable Electronic Devices,” filed Jul. 24, 2006, the contents of which are hereby incorporated by reference in their entireties. The keyboard embodiments may include a reduced number of icons (or soft keys) relative to the number of keys in existing physical keyboards, such as that for a typewriter. This may make it easier for users to select one or more icons in the keyboard, and thus, one or more corresponding symbols. The keyboard embodiments may be adaptive. For example, displayed icons may be modified in accordance with user actions, such as selecting one or more icons and/or one or more corresponding symbols. One or more applications on the device may utilize common and/or different keyboard embodiments. Thus, the keyboard embodiment used may be tailored to at least some of the applications. In some embodiments, one or more keyboard embodiments may be tailored to a respective user. For example, one or more keyboard embodiments may be tailored to a respective user based on a word usage history (lexicography, slang, individual usage) of the respective user. Some of the keyboard embodiments may be adjusted to reduce a probability of a user error when selecting one or more icons, and thus one or more symbols, when using the soft keyboard embodiments.
Attention is now directed toward embodiments of portable devices with touch-sensitive displays. FIGS. IA and 1B are block diagrams illustrating portable multifunction devices 100 with touch-sensitive displays 112 in accordance with some embodiments. Touch-sensitive display 112 is sometimes called a “touch screen” for convenience, and may also be known as or called a touch-sensitive display system. Device 100 may include memory 102 (which may include one or more computer readable storage mediums), memory controller 122, one or more processing units (CPU's) 120, peripherals interface 118, RF circuitry 108, audio circuitry 110, speaker 111, microphone 113, input/output (I/O) subsystem 106, other input or control devices 116, and external port 124. Device 100 may include one or more optical sensors 164. These components may communicate over one or more communication buses or signal lines 103.
It should be appreciated that device 100 is only one example of a portable multifunction device, and that device 100 may have more or fewer components than shown, may combine two or more components, or may have a different configuration or arrangement of the components. The various components shown in FIGS. I A and 1B may be implemented in hardware, software, or a combination of both hardware and software, including one or more signal processing and/or application specific integrated circuits.
Memory 102 may include high-speed random access memory and may also include non-volatile memory, such as one or more magnetic disk storage devices, flash memory devices, or other non-volatile solid-state memory devices. Access to memory 102 by other components of device 100, such as CPU 120 and the peripherals interface 118, may be controlled by memory controller 122.
Peripherals interface 118 can be used to couple input and output peripherals of the device to CPU 120 and memory 102. The one or more processors 120 run or execute various software programs and/or sets of instructions stored in memory 102 to perform various functions for device 100 and to process data.
In some embodiments, peripherals interface 118, CPU 120, and memory controller 122 may be implemented on a single chip, such as chip 104. In some other embodiments, they may be implemented on separate chips.
RF (radio frequency) circuitry 108 receives and sends RF signals, also called electromagnetic signals. RF circuitry 108 converts electrical signals to/from electromagnetic signals and communicates with communications networks and other communications devices via the electromagnetic signals. RF circuitry 108 may include well-known circuitry for performing these functions, including but not limited to an antenna system, an RF transceiver, one or more amplifiers, a tuner, one or more oscillators, a digital signal processor, a CODEC chipset, a subscriber identity module (SIM) card, memory, and so forth. RF circuitry 108 may communicate with networks, such as the Internet, also referred to as the World Wide Web (WWW), an intranet and/or a wireless network, such as a cellular telephone network, a wireless local area network (LAN) and/or a metropolitan area network (MAN), and other devices by wireless communication. The wireless communication may use any of a plurality of communications standards, protocols and technologies, including but not limited to Global System for Mobile Communications (GSM), Enhanced Data GSM Environment (EDGE), high-speed downlink packet access (HSDPA), wideband code division multiple access (W-CDMA), code division multiple access (CDMA), time division multiple access (TDMA), Bluetooth, Wireless Fidelity (Wi-Fi) (e.g., IEEE 802.11a, IEEE 802.11b, IEEE 802.11g and/or IEEE 802.11n), voice over Internet Protocol (VoIP), Wi-MAX, a protocol for e-mail (e.g., Internet message access protocol (IMAP) and/or post office protocol (POP)), instant messaging (e.g., extensible messaging and presence protocol (XMPP), Session Initiation Protocol for Instant Messaging and Presence Leveraging Extensions (SIMPLE), Instant Messaging and Presence Service (IMPS)), and/or Short Message Service (SMS), or any other suitable communication protocol, including communication protocols not yet developed as of the filing date of this document.
Audio circuitry 110, speaker 111, and microphone 113 provide an audio interface between a user and device 100. Audio circuitry 110 receives audio data from peripherals interface 118, converts the audio data to an electrical signal, and transmits the electrical signal to speaker 111. Speaker 111 converts the electrical signal to human-audible sound waves. Audio circuitry 110 also receives electrical signals converted by microphone 113 from sound waves. Audio circuitry 110 converts the electrical signal to audio data and transmits the audio data to peripherals interface 118 for processing. Audio data may be retrieved from and/or transmitted to memory 102 and/or RF circuitry 108 by peripherals interface 118. In some embodiments, audio circuitry 110 also includes a headset jack (e.g., 212,
I/O subsystem 106 couples input/output peripherals on device 100, such as touch screen 112 and other input control devices 116, to peripherals interface 118. I/O subsystem 106 may include display controller 156 and one or more input controllers 160 for other input or control devices. The one or more input controllers 160 receive/send electrical signals from/to other input or control devices 116. The other input control devices 116 may include physical buttons (e.g., push buttons, rocker buttons, etc.), dials, slider switches, joysticks, click wheels, and so forth. In some alternate embodiments, input controller(s) 160 may be coupled to any (or none) of the following: a keyboard, infrared port, USB port, and a pointer device such as a mouse. The one or more buttons (e.g., 208,
Touch-sensitive display 112 provides an input interface and an output interface between the device and a user. Display controller 156 receives and/or sends electrical signals from/to touch screen 112. Touch screen 112 displays visual output to the user. The visual output may include graphics, text, icons, video, and any combination thereof (collectively termed “graphics”). In some embodiments, some or all of the visual output may correspond to user-interface objects.
Touch screen 112 has a touch-sensitive surface, sensor or set of sensors that accepts input from the user based on haptic and/or tactile contact. Touch screen 112 and display controller 156 (along with any associated modules and/or sets of instructions in memory 102) detect contact (and any movement or breaking of the contact) on touch screen 112 and converts the detected contact into interaction with user-interface objects (e.g., one or more soft keys, icons, web pages or images) that are displayed on touch screen 112. In an exemplary embodiment, a point of contact between touch screen 112 and the user corresponds to a finger of the user.
Touch screen 112 may use LCD (liquid crystal display) technology, LPD (light emitting polymer display) technology, or LED (light emitting diode) technology, although other display technologies may be used in other embodiments. Touch screen 112 and display controller 156 may detect contact and any movement or breaking thereof using any of a plurality of touch sensing technologies now known or later developed, including but not limited to capacitive, resistive, infrared, and surface acoustic wave technologies, as well as other proximity sensor arrays or other elements for determining one or more points of contact with touch screen 112. In an exemplary embodiment, projected mutual capacitance sensing technology is used, such as that found in the iPhone®, and iPod Touch® from Apple Inc. of Cupertino, California.
A touch-sensitive display in some embodiments of touch screen 112 may be analogous to the multi-touch sensitive touchpads described in the following U.S. Pat. No. 6,323,846 (Westerman et al.), U.S. Pat. No. 6,570,557 (Westerman et al.), and/or U.S. Pat. No. 6,677,932 (Westerman), and/or U.S. Patent Publication 2002/0015024A1, each of which is hereby incorporated by reference in its entirety. However, touch screen 112 displays visual output from portable device 100, whereas touch sensitive touchpads do not provide visual output.
A touch-sensitive display in some embodiments of touch screen 112 may be as described in the following applications: (1) U.S. patent application Ser. No. 11/381,313, “Multipoint Touch Surface Controller,” filed May 2, 2006; (2) U.S. patent application Ser. No. 10/840,862, “Multipoint Touchscreen,” filed May 6, 2004; (3) U.S. patent application Ser. No. 10/903,964, “Gestures For Touch Sensitive Input Devices,” filed Jul. 30, 2004; (4) U.S. patent application Ser. No. 11/048,264, “Gestures For Touch Sensitive Input Devices,” filed Jan. 31, 2005; (5) U.S. patent application Ser. No. 11/038,590, “Mode-Based Graphical User Interfaces For Touch Sensitive Input Devices,” filed Jan. 18, 2005; (6) U.S. patent application Ser. No. 11/228,758, “Virtual Input Device Placement On A Touch Screen User Interface,” filed Sep. 16, 2005; (7) U.S. patent application Ser. No. 11/228,700, “Operation Of A Computer With A Touch Screen Interface,” filed Sep. 16, 2005; (8) U.S. patent application Ser. No. 11/228,737, “Activating Virtual Keys Of A Touch-Screen Virtual Keyboard,” filed Sep. 16, 2005; and (9) U.S. patent application Ser. No. 11/367,749, “Multi-Functional Hand-Held Device,” filed Mar. 3, 2006. All of these applications are incorporated by reference herein in their entirety.
Touch screen 112 may have a video resolution in excess of 100 dpi. In some embodiments, the touch screen has a video resolution of approximately 160 dpi. The user may make contact with touch screen 112 using any suitable object or appendage, such as a stylus, a finger, and so forth. In some embodiments, the user interface is designed to work primarily with finger-based contacts and gestures, which can be less precise than stylus-based input due to the larger area of contact of a finger on the touch screen. In some embodiments, the device translates the rough finger-based input into a precise pointer/cursor position or command for performing the actions desired by the user.
In some embodiments, in addition to the touch screen, device 100 may include a touchpad (not shown) for activating or deactivating particular functions. In some embodiments, the touchpad is a touch-sensitive area of the device that, unlike the touch screen, does not display visual output. The touchpad may be a touch-sensitive surface that is separate from touch screen 112 or an extension of the touch-sensitive surface formed by the touch screen.
In some embodiments, device 100 may include a physical or virtual wheel (e.g., a click wheel) as input control device 116. A user may navigate among and interact with one or more graphical objects (e.g., icons) displayed in touch screen 112 by rotating the click wheel or by moving a point of contact with the click wheel (e.g., where the amount of movement of the point of contact is measured by its angular displacement with respect to a center point of the click wheel). The click wheel may also be used to select one or more of the displayed icons. For example, the user may press down on at least a portion of the click wheel or an associated button. User commands and navigation commands provided by the user via the click wheel may be processed by input controller 160 as well as one or more of the modules and/or sets of instructions in memory 102. For a virtual click wheel, the click wheel and click wheel controller may be part of touch screen 112 and display controller 156, respectively. For a virtual click wheel, the click wheel may be either an opaque or semitransparent object that appears and disappears on the touch screen display in response to user interaction with the device. In some embodiments, a virtual click wheel is displayed on the touch screen of a portable multifunction device and operated by user contact with the touch screen.
Device 100 also includes power system 162 for powering the various components. Power system 162 may include a power management system, one or more power sources (e.g., battery, alternating current (AC)), a recharging system, a power failure detection circuit, a power converter or inverter, a power status indicator (e.g., a light-emitting diode (LED)) and any other components associated with the generation, management and distribution of power in portable devices.
Device 100 may also include one or more optical sensors 164.
Device 100 may also include one or more proximity sensors 166. FIGS. IA and 1B show proximity sensor 166 coupled to peripherals interface 118. Alternately, proximity sensor 166 may be coupled to input controller 160 in I/O subsystem 106. Proximity sensor 166 may perform as described in U.S. patent application Ser. No. 11/241,839, “Proximity Detector In Handheld Device”; Ser. No. 11/240,788, “Proximity Detector In Handheld Device”; Ser. No. 11/620,702, “Using Ambient Light Sensor To Augment Proximity Sensor Output”; Ser. No. 11/586,862, “Automated Response To And Sensing Of User Activity In Portable Devices”; and Ser. No. 11/638,251, “Methods And Systems For Automatic Configuration Of Peripherals,” which are hereby incorporated by reference in their entirety. In some embodiments, the proximity sensor turns off and disables touch screen 112 when the multifunction device is placed near the user's ear (e.g., when the user is making a phone call).
Device 100 may also include one or more accelerometers 168. FIGS. IA and 1B show accelerometer 168 coupled to peripherals interface 118. Alternately, accelerometer 168 may be coupled to an input controller 160 in I/O subsystem 106. Accelerometer 168 may perform as described in U.S. Patent Publication No. 20050190059, “Acceleration-based Theft Detection System for Portable Electronic Devices,” and U.S. Patent Publication No. 20060017692, “Methods And Apparatuses For Operating A Portable Device Based On An Accelerometer,” both of which are incorporated by reference herein in their entirety. In some embodiments, information is displayed on the touch screen display in a portrait view or a landscape view based on an analysis of data received from the one or more accelerometers. Device 100 optionally includes, in addition to accelerometer(s) 168, a magnetometer (not shown) and a GPS (or GLONASS or other global navigation system) receiver (not shown) for obtaining information concerning the location and orientation (e.g., portrait or landscape) of device 100.
In some embodiments, the software components stored in memory 102 include operating system 126, communication module (or set of instructions) 128, contact/motion module (or set of instructions) 130, graphics module (or set of instructions) 132, text input module (or set of instructions) 134, Global Positioning System (GPS) module (or set of instructions) 135, and applications (or sets of instructions) 136. Furthermore, in some embodiments memory 102 stores device/global internal state 157, as shown in
Operating system 126 (e.g., Darwin, RTXC, LINUX, UNIX, OS X, WINDOWS, or an embedded operating system such as VxWorks) includes various software components and/or drivers for controlling and managing general system tasks (e.g., memory management, storage device control, power management, etc.) and facilitates communication between various hardware and software components.
Communication module 128 facilitates communication with other devices over one or more external ports 124 and also includes various software components for handling data received by RF circuitry 108 and/or external port 124. External port 124 (e.g., Universal Serial Bus (USB), FIREWIRE, etc.) is adapted for coupling directly to other devices or indirectly over a network (e.g., the Internet, wireless LAN, etc.). In some embodiments, the external port is a multi-pin (e.g., 30-pin) connector that is the same as, or similar to and/or compatible with the 30-pin connector used on iPod (trademark of Apple Inc.) devices.
Contact/motion module 130 may detect contact with touch screen 112 (in conjunction with display controller 156) and other touch sensitive devices (e.g., a touchpad or physical click wheel). Contact/motion module 130 includes various software components for performing various operations related to detection of contact, such as determining if contact has occurred (e.g., detecting a finger-down event), determining if there is movement of the contact and tracking the movement across the touch-sensitive surface (e.g., detecting one or more finger-dragging events), and determining if the contact has ceased (e.g., detecting a finger-up event or a break in contact). Contact/motion module 130 receives contact data from the touch-sensitive surface. Determining movement of the point of contact, which is represented by a series of contact data, may include determining speed (magnitude), velocity (magnitude and direction), and/or an acceleration (a change in magnitude and/or direction) of the point of contact. These operations may be applied to single contacts (e.g., one finger contacts) or to multiple simultaneous contacts (e.g., “multitouch”/multiple finger contacts). In some embodiments, contact/motion module 130 and display controller 156 detects contact on a touchpad. In some embodiments, contact/motion module 130 and controller 160 detects contact on a click wheel.
Contact/motion module 130 may detect a gesture input by a user. Different gestures on the touch-sensitive surface have different contact patterns. Thus, a gesture may be detected by detecting a particular contact pattern. For example, detecting a finger tap gesture includes detecting a finger-down event followed by detecting a finger-up (lift off) event at the same position (or substantially the same position) as the finger-down event (e.g., at the position of an icon). As another example, detecting a finger swipe gesture on the touch-sensitive surface includes detecting a finger-down event followed by detecting one or more finger-dragging events, and subsequently followed by detecting a finger-up (lift off) event.
Graphics module 132 includes various known software components for rendering and displaying graphics on touch screen 112 or other display, including components for changing the intensity of graphics that are displayed. As used herein, the term “graphics” includes any object that can be displayed to a user, including without limitation text, web pages, icons (such as user-interface objects including soft keys), digital images, videos, animations and the like.
In some embodiments, graphics module 132 stores data representing graphics to be used. Each graphic may be assigned a corresponding code. Graphics module 132 receives, from applications etc., one or more codes specifying graphics to be displayed along with, if necessary, coordinate data and other graphic property data, and then generates screen image data to output to display controller 156.
Text input module 134, which may be a component of graphics module 132, provides soft keyboards for entering text in various applications (e.g., contacts 137, e-mail 140, IM 141, browser 147, and any other application that needs text input).
GPS module 135 determines the location of the device and provides this information for use in various applications (e.g., to telephone module 138 for use in location-based dialing, to camera module 143 as picture/video metadata, and to applications that provide location-based services such as weather widgets, local yellow page widgets, and map/navigation widgets).
Applications 136 may include the following modules (or sets of instructions), or a subset or superset thereof:
Examples of other applications 136 that may be stored in memory 102 include other word processing applications, other image editing applications, drawing applications, presentation applications, JAVA-enabled applications, encryption, digital rights management, voice recognition, and voice replication.
In conjunction with touch screen 112, display controller 156, contact module 130, graphics module 132, and text input module 134, contacts module 137 may be used to manage an address book or contact list (e.g., stored in application internal state 192 of contacts module 137 in memory 102 or memory 370), including: adding name(s) to the address book; deleting name(s) from the address book; associating telephone number(s), e-mail address(es), physical address(es) or other information with a name; associating an image with a name; categorizing and sorting names; providing telephone numbers or e-mail addresses to initiate and/or facilitate communications by telephone 138, video conference 139, e-mail 140, or IM 141; and so forth.
In conjunction with RF circuitry 108, audio circuitry 110, speaker 111, microphone 113, touch screen 112, display controller 156, contact module 130, graphics module 132, and text input module 134, telephone module 138 may be used to enter a sequence of characters corresponding to a telephone number, access one or more telephone numbers in address book 137, modify a telephone number that has been entered, dial a respective telephone number, conduct a conversation and disconnect or hang up when the conversation is completed. As noted above, the wireless communication may use any of a plurality of communications standards, protocols and technologies.
In conjunction with RF circuitry 108, audio circuitry 110, speaker 111, microphone 113, touch screen 112, display controller 156, optical sensor 164, optical sensor controller 158, contact module 130, graphics module 132, text input module 134, contact list 137, and telephone module 138, videoconferencing module 139 includes executable instructions to initiate, conduct, and terminate a video conference between a user and one or more other participants in accordance with user instructions.
In conjunction with RF circuitry 108, touch screen 112, display controller 156, contact module 130, graphics module 132, and text input module 134, e-mail client module 140 includes executable instructions to create, send, receive, and manage e-mail in response to user instructions. In conjunction with image management module 144, e-mail client module 140 makes it very easy to create and send e-mails with still or video images taken with camera module 143.
In conjunction with RF circuitry 108, touch screen 112, display controller 156, contact module 130, graphics module 132, and text input module 134, the instant messaging module 141 includes executable instructions to enter a sequence of characters corresponding to an instant message, to modify previously entered characters, to transmit a respective instant message (for example, using a Short Message Service (SMS) or Multimedia Message Service (MMS) protocol for telephony-based instant messages or using XMPP, SIMPLE, or IMPS for Internet-based instant messages), to receive instant messages and to view received instant messages. In some embodiments, transmitted and/or received instant messages may include graphics, photos, audio files, video files and/or other attachments as are supported in a MMS and/or an Enhanced Messaging Service (EMS). As used herein, “instant messaging” refers to both telephony-based messages (e.g., messages sent using SMS or MMS) and Internet-based messages (e.g., messages sent using XMPP, SIMPLE, or IMPS).
In conjunction with RF circuitry 108, touch screen 112, display controller 156, contact module 130, graphics module 132, text input module 134, GPS module 135, map module 154, and music player module 146, workout support module 142 includes executable instructions to create workouts (e.g., with time, distance, and/or calorie burning goals); communicate with workout sensors (sports devices); receive workout sensor data; calibrate sensors used to monitor a workout; select and play music for a workout; and display, store and transmit workout data.
In conjunction with touch screen 112, display controller 156, optical sensor(s) 164, optical sensor controller 158, contact module 130, graphics module 132, and image management module 144, camera module 143 includes executable instructions to capture still images or video (including a video stream) and store them into memory 102, modify characteristics of a still image or video, or delete a still image or video from memory 102.
In conjunction with touch screen 112, display controller 156, contact module 130, graphics module 132, text input module 134, and camera module 143, image management module 144 includes executable instructions to arrange, modify (e.g., edit), or otherwise manipulate, label, delete, present (e.g., in a digital slide show or album), and store still and/or video images.
In conjunction with touch screen 112, display controller 156, contact module 130, graphics module 132, audio circuitry 110, and speaker 111, video player module 145 includes executable instructions to display, present or otherwise play back videos (e.g., on touch screen 112 or on an external, connected display via external port 124).
In conjunction with touch screen 112, display system controller 156, contact module 130, graphics module 132, audio circuitry 110, speaker 111, RF circuitry 108, and browser module 147, music player module 146 includes executable instructions that allow the user to download and play back recorded music and other sound files stored in one or more file formats, such as MP3 or AAC files. In some embodiments, device 100 may include the functionality of an MP3 player, such as an iPod (trademark of Apple Inc.).
In conjunction with RF circuitry 108, touch screen 112, display system controller 156, contact module 130, graphics module 132, and text input module 134, browser module 147 includes executable instructions to browse the Internet in accordance with user instructions, including searching, linking to, receiving, and displaying web pages or portions thereof, as well as attachments and other files linked to web pages.
In conjunction with RF circuitry 108, touch screen 112, display system controller 156, contact module 130, graphics module 132, text input module 134, e-mail client module 140, and browser module 147, calendar module 148 includes executable instructions to create, display, modify, and store calendars and data associated with calendars (e.g., calendar entries, to do lists, etc.) in accordance with user instructions.
In conjunction with RF circuitry 108, touch screen 112, display system controller 156, contact module 130, graphics module 132, text input module 134, and browser module 147, widget modules 149 are mini-applications that may be downloaded and used by a user (e.g., weather widget 149-1, stocks widget 149-2, calculator widget 149-3, alarm clock widget 149-4, and dictionary widget 149-5) or created by the user (e.g., user-created widget 149-6). In some embodiments, a widget includes an HTML (Hypertext Markup Language) file, a CSS (Cascading Style Sheets) file, and a JavaScript file. In some embodiments, a widget includes an XML (Extensible Markup Language) file and a JavaScript file (e.g., Yahoo! Widgets).
In conjunction with RF circuitry 108, touch screen 112, display system controller 156, contact module 130, graphics module 132, text input module 134, and browser module 147, the widget creator module 150 may be used by a user to create widgets (e.g., turning a user-specified portion of a web page into a widget).
In conjunction with touch screen 112, display system controller 156, contact module 130, graphics module 132, and text input module 134, search module 151 includes executable instructions to search for text, music, sound, image, video, and/or other files in memory 102 that match one or more search criteria (e.g., one or more user-specified search terms) in accordance with user instructions.
In conjunction with touch screen 112, display controller 156, contact module 130, graphics module 132, and text input module 134, notes module 153 includes executable instructions to create and manage notes, to do lists, and the like in accordance with user instructions.
In conjunction with RF circuitry 108, touch screen 112, display system controller 156, contact module 130, graphics module 132, text input module 134, GPS module 135, and browser module 147, map module 154 may be used to receive, display, modify, and store maps and data associated with maps (e.g., driving directions; data on stores and other points of interest at or near a particular location; and other location-based data) in accordance with user instructions.
In conjunction with touch screen 112, display system controller 156, contact module 130, graphics module 132, audio circuitry 110, speaker 111, RF circuitry 108, text input module 134, e-mail client module 140, and browser module 147, online video module 155 includes instructions that allow the user to access, browse, receive (e.g., by streaming and/or download), play back (e.g., on the touch screen or on an external, connected display via external port 124), send an e-mail with a link to a particular online video, and otherwise manage online videos in one or more file formats, such as H.264. In some embodiments, instant messaging module 141, rather than e-mail client module 140, is used to send a link to a particular online video. Additional description of the online video application can be found in U.S. Provisional Patent Application No. 60/936,562, “Portable Multifunction Device, Method, and Graphical User Interface for Playing Online Videos,” filed Jun. 20, 2007, and U.S. patent application Ser. No. 11/968,067, “Portable Multifunction Device, Method, and Graphical User Interface for Playing Online Videos,” filed Dec. 31, 2007, the content of which is hereby incorporated by reference in its entirety.
Each of the above identified modules and applications correspond to a set of executable instructions for performing one or more functions described above and the methods described in this application (e.g., the computer-implemented methods and other information processing methods described herein). These modules (i.e., sets of instructions) need not be implemented as separate software programs, procedures or modules, and thus various subsets of these modules may be combined or otherwise re-arranged in various embodiments. For example, video player module 145 may be combined with music player module 146 into a single module (e.g., video and music player module 152,
In some embodiments, device 100 is a device where operation of a predefined set of functions on the device is performed exclusively through a touch screen and/or a touchpad. By using a touch screen and/or a touchpad as the primary input control device for operation of device 100, the number of physical input control devices (such as push buttons, dials, and the like) on device 100 may be reduced.
The predefined set of functions that may be performed exclusively through a touch screen and/or a touchpad include navigation between user interfaces. In some embodiments, the touchpad, when touched by the user, navigates device 100 to a main, home, or root menu from any user interface that may be displayed on device 100. In such embodiments, the touchpad may be referred to as a “menu button.” In some other embodiments, the menu button may be a physical push button or other physical input control device instead of a touchpad.
Event sorter 170 receives event information and determines the application 136-1 and application view 191 of application 136-1 to which to deliver the event information. Event sorter 170 includes event monitor 171 and event dispatcher module 174.
In some embodiments, application 136-1 includes application internal state 192, which indicates the current application view(s) displayed on touch sensitive display 112 when the application is active or executing. In some embodiments, device/global internal state 157 is used by event sorter 170 to determine which application(s) is(are) currently active, and application internal state 192 is used by event sorter 170 to determine application views 191 to which to deliver event information.
In some embodiments, application internal state 192 includes additional information, such as one or more of: resume information to be used when application 136-1 resumes execution, user interface state information that indicates information being displayed or that is ready for display by application 136-1, a state queue for enabling the user to go back to a prior state or view of application 136-1, and a redo/undo queue of previous actions taken by the user.
Event monitor 171 receives event information from peripherals interface 118. Event information includes information about a sub-event (e.g., a user touch on touch-sensitive display 112, as part of a multi-touch gesture). Peripherals interface 118 transmits information it receives from I/O subsystem 106 or a sensor, such as proximity sensor 166, accelerometer(s) 168, and/or microphone 113 (through audio circuitry 110). Information that peripherals interface 118 receives from I/O subsystem 106 includes information from touch-sensitive display 112 or a touch-sensitive surface.
In some embodiments, event monitor 171 sends requests to the peripherals interface 118 at predetermined intervals. In response, peripherals interface 118 transmits event information. In other embodiments, peripheral interface 118 transmits event information only when there is a significant event (e.g., receiving an input above a predetermined noise threshold and/or for more than a predetermined duration).
In some embodiments, event sorter 170 also includes a hit view determination module 172 and/or an active event recognizer determination module 173.
Hit view determination module 172 provides software procedures for determining where a sub-event has taken place within one or more views, when touch sensitive display 112 displays more than one view. Views are made up of controls and other elements that a user can see on the display.
Another aspect of the user interface associated with an application is a set of views, sometimes herein called application views or user interface windows, in which information is displayed and touch-based gestures occur. The application views (of a respective application) in which a touch is detected may correspond to programmatic levels within a programmatic or view hierarchy of the application. For example, the lowest level view in which a touch is detected may be called the hit view, and the set of events that are recognized as proper inputs may be determined based, at least in part, on the hit view of the initial touch that begins a touch-based gesture.
Hit view determination module 172 receives information related to sub-events of a touch-based gesture. When an application has multiple views organized in a hierarchy, hit view determination module 172 identifies a hit view as the lowest view in the hierarchy which should handle the sub-event. In most circumstances, the hit view is the lowest level view in which an initiating sub-event occurs (i.e., the first sub-event in the sequence of sub-events that form an event or potential event). Once the hit view is identified by the hit view determination module, the hit view typically receives all sub-events related to the same touch or input source for which it was identified as the hit view.
Active event recognizer determination module 173 determines which view or views within a view hierarchy should receive a particular sequence of sub-events. In some embodiments, active event recognizer determination module 173 determines that only the hit view should receive a particular sequence of sub-events. In other embodiments, active event recognizer determination module 173 determines that all views that include the physical location of a sub-event are actively involved views, and therefore determines that all actively involved views should receive a particular sequence of sub-events. In other embodiments, even if touch sub-events were entirely confined to the area associated with one particular view, views higher in the hierarchy would still remain as actively involved views.
Event dispatcher module 174 dispatches the event information to an event recognizer (e.g., event recognizer 180). In embodiments including active event recognizer determination module 173, event dispatcher module 174 delivers the event information to an event recognizer determined by active event recognizer determination module 173. In some embodiments, event dispatcher module 174 stores in an event queue the event information, which is retrieved by a respective event receiver module 182.
In some embodiments, operating system 126 includes event sorter 170. Alternatively, application 136-1 includes event sorter 170. In yet other embodiments, event sorter 170 is a stand-alone module, or a part of another module stored in memory 102, such as contact/motion module 130.
In some embodiments, application 136-1 includes a plurality of event handlers 190 and one or more application views 191, each of which includes instructions for handling touch events that occur within a respective view of the application's user interface. Each application view 191 of the application 136-1 includes one or more event recognizers 180. Typically, a respective application view 191 includes a plurality of event recognizers 180. In other embodiments, one or more of event recognizers 180 are part of a separate module, such as a user interface kit (not shown) or a higher level object from which application 136-1 inherits methods and other properties. In some embodiments, a respective event handler 190 includes one or more of: data updater 176, object updater 177, GUI updater 178, and/or event data 179 received from event sorter 170. Event handler 190 may utilize or call data updater 176, object updater 177 or GUI updater 178 to update the application internal state 192. Alternatively, one or more of the application views 191 includes one or more respective event handlers 190. Also, in some embodiments, one or more of data updater 176, object updater 177, and GUI updater 178 are included in a respective application view 191.
A respective event recognizer 180 receives event information (e.g., event data 179) from event sorter 170, and identifies an event from the event information. Event recognizer 180 includes event receiver 182 and event comparator 184. In some embodiments, event recognizer 180 also includes at least a subset of: metadata 183, and event delivery instructions 188 (which may include sub-event delivery instructions).
Event receiver 182 receives event information from event sorter 170. The event information includes information about a sub-event, for example, a touch or a touch movement. Depending on the sub-event, the event information also includes additional information, such as location of the sub-event. When the sub-event concerns motion of a touch the event information may also include speed and direction of the sub-event. In some embodiments, events include rotation of the device from one orientation to another (e.g., from a portrait orientation to a landscape orientation, or vice versa), and the event information includes corresponding information about the current orientation (also called device attitude) of the device.
Event comparator 184 compares the event information to predefined event or sub-event definitions and, based on the comparison, determines an event or sub-event, or determines or updates the state of an event or sub-event. In some embodiments, event comparator 184 includes event definitions 186. Event definitions 186 contain definitions of events (e.g., predefined sequences of sub-events), for example, event 1 (187-1), event 2 (187-2), and others. In some embodiments, sub-events in an event 187 include, for example, touch begin, touch end, touch movement, touch cancellation, and multiple touching. In one example, the definition for event 1 (187-1) is a double tap on a displayed object. The double tap, for example, comprises a first touch (touch begin) on the displayed object for a predetermined phase, a first lift-off (touch end) for a predetermined phase, a second touch (touch begin) on the displayed object for a predetermined phase, and a second lift-off (touch end) for a predetermined phase. In another example, the definition for event 2 (187-2) is a dragging on a displayed object. The dragging, for example, comprises a touch (or contact) on the displayed object for a predetermined phase, a movement of the touch across touch-sensitive display 112, and lift-off of the touch (touch end). In some embodiments, the event also includes information for one or more associated event handlers 190.
In some embodiments, event definition 187 includes a definition of an event for a respective user-interface object. In some embodiments, event comparator 184 performs a hit test to determine which user-interface object is associated with a sub-event. For example, in an application view in which three user-interface objects are displayed on touch-sensitive display 112, when a touch is detected on touch-sensitive display 112, event comparator 184 performs a hit test to determine which of the three user-interface objects is associated with the touch (sub-event). If each displayed object is associated with a respective event handler 190, the event comparator uses the result of the hit test to determine which event handler 190 should be activated. For example, event comparator 184 selects an event handler associated with the sub-event and the object triggering the hit test.
In some embodiments, the definition for a respective event 187 also includes delayed actions that delay delivery of the event information until after it has been determined whether the sequence of sub-events does or does not correspond to the event recognizer's event type.
When a respective event recognizer 180 determines that the series of sub-events do not match any of the events in event definitions 186, the respective event recognizer 180 enters an event impossible, event failed, or event ended state, after which it disregards subsequent sub-events of the touch-based gesture. In this situation, other event recognizers, if any, that remain active for the hit view continue to track and process sub-events of an ongoing touch-based gesture.
In some embodiments, a respective event recognizer 180 includes metadata 183 with configurable properties, flags, and/or lists that indicate how the event delivery system should perform sub-event delivery to actively involved event recognizers. In some embodiments, metadata 183 includes configurable properties, flags, and/or lists that indicate how event recognizers may interact with one another. In some embodiments, metadata 183 includes configurable properties, flags, and/or lists that indicate whether sub-events are delivered to varying levels in the view or programmatic hierarchy.
In some embodiments, a respective event recognizer 180 activates event handler 190 associated with an event when one or more particular sub-events of an event are recognized. In some embodiments, a respective event recognizer 180 delivers event information associated with the event to event handler 190. Activating an event handler 190 is distinct from sending (and deferred sending) sub-events to a respective hit view. In some embodiments, event recognizer 180 throws a flag associated with the recognized event, and event handler 190 associated with the flag catches the flag and performs a predefined process.
In some embodiments, event delivery instructions 188 include sub-event delivery instructions that deliver event information about a sub-event without activating an event handler. Instead, the sub-event delivery instructions deliver event information to event handlers associated with the series of sub-events or to actively involved views. Event handlers associated with the series of sub-events or with actively involved views receive the event information and perform a predetermined process.
In some embodiments, data updater 176 creates and updates data used in application 136-1. For example, data updater 176 updates the telephone number used in contacts module 137, or stores a video file used in video player module 145. In some embodiments, object updater 177 creates and updates objects used in application 136-1. For example, object updater 177 creates a new user-interface object or updates the position of a user-interface object. GUI updater 178 updates the GUI. For example, GUI updater 178 prepares display information and sends it to graphics module 132 for display on a touch-sensitive display.
In some embodiments, event handler(s) 190 includes or has access to data updater 176, object updater 177, and GUI updater 178. In some embodiments, data updater 176, object updater 177, and GUI updater 178 are included in a single module of a respective application 136-1 or application view 191. In other embodiments, they are included in two or more software modules.
It shall be understood that the foregoing discussion regarding event handling of user touches on touch-sensitive displays also applies to other forms of user inputs to operate multifunction devices 100 with input-devices, not all of which are initiated on touch screens, e.g., coordinating mouse movement and mouse button presses with or without single or multiple keyboard presses or holds, user movements taps, drags, scrolls, etc., on touch-pads, pen stylus inputs, movement of the device, oral instructions, detected eye movements, biometric inputs, and/or any combination thereof, which may be utilized as inputs corresponding to sub-events which define an event to be recognized.
Device 100 may also include one or more physical buttons, such as “home” or menu button 204. As described previously, menu button 204 may be used to navigate to any application 136 in a set of applications that may be executed on device 100. Alternatively, in some embodiments, the menu button is implemented as a soft key in a GUI displayed on touch screen 112.
In one embodiment, device 100 includes touch screen 112, menu button 204, push button 206 for powering the device on/off and locking the device, volume adjustment button(s) 208, Subscriber Identity Module (SIM) card slot 210, head set jack 212, and docking/charging external port 124. Push button 206 may be used to turn the power on/off on the device by depressing the button and holding the button in the depressed state for a predefined time interval; to lock the device by depressing the button and releasing the button before the predefined time interval has elapsed; and/or to unlock the device or initiate an unlock process. In an alternative embodiment, device 100 also may accept verbal input for activation or deactivation of some functions through microphone 113.
Each of the above identified elements in
Attention is now directed towards embodiments of user interfaces (“UI”) that may be implemented on portable multifunction device 100.
In some embodiments, user interface 400B includes the following elements, or a subset or superset thereof:
Additionally, while the following examples are given primarily with reference to finger inputs (e.g., finger contacts, finger tap gestures, finger swipe gestures), it should be understood that, in some embodiments, one or more of the finger inputs are replaced with input from another input device (e.g., a mouse based input or stylus input). For example, a swipe gesture may be replaced with a mouse click (e.g., instead of a contact) followed by movement of the cursor along the path of the swipe (e.g., instead of movement of the contact). As another example, a tap gesture may be replaced with a mouse click while the cursor is located over the location of the tap gesture (e.g., instead of detection of the contact followed by ceasing to detect the contact). Similarly, when multiple user inputs are simultaneously detected, it should be understood that multiple computer mice may be used simultaneously, or a mouse and finger contacts may be used simultaneously.
Attention is now directed towards embodiments of user interfaces (“UI”) and associated processes that may be implemented on a multifunction device with a display and a touch-sensitive surface, such as device 300 or portable multifunction device 100.
Attention is now directed towards
In some embodiments, the multifunction device 100 displays a plurality of notification icons such as signal strength indicator(s) (e.g., 402 in
Attention is now directed towards
The folder icons (e.g., 5004-1-a and 5004-2 in
In
Additionally, in some embodiments, the one or more of the folder icons change appearance when the device enters user interface reconfiguration mode. For example, in
Attention is now directed towards
In some embodiments, the device maintains a plurality of pages of selectable user interface objects while the device is in a normal operation mode. In some of these embodiments, when the device enters a user interface reconfiguration mode, the device creates an additional page that contains a new empty folder. For example, there are no action icons 5002 and no filled folders on the page displayed in
In
In some embodiments, while the selectable user interface object 5002-13 is proximate to or overlapping with the folder icon 5004-3 for the empty folder, the device detects a termination of the input (e.g., a liftoff of contact 5016-c from the touch screen 112) that was used to request movement of the selectable user interface object 5002-13. In response to detecting termination of the input the liftoff of contact from the touch-sensitive surface (e.g., touch screen 112), the device adds the selectable user interface object 5002-13 to the folder associated with the folder icon 5004-3, as illustrated in
In some embodiments, the device always displays an empty folder while in user interface reconfiguration mode. For example, in
Attention is now directed towards
In some embodiments, the new folder creation element is a represented as region (e.g., region 5028 in
In some embodiments the device receives a request to add one or more of the selectable user interface objects (e.g., action icon 5002-6) into one of the new folders. For example, in
In some embodiments, any folder icons that are associated with empty folders (e.g., folder icon 5004-6) cease to be displayed by the device when the device returns to normal operation mode. For example, in
Attention is now directed towards
In some embodiments, conjunction with creating the folder, the device displays a new folder icon that is associated with the folder. In some embodiments, the new folder icon includes reduced scale representations of the user interface objects that were added to the folder. In some embodiments, the folder is named based on descriptors of the first selectable user interface object (e.g., action icon 5002-4) and/or the second selectable user interface object (e.g., action icon 5002-13). For example,
As another example,
Attention is now directed towards
Attention is now directed towards
In
In
Attention is now directed towards
As another example of an animated transition, in
It should be understood that, in some embodiments the first portion moves away from the second portion or the first portion and the second portion move away from each other. In
In some embodiments, the device detects a folder view exit input (e.g., detecting a tap gesture 5096 at a location on the touch screen 112 that corresponds to a location outside of the folder view 5092 in
Attention is now directed towards
In some embodiments, the folder icon is also updated to reflect the change of contents of the folder. For example, in
In some embodiments, because this is a folder creation cancellation operation, the folder icon ceases to be displayed and the remaining selectable user interface object (e.g., 5002-13) is redisplayed outside of the folder view (e.g., as illustrated in
Attention is now directed towards
In some embodiments, the folder view is displayed by dividing the wallpaper background into a first portion (e.g., 5108) and a second portion (e.g., 5110) and shifting the first portion (e.g., 5108) of the wallpaper background away from the second portion (e.g., 5110) of the wallpaper background so as to display the folder view 5106 in an area between the first portion 5108 and the second portion 5110.
In some embodiments, after the creation of the folder has been confirmed (e.g., by renaming the folder, opening and closing the folder, adding additional selectable user interface objects to the folder, etc.) the folder is not deleted when a single item is removed from the folder. Rather, in some embodiments, the folder is only deleted by the device when all of the items are removed from the folder. For example, in
In some embodiments, after the last selectable user interface object (e.g., 5002-13 in
In some embodiments, once the last selectable user interface object (e.g., 5002-13 in
Attention is now directed towards
As one example of adding a selectable user interface object to a folder, the device detects an input that corresponds to a request to move a selectable user interface object to an activation region that is associated with a folder icon. For example the device detects a contact 5120 at a location on the touch-sensitive surface (e.g., touch screen 112) that corresponds to a respective selectable user interface object 5002-9, and detects subsequent movement 5121 of the contact across the touch-sensitive surface (e.g., from a first contact location 5120-a in
In some embodiments, the device detects a termination of the input (e.g., a liftoff of contact 5120-c in
In
In response to detecting the input (e.g., movement 5126 of the contact 5124 on the touch screen 112 in
In some embodiments the device detects additional movement 5130 of the contact (e.g., from the second contact location 5124-b in
Attention is now directed towards
Attention is now directed towards
Additionally, in some embodiments, the folder icon (e.g., 5004-7) associated with the folder view (e.g., 5138) is updated to reflect the changes to the spatial arrangement of the icons within the folder view (e.g., 5138). For example, in
In some embodiments, in response to a folder view exit input the device ceases to display the folder view. For example, in
Attention is now directed towards
In some embodiments one or more of the selectable user interface objects includes a notification badge (e.g., 5150 in
In some embodiments the device detects a selectable user interface object removal input and in response to detecting the selectable user interface object removal input the device removes a selectable user interface object from the folder view. For example, in
In some embodiments, when a selectable user interface object has been removed from the folder associated with a folder icon, the device updates the folder icon associated with the folder. For example, in
In some embodiments, the device detects an action icon selection input (e.g., tap gesture 5155 at a location that corresponds to an action icon 5002-12 on the touch screen 112 in
In some embodiments, while the device is in a user interface reconfiguration mode, the device detects an input that corresponds to a request to activate an application associated with one of the action icons (e.g., tap gesture 5156, which corresponds to a request to activate an app-7 application that corresponds to the app-7 application icon 5002-25). However, in accordance with some embodiments, in response to detecting the input the device does not activate the application icon while the device is in user interface reconfiguration mode.
In some embodiments the device detects a selectable user interface object removal input and in response to detecting the selectable user interface object removal input the device removes a selectable user interface object from the folder view. In some embodiments, when the selectable object removal input meets predefined conditions, the selectable user interface object is positioned within an arrangement of selectable user interface objects in accordance with the selectable object removal input. For example, in
In some embodiments, after the folder view ceases to be displayed the device continues to detect movement 5166 of the contact 5162 (e.g., movement from the second contact location 5162-b on touch screen 112 in FIG. 5AAA to a third contact location 5162-c on touch screen 112 in FIG. 5BBB that corresponds to a location within an arrangement of selectable user interface objects on the touch screen 112). In response to the continued movement 5166, the device moves the selectable user interface object (e.g., action icon 5002-22) on the display (e.g., touch screen 112) in accordance with the movement of the contact. In some embodiments, the selectable user interface object (e.g., action icon 5002) that was removed from the folder in this way is placed in accordance with the selectable user interface object input. Continuing the example from above, the device detects a termination of the input (e.g., a liftoff of the contact 5162 from the touch screen 112 at contact location 5162-c in FIG. 5BBB) that is associated with a location on the display (e.g., touch screen 112) that is within the arrangement of selectable user interface objects. As illustrated in FIG. 5BBB, the contact 5162-c and the action icon 5002-22 are located in between two of the other selectable user interface objects (e.g., 5002-6 and 5004-7) and upon detecting a termination of the input (e.g., liftoff of contact 5162-c in FIG. 5BBB) the selectable user interface object is displayed at the location within the arrangement of selectable user interface objects that was indicated by the input (e.g., the App-4 action icon 5002-22 is displayed in between the notes action icon 5002-6 and the games folder icon 5004-7 on the touch screen 112 in FIG. 5CCC).
In some embodiments, when a selectable user interface object has been removed from the folder associated with a folder icon, the device updates the folder icon associated with the folder. For example, in
Attention is now directed towards FIGS. 5CCC-5EEE, which illustrate exemplary user interfaces for navigating through pages of selectable user interface objects within a folder view in accordance with some embodiments. In some embodiments, the device detects a folder view display input (e.g., tap gesture 5168 at a location on the touch screen 112 that corresponds to a location of a folder icon 5004-2 on the touch screen 112 in FIG. 5CCC). In response to detecting the folder view display input the device displays a folder view 5170 that includes content of the folder (e.g., action icons 5002-26, 5002-27, 5002-28, 5002-29, 5002-30, 5002-31, 5002-32, 5002-33, 5002-34, 5002-35, 5002-36, and 5002-37) on the display (e.g., touch screen 112) as illustrated in FIG. 5EEE.
In some embodiments, when the folder view display input is a request to display a folder view for a folder icon (e.g., 5004-2) that is in a tray (e.g., 5006 in FIG. 5CCC) in the user interface, the device displays an animation of the folder view expanding from the dock. For example in FIG. 5CCC, the device detects tap gesture 5168 on a folder icon 5004-2 that is in the tray 5006, and in FIG. 5EEE a folder view 5170 of the folder is displayed. In some embodiments, the device displays a transition animation before displaying the folder view, as illustrated in FIG. 5DDD. For example, in response to detecting the tap gesture 5168 the device divides the wallpaper background into a first portion 5172 and a second portion 5174 and displays an animation of a wallpaper background sliding back (e.g., the second portion 5174 moving away from the first portion 5172) so as to reveal selectable user interface objects (e.g., 5002-34, 5002-35, 5002-36, 5002-37 in FIG. 5DDD) that appear to be beneath the wallpaper background. At the end of the animation the contents or a portion of the contents of the folder are displayed in the folder view 5170 on the display (e.g., touch screen 112).
In some embodiments the folder includes more selectable user interface objects than can be displayed in the folder view (e.g., 5170 in FIG. 5EEE). In some embodiments the folder has a maximum number of selectable user interface objects that can be added to the folder, where the maximum number is based on the maximum number of selectable user interface objects that can be displayed in the folder view for the folder. For example in FIG. 5EEE, only 12 selectable user interface objects could be added to the folder associated with the folder view 5170. However, in some embodiments, the folder view contains a plurality of “pages” or sets of selectable user interface objects, and the folder can hold additional selectable user interface objects that do not fit in the first set of selectable user interface objects (e.g., action icons 5002-26, 5002-27, 5002-28, 5002-29, 5002-30, 5002-31, 5002-32, 5002-33, 5002-34, 5002-35, 5002-36, and 5002-37) by displaying the additional selectable user interface objects that are part of subsequent sets of selectable user interface objects. For example, in FIG. 5EEE the device detects a next page input including contact 5176 and subsequent movement 5178 of the contact across the touch-sensitive surface (e.g., touch screen 112). In response to detecting the next page input, the device displays a second set of selectable user interface objects (e.g., action icons 5002-38, 5002-39, 5002-40, 5002-41, 5002-42, and 5002-43 in FIG. 5FFF) within the folder view 5170 for the folder. In other words the folder includes eighteen selectable user interface objects with twelve selectable user interface objects in a first page and six selectable user interface objects on a second page.
Attention is now directed towards FIGS. 5GGG-5MMM, which illustrate exemplary user interfaces for removing selectable user interface objects from a folder in accordance with some embodiments. In some embodiments, the device detects a folder view display input (e.g., tap gesture 5168 at a location that corresponds to a folder icon 5004-2 on the touch screen 112 in FIG. 5CCC). In response to detecting the folder view display input the device displays a folder view 5182 that includes content of the folder (e.g., action icons 5002-26, 5002-27, 5002-28, 5002-29, 5002-30, 5002-31, 5002-32, 5002-33, 5002-34, 5002-35, 5002-36, and 5002-37), as illustrated in FIG. 5GGG.
In some embodiments the folder view (e.g., 5182) includes all of or substantially all of the display (e.g., touch screen 112) in some of these embodiments, the device displays a selectable user interface object removal region (e.g., 5184 in FIG. 5GGG). In some embodiments, in response to detecting a removal request that corresponds to a request to move a respective selectable user interface object into the selectable user interface object removal region 5184, the device removes the respective selectable user interface object from the folder. For example, in FIG. 5GGG, the device detects a contact 5186 and movement 5188 of the contact (e.g., movement from a first contact location 5168-a in FIG. 5GGG that corresponds to a location of the respective selectable user interface object 5002-32 on the touch screen 112 to a second contact location 5186-b in FIG. 5HHH that corresponds to a location on the touch screen 112 that is proximate to or within the selectable user interface object removal region 5184). Continuing this example, the device moves the respective selectable user interface object (e.g., action icon 5002-32) into the selectable user interface object removal region 5184. In some embodiments, in response to detecting termination of the input (e.g., liftoff of contact 5186-b in FIG. 5HHH), the device ceases to display the respective selectable user interface object (e.g., action icon 5002-32) from the folder view 5182 and automatically rearranges the selectable user interface objects within the folder view 5182 so as to close any gaps in the arrangement of the selectable user interface objects. For example in FIG. 5III the selectable user interface objects have been rearranged so as to fill in the gap that remained in FIG. 5HHH after the respective selectable user interface object (e.g., action icon 5002-32) was removed from the folder view.
In some embodiments, the folder view ceases to be displayed automatically after a selectable user interface object (e.g., action icon 5002-32) is removed from the folder (e.g., the device automatically switches from the user interface displayed in FIG. 5III to the user interface displayed in FIG. 5JJJ. In some embodiments the device detects an exit folder view input (e.g., tap gesture 5190 on “exit folder” icon in the upper right corner of the folder view 5182 in FIG. 5III). In response to detecting the exit folder view input, the device ceases to display the folder view and redisplays the home screen, as illustrated in FIG. 5JJJ. In some embodiments the selectable user interface object (e.g., 5002-32) that was removed from the folder is displayed on the home screen, as illustrated in FIG. 5JJJ.
In some embodiments, the device detects a folder view display input (e.g., tap gesture 5192 at a location that corresponds to a folder icon 5004-2 in FIG. 5JJJ). In response to detecting the folder view display input the device redisplays the folder view 5182 that includes the modified content of the folder (e.g., action icons 5002-26, 5002-27, 5002-28, 5002-29, 5002-30, 5002-31, 5002-33, 5002-34, 5002-35, 5002-36, and 5002-37), as illustrated in FIG. 5KKK. In some embodiments, instead of, or in addition to, the selectable user interface object removal region described above, the device displays an object modification target associated with one or more of the selectable user interface objects. For example, in FIG. 5KKK each of the selectable user interface objects has an object modification target associated with it (e.g., action icon 5002-37 has a respective object modification target 5194).
In some embodiments, when the device detects a request to activate the object modification target for a respective selectable user interface object (e.g., tap gesture 5196 at a location on the touch screen 112 that corresponds to a location of an object modification region for action icon 5002-37), the device displays an object modification dialogue. For example in FIG. 5LLL the device displays a pop-up dialogue 5198 that provides the user with options for modifying the selectable user interface object (e.g., deleting action icon 5002-37, removing action icon 5002-37 from the folder, or canceling the object modification operation). In this example, in response to an input that corresponds to a request to delete the selectable user interface object (e.g., tap gesture 5200 on a delete button the device deletes the selectable user interface object (e.g., removing the action icon 5002-37 from the folder associated with the folder view and from the device entirely, so that it is not displayed on a home screen or any other folder view, as illustrated in FIG. 5MMM). In some embodiments, when the selectable user interface is deleted an application associated with the selectable user interface object is deleted from the device. In this example, in response to an input that corresponds to a request to cancel the object modification operation (e.g., tap gesture 5202 on a cancel icon), the device ceases to display the object modification dialogue 5198 without modifying the selectable user interface object (e.g., action icon 5002-37) thereby returning to the user interface displayed in FIG. 5KKK. In this example, in response to an input that corresponds to a request to remove the selectable user interface object from the folder (e.g., tap gesture 5204 on a remove button), the device removes the selectable user interface object from the folder (e.g., as illustrated in FIG. 5MMM) without removing the selectable user interface object from the device (e.g., removing the action icon 5002-37 from the folder associated with the folder view and displaying the action icon 5002-37 on the home screen as illustrated in FIG. 5NNN).
Attention is now directed towards FIGS. 5NNN-5OOO, which illustrate exemplary user interfaces for displaying a folder view while in a normal operating mode in accordance with some embodiments. In some embodiments the device detects an input that corresponds to a request to exit the user interface reconfiguration mode and return to a normal operation mode. For example, in FIG. 5NNN the device detects a request to return to normal operation mode (e.g., a press input 5206 on home button 204 in FIG. 5NNN). In response to the request to return to the normal operation mode, the device returns to normal operation mode so that the selectable user interface objects (e.g., action icons 5002 and folder icons 5004) in FIGS. 5OOO-5PPP can no longer be rearranged (although, in some embodiments, the arrangement of selectable user interface objects can be scrolled in one or two dimensions).
In some embodiments, while the device is in a normal operation mode, selection of a respective action icon 5002 results in activating an application associated with the respective action icon. For example in FIG. 5OOO, in response to detecting selection of the photos action icon (e.g., detecting a tap gesture 5208 at a location on the touch-sensitive surface that corresponds to the photos action icon 5002-1), the device displays a photos application (e.g., launching the photos application if the photos application is not already running, or simply displaying the photos application if the photos application is already running). In contrast, in some embodiments, in response to detecting selection of a respective folder icon 5004 results in displaying a folder view for the folder. For example, in FIG. 5OOO, after detecting selection of a games folder icon (e.g., detecting a tap gesture 5210 at a location on the touch-sensitive surface that corresponds to the games folder icon 5004-7), the device displays a folder view 5212 for the games folder. In some embodiments, while the device is in a normal operation mode, selection of a respective action icon 5002 within a folder view (e.g., folder view 5212) results in activating an application associated with the respective action icon. For example, in response to detecting selection of the photos action icon (e.g., detecting a tap gesture 5214 at a location on the touch-sensitive surface (e.g., touch screen 112) that corresponds to the stocks action icon 5002-9), the device displays a photos application (e.g., launching the stocks application if the stocks application is not already running, or simply displaying the stocks application if the stocks application is already running) on the display (e.g., touch screen 112).
As described below, the method 600 provides an intuitive way to create a new folder. The method reduces the cognitive burden on a user when creating new folders, thereby creating a more efficient human-machine interface. For battery-operated computing devices, enabling a user to create a new folder faster and more efficiently conserves power and increases the time between battery charges.
The device displays (602) a plurality of selectable user interface objects on the display (e.g., in
In response to detecting an input that corresponds to selection of a respective selectable user interface object, the device activates (606) an application that is associated with the respective selectable user interface object. In some embodiments, applications are only activated when the device is in a normal operation mode. For example, selecting a solitaire application icon 5002-1 in
The device detects (608) a first input. For example, as illustrated in
In response to detecting the first input, the device moves (612) a first object in the plurality of selectable user interface objects across the display (e.g., touch screen 112) to a location on the display (e.g., touch screen 112) that is proximate to a second object in the plurality of selectable user interface objects. For example, in
The device detects (614) that the first input meets predefined folder-creation criteria while the first object is proximate to the second object. In some embodiments, detecting that the first input meets predefined folder-creation criteria includes detecting (616) termination of the first input while the first object is proximate to the second object. For example, in
Operations 622-636 are performed (620) in response to detecting that the first input meets predefined folder-creation criteria while the first object is proximate to the second object. In some embodiments, in response to detecting that the first input meets predefined folder-creation criteria of the first input while the first object is proximate to the second object, ceasing (622) to display the first object and the second object (e.g., as illustrated in
The device creates (624) a folder that contains the first object and the second object. In some embodiments, creating the folder includes displaying (626) a folder icon that is representative of the folder (e.g., as described in greater detail below with reference to method 1100). For example, the device creates folder that includes the solitaire application icon 5002-4 and the racing application icon 5002-13, and displays folder icon 5004-7, as illustrated in
In some embodiments, after creating the folder, the device automatically displays (632) a folder view that includes contents of the folder. For example, the device moves automatically from the user interface displayed in
In some embodiments, after detecting the first input, the device displays the plurality of user interface objects in a first arrangement on the display. For example, in
In some embodiments, the device displays an animated transition from the first arrangement to the folder view (e.g., as described in greater detail below with reference to method 1200). In some embodiments, displaying the folder view includes displaying (636) a folder icon (e.g., 5004-7 in
In some embodiments, while the device is in a normal operation mode, the selectable user interface objects include (638) one or more action icons (e.g., 5002 in FIG. 5OOO) and one or more folder icons (e.g., 5004 in FIG. 5OOO). In some of these embodiments, the device detects (640) a second input. In some embodiments, in response to detecting the second input: when the second input corresponds to a request to select a respective action icon, the device activates (642) an application associated with the respective action icon; and when the second input corresponds to a request to select the folder icon, the device displays a folder view that includes contents of the folder associated with the folder icon. For example, in FIG. 5OOO, a tap gesture 5208 at a location on the touch-sensitive surface (e.g., touch screen display 112) that corresponds to a location of an action icon (e.g., photos application icon 5002-9) on the display (e.g., touch screen 112) activates an application (e.g., a photos application) that is associated with the action icon, while in response to detecting a tap gesture 5210 at a location on the touch-sensitive surface (e.g., touch screen 112) at a location that corresponds to location of the folder icon (e.g., folder icon 5004-7 in FIG. 5OOO) on the display (e.g., touch screen 112) the device displays a folder view 5212 that includes contents (e.g., action icons 5002-9, 5002-4, 5002-13, 5002-8) of the folder associated with the folder icon 5004-7.
In some embodiments, after creating the folder, the device displays (644) a folder view that includes contents of the folder and displays an object removal region. For example, in
In some embodiments, while displaying the folder view, the device detects (646) a second input that corresponds to a request to move a respective selectable user interface object into the object removal region, and in response to detecting the second input, the device removes (648) the respective selectable user interface object from the folder. For example, in
In some embodiment, prior to detecting the first input, the plurality of user interface objects are displayed (650) in a first arrangement on the display (e.g., touch screen 112), and when the second input corresponds to a request to move the respective selectable user interface object into the object removal region and termination of the second input is detected: the device ceases to display the folder view; and displays (652) the respective selectable user interface object at a predetermined location in the first arrangement (e.g., at an end of the first arrangement or at a first open location within the first arrangement). In other words, in some embodiments, the second input corresponds to a flick gesture that includes a contact at a location on the touch-sensitive surface that corresponds to a location of the respective selectable user interface object and includes a lateral movement on the touch-sensitive surface (e.g., touch screen 112) that corresponds to movement on the display (e.g., touch screen 112) towards a location of the touch-sensitive surface (e.g., touch screen 112) that corresponds to the object removal region on the display (e.g., touch screen 112). For example, in
In some embodiments, prior to detecting the first input, the plurality of user interface objects are displayed (650) in a first arrangement on the display; when the device continues to detect the second input at a location on the touch-sensitive surface (e.g., touch screen 112) that corresponds to a location of the object removal region on the display (e.g., touch screen 112) for more than a predetermined amount of time: the device ceases to display the folder view; the device detects (654) termination of the second input at a respective location on the touch-sensitive surface (e.g., touch screen 112) that corresponds to a location on the display (e.g., touch screen 112) that is within the first arrangement; and in response to detecting termination of the second input, and the device displays (656) the respective selectable user interface object at the respective location in the first arrangement. In other words, in some embodiments, the second input corresponds to a tap and drag gesture that includes a contact moving into a region on the touch-sensitive surface (e.g., touch screen 112) that corresponds to the object removal region on the display (e.g., touch screen 112). For example, in
In some embodiments, after creating the folder, the device detects (658) a second input that corresponds to a request to move a respective selectable user interface object of the first object and the second object out of the folder; and when the second input is detected before the creation of the folder has been confirmed, the device deletes (660) the folder and redisplays the first object and the second object. For example, in
In some embodiments, the first object is the respective object that is moved out of the folder and deleting (662) the folder and the redisplaying includes: displaying the first object at a location on the display (e.g., touch screen 112) that is determined based on the second input; and displaying the second object at a location on the display (e.g., touch screen 112) that was previously occupied by a folder icon of the folder. Continuing the example described above with reference to
In contrast, when the second input is detected after the creation of the folder has been confirmed, the device displays the respective object outside of the folder while continuing to display the folder. For example, when the creation of the folder has been confirmed, as illustrated in
In some embodiments, the creation of the folder is confirmed (668) when the device detects an input that corresponds to a request to perform an action that manipulates the folder. Such actions include but are not limited to opening (670) the folder, closing (672) the folder, moving (674) the folder, renaming (676) the folder, adding (678) an additional selectable user interface object to the folder, entering (680) a user interface reconfiguration mode, leaving (682) a user interface reconfiguration mode. In some embodiments, the creation of the folder is confirmed when the device receives other predefined inputs that correspond to a request to manipulate the folder. In other words, creation of the folder is confirmed by actions that indicate that the creation of the folder was intentional and not accidental.
Note that details of other processes described herein with respect to methods 700, 800, 900, 1000, 1100, 1200 (e.g.,
As described below, the method 700 provides an intuitive way to manage folder icons and action icons. The method reduces the cognitive burden on a user when managing folder icons and action icons, thereby creating a more efficient human-machine interface. For battery-operated computing devices, enabling a user to manage folder icons and action icons faster and more efficiently conserves power and increases the time between battery charges.
The device concurrently displays (702) one or more action icons (e.g., application icons and other activatable icons besides folder icons) and one or more folder icons on the display. The device has a normal operation mode for activating applications (e.g., as illustrated in
The device detects (704) a first input (e.g., tap gesture 5155 in
Operations 712-718 and 744-766 are performed (710) in response to detecting the first input.
In some embodiments the device determines whether the first input is a request to select a folder to select an action icon. When the first input is a request to select (712) an action icon, the device performs operations discussed in greater detail below with reference to operations 744-766. In contrast, when the first input is a request to select (714) an action icon, the device performs operations discussed in greater detail below with reference to operations 716-742.
When the device determines that (716) the first input corresponds to a request to select a respective folder icon of the one or more folder icons, the device displays (718) contents of a folder associated with the respective folder icon without regard for whether the device is in the normal operation mode or the user interface reconfiguration mode. For example, in
In some embodiments, while the device is in user interface reconfiguration mode, the folder icon can also be moved in response to a folder repositioning input. For example, in
In some embodiments, displaying contents of a folder associated with the respective folder icon includes displaying (720) a plurality of action icons (e.g., in
In some embodiments, the action icon within the folder is moved in response to an action icon movement input while the device is in user interface reconfiguration mode. For example, in
In some embodiments, the first input corresponds to a request to select the respective folder icon; and the device is in user interface reconfiguration mode when the first input is detected. In some of these embodiments, while remaining (736) in user reconfiguration mode the device displays (738) contents of a folder. In some of these embodiments, after displaying contents of the folder the device detects (740) a second input; and in response to detecting the second input, the device ceases (742) to display the folder view. For example, in
The device determines (744) that first input corresponds to a request to select a respective action icon of the one or more action icons (e.g., tap gesture 5155 in
In some embodiments, operations 752-756 are performed when the device is (750) in the normal operation mode. The device activates (752) an application associated with the respective action icon. For example, in FIG. 5OOO the device detects a tap gesture 5208 at a location on the touch-sensitive surface (e.g., touch screen 112) that corresponds to a location of a photos application icon 5002-1 on the display (e.g., touch screen 112) and in response to detecting the tap gesture 5208 the device activates a photos application that is associated with the photos application icon 5002-1. In some embodiments, while the device is in the normal operation mode, a function of a respective action icon that is associated with a respective application is to activate (754) the respective application (e.g., the action icon is an application launch icon); and while in normal operation mode, the application icons and folder icons cannot be rearranged (756) on the display (e.g., the relative positions of selectable user interface objects within the arrangement of selectable user interface objects is fixed). It should be understood that, although the arrangement of selectable user interface objects may be scrolled, paged through, or otherwise translated across the display (e.g., touch screen 112), these operations do not entail any rearrangement of the selectable user interface objects, because the relative positions of respective selectable user interface objects to each other remains unchanged when the device performs these operations.
Operations 760-766 are performed when (758) the device is in the user interface reconfiguration mode. The device continues (760) to display the respective action icon without activating the application associated with the respective action icon. For example, in
In some embodiments, while the device is in the user interface reconfiguration mode, the respective action icon is prevented (762) from being used to activate the respective application (e.g., a request to select the camera application icon 5002-12 fails to activate the application icon). In some embodiments, when the device is in the user reconfiguration mode, one or more of the action icons includes (764) a deletion region for deleting the action icon, while none of the folder icons include a deletion region for deleting the folder icon. For example, the device displays object removal badges 5010 in
Note that details of other processes described herein with respect to methods 600, 800, 900, 1000, 1100, 1200 (e.g.,
As described below, the method 800 provides an intuitive way to name a new folder. The method reduces the cognitive burden on a user when naming a new folder, thereby creating a more efficient human-machine interface. For battery-operated computing devices, enabling a user to name a new folder faster and more efficiently conserves power and increases the time between battery charges.
The device receives (802) an input that corresponds to a request to create a folder that contains a first item and a second item (e.g., the items may be applications, software programs, or files that correspond to icons or other selectable user interface objects on the display). In some embodiments, the folder initially contains just the first item and the second item (i.e., the first item and the second item are the first two items in the folder). In some embodiments, the request to create a folder that contains a first item and a second item includes (804) an input that corresponds to a request to move the first item proximate to the second item or a request to drag a first item on top of a second item (e.g., as described in greater detail above with reference method 600). For example, in
Operations 808-844 are performed (806) in response to receiving the input. The device creates (808) the folder that contains the first item and the second item. The device determines (810) a first plurality of descriptors that are associated with the first item (e.g., “Game,” “Card Game” “Solitaire Game”). The device also determines (812) a second plurality of descriptors that are associated with the second item (e.g., “Game,” “Action Game,” “Racing Game”). In some embodiments, the device determines whether there is a common descriptor that is shared by the first plurality of descriptors and the second plurality of descriptors. Continuing the example, from above, both the solitaire application and the racing application are associated with the common descriptor “Game.” When there is (814) a common descriptor, the device performs operations 824-844, as described in greater detail below.
In some embodiments, when there is not (816) a common descriptor, the device determines that the first plurality of descriptors and the second plurality of descriptors do not (818) share any common descriptors: the device automatically generates (820) a folder name for the folder based on a descriptor from the first plurality of descriptors; and displays (822) an icon for the folder with the automatically generated folder name on the display. In other words, the folder name for the folder is determined based on descriptors of only one of the two items that are initially added to the folder. In some embodiments the descriptors are descriptors of a first item selected to be added to the folder (e.g., if more than one item is selected before the folder has been created). In some embodiments, the descriptors are descriptors of a first item added to the folder. For example, in
When the device determines (824) that the first plurality of descriptors and the second plurality of descriptors share at least a first common descriptor. For example, in
In some embodiments, the first plurality of descriptors includes a plurality of tags that were previously assigned to the first item; the second plurality of descriptors includes a plurality of tags that were previously assigned to the second item; and the first common descriptor is (828) a tag that is included in the first plurality of tags and in the second plurality of tags. In some embodiments, the tags are assigned by a user of the device to respective items, and apply only to locally stored items. In some embodiments, the tags are assigned at a remote server and are sent to the device by the remote server.
In some embodiments, the first plurality of descriptors includes a first hierarchy of categories; the second plurality of descriptors includes a second hierarchy of categories; and the first common descriptor is (830) a category that is included in the first hierarchy of categories and in the second hierarchy of categories (e.g., “Games”>“Card Game”>“Solitaire Game” or “Games”>“Action Game”>“Racing Game”). In some embodiments, the first hierarchy of categories is (832) a set of categories to which the first item has been assigned within an application database (e.g., a database of applications in an application store), and the second hierarchy of categories is a set of categories to which the second item has been assigned within the application database. In some embodiments, the application database is (834) a database of applications in an application store. For example, in some embodiments, the descriptors are based at least in part on the category names for applications in a dedicated application store for a mobile device (e.g., the App Store for the Apple iPhone). In some embodiments these category names are supplemented by additional tags that indicate additional information about the items (e.g., a name of a creator of the item, a date/time of creation of the item, etc.).
When the first plurality of descriptors and the second plurality of descriptors share at least a first common descriptor, the device automatically generates (836) a folder name for the folder based on the first common descriptor. After generating the folder name, the device displays (838) an icon for the folder with the automatically generated folder name on the display. Continuing the example from above, the folder created by dragging the solitaire application icon 5002-4 proximate to the racing application icon 5002-13 is named the “Games” folder 5004-7, as illustrated in
In some embodiments, the device concurrently displays (840) the icon for the folder and a folder view for the folder that shows contents of the folder. For example, in response to detecting the input (e.g., contact 5040 and movement 5042 in
In some embodiments, in response to receiving the input, the device displays (842) a notification that the folder has been created, wherein the notification includes instructions for renaming the folder. For example in
In some embodiments, the device detects (846) an additional input, and in response to detecting the additional input the device adds (848) a third item to the folder. In some of these embodiments, the device determines (850) a third plurality of descriptors that are associated with the third item. In some of these embodiments, the device selects (852) a second descriptor that is shared by the first plurality of descriptors, the second plurality of descriptors and the third plurality of descriptors. In some of these embodiments, the device automatically generates (854) a new folder name for the folder based on the second descriptor. In other words, in these embodiments, the name of the folder changes when the contents of the folder change. For example, if the solitaire application icon 5002-4 were to be added to the folder associated with the racing games folder icon 5004-8, the device would change the name of the racing games folder icon 5004-8 to a new name (e.g., from “Racing Games” to “Games”) where the new name is based at least in part on a descriptor that is shared by all three of the items within the folder (e.g., solitaire application icon 5002-4, car race application icon 5002-17 and air race application icon 5002-18). In contrast, in some embodiments, the folder name is fixed when the folder is created, and thus adding new items to the folder does not change the folder name.
Note that details of other processes described herein with respect to methods 600, 700, 900, 1000, 1100, 1200 (e.g.,
As described below, the method 900 provides an intuitive way to manage icons. The method reduces the cognitive burden on a user when managing icons, thereby creating a more efficient human-machine interface. For battery-operated computing devices, enabling a user to manage icons faster and more efficiently conserves power and increases the time between battery charges.
The device displays (902) a plurality of icons on the display (e.g., selectable user interface objects such as application icons 5002 and/or folder icons 5004 on touch screen 112). A first icon (e.g., an action icon or a folder icon) in the plurality of icons is displayed (904) at a first location on the display (e.g., touch screen 112). A second icon (e.g., an action icon or a folder icon) in the plurality of icons that is distinct from the first icon, has (906) an activation region with a default size that is at a second location on the display (e.g., touch screen 112), the second location is distinct from the first location. For example, in
The device detects (908) an input that corresponds to a request to move the first icon. For example, as illustrated in
In some embodiments, the size of the activation region of the second icon is also changed (912) based at least in part on a type of the second icon. In some embodiments, when the second icon is a folder icon, the activation region has (914) a first size (e.g., because and the first operation is adding the first icon to the folder represented by the second icon). In some of these embodiments, when the second icon is an action icon, the activation region has a second size that is smaller than the first size (e.g., because the first operation is creating a folder including the first icon and the second icon, In other words, the activation regions are adjusted so as to make it easiest to move an icon, next easiest to an add icon to a preexisting folder, hardest to create new folder from two activation icons).
In some embodiments, for one or more respective icons in the plurality of icons other than the first icon, the device changes (916) a size of a respective activation region for a respective icon from a respective default size based on a distance from the first location to a respective location of the respective icon (e.g., in response to detecting a contact at a location on a touch-sensitive surface that corresponds to the first icon or in response to detecting movement of the contact away from a location on a touch-sensitive surface that corresponds to the first icon). For example, in
In response to detecting the input, the device moves (918) the first icon across the display (e.g., touch screen 112) away from the first location. For example, in
The device detects (922) that the input meets predefined trigger criteria (e.g., detecting lift off of the finger contact). In some embodiments, detecting that the input meets predefined trigger criteria includes detecting (924) termination of the first input. For example, termination of a first input is detected when the device detects a liftoff of contact 5120-c from the touch-sensitive surface (e.g., touch screen 112).
Operations 928-946 are performed (926) in response to detecting that the input meets predefined trigger criteria. In some embodiments the device determines whether the first icon is at least partly within the activation region of the second icon. When the first icon is (928) at least partly within the activation region of the second icon, the device performs operations 932-938, as discussed in greater detail below. In contrast, when the first icon is (930) not at least partly within the activation region of the second icon, the device performs operations 940-946, as discussed in greater detail below.
When the device determines (932) that first icon is at least partly within the activation region (e.g., 5122-13-b in
When the device determines (940) that the first icon is outside of the activation region of the second icon, the device performs (942) a second operation that is distinct from the first operation. In some embodiments, the second operation includes rearranging (944) the plurality of icons on the display (e.g., touch screen 112) so that the first icon is proximate to a location of the second icon on the display. For example, in
It should be understood that in some embodiments, one advantage of adjusting the size of activation regions for icons on the display (e.g., touch screen 112) based on a distance of the icon is that it provides a larger target for icons that are further away from the icon that is being moved. Typically when a touch gesture occurs over a longer distance, the gesture will include movement that is faster than would be part of a touch gesture that occurred over a shorter distance. Additionally, typically touch gestures that include faster movement are less accurate than touch gestures that include slower movement. Thus, by increasing the size of activation regions for icons that are further away from the starting point of the touch gesture the device compensates for the decreased accuracy of touch gestures that must traverse a longer distance across a touch-sensitive surface (e.g., touch screen 112) to reach the icons that are further away from the starting point, thereby improving the user-machine interface.
Note that details of other processes described herein with respect to methods 600, 700, 800, 1000, 1100, 1200 (e.g.,
As described below, the method 1000 provides an intuitive way to manage icons. The method reduces the cognitive burden on a user when managing icons, thereby creating a more efficient human-machine interface. For battery-operated computing devices, enabling a user to manage icons faster and more efficiently conserves power and increases the time between battery charges.
The device displays (1002) a plurality of icons on the display (e.g., touch screen 112) in a first arrangement (e.g., action icons 5002 and folder icons 5004 in
Operations 1008-1034 are performed (1006) in response to detecting the input. The device moves (1008) the first icon from the first position to the second position. For example, as illustrated in
The device maintains (1014) positions of each respective icon in the plurality of icons other than the first icon until automatic reconfiguration criteria have been met. For example, in
The device determines (1016) that the automatic reconfiguration criteria have been met (e.g., at some later point in time). In some embodiments, the automatic reconfiguration criteria are met when a predetermined period of time (e.g., 0.5 seconds, 1 second, 2 seconds, etc.) has passed (1018) since the input (or a beginning of the input) was detected. In some embodiments the predetermined period of time is measured from a beginning of the input. In some embodiments the predetermined period of time is measured from an end of the input. In some embodiments, the automatic reconfiguration criteria are met when a predetermined period of time has passed (1020) and the first icon is not currently located at a position on the display (e.g., touch screen 112) that is within an activation region of another icon. In other words, in these embodiments, in addition to the predetermined period of time having passed, the first icon must be displayed at a location on the display (e.g., touch screen 112) that is outside of any of the activation regions of other icons. In some embodiments, the automatic reconfiguration criteria are met when device detects (1022) termination of the input. For example, in
In response to determining that the automatic reconfiguration criteria have been met, the device moves (1026) one or more of the icons in the plurality of icons other than the first icon to form a second arrangement that is distinct from the first arrangement. For example, the folder icon 5004-1-b is shifted from the third row in the arrangement of
In some embodiments, the second arrangement is formed (1030) after (or in response to) detecting that the input meets predefined trigger criteria (e.g., detecting termination of the input) and the second arrangement includes displaying (1032) the icons in a predefined arrangement on the display (e.g., a two-dimensional grid or other regularly-spaced arrangement on the touch screen 112). In some embodiments, when the automatic reconfiguration criteria have been met, reconfiguring (1034) the icons dynamically as the first icon is moved around the display (e.g., so as to avoid overlap between the first icon and other icons on the touch screen 112). In other words, in some embodiments, the device moves a second icon from a respective initial position to a respective new position when the second position of the first icon at least partially overlaps with the respective initial position of the second icon, so as to accommodate display of the first icon at the second position in the first area. For example, rearranging the icons includes swapping positions of the first icon with positions of other icons as the first icon is moved around the display (e.g., while continuing to detect the contact on the touch screen 112).
Note that details of other processes described herein with respect to methods 600, 700, 800, 900, 1100, 1200 (e.g.,
As described below, the method 1100 provides an intuitive way to manage a folder. The method reduces the cognitive burden on a user when managing folders, thereby creating a more efficient human-machine interface. For battery-operated computing devices, enabling a user to manage folders faster and more efficiently conserves power and increases the time between battery charges.
The device displays (1102) a dynamic folder icon (e.g., games folder icon 5004-7 in
In some embodiments, the content has (1106) a spatial arrangement within the folder and the dynamic folder icon (e.g., 5004-7 in
For example, in
The device detects (1114) an input that corresponds to a request to modify content in the folder. For example, in
Operations 1120-1136 are performed (1118) in response to detecting the input. The device modifies (1120) the content in the folder; and updates the dynamic folder icon (e.g., 5004-7 in
In some embodiments, the device detects a repositioning input that corresponds to a request to reposition a first action icon within the folder; and in response to detecting the repositioning input: the device repositions (1122) the first action icon within the folder in accordance with the repositioning input; and repositions a reduced scale representation of the action icon within the dynamic folder icon in accordance with the repositioning of the first action icon within the folder. For example, in
In some embodiments, the device detects an icon removal input that corresponds to a request to remove a first action icon from the folder; and in response to detecting the icon removal input: the device removes (1124) the first action icon from the folder; and removes a reduced scale representation of the first action icon from the dynamic folder icon. For example, in
In some embodiments, the device detects an icon addition input that corresponds to a request to add a first action icon to the folder; and in response to detecting the icon removal input: the device adds (1126) the first action icon to the folder; and adds a reduced scale representation of the first action icon to the dynamic folder icon. For example, in
In some embodiments, content of the folder includes an action icon and the dynamic folder icon changes (1128) when there is a notification from an application that corresponds to the action icon. In some embodiments, the dynamic folder icon changes by displaying (1130) a status indicator on the dynamic folder icon. For example in
In some embodiments, the appearance of the dynamic folder icon changes (1134) when the device is in a user interface reconfiguration mode. In some embodiments, the folder has limited space (e.g., 9 slots, 12 slots, 16 slots, or any other reasonable number) for displaying selectable user interface objects (e.g., selectable user interface objects such as application icons and/or file icons) and the appearance of the dynamic folder icon in user interface reconfiguration mode indicates (1136) whether the folder has space to display any additional selectable user interface objects (e.g., by displaying room for extra reduced scale representations of action icons).
For example, in
Note that details of other processes described herein with respect to methods 600, 700, 800, 900, 1000, 1200 (e.g.,
As described below, the method 1200 provides an intuitive way to display content of a folder. The method reduces the cognitive burden on a user when managing folders by providing contextual information in conjunction with displaying content of a folder, thereby creating a more efficient human-machine interface. For battery-operated computing devices, enabling a user to manage folders faster and more efficiently conserves power and increases the time between battery charges.
The device displays (1202) a folder icon (e.g., folder icon 5004-7 in
The device detects (1206) a first input (e.g., tap gesture 5076 in
Operations 1210-1226 are performed (1208) in response to detecting the first input (e.g., tap gesture 5076 in
In some embodiments, the folder icon (e.g., 5004-7 in
The device moves (1214) the second portion away from the first portion. For example in
In some embodiments, dividing the wallpaper background includes dividing (1218) the wallpaper along a dividing line so that a contour of a first edge (e.g., 5088 in
The device displays (1222) content of the folder in an area between the first portion and the second portion. For example, the content of the folder includes a plurality of application icons (e.g., 5002-4 and 5002-13 in
In some embodiments, a size of the area between the first portion and the second portion is determined (1224) based on a number of selectable user interface objects within the folder. For example, in
In some embodiments, prior to detecting the first input, the device displays one or more additional selectable user inter face objects (e.g., action icons 5002-1, 5002-2, 5002-3, 5002-5, 5002-6, 5002-7, 5002-8, 5002-9, 5002-10, 5002-11, 5002-12 and folder icon 5004-1-b in
In some embodiments, operations 1230-1232 are performed while the device is (1228) in a normal operation mode when the first input is detected. In some of these embodiments, the device detects (1230) a second input that corresponds to activation of a respective selectable user interface object in the folder; and, in response to detecting the second input, the device performs (1232) an operation associated with the respective selectable user interface object. For example, in FIG. 5PPP the device displays a folder view 5212 while the device is in a normal operation mode. In this example, the device detects a second input (e.g., tap gesture 5214) at a location that corresponds to a stocks application icon 5002-9 and in response to the second input the device activates (e.g., launches or displays a view for) a stocks application.
In some embodiments, operations 1236-1238 are performed while the device is (1234) in a user interface reconfiguration mode when the first input is detected. In some of these embodiments, the device detecting (1236) a second input that corresponds to a request to move a respective selectable user interface object within the folder; and in response to detecting the second input, the device moves (1238) the respective selectable user interface object within the folder. For example, in
In some embodiments, operations 1242-1244 are performed while displaying (1240) content of the folder in the area between the first portion and the second portion: detecting (1242) an input that corresponds to selection of the first portion or the second portion. In some embodiments, in response to detecting the input, the device ceases (1244) to display the content of the folder (e.g., collapsing the area by moving the first portion and the second portion together). For example in
In some embodiments, the device enters (1246) a user interface reconfiguration mode; and, while displaying (1248) content of the folder in the area between the first portion and the second portion: the device detects (1250) an input that corresponds to a request to move a respective selectable user interface object from the area between the first portion and the second portion into the first portion or the second portion. In some of these embodiments, in response to detecting the input, the device removes (1252) the respective selectable user interface object from the folder. In some embodiments, in response to moving the selectable user interface object out of the folder, the folder view ceases to be displayed (e.g., by collapsing the area by moving the first portion and the second portion together). For example in
In some embodiments, a first portion of the content of the folder is displayed (1254) in the area (e.g., folder view 5170 in FIG. 5EEE) between the first portion and the second portion. In some of these embodiments, the device detecting (1256) a next-portion input that corresponds to a request to display a next portion of the content of the folder; and in response to detecting the next-portion input, the device displays (1258) a second portion of the content of the folder in the area between the first portion and the second portion. (e.g., detecting a flick gesture to the left or to the right causes a next page of application icons or a previous page of application icons to be displayed in the area). For example, in FIG. 5EEE the device displays a first portion of content of the folder that includes a first plurality of selectable user interface objects (e.g., or 5002-26, 5002-27, 5002-28, 5002-29, 5002-30, 5002-31, 5002-32, 5002-33, 5002-34, 5002-35, 5002-36, and 5002-37 in FIG. 5EEE) within a folder view 5170. In response to detecting a swipe gesture (e.g., contact 5176 and movement 5178 of the contact to the left at a location on the touch screen 112 that corresponds to a location within the folder view 5170) the device displays a second portion of content of the folder that includes a second plurality of selectable user interface objects (e.g., or 5002-38, 5002-39, 5002-40, 5002-41, 5002-42, 5002-43 in FIG. 5FFF) within the folder view 5170 on the display (e.g., touch screen 112) in FIG. 5FFF.
In some embodiments, a first portion of the content of the folder is displayed (1260) in the area between the first portion and the second portion. In some of these embodiments, the device detects (1262) a scrolling input that corresponds to a request to scroll the content of the folder; and in response to detecting the scrolling input, the device scrolls (1264) the content of the folder laterally on the display (e.g., touch screen 112) in the area between the first portion and the second portion so as to display a second portion of the content. In other words, in some embodiments, instead of distinct portions of the contents of the folder, a list or array of selectable user interface objects can be continuously scrolled through by the device in response to detecting scrolling inputs (e.g., a flick gesture including contact 5176 and subsequent movement 5178 of the contact on a touch screen 112 that corresponds to a location within the folder view, as illustrated in FIG. 5EEE).
Note that details of other processes described herein with respect to methods 600, 700, 800, 900, 1000, 1100 (e.g.,
The operations in the information processing methods described above may be implemented by running one or more functional modules in information processing apparatus such as general purpose processors or application specific chips. These modules, combinations of these modules, and/or their combination with general hardware (e.g., as described above with respect to
The operations described above with reference to
The foregoing description, for purpose of explanation, has been described with reference to specific embodiments. However, the illustrative discussions above are not intended to be exhaustive or to limit the invention to the precise forms disclosed. Many modifications and variations are possible in view of the above teachings. The embodiments were chosen and described in order to best explain the principles of the invention and its practical applications, to thereby enable others skilled in the art to best utilize the invention and various embodiments with various modifications as are suited to the particular use contemplated.
This application is a continuation of U.S. application Ser. No. 16/994,392, titled “DEVICE, METHOD, AND GRAPHICAL USER INTERFACE FOR MANAGING FOLDERS.” filed on Aug. 14, 2020, which is a continuation of U.S. application Ser. No. 16/020,804, titled “DEVICE, METHOD, AND GRAPHICAL USER INTERFACE FOR MANAGING FOLDERS” filed on Jun. 27, 2018, which is a continuation of U.S. application Ser. No. 12/888,362, titled “DEVICE, METHOD, AND GRAPHICAL USER INTERFACE FOR MANAGING FOLDERS” filed Sep. 22, 2010, which claims priority to U.S. Provisional Application Ser. No. 61/321,872 titled “DEVICE, METHOD, AND GRAPHICAL USER INTERFACE FOR MANAGING FOLDERS”, filed Apr. 7, 2010, the contents of which are incorporated herein by reference in their entireties.
Number | Name | Date | Kind |
---|---|---|---|
4355380 | Huguenin et al. | Oct 1982 | A |
4899136 | Beard et al. | Feb 1990 | A |
5051736 | Bennett et al. | Sep 1991 | A |
5124959 | Yamazaki et al. | Jun 1992 | A |
5146556 | Hullot et al. | Sep 1992 | A |
5196838 | Meier et al. | Mar 1993 | A |
5237679 | Wang et al. | Aug 1993 | A |
5312478 | Reed et al. | May 1994 | A |
5452414 | Rosendahl et al. | Sep 1995 | A |
5491778 | Gordon et al. | Feb 1996 | A |
5497454 | Bates et al. | Mar 1996 | A |
5515486 | Amro et al. | May 1996 | A |
5544295 | Capps | Aug 1996 | A |
5546529 | Bowers et al. | Aug 1996 | A |
5572238 | Krivacic | Nov 1996 | A |
5598524 | Johnston et al. | Jan 1997 | A |
5610653 | Abecassis | Mar 1997 | A |
5612719 | Beernink et al. | Mar 1997 | A |
5621878 | Owens et al. | Apr 1997 | A |
5625818 | Zarmer et al. | Apr 1997 | A |
5642490 | Morgan et al. | Jun 1997 | A |
5644739 | Moursund | Jul 1997 | A |
5657049 | Ludolph | Aug 1997 | A |
5671381 | Strasnick et al. | Sep 1997 | A |
5678014 | Malamud et al. | Oct 1997 | A |
5678015 | Goh | Oct 1997 | A |
5726687 | Belfiore et al. | Mar 1998 | A |
5736974 | Selker | Apr 1998 | A |
5745096 | Ludolph et al. | Apr 1998 | A |
5745116 | Pisutha-Arnond | Apr 1998 | A |
5745718 | Cline et al. | Apr 1998 | A |
5745910 | Piersol et al. | Apr 1998 | A |
5754179 | Hocker et al. | May 1998 | A |
5754809 | Gandre | May 1998 | A |
5757371 | Oran et al. | May 1998 | A |
5760773 | Berman et al. | Jun 1998 | A |
5760774 | Grossman et al. | Jun 1998 | A |
5774119 | Alimpich et al. | Jun 1998 | A |
5796401 | Winer | Aug 1998 | A |
5798752 | Buxton | Aug 1998 | A |
5801699 | Hocker et al. | Sep 1998 | A |
5801704 | Oohara et al. | Sep 1998 | A |
5812862 | Smith et al. | Sep 1998 | A |
5825352 | Bisset et al. | Oct 1998 | A |
5825357 | Malamud et al. | Oct 1998 | A |
5835079 | Shieh | Nov 1998 | A |
5835094 | Ermel et al. | Nov 1998 | A |
5838326 | Card et al. | Nov 1998 | A |
5861885 | Strasnick et al. | Jan 1999 | A |
5870683 | Wells et al. | Feb 1999 | A |
5870734 | Kao | Feb 1999 | A |
5877765 | Dickman et al. | Mar 1999 | A |
5877775 | Theisen et al. | Mar 1999 | A |
5880733 | Horvitz et al. | Mar 1999 | A |
5880743 | Moran et al. | Mar 1999 | A |
5900876 | Yagita et al. | May 1999 | A |
5914716 | Rubin et al. | Jun 1999 | A |
5914717 | Kleewein et al. | Jun 1999 | A |
5923327 | Smith et al. | Jul 1999 | A |
5923908 | Schrock et al. | Jul 1999 | A |
5934707 | Johnson | Aug 1999 | A |
5943679 | Niles et al. | Aug 1999 | A |
5956025 | Goulden et al. | Sep 1999 | A |
5963204 | Ikeda et al. | Oct 1999 | A |
5995106 | Naughton et al. | Nov 1999 | A |
6005579 | Sugiyama et al. | Dec 1999 | A |
6012072 | Lucas et al. | Jan 2000 | A |
6043818 | Nakano et al. | Mar 2000 | A |
6049336 | Liu et al. | Apr 2000 | A |
6054989 | Robertson et al. | Apr 2000 | A |
6072486 | Sheldon et al. | Jun 2000 | A |
6088032 | Mackinlay | Jul 2000 | A |
6111573 | Mccomb et al. | Aug 2000 | A |
6121969 | Jain et al. | Sep 2000 | A |
6133914 | Rogers et al. | Oct 2000 | A |
6160551 | Naughton et al. | Dec 2000 | A |
6166738 | Robertson et al. | Dec 2000 | A |
6188407 | Smith et al. | Feb 2001 | B1 |
6195094 | Celebiler | Feb 2001 | B1 |
6211858 | Moon et al. | Apr 2001 | B1 |
6222465 | Kumar et al. | Apr 2001 | B1 |
6229542 | Miller | May 2001 | B1 |
6253218 | Aoki et al. | Jun 2001 | B1 |
6275935 | Barlow et al. | Aug 2001 | B1 |
6278454 | Krishnan | Aug 2001 | B1 |
6313853 | Lamontagne et al. | Nov 2001 | B1 |
6317140 | Livingston | Nov 2001 | B1 |
6353451 | Teibel et al. | Mar 2002 | B1 |
6396520 | Ording | May 2002 | B1 |
6477117 | Narayanaswami et al. | Nov 2002 | B1 |
6486895 | Robertson et al. | Nov 2002 | B1 |
6496206 | Mernyk et al. | Dec 2002 | B1 |
6496209 | Horii | Dec 2002 | B2 |
6525997 | Narayanaswami et al. | Feb 2003 | B1 |
6545669 | Kinawi et al. | Apr 2003 | B1 |
6549218 | Gershony et al. | Apr 2003 | B1 |
6571245 | Huang et al. | May 2003 | B2 |
6590568 | Astala et al. | Jul 2003 | B1 |
6597345 | Hirshberg | Jul 2003 | B2 |
6597378 | Shiraishi et al. | Jul 2003 | B1 |
6621509 | Eiref et al. | Sep 2003 | B1 |
6628309 | Dodson et al. | Sep 2003 | B1 |
6628310 | Hiura et al. | Sep 2003 | B1 |
6647534 | Graham | Nov 2003 | B1 |
6683628 | Nakagawa et al. | Jan 2004 | B1 |
6690623 | Maano | Feb 2004 | B1 |
6700612 | Anderson et al. | Mar 2004 | B1 |
6710788 | Freach et al. | Mar 2004 | B1 |
6714222 | Björn et al. | Mar 2004 | B1 |
6734859 | Hayashi et al. | May 2004 | B2 |
6753888 | Kamiwada et al. | Jun 2004 | B2 |
6763388 | Tsimelzon | Jul 2004 | B1 |
6774914 | Benayoun | Aug 2004 | B1 |
6781575 | Hawkins et al. | Aug 2004 | B1 |
6798429 | Bradski | Sep 2004 | B2 |
6809724 | Shiraishi et al. | Oct 2004 | B1 |
6816175 | Hamp et al. | Nov 2004 | B1 |
6820111 | Rubin et al. | Nov 2004 | B1 |
6822638 | Dobies et al. | Nov 2004 | B2 |
6847387 | Roth | Jan 2005 | B2 |
6874128 | Moore et al. | Mar 2005 | B1 |
6880132 | Uemura | Apr 2005 | B2 |
6915490 | Ewing | Jul 2005 | B1 |
6931601 | Vronay et al. | Aug 2005 | B2 |
6934911 | Salmimaa et al. | Aug 2005 | B2 |
6940494 | Hoshino et al. | Sep 2005 | B2 |
6963349 | Nagasaki | Nov 2005 | B1 |
6970749 | Chinn et al. | Nov 2005 | B1 |
6976210 | Silva et al. | Dec 2005 | B1 |
6976228 | Bernhardson | Dec 2005 | B2 |
6978127 | Bulthuis et al. | Dec 2005 | B1 |
7003495 | Burger et al. | Feb 2006 | B1 |
7007239 | Hawkins et al. | Feb 2006 | B1 |
7010755 | Anderson et al. | Mar 2006 | B2 |
7017118 | Carroll | Mar 2006 | B1 |
7043701 | Gordon | May 2006 | B2 |
7071943 | Adler | Jul 2006 | B2 |
7075512 | Fabre et al. | Jul 2006 | B1 |
7080326 | Molander et al. | Jul 2006 | B2 |
7088340 | Kato | Aug 2006 | B2 |
7093201 | Duarte | Aug 2006 | B2 |
7107549 | Deaton et al. | Sep 2006 | B2 |
7117453 | Drucker et al. | Oct 2006 | B2 |
7119819 | Robertson et al. | Oct 2006 | B1 |
7126579 | Ritter | Oct 2006 | B2 |
7133859 | Wong | Nov 2006 | B1 |
7134092 | Fung et al. | Nov 2006 | B2 |
7134095 | Smith et al. | Nov 2006 | B1 |
7142210 | Schwuttke et al. | Nov 2006 | B2 |
7146576 | Chang et al. | Dec 2006 | B2 |
7155667 | Kotler et al. | Dec 2006 | B1 |
7162488 | Wong et al. | Jan 2007 | B2 |
7173603 | Kawasome | Feb 2007 | B2 |
7173604 | Marvit et al. | Feb 2007 | B2 |
7178111 | Glein et al. | Feb 2007 | B2 |
7194527 | Drucker et al. | Mar 2007 | B2 |
7194698 | Gottfurcht et al. | Mar 2007 | B2 |
7215323 | Gombert et al. | May 2007 | B2 |
7216305 | Jaeger | May 2007 | B1 |
7231229 | Hawkins et al. | Jun 2007 | B1 |
7237240 | Chen et al. | Jun 2007 | B1 |
7242406 | Johnson et al. | Jul 2007 | B2 |
7249327 | Nelson et al. | Jul 2007 | B2 |
7278115 | Robertson et al. | Oct 2007 | B1 |
7283845 | De Bast | Oct 2007 | B2 |
7287232 | Tsuchimura et al. | Oct 2007 | B2 |
7292243 | Burke | Nov 2007 | B1 |
7310636 | Bodin et al. | Dec 2007 | B2 |
7340678 | Chiu et al. | Mar 2008 | B2 |
7355593 | Hill et al. | Apr 2008 | B2 |
7362331 | Ording | Apr 2008 | B2 |
7383497 | Glenner et al. | Jun 2008 | B2 |
7392488 | Card et al. | Jun 2008 | B2 |
7403211 | Sheasby et al. | Jul 2008 | B2 |
7403910 | Hastings et al. | Jul 2008 | B1 |
7404151 | Borchardt et al. | Jul 2008 | B2 |
7406666 | Davis et al. | Jul 2008 | B2 |
7412650 | Gallo | Aug 2008 | B2 |
7415677 | Arend et al. | Aug 2008 | B2 |
7417680 | Aoki et al. | Aug 2008 | B2 |
7432928 | Shaw et al. | Oct 2008 | B2 |
7433179 | Hisano et al. | Oct 2008 | B2 |
7434177 | Ording et al. | Oct 2008 | B1 |
7437005 | Drucker et al. | Oct 2008 | B2 |
7444390 | Tadayon et al. | Oct 2008 | B2 |
7456823 | Poupyrev et al. | Nov 2008 | B2 |
7468742 | Ahn et al. | Dec 2008 | B2 |
7478437 | Hatanaka et al. | Jan 2009 | B2 |
7479948 | Kim et al. | Jan 2009 | B2 |
7480872 | Ubillos | Jan 2009 | B1 |
7480873 | Kawahara | Jan 2009 | B2 |
7487467 | Kawahara et al. | Feb 2009 | B1 |
7490295 | Chaudhri et al. | Feb 2009 | B2 |
7493573 | Wagner | Feb 2009 | B2 |
7496595 | Accapadi | Feb 2009 | B2 |
7506268 | Jennings et al. | Mar 2009 | B2 |
7509321 | Wong et al. | Mar 2009 | B2 |
7509588 | Van Os et al. | Mar 2009 | B2 |
7511710 | Barrett | Mar 2009 | B2 |
7512898 | Jennings et al. | Mar 2009 | B2 |
7523414 | Schmidt et al. | Apr 2009 | B2 |
7526738 | Ording et al. | Apr 2009 | B2 |
7546548 | Chew et al. | Jun 2009 | B2 |
7546554 | Chiu et al. | Jun 2009 | B2 |
7552402 | Bilow | Jun 2009 | B2 |
7557804 | Mcdaniel et al. | Jul 2009 | B1 |
7561874 | Wang et al. | Jul 2009 | B2 |
7584278 | Rajarajan et al. | Sep 2009 | B2 |
7587683 | Ito et al. | Sep 2009 | B2 |
7589750 | Stratton | Sep 2009 | B1 |
7594185 | Anderson et al. | Sep 2009 | B2 |
7596766 | Sharma et al. | Sep 2009 | B1 |
7606819 | Audet et al. | Oct 2009 | B2 |
7607150 | Kobayashi et al. | Oct 2009 | B1 |
7620894 | Kahn | Nov 2009 | B1 |
7624357 | De Bast | Nov 2009 | B2 |
7636898 | Takahashi | Dec 2009 | B2 |
7642934 | Scott | Jan 2010 | B2 |
7650575 | Cummins et al. | Jan 2010 | B2 |
7657842 | Matthews et al. | Feb 2010 | B2 |
7657845 | Drucker et al. | Feb 2010 | B2 |
7663620 | Robertson et al. | Feb 2010 | B2 |
7665033 | Byrne et al. | Feb 2010 | B2 |
7667703 | Hong et al. | Feb 2010 | B2 |
7680817 | Audet et al. | Mar 2010 | B2 |
7683883 | Touma et al. | Mar 2010 | B2 |
7698658 | Ohwa et al. | Apr 2010 | B2 |
7710423 | Drucker et al. | May 2010 | B2 |
7716604 | Kataoka et al. | May 2010 | B2 |
7719523 | Hillis | May 2010 | B2 |
7719542 | Gough et al. | May 2010 | B1 |
7724242 | Hillis et al. | May 2010 | B2 |
7725839 | Michaels | May 2010 | B2 |
7728821 | Hillis et al. | Jun 2010 | B2 |
7730401 | Gillespie et al. | Jun 2010 | B2 |
7730423 | Graham | Jun 2010 | B2 |
7735021 | Padawer et al. | Jun 2010 | B2 |
7739604 | Lyons et al. | Jun 2010 | B1 |
7747289 | Wang et al. | Jun 2010 | B2 |
7761813 | Kim et al. | Jul 2010 | B2 |
7765266 | Kropivny et al. | Jul 2010 | B2 |
7770125 | Young et al. | Aug 2010 | B1 |
7783990 | Amadio et al. | Aug 2010 | B2 |
7791755 | Mori | Sep 2010 | B2 |
7797637 | Marcjan et al. | Sep 2010 | B2 |
7805684 | Arvilommi | Sep 2010 | B2 |
7810038 | Matsa et al. | Oct 2010 | B2 |
7840901 | Lacey et al. | Nov 2010 | B2 |
7840907 | Kikuchi et al. | Nov 2010 | B2 |
7840912 | Elias et al. | Nov 2010 | B2 |
7843454 | Biswas | Nov 2010 | B1 |
7853972 | Brodersen et al. | Dec 2010 | B2 |
7856602 | Armstrong | Dec 2010 | B2 |
7873916 | Chaudhri et al. | Jan 2011 | B1 |
7880726 | Nakadaira et al. | Feb 2011 | B2 |
7904832 | Ubillos | Mar 2011 | B2 |
7907124 | Hillis et al. | Mar 2011 | B2 |
7907476 | Lee | Mar 2011 | B2 |
7908569 | Ala-Rantala | Mar 2011 | B2 |
7917869 | Anderson | Mar 2011 | B2 |
7924444 | Takahashi | Apr 2011 | B2 |
7940250 | Forstall | May 2011 | B2 |
7956869 | Gilra | Jun 2011 | B1 |
7958457 | Brandenberg et al. | Jun 2011 | B1 |
7979879 | Uchida et al. | Jul 2011 | B2 |
7986324 | Funaki et al. | Jul 2011 | B2 |
7995078 | Baar | Aug 2011 | B2 |
7996789 | Louch et al. | Aug 2011 | B2 |
8020110 | Hurst et al. | Sep 2011 | B2 |
8024671 | Lee et al. | Sep 2011 | B2 |
8046714 | Yahiro et al. | Oct 2011 | B2 |
8059101 | Westerman et al. | Nov 2011 | B2 |
8064704 | Kim et al. | Nov 2011 | B2 |
8065618 | Kumar et al. | Nov 2011 | B2 |
8069404 | Audet | Nov 2011 | B2 |
8072439 | Hillis et al. | Dec 2011 | B2 |
8078966 | Audet | Dec 2011 | B2 |
8099441 | Surasinghe | Jan 2012 | B2 |
8103963 | Ikeda et al. | Jan 2012 | B2 |
8111255 | Park | Feb 2012 | B2 |
8125481 | Gossweiler et al. | Feb 2012 | B2 |
8130211 | Abernathy | Mar 2012 | B2 |
8139043 | Hillis | Mar 2012 | B2 |
8151185 | Audet | Apr 2012 | B2 |
8152640 | Shirakawa et al. | Apr 2012 | B2 |
8156175 | Hopkins | Apr 2012 | B2 |
8161419 | Palahnuk et al. | Apr 2012 | B2 |
8185842 | Chang et al. | May 2012 | B2 |
8188985 | Hillis et al. | May 2012 | B2 |
8205172 | Wong et al. | Jun 2012 | B2 |
8209628 | Davidson et al. | Jun 2012 | B1 |
8214793 | Muthuswamy | Jul 2012 | B1 |
8230358 | Chaudhri | Jul 2012 | B1 |
8232990 | King et al. | Jul 2012 | B2 |
8255808 | Lindgren et al. | Aug 2012 | B2 |
8259163 | Bell | Sep 2012 | B2 |
8266550 | Cleron | Sep 2012 | B1 |
8269729 | Han et al. | Sep 2012 | B2 |
8269739 | Hillis et al. | Sep 2012 | B2 |
8279241 | Fong | Oct 2012 | B2 |
8306515 | Ryu et al. | Nov 2012 | B2 |
8335784 | Gutt et al. | Dec 2012 | B2 |
8365084 | Lin et al. | Jan 2013 | B1 |
8423911 | Chaudhri | Apr 2013 | B2 |
8434027 | Jones | Apr 2013 | B2 |
8446371 | Fyke et al. | May 2013 | B2 |
8458615 | Chaudhri | Jun 2013 | B2 |
8519964 | Platzer et al. | Aug 2013 | B2 |
8519972 | Forstall | Aug 2013 | B2 |
8525839 | Chaudhri et al. | Sep 2013 | B2 |
8558808 | Forstall | Oct 2013 | B2 |
8564544 | Jobs et al. | Oct 2013 | B2 |
8601370 | Chiang et al. | Dec 2013 | B2 |
8619038 | Chaudhri et al. | Dec 2013 | B2 |
8626762 | Seung et al. | Jan 2014 | B2 |
8672885 | Kriesel et al. | Mar 2014 | B2 |
8683349 | Roberts et al. | Mar 2014 | B2 |
8713011 | Asai et al. | Apr 2014 | B2 |
8713469 | Park et al. | Apr 2014 | B2 |
8730188 | Pasquero et al. | May 2014 | B2 |
8799777 | Lee et al. | Aug 2014 | B1 |
8799821 | Sullivan et al. | Aug 2014 | B1 |
8826170 | Shah et al. | Sep 2014 | B1 |
8839128 | Krishnaraj et al. | Sep 2014 | B2 |
8881060 | Chaudhri et al. | Nov 2014 | B2 |
8881061 | Chaudhri et al. | Nov 2014 | B2 |
8957866 | Law et al. | Feb 2015 | B2 |
8966375 | Wasko | Feb 2015 | B2 |
8972898 | Carter | Mar 2015 | B2 |
9026508 | Nagai | May 2015 | B2 |
9032438 | Ozawa et al. | May 2015 | B2 |
9053462 | Cadiz et al. | Jun 2015 | B2 |
9082314 | Tsai | Jul 2015 | B2 |
9152312 | Terleski et al. | Oct 2015 | B1 |
9170708 | Chaudhri et al. | Oct 2015 | B2 |
9237855 | Hong et al. | Jan 2016 | B2 |
9239673 | Shaffer et al. | Jan 2016 | B2 |
9256627 | Surasinghe | Feb 2016 | B2 |
9259615 | Weast et al. | Feb 2016 | B2 |
9367232 | Platzer et al. | Jun 2016 | B2 |
9377762 | Hoobler et al. | Jun 2016 | B2 |
9386432 | Chu et al. | Jul 2016 | B2 |
9417787 | Fong et al. | Aug 2016 | B2 |
9448691 | Suda | Sep 2016 | B2 |
9619139 | Wada et al. | Apr 2017 | B2 |
9619143 | Christie et al. | Apr 2017 | B2 |
9715277 | Lee et al. | Jul 2017 | B2 |
9772749 | Chaudhri et al. | Sep 2017 | B2 |
9794397 | Min et al. | Oct 2017 | B2 |
9933913 | Van Os et al. | Apr 2018 | B2 |
9993913 | Mccardle et al. | Jun 2018 | B2 |
10025458 | Chaudhri et al. | Jul 2018 | B2 |
10165108 | Douglas | Dec 2018 | B1 |
10250735 | Butcher et al. | Apr 2019 | B2 |
10359907 | Van Os et al. | Jul 2019 | B2 |
10620780 | Chaudhri et al. | Apr 2020 | B2 |
10684592 | Chang et al. | Jun 2020 | B2 |
10788953 | Chaudhri et al. | Sep 2020 | B2 |
10788976 | Chaudhri et al. | Sep 2020 | B2 |
10884579 | Van Os et al. | Jan 2021 | B2 |
10915224 | Van Os et al. | Feb 2021 | B2 |
11009833 | Essery | May 2021 | B2 |
20010024195 | Hayakawa | Sep 2001 | A1 |
20010024212 | Ohnishi | Sep 2001 | A1 |
20010038394 | Tsuchimura et al. | Nov 2001 | A1 |
20020008691 | Hanajima et al. | Jan 2002 | A1 |
20020015024 | Westerman et al. | Feb 2002 | A1 |
20020015042 | Robotham et al. | Feb 2002 | A1 |
20020015064 | Robotham et al. | Feb 2002 | A1 |
20020016187 | Hirayama et al. | Feb 2002 | A1 |
20020018051 | Singh | Feb 2002 | A1 |
20020024540 | Mccarthy | Feb 2002 | A1 |
20020038299 | Zernik et al. | Mar 2002 | A1 |
20020054090 | Silva et al. | May 2002 | A1 |
20020057287 | Crow et al. | May 2002 | A1 |
20020067376 | Martin et al. | Jun 2002 | A1 |
20020078037 | Hatanaka et al. | Jun 2002 | A1 |
20020085037 | Leavitt et al. | Jul 2002 | A1 |
20020087747 | Yamaguchi et al. | Jul 2002 | A1 |
20020091697 | Huang et al. | Jul 2002 | A1 |
20020093531 | Barile | Jul 2002 | A1 |
20020097261 | Gottfurcht et al. | Jul 2002 | A1 |
20020104096 | Cramer et al. | Aug 2002 | A1 |
20020109721 | Konaka et al. | Aug 2002 | A1 |
20020140698 | Robertson et al. | Oct 2002 | A1 |
20020140736 | Chen et al. | Oct 2002 | A1 |
20020143949 | Rajarajan et al. | Oct 2002 | A1 |
20020149561 | Fukumoto et al. | Oct 2002 | A1 |
20020152222 | Holbrook | Oct 2002 | A1 |
20020167683 | Hanamoto et al. | Nov 2002 | A1 |
20020191029 | Gillespie et al. | Dec 2002 | A1 |
20020196238 | Tsukada et al. | Dec 2002 | A1 |
20030001898 | Bernhardson | Jan 2003 | A1 |
20030007012 | Bate | Jan 2003 | A1 |
20030016241 | Burke | Jan 2003 | A1 |
20030030664 | Parry | Feb 2003 | A1 |
20030048295 | Lilleness et al. | Mar 2003 | A1 |
20030063072 | Brandenberg et al. | Apr 2003 | A1 |
20030080991 | Crow et al. | May 2003 | A1 |
20030085931 | Card et al. | May 2003 | A1 |
20030090572 | Belz et al. | May 2003 | A1 |
20030097361 | Huang et al. | May 2003 | A1 |
20030098894 | Sheldon et al. | May 2003 | A1 |
20030122787 | Zimmerman et al. | Jul 2003 | A1 |
20030128242 | Gordon | Jul 2003 | A1 |
20030142136 | Carter et al. | Jul 2003 | A1 |
20030154190 | Misawa et al. | Aug 2003 | A1 |
20030156119 | Bonadio | Aug 2003 | A1 |
20030156140 | Watanabe et al. | Aug 2003 | A1 |
20030156756 | Gokturk et al. | Aug 2003 | A1 |
20030160825 | Weber | Aug 2003 | A1 |
20030164827 | Gottesman et al. | Sep 2003 | A1 |
20030169288 | Misawa | Sep 2003 | A1 |
20030169298 | Ording | Sep 2003 | A1 |
20030169302 | Davidsson et al. | Sep 2003 | A1 |
20030174170 | Jung et al. | Sep 2003 | A1 |
20030174172 | Conrad et al. | Sep 2003 | A1 |
20030184552 | Chadha | Oct 2003 | A1 |
20030184587 | Ording et al. | Oct 2003 | A1 |
20030189597 | Anderson et al. | Oct 2003 | A1 |
20030195950 | Huang et al. | Oct 2003 | A1 |
20030200289 | Kemp et al. | Oct 2003 | A1 |
20030206195 | Matsa et al. | Nov 2003 | A1 |
20030206197 | Mcinerney | Nov 2003 | A1 |
20030210278 | Kyoya et al. | Nov 2003 | A1 |
20040008224 | Molander et al. | Jan 2004 | A1 |
20040021643 | Hoshino et al. | Feb 2004 | A1 |
20040027330 | Bradski | Feb 2004 | A1 |
20040056809 | Prassmayer et al. | Mar 2004 | A1 |
20040056839 | Yoshihara | Mar 2004 | A1 |
20040070608 | Saka | Apr 2004 | A1 |
20040103156 | Quillen et al. | May 2004 | A1 |
20040109013 | Goertz | Jun 2004 | A1 |
20040119757 | Corley et al. | Jun 2004 | A1 |
20040121823 | Noesgaard et al. | Jun 2004 | A1 |
20040125088 | Zimmerman et al. | Jul 2004 | A1 |
20040138569 | Grunwald et al. | Jul 2004 | A1 |
20040141011 | Smethers et al. | Jul 2004 | A1 |
20040143598 | Drucker et al. | Jul 2004 | A1 |
20040155909 | Wagner | Aug 2004 | A1 |
20040160462 | Sheasby et al. | Aug 2004 | A1 |
20040196267 | Kawai et al. | Oct 2004 | A1 |
20040215719 | Altshuler | Oct 2004 | A1 |
20040218104 | Smith et al. | Nov 2004 | A1 |
20040222975 | Nakano et al. | Nov 2004 | A1 |
20040236769 | Smith et al. | Nov 2004 | A1 |
20040257375 | Cowperthwaite | Dec 2004 | A1 |
20050005246 | Card et al. | Jan 2005 | A1 |
20050005248 | Rockey et al. | Jan 2005 | A1 |
20050010955 | Elia et al. | Jan 2005 | A1 |
20050012862 | Lee | Jan 2005 | A1 |
20050024341 | Gillespie et al. | Feb 2005 | A1 |
20050026644 | Lien | Feb 2005 | A1 |
20050039134 | Wiggeshoff et al. | Feb 2005 | A1 |
20050043987 | Kumar et al. | Feb 2005 | A1 |
20050052471 | Nagasaki | Mar 2005 | A1 |
20050057524 | Hill et al. | Mar 2005 | A1 |
20050057530 | Hinckley et al. | Mar 2005 | A1 |
20050057548 | Kim | Mar 2005 | A1 |
20050060653 | Fukase et al. | Mar 2005 | A1 |
20050060664 | Rogers | Mar 2005 | A1 |
20050060665 | Rekimoto | Mar 2005 | A1 |
20050088423 | Keely et al. | Apr 2005 | A1 |
20050091596 | Anthony et al. | Apr 2005 | A1 |
20050091609 | Matthews et al. | Apr 2005 | A1 |
20050097089 | Nielsen et al. | May 2005 | A1 |
20050116026 | Burger et al. | Jun 2005 | A1 |
20050120142 | Hall | Jun 2005 | A1 |
20050131924 | Jones | Jun 2005 | A1 |
20050134578 | Chambers et al. | Jun 2005 | A1 |
20050138570 | Good et al. | Jun 2005 | A1 |
20050151742 | Hong et al. | Jul 2005 | A1 |
20050177796 | Takahashi | Aug 2005 | A1 |
20050204309 | Szeto | Sep 2005 | A1 |
20050210410 | Ohwa et al. | Sep 2005 | A1 |
20050210412 | Matthews et al. | Sep 2005 | A1 |
20050216913 | Gemmell et al. | Sep 2005 | A1 |
20050227642 | Jensen | Oct 2005 | A1 |
20050229102 | Watson et al. | Oct 2005 | A1 |
20050246331 | De Vorchik et al. | Nov 2005 | A1 |
20050246918 | Tanahashi et al. | Nov 2005 | A1 |
20050251755 | Mullins et al. | Nov 2005 | A1 |
20050259087 | Hoshino et al. | Nov 2005 | A1 |
20050262448 | Vronay et al. | Nov 2005 | A1 |
20050270276 | Sugimoto et al. | Dec 2005 | A1 |
20050275636 | Dehlin et al. | Dec 2005 | A1 |
20050278757 | Grossman et al. | Dec 2005 | A1 |
20050283734 | Santoro et al. | Dec 2005 | A1 |
20050289109 | Arrouye et al. | Dec 2005 | A1 |
20050289476 | Tokkonen | Dec 2005 | A1 |
20050289482 | Anthony et al. | Dec 2005 | A1 |
20060004685 | Pyhalammi et al. | Jan 2006 | A1 |
20060005207 | Louch et al. | Jan 2006 | A1 |
20060007182 | Sato et al. | Jan 2006 | A1 |
20060020903 | Wang et al. | Jan 2006 | A1 |
20060022955 | Kennedy | Feb 2006 | A1 |
20060025110 | Liu | Feb 2006 | A1 |
20060026521 | Hotelling et al. | Feb 2006 | A1 |
20060026535 | Hotelling et al. | Feb 2006 | A1 |
20060026536 | Hotelling et al. | Feb 2006 | A1 |
20060031874 | Ok et al. | Feb 2006 | A1 |
20060033751 | Keely et al. | Feb 2006 | A1 |
20060035628 | Miller et al. | Feb 2006 | A1 |
20060036568 | Moore et al. | Feb 2006 | A1 |
20060048069 | Igeta | Mar 2006 | A1 |
20060051073 | Jung et al. | Mar 2006 | A1 |
20060053392 | Salmimaa et al. | Mar 2006 | A1 |
20060055700 | Niles et al. | Mar 2006 | A1 |
20060070007 | Cummins et al. | Mar 2006 | A1 |
20060075355 | Shiono et al. | Apr 2006 | A1 |
20060075396 | Surasinghe | Apr 2006 | A1 |
20060080386 | Roykkee et al. | Apr 2006 | A1 |
20060080616 | Vogel et al. | Apr 2006 | A1 |
20060080617 | Anderson et al. | Apr 2006 | A1 |
20060090022 | Flynn et al. | Apr 2006 | A1 |
20060092133 | Touma et al. | May 2006 | A1 |
20060092770 | Demas | May 2006 | A1 |
20060097991 | Hotelling et al. | May 2006 | A1 |
20060107231 | Matthews et al. | May 2006 | A1 |
20060112335 | Hofmeister et al. | May 2006 | A1 |
20060112347 | Baudisch | May 2006 | A1 |
20060116578 | Grunwald et al. | Jun 2006 | A1 |
20060117372 | Hopkins | Jun 2006 | A1 |
20060119619 | Fagans et al. | Jun 2006 | A1 |
20060123353 | Matthews et al. | Jun 2006 | A1 |
20060123359 | Schatzberger et al. | Jun 2006 | A1 |
20060123360 | Anwar et al. | Jun 2006 | A1 |
20060125799 | Hillis et al. | Jun 2006 | A1 |
20060129586 | Arrouye et al. | Jun 2006 | A1 |
20060143574 | Ito et al. | Jun 2006 | A1 |
20060153531 | Kanegae et al. | Jul 2006 | A1 |
20060161863 | Gallo | Jul 2006 | A1 |
20060161871 | Hotelling et al. | Jul 2006 | A1 |
20060164418 | Hao et al. | Jul 2006 | A1 |
20060174211 | Hoellerer et al. | Aug 2006 | A1 |
20060187212 | Park et al. | Aug 2006 | A1 |
20060190833 | Sangiovanni et al. | Aug 2006 | A1 |
20060197752 | Hurst et al. | Sep 2006 | A1 |
20060197753 | Hotelling | Sep 2006 | A1 |
20060209035 | Jenkins et al. | Sep 2006 | A1 |
20060210958 | Rimas-ribikauskas et al. | Sep 2006 | A1 |
20060212828 | Yahiro et al. | Sep 2006 | A1 |
20060212833 | Gallagher et al. | Sep 2006 | A1 |
20060236266 | Majava | Oct 2006 | A1 |
20060239640 | Watanabe et al. | Oct 2006 | A1 |
20060242596 | Armstrong | Oct 2006 | A1 |
20060242604 | Wong et al. | Oct 2006 | A1 |
20060242607 | Hudson | Oct 2006 | A1 |
20060250578 | Pohl et al. | Nov 2006 | A1 |
20060253771 | Baschy | Nov 2006 | A1 |
20060262116 | Moshiri et al. | Nov 2006 | A1 |
20060267966 | Grossman et al. | Nov 2006 | A1 |
20060268100 | Karukka et al. | Nov 2006 | A1 |
20060271864 | Satterfield | Nov 2006 | A1 |
20060271867 | Wang et al. | Nov 2006 | A1 |
20060271874 | Raiz et al. | Nov 2006 | A1 |
20060277460 | Forstall et al. | Dec 2006 | A1 |
20060277481 | Forstall et al. | Dec 2006 | A1 |
20060277486 | Skinner | Dec 2006 | A1 |
20060278692 | Matsumoto et al. | Dec 2006 | A1 |
20060282790 | Matthews et al. | Dec 2006 | A1 |
20060284852 | Hofmeister et al. | Dec 2006 | A1 |
20060290661 | Innanen et al. | Dec 2006 | A1 |
20070005581 | Arrouye et al. | Jan 2007 | A1 |
20070013665 | Vetelainen et al. | Jan 2007 | A1 |
20070016872 | Cummins et al. | Jan 2007 | A1 |
20070016958 | Bodepudi et al. | Jan 2007 | A1 |
20070024468 | Quandel et al. | Feb 2007 | A1 |
20070028269 | Nezu et al. | Feb 2007 | A1 |
20070030362 | Ota et al. | Feb 2007 | A1 |
20070032267 | Haitani et al. | Feb 2007 | A1 |
20070035513 | Sherrard et al. | Feb 2007 | A1 |
20070044029 | Fisher et al. | Feb 2007 | A1 |
20070050432 | Yoshizawa | Mar 2007 | A1 |
20070050726 | Wakai et al. | Mar 2007 | A1 |
20070050727 | Lewis-Bowen et al. | Mar 2007 | A1 |
20070055940 | Moore et al. | Mar 2007 | A1 |
20070055947 | Ostojic et al. | Mar 2007 | A1 |
20070061745 | Anthony et al. | Mar 2007 | A1 |
20070065044 | Park et al. | Mar 2007 | A1 |
20070067272 | Flynt et al. | Mar 2007 | A1 |
20070070066 | Bakhash | Mar 2007 | A1 |
20070083827 | Scott et al. | Apr 2007 | A1 |
20070083911 | Madden et al. | Apr 2007 | A1 |
20070091068 | Liberty | Apr 2007 | A1 |
20070101292 | Kupka | May 2007 | A1 |
20070101297 | Forstall et al. | May 2007 | A1 |
20070106950 | Hutchinson et al. | May 2007 | A1 |
20070113207 | Gritton | May 2007 | A1 |
20070120832 | Saarinen et al. | May 2007 | A1 |
20070121869 | Gorti et al. | May 2007 | A1 |
20070123205 | Lee et al. | May 2007 | A1 |
20070124677 | De Los Reyes et al. | May 2007 | A1 |
20070126696 | Boillot | Jun 2007 | A1 |
20070126732 | Robertson et al. | Jun 2007 | A1 |
20070132789 | Ording et al. | Jun 2007 | A1 |
20070136351 | Dames et al. | Jun 2007 | A1 |
20070146325 | Poston et al. | Jun 2007 | A1 |
20070150810 | Katz et al. | Jun 2007 | A1 |
20070150834 | Muller et al. | Jun 2007 | A1 |
20070150835 | Muller et al. | Jun 2007 | A1 |
20070152958 | Ahn et al. | Jul 2007 | A1 |
20070152980 | Kocienda et al. | Jul 2007 | A1 |
20070156697 | Tsarkova | Jul 2007 | A1 |
20070157089 | Van Os et al. | Jul 2007 | A1 |
20070157094 | Lemay et al. | Jul 2007 | A1 |
20070157097 | Peters et al. | Jul 2007 | A1 |
20070174785 | Perttula | Jul 2007 | A1 |
20070177803 | Elias et al. | Aug 2007 | A1 |
20070177804 | Elias et al. | Aug 2007 | A1 |
20070179938 | Ikeda et al. | Aug 2007 | A1 |
20070180395 | Yamashita et al. | Aug 2007 | A1 |
20070188518 | Vale et al. | Aug 2007 | A1 |
20070189737 | Chaudhri et al. | Aug 2007 | A1 |
20070192741 | Yoritate et al. | Aug 2007 | A1 |
20070209004 | Layard | Sep 2007 | A1 |
20070226652 | Kikuchi et al. | Sep 2007 | A1 |
20070239760 | Simon | Oct 2007 | A1 |
20070240079 | Flynt et al. | Oct 2007 | A1 |
20070243862 | Coskun et al. | Oct 2007 | A1 |
20070243905 | Juh et al. | Oct 2007 | A1 |
20070245250 | Schechter et al. | Oct 2007 | A1 |
20070247425 | Liberty et al. | Oct 2007 | A1 |
20070250793 | Miura et al. | Oct 2007 | A1 |
20070250794 | Miura et al. | Oct 2007 | A1 |
20070266011 | Rohrs et al. | Nov 2007 | A1 |
20070271532 | Nguyen et al. | Nov 2007 | A1 |
20070288860 | Ording et al. | Dec 2007 | A1 |
20070288862 | Ording | Dec 2007 | A1 |
20070288868 | Rhee et al. | Dec 2007 | A1 |
20070294231 | Kaihotsu | Dec 2007 | A1 |
20080001924 | De Los Reyes et al. | Jan 2008 | A1 |
20080005702 | Skourup et al. | Jan 2008 | A1 |
20080005703 | Radivojevic et al. | Jan 2008 | A1 |
20080006762 | Fadell et al. | Jan 2008 | A1 |
20080014917 | Rhoads et al. | Jan 2008 | A1 |
20080016468 | Chambers et al. | Jan 2008 | A1 |
20080016470 | Misawa et al. | Jan 2008 | A1 |
20080016471 | Park | Jan 2008 | A1 |
20080024454 | Everest et al. | Jan 2008 | A1 |
20080034013 | Cisler et al. | Feb 2008 | A1 |
20080034309 | Louch et al. | Feb 2008 | A1 |
20080034317 | Fard et al. | Feb 2008 | A1 |
20080040668 | Ala-Rantala | Feb 2008 | A1 |
20080059915 | Boillot | Mar 2008 | A1 |
20080062126 | Algreatly | Mar 2008 | A1 |
20080062141 | Chaudhri | Mar 2008 | A1 |
20080062257 | Corson | Mar 2008 | A1 |
20080067626 | Hirler et al. | Mar 2008 | A1 |
20080082930 | Omernick et al. | Apr 2008 | A1 |
20080089587 | Kim et al. | Apr 2008 | A1 |
20080091763 | Devonshire et al. | Apr 2008 | A1 |
20080094369 | Ganatra et al. | Apr 2008 | A1 |
20080104515 | Dumitru et al. | May 2008 | A1 |
20080109408 | Choi et al. | May 2008 | A1 |
20080117461 | Mitsutake et al. | May 2008 | A1 |
20080120568 | Jian et al. | May 2008 | A1 |
20080122796 | Jobs et al. | May 2008 | A1 |
20080125180 | Hoffman et al. | May 2008 | A1 |
20080126971 | Kojima | May 2008 | A1 |
20080130421 | Akaiwa et al. | Jun 2008 | A1 |
20080134088 | Tse et al. | Jun 2008 | A1 |
20080136785 | Baudisch et al. | Jun 2008 | A1 |
20080148182 | Chiang et al. | Jun 2008 | A1 |
20080151700 | Inoue et al. | Jun 2008 | A1 |
20080155453 | Othmer et al. | Jun 2008 | A1 |
20080155617 | Angiolillo et al. | Jun 2008 | A1 |
20080158145 | Westerman | Jul 2008 | A1 |
20080158172 | Hotelling et al. | Jul 2008 | A1 |
20080161045 | Vuorenmaa | Jul 2008 | A1 |
20080164468 | Chen et al. | Jul 2008 | A1 |
20080165140 | Christie et al. | Jul 2008 | A1 |
20080168365 | Chaudhri | Jul 2008 | A1 |
20080168367 | Chaudhri et al. | Jul 2008 | A1 |
20080168368 | Louch et al. | Jul 2008 | A1 |
20080168382 | Louch et al. | Jul 2008 | A1 |
20080168401 | Boule et al. | Jul 2008 | A1 |
20080168478 | Platzer et al. | Jul 2008 | A1 |
20080180406 | Han et al. | Jul 2008 | A1 |
20080182628 | Lee et al. | Jul 2008 | A1 |
20080184112 | Chiang | Jul 2008 | A1 |
20080204424 | Jin et al. | Aug 2008 | A1 |
20080215980 | Lee et al. | Sep 2008 | A1 |
20080216017 | Kurtenbach et al. | Sep 2008 | A1 |
20080222545 | Lemay et al. | Sep 2008 | A1 |
20080225007 | Nakadaira et al. | Sep 2008 | A1 |
20080229254 | Warner | Sep 2008 | A1 |
20080231610 | Hotelling et al. | Sep 2008 | A1 |
20080244119 | Tokuhara et al. | Oct 2008 | A1 |
20080259045 | Kim et al. | Oct 2008 | A1 |
20080259057 | Brons | Oct 2008 | A1 |
20080266407 | Battles et al. | Oct 2008 | A1 |
20080268948 | Boesen | Oct 2008 | A1 |
20080276201 | Risch et al. | Nov 2008 | A1 |
20080282202 | Sunday | Nov 2008 | A1 |
20080294981 | Balzano et al. | Nov 2008 | A1 |
20080300055 | Lutnick et al. | Dec 2008 | A1 |
20080300572 | Rankers et al. | Dec 2008 | A1 |
20080307350 | Sabatelli et al. | Dec 2008 | A1 |
20080307361 | Louch et al. | Dec 2008 | A1 |
20080307362 | Chaudhri et al. | Dec 2008 | A1 |
20080309632 | Westerman et al. | Dec 2008 | A1 |
20080313110 | Kreamer et al. | Dec 2008 | A1 |
20080313596 | Kreamer et al. | Dec 2008 | A1 |
20080320419 | Matas et al. | Dec 2008 | A1 |
20090002335 | Chaudhri | Jan 2009 | A1 |
20090007017 | Anzures et al. | Jan 2009 | A1 |
20090009815 | Karasik et al. | Jan 2009 | A1 |
20090019385 | Khatib et al. | Jan 2009 | A1 |
20090021488 | Kali et al. | Jan 2009 | A1 |
20090023433 | Walley et al. | Jan 2009 | A1 |
20090024946 | Gotz et al. | Jan 2009 | A1 |
20090034805 | Perlmutter et al. | Feb 2009 | A1 |
20090055748 | Dieberger et al. | Feb 2009 | A1 |
20090058821 | Chaudhri et al. | Mar 2009 | A1 |
20090063971 | White et al. | Mar 2009 | A1 |
20090064055 | Chaudhri et al. | Mar 2009 | A1 |
20090070708 | Finkelstein | Mar 2009 | A1 |
20090077501 | Partridge et al. | Mar 2009 | A1 |
20090103780 | Nishihara et al. | Apr 2009 | A1 |
20090113350 | Hibino et al. | Apr 2009 | A1 |
20090122018 | Vymenets et al. | May 2009 | A1 |
20090125842 | Nakayama et al. | May 2009 | A1 |
20090132965 | Shimizu | May 2009 | A1 |
20090138194 | Geelen | May 2009 | A1 |
20090138827 | Van Os et al. | May 2009 | A1 |
20090144653 | Ubillos | Jun 2009 | A1 |
20090150775 | Miyazaki et al. | Jun 2009 | A1 |
20090158200 | Palahnuk et al. | Jun 2009 | A1 |
20090163193 | Fyke et al. | Jun 2009 | A1 |
20090164936 | Kawaguchi | Jun 2009 | A1 |
20090172606 | Dunn et al. | Jul 2009 | A1 |
20090178008 | Herz et al. | Jul 2009 | A1 |
20090183080 | Thakkar et al. | Jul 2009 | A1 |
20090183125 | Magal et al. | Jul 2009 | A1 |
20090184936 | Algreatly | Jul 2009 | A1 |
20090189911 | Ono et al. | Jul 2009 | A1 |
20090199128 | Matthews et al. | Aug 2009 | A1 |
20090204920 | Beverley et al. | Aug 2009 | A1 |
20090204928 | Kallio et al. | Aug 2009 | A1 |
20090217187 | Kendall et al. | Aug 2009 | A1 |
20090217206 | Liu et al. | Aug 2009 | A1 |
20090217209 | Chen et al. | Aug 2009 | A1 |
20090222420 | Hirata | Sep 2009 | A1 |
20090222765 | Ekstrand | Sep 2009 | A1 |
20090222766 | Chae et al. | Sep 2009 | A1 |
20090228807 | Lemay | Sep 2009 | A1 |
20090228825 | Van Os et al. | Sep 2009 | A1 |
20090237371 | Kim et al. | Sep 2009 | A1 |
20090237372 | Kim et al. | Sep 2009 | A1 |
20090254869 | Ludwig et al. | Oct 2009 | A1 |
20090265669 | Kida et al. | Oct 2009 | A1 |
20090271723 | Matsushima et al. | Oct 2009 | A1 |
20090278806 | Duarte et al. | Nov 2009 | A1 |
20090278812 | Yasutake et al. | Nov 2009 | A1 |
20090282369 | Jones | Nov 2009 | A1 |
20090303231 | Robinet et al. | Dec 2009 | A1 |
20090313567 | Kwon et al. | Dec 2009 | A1 |
20090313584 | Kerr et al. | Dec 2009 | A1 |
20090313585 | Hellinger et al. | Dec 2009 | A1 |
20090315848 | Ku et al. | Dec 2009 | A1 |
20090319928 | Alphin et al. | Dec 2009 | A1 |
20090319935 | Figura | Dec 2009 | A1 |
20090322676 | Kerr et al. | Dec 2009 | A1 |
20090327969 | Estrada | Dec 2009 | A1 |
20100011304 | Van | Jan 2010 | A1 |
20100013780 | Ikeda et al. | Jan 2010 | A1 |
20100031203 | Morris et al. | Feb 2010 | A1 |
20100050133 | Nishihara et al. | Feb 2010 | A1 |
20100053151 | Marti et al. | Mar 2010 | A1 |
20100058182 | Jung | Mar 2010 | A1 |
20100063813 | Richter et al. | Mar 2010 | A1 |
20100077333 | Yang et al. | Mar 2010 | A1 |
20100082661 | Beaudreau et al. | Apr 2010 | A1 |
20100083165 | Andrews et al. | Apr 2010 | A1 |
20100095206 | Kim | Apr 2010 | A1 |
20100095238 | Baudet | Apr 2010 | A1 |
20100095248 | Karstens et al. | Apr 2010 | A1 |
20100100841 | Shin et al. | Apr 2010 | A1 |
20100105454 | Weber et al. | Apr 2010 | A1 |
20100107101 | Shaw et al. | Apr 2010 | A1 |
20100110025 | Lim et al. | May 2010 | A1 |
20100115428 | Shuping et al. | May 2010 | A1 |
20100122195 | Hwang | May 2010 | A1 |
20100124152 | Lee | May 2010 | A1 |
20100146451 | Jun-Dong et al. | Jun 2010 | A1 |
20100153844 | Hwang et al. | Jun 2010 | A1 |
20100153878 | Lindgren et al. | Jun 2010 | A1 |
20100157742 | Relyea et al. | Jun 2010 | A1 |
20100159909 | Stifelman | Jun 2010 | A1 |
20100162108 | Stallings et al. | Jun 2010 | A1 |
20100162170 | Johns et al. | Jun 2010 | A1 |
20100169357 | Ingrassia et al. | Jul 2010 | A1 |
20100191701 | Beyda et al. | Jul 2010 | A1 |
20100199227 | Xiao et al. | Aug 2010 | A1 |
20100211872 | Rolston et al. | Aug 2010 | A1 |
20100211919 | Brown et al. | Aug 2010 | A1 |
20100214216 | Nasiri et al. | Aug 2010 | A1 |
20100223563 | Green | Sep 2010 | A1 |
20100223574 | Wang et al. | Sep 2010 | A1 |
20100229129 | Price et al. | Sep 2010 | A1 |
20100229130 | Edge et al. | Sep 2010 | A1 |
20100241955 | Price et al. | Sep 2010 | A1 |
20100241967 | Lee et al. | Sep 2010 | A1 |
20100241999 | Russ et al. | Sep 2010 | A1 |
20100248788 | Yook et al. | Sep 2010 | A1 |
20100251085 | Zearing et al. | Sep 2010 | A1 |
20100257468 | Bernardo et al. | Oct 2010 | A1 |
20100262591 | Lee et al. | Oct 2010 | A1 |
20100262634 | Wang | Oct 2010 | A1 |
20100262928 | Abbott | Oct 2010 | A1 |
20100281408 | Fujioka et al. | Nov 2010 | A1 |
20100287505 | Williams | Nov 2010 | A1 |
20100295802 | Lee | Nov 2010 | A1 |
20100315413 | Izadi et al. | Dec 2010 | A1 |
20100318709 | Bell et al. | Dec 2010 | A1 |
20100325529 | Sun | Dec 2010 | A1 |
20100332497 | Valliani et al. | Dec 2010 | A1 |
20100333017 | Ortiz | Dec 2010 | A1 |
20110003665 | Burton et al. | Jan 2011 | A1 |
20110004835 | Yanchar et al. | Jan 2011 | A1 |
20110007000 | Lim et al. | Jan 2011 | A1 |
20110010672 | Hope | Jan 2011 | A1 |
20110012921 | Cholewin et al. | Jan 2011 | A1 |
20110029934 | Locker et al. | Feb 2011 | A1 |
20110041098 | Kajiya et al. | Feb 2011 | A1 |
20110055722 | Ludwig et al. | Mar 2011 | A1 |
20110059733 | Kim et al. | Mar 2011 | A1 |
20110061010 | Wasko et al. | Mar 2011 | A1 |
20110078597 | Rapp et al. | Mar 2011 | A1 |
20110080359 | Jang et al. | Apr 2011 | A1 |
20110083104 | Minton | Apr 2011 | A1 |
20110087981 | Jeong et al. | Apr 2011 | A1 |
20110087999 | Bichsel et al. | Apr 2011 | A1 |
20110093821 | Wigdor et al. | Apr 2011 | A1 |
20110099299 | Vasudevan et al. | Apr 2011 | A1 |
20110107261 | Lin et al. | May 2011 | A1 |
20110119610 | Hackborn et al. | May 2011 | A1 |
20110119629 | Huotari et al. | May 2011 | A1 |
20110124376 | Kim et al. | May 2011 | A1 |
20110131534 | Subramanian et al. | Jun 2011 | A1 |
20110145758 | Rosales et al. | Jun 2011 | A1 |
20110148786 | Day et al. | Jun 2011 | A1 |
20110148798 | Dahl | Jun 2011 | A1 |
20110164058 | Lemay | Jul 2011 | A1 |
20110167058 | Van Os | Jul 2011 | A1 |
20110167357 | Benjamin | Jul 2011 | A1 |
20110167365 | Wingrove et al. | Jul 2011 | A1 |
20110173556 | Czerwinski et al. | Jul 2011 | A1 |
20110179097 | Ala-Rantala | Jul 2011 | A1 |
20110179368 | King et al. | Jul 2011 | A1 |
20110225549 | Kim | Sep 2011 | A1 |
20110239155 | Christie | Sep 2011 | A1 |
20110246918 | Henderson | Oct 2011 | A1 |
20110246929 | Jones et al. | Oct 2011 | A1 |
20110252346 | Chaudhri | Oct 2011 | A1 |
20110252349 | Chaudhri | Oct 2011 | A1 |
20110252372 | Chaudhri | Oct 2011 | A1 |
20110252373 | Chaudhri | Oct 2011 | A1 |
20110275940 | Nims et al. | Nov 2011 | A1 |
20110283334 | Choi et al. | Nov 2011 | A1 |
20110285659 | Kuwabara et al. | Nov 2011 | A1 |
20110289423 | Kim et al. | Nov 2011 | A1 |
20110289448 | Tanaka | Nov 2011 | A1 |
20110298723 | Fleizach et al. | Dec 2011 | A1 |
20110302513 | Ademar et al. | Dec 2011 | A1 |
20110310005 | Chen et al. | Dec 2011 | A1 |
20110310058 | Yamada et al. | Dec 2011 | A1 |
20110314098 | Farrell et al. | Dec 2011 | A1 |
20110314422 | Cameron et al. | Dec 2011 | A1 |
20120023471 | Fischer et al. | Jan 2012 | A1 |
20120030623 | Hoellwarth | Feb 2012 | A1 |
20120036460 | Cieplinski et al. | Feb 2012 | A1 |
20120042272 | Hong et al. | Feb 2012 | A1 |
20120066630 | Kim et al. | Mar 2012 | A1 |
20120084692 | Bae | Apr 2012 | A1 |
20120084694 | Sirpal et al. | Apr 2012 | A1 |
20120092812 | Lewis et al. | Apr 2012 | A1 |
20120110031 | Lahcanski et al. | May 2012 | A1 |
20120117506 | Koch et al. | May 2012 | A1 |
20120124677 | Hoogerwerf et al. | May 2012 | A1 |
20120151331 | Pallakoff et al. | Jun 2012 | A1 |
20120169617 | Mäenpää | Jul 2012 | A1 |
20120216146 | Korkonen | Aug 2012 | A1 |
20120304092 | Jarrett et al. | Nov 2012 | A1 |
20120324390 | Tao et al. | Dec 2012 | A1 |
20130007666 | Song et al. | Jan 2013 | A1 |
20130019175 | Kotler et al. | Jan 2013 | A1 |
20130024796 | Seo | Jan 2013 | A1 |
20130055127 | Saito et al. | Feb 2013 | A1 |
20130067411 | Kataoka et al. | Mar 2013 | A1 |
20130080951 | Chuang et al. | Mar 2013 | A1 |
20130111400 | Miwa | May 2013 | A1 |
20130170324 | Tu et al. | Jul 2013 | A1 |
20130194066 | Rahman et al. | Aug 2013 | A1 |
20130205244 | Decker et al. | Aug 2013 | A1 |
20130234924 | Janefalkar et al. | Sep 2013 | A1 |
20130254705 | Mooring et al. | Sep 2013 | A1 |
20130321340 | Seo et al. | Dec 2013 | A1 |
20130332886 | Cranfill et al. | Dec 2013 | A1 |
20140015786 | Honda | Jan 2014 | A1 |
20140068483 | Platzer et al. | Mar 2014 | A1 |
20140108978 | Yu et al. | Apr 2014 | A1 |
20140109024 | Miyazaki | Apr 2014 | A1 |
20140135631 | Brumback et al. | May 2014 | A1 |
20140139637 | Mistry et al. | May 2014 | A1 |
20140143678 | Mistry et al. | May 2014 | A1 |
20140143784 | Mistry et al. | May 2014 | A1 |
20140165006 | Chaudhri et al. | Jun 2014 | A1 |
20140195972 | Lee et al. | Jul 2014 | A1 |
20140200742 | Mauti, Jr. | Jul 2014 | A1 |
20140215457 | Gava et al. | Jul 2014 | A1 |
20140223372 | Dostie et al. | Aug 2014 | A1 |
20140237360 | Chaudhri et al. | Aug 2014 | A1 |
20140276244 | Kamyar | Sep 2014 | A1 |
20140293755 | Geiser et al. | Oct 2014 | A1 |
20140317555 | Choi et al. | Oct 2014 | A1 |
20140328151 | Serber | Nov 2014 | A1 |
20140365126 | Vulcano et al. | Dec 2014 | A1 |
20140365956 | Karunamuni et al. | Dec 2014 | A1 |
20150012853 | Chaudhri et al. | Jan 2015 | A1 |
20150015500 | Lee et al. | Jan 2015 | A1 |
20150089407 | Suzuki | Mar 2015 | A1 |
20150105125 | Min et al. | Apr 2015 | A1 |
20150112752 | Wagner et al. | Apr 2015 | A1 |
20150117162 | Tsai et al. | Apr 2015 | A1 |
20150160812 | Yuan et al. | Jun 2015 | A1 |
20150172438 | Yang | Jun 2015 | A1 |
20150185947 | Tsai et al. | Jul 2015 | A1 |
20150242092 | Van et al. | Aug 2015 | A1 |
20150242989 | Lee et al. | Aug 2015 | A1 |
20150249733 | Miura | Sep 2015 | A1 |
20150277692 | Liu | Oct 2015 | A1 |
20150281945 | Seo et al. | Oct 2015 | A1 |
20150301506 | Koumaiha | Oct 2015 | A1 |
20150331589 | Kawakita | Nov 2015 | A1 |
20150366518 | Sampson | Dec 2015 | A1 |
20150379476 | Chaudhri et al. | Dec 2015 | A1 |
20160019360 | Pahwa et al. | Jan 2016 | A1 |
20160034133 | Wilson et al. | Feb 2016 | A1 |
20160034148 | Wilson et al. | Feb 2016 | A1 |
20160034167 | Wilson et al. | Feb 2016 | A1 |
20160048296 | Gan et al. | Feb 2016 | A1 |
20160054710 | Jo et al. | Feb 2016 | A1 |
20160058336 | Blahnik et al. | Mar 2016 | A1 |
20160058337 | Blahnik et al. | Mar 2016 | A1 |
20160062541 | Anzures et al. | Mar 2016 | A1 |
20160062572 | Yang et al. | Mar 2016 | A1 |
20160077495 | Brown et al. | Mar 2016 | A1 |
20160117141 | Ro et al. | Apr 2016 | A1 |
20160124626 | Lee et al. | May 2016 | A1 |
20160139798 | Takikawa et al. | May 2016 | A1 |
20160179310 | Chaudhri et al. | Jun 2016 | A1 |
20160182805 | Emmett et al. | Jun 2016 | A1 |
20160196419 | Kuscher | Jul 2016 | A1 |
20160224211 | Xu et al. | Aug 2016 | A1 |
20160253065 | Platzer et al. | Sep 2016 | A1 |
20160269540 | Butcher et al. | Sep 2016 | A1 |
20160313913 | Leem et al. | Oct 2016 | A1 |
20170039535 | Park et al. | Feb 2017 | A1 |
20170075305 | Ryu et al. | Mar 2017 | A1 |
20170147198 | Herz et al. | May 2017 | A1 |
20170255169 | Lee et al. | Sep 2017 | A1 |
20170344329 | Oh et al. | Nov 2017 | A1 |
20170357426 | Wilson et al. | Dec 2017 | A1 |
20170357427 | Wilson et al. | Dec 2017 | A1 |
20170357433 | Boule et al. | Dec 2017 | A1 |
20170374205 | Panda | Dec 2017 | A1 |
20180150216 | Choi et al. | May 2018 | A1 |
20180307388 | Chaudhri et al. | Oct 2018 | A1 |
20190171349 | Van Os et al. | Jun 2019 | A1 |
20190173996 | Butcher et al. | Jun 2019 | A1 |
20190179514 | Van Os et al. | Jun 2019 | A1 |
20190235724 | Platzer et al. | Aug 2019 | A1 |
20190320057 | Omernick et al. | Oct 2019 | A1 |
20190369842 | Dolbakian et al. | Dec 2019 | A1 |
20200000035 | Calmer | Jan 2020 | A1 |
20200054549 | Paufique | Feb 2020 | A1 |
20200142554 | Lin et al. | May 2020 | A1 |
20200183572 | Moore et al. | Jun 2020 | A1 |
20200192683 | Lin et al. | Jun 2020 | A1 |
20200225843 | Herz et al. | Jul 2020 | A1 |
20200333945 | Wilson et al. | Oct 2020 | A1 |
20200348814 | Platzer et al. | Nov 2020 | A1 |
20200348822 | Dascola et al. | Nov 2020 | A1 |
20200356242 | Wilson et al. | Nov 2020 | A1 |
20200379615 | Chaudhri et al. | Dec 2020 | A1 |
20210109647 | Os et al. | Apr 2021 | A1 |
20210112152 | Omernick et al. | Apr 2021 | A1 |
20210132758 | Xu | May 2021 | A1 |
20210141506 | Chaudhri et al. | May 2021 | A1 |
20210195013 | Butcher et al. | Jun 2021 | A1 |
20210271374 | Chaudhri et al. | Sep 2021 | A1 |
20210311438 | Wilson et al. | Oct 2021 | A1 |
20220137765 | Platzer et al. | May 2022 | A1 |
20220202384 | Saiki et al. | Jun 2022 | A1 |
20220206649 | Chaudhri et al. | Jun 2022 | A1 |
20220377167 | Omernick et al. | Nov 2022 | A1 |
20220413684 | Van Os et al. | Dec 2022 | A1 |
20220417358 | Butcher et al. | Dec 2022 | A1 |
20230244355 | Van Os et al. | Aug 2023 | A1 |
20230359349 | Herz et al. | Nov 2023 | A1 |
20230370538 | Omernick et al. | Nov 2023 | A1 |
20230393535 | Wilson et al. | Dec 2023 | A1 |
20230409165 | Dascola et al. | Dec 2023 | A1 |
20230418434 | Chaudhri et al. | Dec 2023 | A1 |
20240053878 | Wilson et al. | Feb 2024 | A1 |
20240176479 | Chaudhri et al. | May 2024 | A1 |
Number | Date | Country |
---|---|---|
2012202140 | May 2012 | AU |
2015100115 | Mar 2015 | AU |
2015101022 | Sep 2015 | AU |
2349649 | Jan 2002 | CA |
2800123 | Jul 2016 | CA |
700242 | Jul 2010 | CH |
1392977 | Jan 2003 | CN |
1464719 | Dec 2003 | CN |
1695105 | Nov 2005 | CN |
1773875 | May 2006 | CN |
1786906 | Jun 2006 | CN |
1940833 | Apr 2007 | CN |
1998150 | Jul 2007 | CN |
101072410 | Nov 2007 | CN |
101308443 | Nov 2008 | CN |
102033710 | Apr 2011 | CN |
102081502 | Jun 2011 | CN |
102221931 | Oct 2011 | CN |
102244676 | Nov 2011 | CN |
102298502 | Dec 2011 | CN |
102364438 | Feb 2012 | CN |
102446059 | May 2012 | CN |
102801649 | Nov 2012 | CN |
102830911 | Dec 2012 | CN |
102981704 | Mar 2013 | CN |
102999249 | Mar 2013 | CN |
103116440 | May 2013 | CN |
102004614 | Jun 2013 | CN |
103154849 | Jun 2013 | CN |
103191557 | Jul 2013 | CN |
103210366 | Jul 2013 | CN |
103649897 | Mar 2014 | CN |
104281405 | Jan 2015 | CN |
104471532 | Mar 2015 | CN |
104580576 | Apr 2015 | CN |
104717356 | Jun 2015 | CN |
104737114 | Jun 2015 | CN |
105286843 | Feb 2016 | CN |
105302468 | Feb 2016 | CN |
105335087 | Feb 2016 | CN |
105389107 | Mar 2016 | CN |
105607858 | May 2016 | CN |
0163032 | Dec 1985 | EP |
0404373 | Dec 1990 | EP |
0626635 | Nov 1994 | EP |
0689134 | Dec 1995 | EP |
0844553 | May 1998 | EP |
1003098 | May 2000 | EP |
1143334 | Oct 2001 | EP |
1186997 | Mar 2002 | EP |
1271295 | Jan 2003 | EP |
1517228 | Mar 2005 | EP |
1674976 | Jun 2006 | EP |
1724996 | Nov 2006 | EP |
1956472 | Aug 2008 | EP |
2150031 | Feb 2010 | EP |
2204702 | Jul 2010 | EP |
2911377 | Aug 2015 | EP |
2955591 | Dec 2015 | EP |
2993602 | Mar 2016 | EP |
3152643 | Apr 2017 | EP |
2819675 | Jul 2002 | FR |
2329813 | Mar 1999 | GB |
2407900 | May 2005 | GB |
2457939 | Sep 2010 | GB |
6-208446 | Jul 1994 | JP |
8-221203 | Aug 1996 | JP |
9-73381 | Mar 1997 | JP |
9-101874 | Apr 1997 | JP |
9-258971 | Oct 1997 | JP |
9-292262 | Nov 1997 | JP |
9-297750 | Nov 1997 | JP |
10-40067 | Feb 1998 | JP |
10-214350 | Aug 1998 | JP |
10-340178 | Dec 1998 | JP |
11-508116 | Jul 1999 | JP |
2000-20213 | Jan 2000 | JP |
2001-92430 | Apr 2001 | JP |
2001-92586 | Apr 2001 | JP |
2001-318751 | Nov 2001 | JP |
2002-7016 | Jan 2002 | JP |
2002-41197 | Feb 2002 | JP |
2002-41206 | Feb 2002 | JP |
2002-132412 | May 2002 | JP |
2002-149312 | May 2002 | JP |
2002-157078 | May 2002 | JP |
2002-189567 | Jul 2002 | JP |
2002-525705 | Aug 2002 | JP |
2002-297514 | Oct 2002 | JP |
2002-312105 | Oct 2002 | JP |
2003-66941 | Mar 2003 | JP |
2003-139546 | May 2003 | JP |
2003-162731 | Jun 2003 | JP |
2003-198705 | Jul 2003 | JP |
2003-248538 | Sep 2003 | JP |
2003-256142 | Sep 2003 | JP |
2003-271310 | Sep 2003 | JP |
2003-295994 | Oct 2003 | JP |
2003-536125 | Dec 2003 | JP |
2004-38260 | Feb 2004 | JP |
2004-70492 | Mar 2004 | JP |
2004-132741 | Apr 2004 | JP |
2004-152075 | May 2004 | JP |
2004-208217 | Jul 2004 | JP |
2004-341892 | Dec 2004 | JP |
2005-4396 | Jan 2005 | JP |
2005-4419 | Jan 2005 | JP |
2005-515530 | May 2005 | JP |
2005-198064 | Jul 2005 | JP |
2005-202703 | Jul 2005 | JP |
2005-227826 | Aug 2005 | JP |
2005-227951 | Aug 2005 | JP |
2005-228088 | Aug 2005 | JP |
2005-228091 | Aug 2005 | JP |
2005-309933 | Nov 2005 | JP |
2005-321915 | Nov 2005 | JP |
2005-327064 | Nov 2005 | JP |
2006-71582 | Mar 2006 | JP |
2006-99733 | Apr 2006 | JP |
2006-155232 | Jun 2006 | JP |
2006-242717 | Sep 2006 | JP |
2006-259376 | Sep 2006 | JP |
2007-25998 | Feb 2007 | JP |
2007-124667 | May 2007 | JP |
2007-132676 | May 2007 | JP |
2007-512635 | May 2007 | JP |
2007-334984 | Dec 2007 | JP |
2008-15698 | Jan 2008 | JP |
2008-503007 | Jan 2008 | JP |
2008-52705 | Mar 2008 | JP |
2008-102860 | May 2008 | JP |
2008-262251 | Oct 2008 | JP |
2008-304959 | Dec 2008 | JP |
2008-306667 | Dec 2008 | JP |
2009-9350 | Jan 2009 | JP |
2009-508217 | Feb 2009 | JP |
2009-136456 | Jun 2009 | JP |
2009-265929 | Nov 2009 | JP |
2009-277192 | Nov 2009 | JP |
2009-290847 | Dec 2009 | JP |
2010-61402 | Mar 2010 | JP |
2010-97552 | Apr 2010 | JP |
2010-187096 | Aug 2010 | JP |
2010-538394 | Dec 2010 | JP |
2012-208645 | Oct 2012 | JP |
2013-25357 | Feb 2013 | JP |
2013-25409 | Feb 2013 | JP |
2013-47919 | Mar 2013 | JP |
2013-106271 | May 2013 | JP |
2013-516698 | May 2013 | JP |
2013-120468 | Jun 2013 | JP |
2013-191234 | Sep 2013 | JP |
2013-200265 | Oct 2013 | JP |
2013-203283 | Oct 2013 | JP |
2013-206274 | Oct 2013 | JP |
2013-211055 | Oct 2013 | JP |
2013-218698 | Oct 2013 | JP |
2014-503891 | Feb 2014 | JP |
2020-161134 | Oct 2020 | JP |
10-2002- 0010863 | Feb 2002 | KR |
10-0490373 | May 2005 | KR |
10-2009- 0035499 | Apr 2009 | KR |
10-2009- 0100320 | Sep 2009 | KR |
10-2010- 0019887 | Feb 2010 | KR |
10-2011- 0078008 | Jul 2011 | KR |
10-2011- 0093729 | Aug 2011 | KR |
10-2012-0050883 | May 2012 | KR |
10-2012- 0057800 | Jun 2012 | KR |
10-2012- 0091495 | Aug 2012 | KR |
10-2013-0011437 | Jan 2013 | KR |
10-2013- 0016329 | Feb 2013 | KR |
10-2015- 0022599 | Mar 2015 | KR |
10-2015-0140212 | Dec 2015 | KR |
199606401 | Feb 1996 | WO |
199844431 | Oct 1998 | WO |
199938149 | Jul 1999 | WO |
200016186 | Mar 2000 | WO |
200146790 | Jun 2001 | WO |
200213176 | Feb 2002 | WO |
2003060622 | Jul 2003 | WO |
2005041020 | May 2005 | WO |
2005055034 | Jun 2005 | WO |
2006012343 | Feb 2006 | WO |
2006020304 | Feb 2006 | WO |
2006020305 | Feb 2006 | WO |
2006092464 | Sep 2006 | WO |
2006117438 | Nov 2006 | WO |
2006119269 | Nov 2006 | WO |
2007031816 | Mar 2007 | WO |
2007032908 | Mar 2007 | WO |
2006020304 | May 2007 | WO |
2007069835 | Jun 2007 | WO |
2007094894 | Aug 2007 | WO |
2007142256 | Dec 2007 | WO |
2008017936 | Feb 2008 | WO |
2007100944 | Aug 2008 | WO |
2008114491 | Sep 2008 | WO |
2009032638 | Mar 2009 | WO |
2009032750 | Mar 2009 | WO |
2009089222 | Jul 2009 | WO |
2011126501 | Oct 2011 | WO |
2012078079 | Jun 2012 | WO |
2013017736 | Feb 2013 | WO |
2013103570 | Jul 2013 | WO |
2013149055 | Oct 2013 | WO |
2013157330 | Oct 2013 | WO |
2016025395 | Feb 2016 | WO |
Entry |
---|
Corrected Notice of Allowance received for U.S. Appl. No. 17/698,979, mailed on Feb. 17, 2023, 2 pages. |
Non-Final Office Action received for U.S. Appl. No. 17/728,725, mailed on Feb. 16, 2023, 11 pages. |
Notice of Allowance received for U.S. Appl. No. 16/737,372, mailed on Feb. 10, 2023, 2 pages. |
Office Action received for European Patent Application No. 17810739.7, mailed on Feb. 17, 2023, 8 pages. |
Advisory Action Received for U.S. Appl. No. 12/689,834, Mailed on Aug. 19, 2015, 3 Pages. |
Advisory Action received for U.S. Appl. No. 12/888,362, mailed on May 7, 2013., 3 pages. |
Advisory Action received for U.S. Appl. No. 14/261,112, mailed on Nov. 30, 2017, 3 pages. |
Advisory Action received for U.S. Appl. No. 14/710,125, mailed on Mar. 14, 2017, 3 pages. |
Advisory Action received for U.S. Appl. No. 15/411,110, mailed on Jun. 29, 2021, 4 pages. |
Advisory Action received for U.S. Appl. No. 15/421,865, mailed on Apr. 16, 2020, 7 pages. |
Advisory Action received for U.S. Appl. No. 11/960,669, mailed on Nov. 3, 2011, 3 pages. |
“Apple Inc. vs. Samsung Electronics Co. Ltd. et al., Judgment in Interlocutory proceeding, Case No. 396957/KG ZA 11-730, civil law sector”, Aug. 24, 2011, pp. 1-65. |
“Apple Inc. vs. Samsung Electronics Co. Ltd., et al., Samsung's Motion To Supplement Invalidity Contentions, Case No. 11-cv-01846-LHK, filed Jan. 27, 2012 together with Exhibit 6”, Jan. 27, 2012, 47 pages. |
“Apple Inc. vs. Samsung Electronics Co. Ltd., et al., Samsung's Patent Local Rule 3-3 and 3-4 Disclosures, Case No. 11-cv-01846-LHK, dated Oct. 7, 2011, together with Exhibits G-1 through G-7 and Exhibit H”, Oct. 7, 2011, 287 pages. |
Applicant Initiated Interview Summary received for U.S. Appl. No. 15/411,110, mailed on Apr. 21, 2020, 5 pages. |
Applicant Initiated Interview Summary received for U.S. Appl. No. 15/411,110, mailed on Nov. 17, 2020, 7 pages. |
Applicant Initiated Interview Summary received for U.S. Appl. No. 15/411,110, mailed on Oct. 28, 2019, 6 pages. |
Applicant Initiated Interview Summary received for U.S. Appl. No. 16/270,801, mailed on Mar. 11, 2020, 3 pages. |
Applicant Initiated Interview Summary received for U.S. Appl. No. 16/270,902, mailed on Mar. 11, 2020, 3 pages. |
Applicant Initiated Interview Summary received for U.S. Appl. No. 16/737,372, mailed on Oct. 5, 2021, 2 pages. |
Applicant-Initiated Interview Summary received for U.S. Appl. No. 15/418,537, mailed on Dec. 23, 2019, 6 pages. |
Applicant-Initiated Interview Summary received for U.S. Appl. No. 15/421,865, mailed on Dec. 15, 2020, 6 pages. |
Applicant-Initiated Interview Summary received for U.S. Appl. No. 15/421,865, mailed on Feb. 3, 2020, 5 pages. |
Applicant-Initiated Interview Summary received for U.S. Appl. No. 15/421,865, mailed on Feb. 28, 2022, 5 pages. |
Applicant-Initiated Interview Summary received for U.S. Appl. No. 15/421,865, mailed on Jun. 30, 2021, 6 pages. |
Applicant-Initiated Interview Summary received for U.S. Appl. No. 16/020,804, mailed on Apr. 13, 2020, 3 pages. |
Applicant-Initiated Interview Summary received for U.S. Appl. No. 16/267,817, mailed on Dec. 1, 2020, 5 pages. |
Applicant-Initiated Interview Summary received for U.S. Appl. No. 16/267,817, mailed on Jul. 14, 2020, 5 pages. |
Applicant-Initiated Interview Summary received for U.S. Appl. No. 16/737,372, mailed on Mar. 1, 2022, 2 pages. |
Applicant-Initiated Interview Summary received for U.S. Appl. No. 16/832,285, mailed on Nov. 19, 2021, 19 pages. |
Applicant-Initiated Interview Summary received for U.S. Appl. No. 16/994,392, mailed on Dec. 3, 2021, 2 pages. |
Applicant-Initiated Interview Summary received for U.S. Appl. No. 16/994,392, mailed on Mar. 10, 2022, 2 pages. |
Applicant-Initiated Interview Summary received for U.S. Appl. No. 17/190,869, mailed on Dec. 10, 2021, 2 pages. |
“Asus Eee News, Mods, and Hacks: Asus Eee PC Easy Mode Internet Tab Options Tour”, asuseeehacks.blogspot.com, Available online at <http://asuseeehacks.blogspot.com/2007/11/asus-eee-pc-user-interface-tour.html>, Nov. 10, 2007, 33 pages. |
Board Opinion received for Chinese Patent Application No. 200780041309.3, mailed on Apr. 1, 2016, 16 pages (9 pages of English Translation and 7 pages of Official copy). |
Board Opinion received for Chinese Patent Application No. 201480001676.0, mailed on Oct. 21, 2019, 10 pages (1 page of English Translation and 9 pages of Official Copy). |
Communication of the Board of Appeal received for European Patent Application No. 09170697.8, mailed on Jan. 25, 2021, 6 pages. |
Corrected Notice of Allowance received for U.S. Appl. No. 12/689,834, mailed on Feb. 8, 2018, 4 pages. |
Corrected Notice of Allowance received for U.S. Appl. No. 12/689,834, mailed on May 17, 2018, 2 pages. |
Corrected Notice of Allowance received for U.S. Appl. No. 12/888,362, mailed on Jun. 6, 2018, 3 pages. |
Corrected Notice of Allowance received for U.S. Appl. No. 14/142,640, mailed on Feb. 5, 2020, 4 pages. |
Corrected Notice of Allowance received for U.S. Appl. No. 14/142,648, mailed on May 20, 2020, 2 pages. |
Corrected Notice of Allowance received for U.S. Appl. No. 16/994,392, mailed on Aug. 4, 2022, 2 pages. |
Corrected Notice of Allowance received for U.S. Appl. No. 16/994,392, mailed on Jul. 19, 2022, 2 pages. |
Corrected Notice of Allowance received for U.S. Appl. No. 17/002,622, mailed on Dec. 13, 2021, 2 pages. |
Corrected Notice of Allowance received for U.S. Appl. No. 17/002,622, mailed on Feb. 16, 2022, 2 pages. |
Corrected Notice of Allowance received for U.S. Appl. No. 17/002,622, mailed on Jan. 25, 2022, 2 pages. |
Corrected Notice of Allowance received for U.S. Appl. No. 17/019,062, mailed on Dec. 8, 2021, 2 pages. |
Corrected Notice of Allowance received for U.S. Appl. No. 12/888,362, mailed on Apr. 25, 2018, 3 pages. |
Decision of Board of Appeal received for European Patent Application No. 09170697.8 mailed on Oct. 24, 2016, 24 pages. |
Decision of Board of Appeal received for European Patent Application No. 09170697.8, mailed on Apr. 23, 2021, 17 pages. |
Decision on Acceptance received for Australian Patent Application No. 2017202587, mailed on Oct. 8, 2019, 19 pages. |
Decision on Appeal received for U.S. Appl. No. 14/142,640, mailed on Oct. 7, 2019, 9 pages. |
Decision on Appeal received for U.S. Appl. No. 14/142,648, mailed on Feb. 28, 2020, 6 pages. |
Decision on Appeal received for U.S. Appl. No. 14/261,112, mailed on Oct. 29, 2020, 20 pages. |
Decision on Appeal received for U.S. Appl. No. 14/710,125, mailed on Mar. 11, 2019, 7 pages. |
Decision to Grant received for European Patent Application No. 08829660.3, mailed on May 6, 2022, 2 pages. |
Decision to Grant received for European Patent Application No. 09170697.8, mailed on Apr. 29, 2022, 2 pages. |
Decision to Grant received for European Patent Application No. 10762813.3, mailed on May 11, 2018, 3 pages. |
Decision to Grant received for European Patent Application No. 12177813.8, mailed on Nov. 24, 2016, 3 pages. |
Decision to Grant received for European Patent Application No. 12189764.9, mailed on Nov. 25, 2021, 2 pages. |
Decision to Grant received for European Patent Application No. 12194312.0, mailed on Feb. 1, 2018, 2 pages. |
Decision to Grant Received for European Patent Application No. 12194315.3, mailed on Oct. 12, 2017, 2 pages. |
Decision to Grant received for European Patent Application No. 13795330.3, mailed on Jan. 16, 2020, 2 pages. |
Decision to Grant received for European Patent Application No. 17198398.4, mailed on Jun. 14, 2019, 3 pages. |
Decision to Grant received for European Patent Application No. 17210062.0, mailed on Oct. 1, 2020, 2 pages. |
Decision to Refuse received for European Patent Application No. 06846840.4, mailed on Mar. 4, 2010, 10 pages. |
Decision to Refuse received for European Patent Application No. 09170697.8, mailed on Jul. 10, 2018, 31 pages. |
Decision to Refuse received for European Patent Application No. 14734674.6, mailed on Jun. 29, 2022, 15 pages. |
Examiner's Answer to Appeal Brief received for U.S. Appl. No. 14/142,648, mailed on Apr. 10, 2018., 15 pages. |
Examiner's Answer to Appeal Brief received for U.S. Appl. No. 14/261,112, mailed on Oct. 29, 2019, 10 pages. |
Examiner's Answer to Appeal Brief received for U.S. Appl. No. 14/710,125, mailed on Jan. 26, 2018, 6 pages. |
Examiner's Answer to Appeal Brief received for U.S. Appl. No. 15/411,110, mailed on Feb. 1, 2022, 9 pages. |
Examiner's Pre-review report received for Japanese Patent Application No. 2014-253365, mailed on Dec. 12, 2017, 7 pages (3 page of English Translation and 4 pages of Official Copy). |
Examiner's Pre-Review Report received for Japanese Patent Application No. 2018- 121118, mailed on Jun. 2, 2020, 4 pages (2 pages of English Translation and 2 pages of Official Copy). |
Examiner's Pre-Review Report received for Japanese Patent Application No. 2019- 024663, mailed on Aug. 31, 2021, 4 pages (2 pages of English Translation and 2 pages of Official Copy). |
Extended European Search Report received for European Patent Application No. 17198398.4, mailed on Feb. 8, 2018, 8 pages. |
Extended European Search Report received for European Patent Application No. 17210062.0, mailed on Feb. 20, 2018, 12 pages. |
Extended European Search Report received for European Patent Application No. 17810723.1, mailed on Nov. 12, 2019, 9 pages. |
Extended European Search Report received for European Patent Application No. 17810739.7, mailed on Mar. 22, 2019, 9 pages. |
Extended European Search Report received for European Patent Application No. 17813879.8, mailed on Jan. 8, 2020, 8 pages. |
Extended European Search Report received for European Patent Application No. 19176224.4, mailed on Dec. 13, 2019, 7 pages. |
Extended European Search Report received for European Patent Application No. 20203888.1, mailed on Feb. 10, 2021, 8 pages. |
Final Office Action received for U.S. Appl. No. 11/960,669, mailed on Aug. 18, 2011, 13 pages. |
Final Office Action received for U.S. Appl. No. 11/620,686, mailed on Aug. 3, 2009, 11 pages. |
Final Office Action received for U.S. Appl. No. 11/620,686, mailed on Jul. 12, 2010, 10 pages. |
Final Office Action received for U.S. Appl. No. 11/850,010, mailed on Aug. 14, 2018, 21 pages. |
Final Office Action received for U.S. Appl. No. 11/850,010, mailed on May 11, 2018, 24 pages. |
Final Office Action received for U.S. Appl. No. 12/242,851, mailed on Jul. 1, 2016, 90 pages. |
Final Office Action received for U.S. Appl. No. 12/689,834, mailed on Mar. 26, 2015, 30 pages. |
Final Office Action received for U.S. Appl. No. 12/689,834, mailed on May 4, 2017, 41 pages. |
Final Office Action received for U.S. Appl. No. 12/689,834, mailed on Oct. 15, 2012, 22 pages. |
Final Office Action received for U.S. Appl. No. 14/142,648, mailed on Dec. 7, 2016, 12 pages. |
Final Office Action received for U.S. Appl. No. 14/261,112, mailed on Aug. 10, 2017, 35 pages. |
Final Office Action received for U.S. Appl. No. 14/261,112, mailed on Nov. 7, 2018, 34 pages. |
Final Office Action received for U.S. Appl. No. 14/710,125, mailed on Oct. 27, 2016, 13 pages. |
Final Office Action received for U.S. Appl. No. 15/411,110, mailed on Mar. 5, 2020, 30 pages. |
Final Office Action received for U.S. Appl. No. 15/411,110, mailed on Mar. 15, 2021, 28 pages. |
Final Office Action received for U.S. Appl. No. 15/418,537, mailed on Sep. 23, 2019, 53 pages. |
Final Office Action received for U.S. Appl. No. 15/421,865, mailed on Dec. 2, 2019, 19 pages. |
Final Office Action received for U.S. Appl. No. 15/421,865, mailed on Mar. 19, 2021, 20 pages. |
Final Office Action received for U.S. Appl. No. 15/426,836, mailed on Mar. 29, 2019, 49 pages. |
Final Office Action received for U.S. Appl. No. 16/267,817, mailed on Aug. 24, 2020, 23 pages. |
Final Office Action received for U.S. Appl. No. 16/737,372, mailed on Jan. 28, 2022, 20 pages. |
Final Office Action received for U.S. Appl. No. 16/832,285, mailed on Jan. 19, 2022, 66 pages. |
Final Office Action received for U.S. Appl. No. 16/994,392, mailed on Jan. 18, 2022, 12 pages. |
“HTC Europe Co. Ltd and Apple Inc. invalidity Claim dated Jul. 29, 2011, together with amended Particulars of Claim and amended Grounds of Invalidity”, Jul. 29, 2011, 22 pages. |
“HTC Europe Co. Ltd and Apple Inc. Invalidity Claim No. HC 12 C 01465, together with annexes”, dated Apr. 5, 2012, 12 pages. |
Intention to Grant received for European Patent Application No. 08829660.3, mailed on Dec. 17, 2021, 8 pages. |
Intention to Grant received for European Patent Application No. 09170697.8, mailed on Dec. 16, 2021, 8 pages. |
Intention to Grant received for European Patent Application No. 10762813.3, mailed on Dec. 18, 2017, 11 pages. |
Intention to Grant received for European Patent Application No. 12177813.8, mailed on Jul. 6, 2016, 8 pages. |
Intention to Grant received for European Patent Application No. 12189764.9, mailed on Mar. 5, 2021, 14 pages. |
Intention to Grant received for European Patent Application No. 12189764.9, mailed on Sep. 28, 2021, 14 pages. |
Intention to Grant received for European Patent Application No. 12194312.0, mailed on Aug. 3, 2017, 8 pages. |
Intention to Grant received for European Patent Application No. 12194315.3, mailed on May 31, 2017, 8 pages. |
Intention to Grant received for European Patent Application No. 13795330.3, mailed on Aug. 9, 2019, 13 pages. |
Intention to Grant received for European Patent Application No. 17198398.4, mailed on Jan. 28, 2019, 8 pages. |
Intention to Grant received for European Patent Application No. 17210062.0, mailed on Jun. 23, 2020, 8 pages. |
International Preliminary Report on Patentability for PCT Patent Application No. PCT/US2008/050047, mailed on Sep. 15, 2009, 11 pages. |
International Preliminary Report on Patentability received for PCT Patent Application No. PCT/US2017/034834, mailed on Dec. 20, 2018, 9 pages. |
International Preliminary Report on Patentability received for PCT Patent Application No. PCT/US2017/035331, mailed on Dec. 20, 2018, 13 pages. |
International Preliminary Report on Patentability received for PCT Patent Application No. PCT/US2017/037057, mailed on Dec. 27, 2018, 24 pages. |
International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2008/050047, mailed on Sep. 3, 2009, 15 pages. |
International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2017/034834, mailed on Aug. 23, 2017, 10 pages. |
International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2017/035331, mailed on Oct. 6, 2017, 18 pages. |
International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2017/037057, mailed on Aug. 29, 2017, 26 pages. |
Invitation to Pay Additional Fee received for PCT Patent Application No. PCT/US2017/035331, mailed on Aug. 7, 2017, 4 pages. |
“Macintosh Human Interface Guidelines (chapter 1)”, Online available at : http://interface.free.fr/Archives/Apple_HIGuidelines.pdf, 1995, 14 pages. |
Minutes of Meeting received for European Patent Application No. 09170697.8, mailed on Jul. 10, 2018, 6 pages. |
Minutes of Oral Proceedings received for European Patent Application No. 17210062.0, mailed on Jun. 17, 2020, 5 pages. |
Minutes of the Oral Proceedings received for European Patent Application No. 12189764.9, mailed on Oct. 13, 2020, 6 pages. |
Minutes of the Oral Proceedings received for European Patent Application No. 13795330.3, mailed on Aug. 2, 2019, 7 pages. |
Minutes of the Oral Proceedings received for European Patent Application No. 14734674.6, mailed on Jun. 13, 2022, 9 pages. |
“Motorola Mobility Opposition Grounds to Apple Inc. European Patent EP 2126678 dated Apr. 11, 2012, together with Exhibits E3, E4, and E5 re: CHT 2005, Apr. 2-7, 2005, Portland Oregon, USA”, Apr. 2012, 53 pages. |
“Nokia 7710”, https://www.nokia.com/en_int/phones/sites/default/files/user-guides/Nokia_7710_UG_en.pdf, 2005, pp. 1-153. |
Non-Final Office Action received for U.S. Appl. No. 12/689,834, mailed on Aug. 26, 2016, 26 pages. |
Non-Final Office Action received for U.S. Appl. No. 12/689,834, mailed on May 24, 2012, 21 pages. |
Non-Final Office Action received for U.S. Appl. No. 15/033,551, mailed on May 24, 2018, 26 pages. |
Office Action received for U.S. Appl. No. 15/421,865, mailed on Mar. 21, 2019, 18 pages. |
Office Action received for U.S. Appl. No. 11/960,669, mailed on Mar. 17, 2011, 23 pages. |
Office Action received for U.S. Appl. No. 11/459,602, mailed on Sep. 4, 2008, 13 pages. |
Office Action received for U.S. Appl. No. 11/620,686, mailed on Dec. 22, 2009, 10 pages. |
Office Action received for U.S. Appl. No. 11/620,686, mailed on Dec. 31, 2008, 17 pages. |
Office Action received for U.S. Appl. No. 11/850,010, mailed on Jul. 24, 2017, 19 pages. |
Office Action received for U.S. Appl. No. 12/689,834, mailed on Jun. 10, 2014, 25 pages. |
Office Action received for U.S. Appl. No. 14/261,112, mailed on Apr. 5, 2018, 40 pages. |
Office Action received for U.S. Appl. No. 14/261,112, mailed on Nov. 29, 2016, 34 pages. |
Office Action received for U.S. Appl. No. 15/153,617, mailed on Apr. 2, 2018, 12 pages. |
Non-Final Office Action received for U.S. Appl. No. 15/411,110, mailed on Dec. 13, 2018, 23 pages. |
Non-Final Office Action received for U.S. Appl. No. 15/411,110, mailed on Jul. 22, 2019, 29 pages. |
Non-Final Office Action received for U.S. Appl. No. 15/411,110, mailed on Jun. 26, 2020, 32 pages. |
Non-Final Office Action received for U.S. Appl. No. 15/418,537, mailed on Dec. 13, 2018, 53 pages. |
Non-Final Office Action received for U.S. Appl. No. 15/421,865, mailed on Dec. 29, 2021, 23 pages. |
Non-Final Office Action received for U.S. Appl. No. 15/421,865, mailed on Oct. 7, 2020, 20 pages. |
Non-Final Office Action received for U.S. Appl. No. 15/426,836, mailed on Oct. 18, 2018, 40 pages. |
Non-Final Office Action received for U.S. Appl. No. 16/020,804, mailed on Nov. 20, 2019, 13 pages. |
Non-Final Office Action received for U.S. Appl. No. 16/267,817, mailed on Apr. 15, 2020, 25 pages. |
Non-Final Office Action received for U.S. Appl. No. 16/270,801, mailed on Mar. 27, 2020, 11 pages. |
Non-Final Office Action received for U.S. Appl. No. 16/270,902, mailed on Mar. 27, 2020, 11 pages. |
Non-Final Office Action received for U.S. Appl. No. 16/737,372, mailed on Apr. 29, 2022, 19 pages. |
Non-Final Office Action received for U.S. Appl. No. 16/737,372, mailed on Jul. 27, 2021, 22 pages. |
Non-Final Office Action received for U.S. Appl. No. 16/832,285, mailed on Jul. 26, 2021, 62 pages. |
Non-Final Office Action received for U.S. Appl. No. 16/994,392, mailed on Jun. 9, 2021, 27 pages. |
Non-Final Office Action received for U.S. Appl. No. 17/002,622, mailed on Jul. 6, 2021, 14 pages. |
Non-Final Office Action received for U.S. Appl. No. 17/130,674, mailed on Mar. 3, 2022, 8 pages. |
Office Action received for U.S. Appl. No. 17/190,869, mailed on Sep. 27, 2021, 26 pages. |
Notice of Acceptance received for Australian Patent Application No. 2013404001, mailed on Nov. 21, 2017, 3 pages. |
Notice of Acceptance received for Australian Patent Application No. 2014204422, mailed on Apr. 28, 2016, 2 pages. |
Notice of Acceptance received for Australian Patent Application No. 2014274556, mailed on Jul. 27, 2016, 2 pages. |
Notice of Acceptance received for Australian Patent Application No. 2016203168, mailed on Feb. 14, 2018, 3 pages. |
Notice of Acceptance received for Australian Patent Application No. 2016203309, mailed on Feb. 14, 2018, 3 pages. |
Notice of Acceptance received for Australian Patent Application No. 2016213886, mailed on Feb. 9, 2018, 3 pages. |
Notice of Acceptance received for Australian Patent Application No. 2017201768, mailed on Nov. 21, 2018, 3 pages. |
Notice of Acceptance received for Australian Patent Application No. 2017202587, mailed on Nov. 6, 2019, 3 pages. |
Notice of Acceptance received for Australian Patent Application No. 2017276153, mailed on Feb. 19, 2018, 4 pages. |
Notice of Acceptance received for Australian Patent Application No. 2017276153, mailed on Jan. 17, 2018, 3 pages. |
Notice of Acceptance received for Australian Patent Application No. 2017277813, mailed on Jun. 16, 2020, 3 pages. |
Notice of Acceptance received for Australian Patent Application No. 2017277851, mailed on Dec. 9, 2019, 3 pages. |
Notice of Acceptance received for Australian Patent Application No. 2018200272, mailed on Apr. 23, 2019, 3 pages. |
Notice of Acceptance received for Australian Patent Application No. 2018203512, mailed on Jul. 26, 2019, 3 pages. |
Notice of Acceptance received for Australian Patent Application No. 2019200692, mailed on Apr. 7, 2020, 3 pages. |
Notice of Acceptance received for Australian Patent Application No. 2019204835, mailed on Dec. 7, 2020, 3 pages. |
Notice of Acceptance received for Australian Patent Application No. 2019210673, mailed on Oct. 17, 2020, 3 pages. |
Notice of Acceptance received for Australian Patent Application No. 2019219816, mailed on Sep. 23, 2020, 3 pages. |
Notice of Acceptance received for Australian Patent Application No. 2020201723, mailed on May 6, 2021, 3 pages. |
Notice of Acceptance received for Australian Patent Application No. 2020239774, mailed on Jan. 5, 2022, 3 pages. |
Notice of Acceptance received for Australian Patent Application No. 2021200102, mailed on Mar. 16, 2021, 3 pages. |
Notice of Acceptance received for Australian Patent Application No. 2021201687, mailed on Jun. 8, 2022, 3 pages. |
Notice of Allowance received for Australian Patent Application No. 2015202076, mailed on Apr. 5, 2017, 3 pages. |
Notice of Allowance received for Canadian Patent Application No. 2,890,778, mailed on Apr. 24, 2017, 1 page. |
Notice of Allowance received for Canadian Patent Application No. 2,983,178, mailed on Oct. 20, 2020, 1 page. |
Notice of Allowance received for Chinese Patent Application No. 200780041309.3, mailed on Jul. 31, 2017, 2 pages. |
Notice of Allowance received for Chinese Patent Application No. 201310724733.5, mailed on Dec. 27, 2018, 2 pages (1 page of English translation and 1 page of Official Copy). |
Notice of Allowance received for Chinese Patent Application No. 201380080659.6, mailed on Jul. 29, 2019, 2 pages (1 page of English Translation and 1 page of Official Copy). |
Notice of Allowance received for Chinese Patent Application No. 201410250648.4, mailed on Aug. 20, 2018, 2 pages (1 page of English Translation and 1 page of Official Copy). |
Notice of Allowance received for Chinese Patent Application No. 201410250688.9, mailed on May 21, 2018, 3 pages (1 page of English Translation and 2 pages of Official Copy). |
Notice of Allowance received for Chinese Patent Application No. 201410251370.2, mailed on Jul. 31, 2018, 2 pages (1 page of English Translation and 1 page of Official Copy). |
Notice of Allowance received for Chinese Patent Application No. 201410251400.X, mailed on Aug. 20, 2018, 3 pages (1 page of English Translation and 2 pages of Official Copy). |
Notice of Allowance received for Chinese Patent Application No. 201780033621.1, mailed on Mar. 10, 2022, 2 pages (1 page of English Translation and 1 page of Official Copy). |
Notice of Allowance received for Chinese Patent Application No. 201780033973.7, mailed on Jul. 7, 2021, 5 pages (1 page of English Translation and 4 pages of Official Copy). |
Notice of Allowance received for Japanese Patent Application No. 2013252338, mailed on Jun. 23, 2017, 3 pages. |
Notice of Allowance received for Japanese Patent Application No. 2014-139095, mailed on Apr. 1, 2016, 3 pages. |
Notice of Allowance received for Japanese Patent Application No. 2014-253365, mailed on Nov. 26, 2018, 3 pages (1 page of English Translation and 2 pages of Official Copy). |
Notice of Allowance received for Japanese Patent Application No. 2015-532193 mailed on Jan. 23, 2017, 3 pages. |
Notice of Allowance received for Japanese Patent Application No. 2016-091460, mailed on Oct. 9, 2018, 3 pages (1 page of English Translation and 2 pages of Official Copy). |
Notice of Allowance received for Japanese Patent Application No. 2016-092789, mailed on Feb. 3, 2017, 3 pages. |
Notice of Allowance received for Japanese Patent Application No. 2016-527367, mailed on Jul. 30, 2018, 4 pages (1 page of English Translation and 3 pages of Official Copy). |
Notice of Allowance received for Japanese Patent Application No. 2017-042050, mailed on Apr. 24, 2017, 3 pages. |
Notice of Allowance received for Japanese Patent Application No. 2017-102031, mailed on Jun. 23, 2017, 3 pages. |
Notice of Allowance received for Japanese Patent Application No. 2017-142812, mailed on Jul. 19, 2019, 4 pages (1 page of English Translation and 3 pages of Official copy). |
Notice of Allowance received for Japanese Patent Application No. 2017-204561, mailed on Mar. 12, 2019, 4 pages (1 page of English Translation and 3 pages of Official Copy). |
Notice of Allowance received for Japanese Patent Application No. 2017-223021, mailed on Dec. 18, 2020, 3 pages (1 page of English Translation and 2 pages of Official Copy). |
Notice of Allowance received for Japanese Patent Application No. 2018-121118, mailed on Sep. 27, 2021, 3 pages (1 page of English Translation and 2 pages of Official Copy). |
Notice of Allowance received for Japanese Patent Application No. 2018-201088, mailed on Sep. 18, 2020, 4 pages (1 page of English Translation and 3 pages of Official Copy). |
Notice of Allowance received for Japanese Patent Application No. 2019-144763, mailed on Nov. 29, 2021, 4 pages (1 page of English Translation and 3 pages of Official Copy). |
Notice of Allowance received for Japanese Patent Application No. 2013-011209, mailed on Jun. 13, 2016, 2 pages. |
Notice of Allowance Received for Korean Patent Application No. 10-2014-7036624, mailed on Sep. 26, 2016, 3 pages (1 page of English Translation and 2 pages of Official Copy). |
Notice of Allowance received for Korean Patent Application No. 10-2016-7014051, mailed on Nov. 27, 2018, 4 pages (1 page of English Translation and 3 pages of Official Copy). |
Notice of Allowance received for Korean Patent Application No. 10-2019-7005262, mailed on Mar. 25, 2020, 5 pages (2 pages of English Translation and 3 pages of Official Copy). |
Notice of Allowance received for Korean Patent Application No. 10-2020-7018655, mailed on Feb. 25, 2022, 4 pages (1 page of English Translation and 3 pages of Official Copy). |
Notice of Allowance received for U.S. Appl. No. 11/459,602, mailed on Jan. 9, 2009, 6 pages. |
Notice of Allowance received for U.S. Appl. No. 12/242,851, mailed on Dec. 27, 2016, 20 pages. |
Notice of Allowance received for U.S. Appl. No. 12/364,470, mailed on Nov. 24, 2017, 9 pages. |
Notice of Allowance received for U.S. Appl. No. 12/689,834, mailed on Jan. 17, 2018, 9 pages. |
Notice of Allowance received for U.S. Appl. No. 12/888,362, mailed on Apr. 11, 2018, 7 pages. |
Notice of Allowance received for U.S. Appl. No. 14/142,640, mailed on Dec. 11, 2019, 7 pages. |
Notice of Allowance received for U.S. Appl. No. 14/142,648, mailed on Jul. 15, 2020, 6 pages. |
Notice of Allowance received for U.S. Appl. No. 14/142,648, mailed on Mar. 13, 2020, 5 pages. |
Notice of Allowance received for U.S. Appl. No. 14/261,112, mailed on Apr. 9, 2021, 2 pages. |
Notice of Allowance received for U.S. Appl. No. 14/261,112, mailed on Nov. 18, 2020, 6 pages. |
Notice of Allowance received for U.S. Appl. No. 14/710,125, mailed on Apr. 19, 2019, 8 pages. |
Notice of Allowance received for U.S. Appl. No. 14/710,125, mailed on May 7, 2019, 9 pages. |
Notice of Allowance received for U.S. Appl. No. 15/033,551, mailed on Nov. 14, 2018, 10 pages. |
Notice of Allowance received for U.S. Appl. No. 15/056,913, mailed on May 24, 2017, 19 pages. |
Notice of Allowance received for U.S. Appl. No. 15/153,617, mailed on Nov. 23, 2018, 10 pages. |
Notice of Allowance received for U.S. Appl. No. 15/418,537, mailed on Apr. 6, 2020, 9 pages. |
Notice of Allowance received for U.S. Appl. No. 15/426,836, mailed on Dec. 16, 2019, 16 pages. |
Notice of Allowance received for U.S. Appl. No. 16/020,804, mailed on May 28, 2020, 18 pages. |
Notice of Allowance received for U.S. Appl. No. 16/267,817, mailed on Dec. 18, 2020, 11 pages. |
Notice of Allowance received for U.S. Appl. No. 16/270,801, mailed on Sep. 16, 2020, 9 pages. |
Notice of Allowance received for U.S. Appl. No. 16/270,902, mailed on Sep. 22, 2020, 9 pages. |
Notice of Allowance received for U.S. Appl. No. 16/378,291, mailed on Mar. 25, 2020, 11 pages. |
Notice of Allowance received for U.S. Appl. No. 16/428,634, mailed on May 8, 2020, 16 pages. |
Notice of Allowance received for U.S. Appl. No. 16/918,855, mailed on Apr. 6, 2021, 7 pages. |
Notice of Allowance received for U.S. Appl. No. 16/926,530, mailed on Jun. 24, 2021, 10 pages. |
Notice of Allowance received for U.S. Appl. No. 16/994,392, mailed on Jul. 11, 2022, 26 pages. |
Notice of Allowance received for U.S. Appl. No. 17/002,622, mailed on Nov. 22, 2021, 7 pages. |
Notice of Allowance received for U.S. Appl. No. 17/019,062, mailed on Aug. 10, 2021, 22 pages. |
Notice of Allowance received for U.S. Appl. No. 17/019,062, mailed on Nov. 24, 2021, 20 pages. |
Notice of Allowance received for U.S. Appl. No. 17/130,674, mailed on Jun. 15, 2022, 9 pages. |
Notice of Allowance received for U.S. Appl. No. 17/190,869, mailed on Jan. 10, 2022, 10 pages. |
Notice of Allowance received for U.S. Appl. No. 11/850,010, mailed on Feb. 6, 2019, 25 pages. |
Office Action received for Danish Patent Application No. PA201670595, mailed on Nov. 25, 2016, 9 pages. |
Office Action received for European Patent Application No. 13795330.3, mailed on Oct. 9, 2017, 8 pages. |
Office Action received for Australian Patent Application No. 2013404001, mailed on Aug. 3, 2017, 5 pages. |
Office Action received for Australian Patent Application No. 2013404001, mailed on Nov. 26, 2016, 3 pages. |
Office Action received for Australian Patent Application No. 2014274537, issued on Jul. 25, 2016, 3 pages. |
Office Action received for Australian Patent Application No. 2015202076, issued on May 5, 2016, 3 pages. |
Office Action received for Australian Patent Application No. 2015215876, mailed on Aug. 1, 2016, 4 pages. |
Office Action received for Australian Patent Application No. 2015215876, mailed on Jul. 26, 2017, 6 pages. |
Office Action received for Australian Patent Application No. 2015215876, mailed on Jun. 28, 2017, 4 pages. |
Office Action received for Australian Patent Application No. 2015215876, mailed on May 24, 2017, 4 pages. |
Office Action received for Australian Patent Application No. 2016203168, mailed on Feb. 8, 2017, 2 pages. |
Office Action received for Australian Patent Application No. 2016203309, mailed on Feb. 8, 2017, 11 pages. |
Office Action received for Australian Patent Application No. 2016213886, mailed on May 18, 2017, 2 pages. |
Office Action received for Australian Patent Application No. 2017201768, mailed on Feb. 28, 2018, 4 pages. |
Office Action received for Australian Patent Application No. 2017202587, mailed on Apr. 26, 2019, 4 pages. |
Office Action received for Australian Patent Application No. 2017202587, mailed on Jul. 4, 2018, 4 pages. |
Office Action received for Australian Patent Application No. 2017202587, mailed on Jul. 4, 2019, 4 pages. |
Office Action received for Australian Patent Application No. 2017277813, mailed on Jun. 11, 2019, 3 pages. |
Office Action received for Australian Patent Application No. 2017277813, mailed on Mar. 20, 2020, 4 pages. |
Office Action received for Australian Patent Application No. 2017277851, mailed on Jul. 5, 2019, 3 pages. |
Office Action received for Australian Patent Application No. 2018200272, mailed on Jan. 17, 2019, 2 pages. |
Office Action received for Australian Patent Application No. 2018203512, mailed on Apr. 15, 2019, 4 pages. |
Office Action received for Australian Patent Application No. 2019200692, mailed on Dec. 24, 2019, 2 pages. |
Office Action received for Australian Patent Application No. 2019204835, mailed on Sep. 16, 2020, 6 pages. |
Office Action received for Australian Patent Application No. 2019210673, mailed on Jul. 28, 2020, 4 pages. |
Office Action received for Australian Patent Application No. 2019210673, mailed on Sep. 28, 2020, 2 pages. |
Office Action received for Australian Patent Application No. 2019219816, mailed on Apr. 17, 2020, 3 pages. |
Office Action received for Australian Patent Application No. 2020201723, mailed on Feb. 4, 2021, 6 pages. |
Office Action received for Australian Patent Application No. 2020239774, mailed on Jun. 28, 2021, 8 pages. |
Office Action received for Australian Patent Application No. 2020239774, mailed on Oct. 5, 2021, 3 pages. |
Office Action received for Australian Patent Application No. 2021201687, mailed on Mar. 16, 2022, 5 pages. |
Office Action received for Canadian Patent Application No. 2,890,778, mailed on May 19, 2016, 6 pages. |
Office Action received for Canadian Patent Application No. 2,983,178, mailed on Aug. 16, 2018, 5 pages. |
Office Action received for Canadian Patent Application No. 2,983,178, mailed on Jul. 22, 2019, 6 pages. |
Office Action received for Canadian Patent Application No. 3,109,701, mailed on Feb. 7, 2022, 4 pages. |
Office Action received for Chinese Patent Application No. 200780041309.3, mailed on Feb. 8, 2017, 4 pages (1 page of English Translation and 3 pages of Official Copy). |
Office Action received for Chinese Patent Application No. 201310724733.5, mailed on Apr. 9, 2018, 11 pages (2 pages of English Translation and 9 pages of Official copy). |
Office Action received for Chinese Patent Application No. 201310724733.5, mailed on Aug. 15, 2018, 2 pages (1 page of English Translation and 1 page of Official copy). |
Office Action received for Chinese Patent Application No. 201310724733.5, mailed on Aug. 28, 2018, 6 pages (3 pages of English Translation and 3 pages of Official copy). |
Office Action received for Chinese Patent Application No. 201310724733.5, mailed on Oct. 30, 2017, 14 pages (3 pages of English Translation and 11 pages of Official Copy). |
Office Action received for Chinese Patent Application No. 2013107247335, mailed on Apr. 12, 2016, 14 pages (3 pages of English Translation and 11 pages of Official Copy). |
Office Action received for Chinese Patent Application No. 2013107247335, mailed on Apr. 21, 2017, 18 pages (5 pages of English Translation and 13 pages of Official Copy). |
Office Action received for Chinese Patent Application No. 2013107247335, mailed on Dec. 30, 2016, 13 pages (3 pages of English Translation and 10 pages of Official Copy). |
Office Action received for Chinese Patent Application No. 201380080659.6, mailed on Apr. 4, 2018, 15 pages (5 pages of English Translation and 10 pages of Official Copy). |
Office Action received for Chinese Patent Application No. 201380080659.6, mailed on Mar. 4, 2019, 9 pages (5 pages of English Translation and 4 pages of Official Copy). |
Office Action received for Chinese Patent Application No. 201380080659.6, mailed on Oct. 26, 2018, 11 pages (3 pages of English Translation and 8 pages of Official Copy). |
Office action received for Chinese Patent Application No. 201410250648.4, mailed on Feb. 14, 2018, 6 pages (3 pages of English Translation and 3 pages of Official Copy). |
Office Action received for Chinese Patent Application No. 201410250648.4, mailed on Jun. 29, 2017, 13 pages (5 pages of English Translation and 8 pages of Official Copy). |
Office Action received for Chinese Patent Application No. 201410250648.4, mailed on Oct. 9, 2016, 6 pages (3 pages of English Translation and 3 pages of Official Copy). |
Office Action received for Chinese Patent Application No. 201410250688.9, mailed on Nov. 16, 2017, 6 pages (3 pages of English Translation and 3 pages of Official Copy). |
Office Action received for Chinese Patent Application No. 201410250688.9, mailed on Jun. 1, 2017, 12 pages (5 pages of English Translation and 7 pages of Official Copy). |
Office Action received for Chinese Patent Application No. 201410250688.9, mailed on Sep. 28, 2016, 7 pages(3 pages of English Translation and 4 pages of Official Copy). |
Office Action received for Chinese Patent Application No. 201410251370.2, mailed on Feb. 11, 2018, 14 pages (5 pages of English Translation and 9 pages of Official Copy). |
Office Action received for Chinese Patent Application No. 201410251370.2, mailed on May 12, 2017, 8 pages (4 pages of English Translation and 4 pages of Official Copy). |
Office Action received for Chinese Patent Application No. 201410251370.2, mailed on Sep. 5, 2016, 7 pages (3 pages of English Translation and 4 pages of Official Copy). |
Office Action received for Chinese Patent Application No. 201410251400.X, mailed on Feb. 8, 2018, 6 pages (3 pages of English Translation and 3 pages of Official Copy). |
Office Action Received for Chinese Patent Application No. 201410251400.X, mailed on Jul. 4, 2016, 8 pages (2 pages of English Translation and 6 pages of Official Copy). |
Office Action Received for Chinese Patent Application No. 201410251400.X, mailed on May 26, 2017, 11 pages (3 pages of English Translation and 8 pages of Official Copy). |
Office Action received for Chinese Patent Application No. 201480001676.0, mailed on Mar. 20, 2018, 12 pages (3 pages of English Translation and 9 pages of Official Copy). |
Office Action received for Chinese Patent Application No. 201480001676.0, mailed on May 12, 2017, 15 pages (5 pages of English Translation and 10 pages of Official Copy). |
Office Action received for Chinese Patent Application No. 201480001676.0, mailed on Nov. 27, 2018, 8 pages (1 page of English Translation and 7 pages of Official Copy). |
Office Action received for Chinese Patent Application No. 201780033621.1, mailed on Dec. 14, 2021, 8 pages (4 pages of English Translation and 4 pages of Official Copy). |
Office Action received for Chinese Patent Application No. 201780033621.1, mailed on Dec. 22, 2020, 30 pages (16 pages of English Translation and 14 pages of Official Copy). |
Office Action received for Chinese Patent Application No. 201780033621.1, mailed on May 24, 2021, 18 pages (7 pages of English Translation and 11 pages of Official Copy). |
Office Action received for Chinese Patent Application No. 201780033973.7, mailed on Jan. 22, 2021, 27 pages (11 pages of English Translation and 16 pages of Official Copy). |
Office Action received for Danish Patent Application No. PA201670595, mailed on Aug. 23, 2018, 5 pages. |
Office Action received for Danish Patent Application No. PA201670595, mailed on May 31, 2017, 3 pages. |
Office Action received for Danish Patent Application No. PA201670595, mailed on Nov. 30, 2017, 4 pages. |
Office Action received for European Patent Application No. 08829660.3, mailed on Jan. 3, 2020, 6 pages. |
Office Action received for European Patent Application No. 08829660.3, mailed on Jan. 11, 2019, 7 pages. |
Office Action received for European Patent Application No. 08829660.3, mailed on Jul. 5, 2016, 5 pages. |
Office Action received for European Patent Application No. 09170697.8, mailed on Jul. 6, 2021, 3 pages. |
Office Action received for European Patent Application No. 09170697.8, mailed on Mar. 3, 2017, 8 pages. |
Office Action Received for European Patent Application No. 12189764.9, mailed on Jan. 21, 2019, 7 pages. |
Office Action received for European Patent Application No. 14734674.6, mailed on Aug. 30, 2019, 6 pages. |
Office Action received for European Patent Application No. 14734674.6, mailed on Oct. 5, 2017, 6 pages. |
Office Action received for European Patent Application No. 17210062.0, mailed on Jan. 3, 2019, 6 pages. |
Office Action received for European Patent Application No. 17810723.1, mailed on Jul. 9, 2021, 8 pages. |
Office Action received for European Patent Application No. 17810739.7, mailed on Nov. 25, 2020, 4 pages. |
Office Action received for European Patent Application No. 17813879.8, mailed on Oct. 20, 2021, 7 pages. |
Office Action received for European Patent Application No. 19176224.4, mailed on Jan. 18, 2022, 6 pages. |
Office Action received for European Patent Application No. 20203888.1, mailed on Mar. 10, 2022, 6 pages. |
Office Action received for Japanese Patent Application No. 2017-223021, mailed on Apr. 8, 2019, 7 pages (3 pages of English Translation and 4 pages of Official Copy). |
Office Action received for Japanese Patent Application No. 2013-252338, mailed on Jan. 27, 2017, 10 pages (5 pages of English Translation and 5 pages of Official Copy). |
Office Action received for Japanese Patent Application No. 2013-252338, mailed on Jun. 24, 2016, 4 pages (2 pages of English Translation and 2 pages of official copy). |
Office Action received for Japanese Patent Application No. 2014-253365, mailed on Aug. 31, 2018, 6 pages (3 pages of English Translation and 3 pages of Official Copy). |
Office Action received for Japanese Patent Application No. 2014-253365, mailed on Jul. 18, 2017, 9 pages (4 page of English Translation and 5 pages of Official Copy). |
Office Action received for Japanese Patent Application No. 2014-253365, mailed on Oct. 17, 2016, 11 pages (5 pages of English Translation and 6 pages of Official Copy). |
Office Action received for Japanese Patent Application No. 2016-042767, mailed on Mar. 3, 2017, 10 pages (6 pages of English Translation and 4 pages of Official Copy). |
Office Action received for Japanese Patent Application No. 2016-091460, mailed on Jun. 1, 2018, 3 pages (1 page of English Translation and 2 pages of Official Copy). |
Office Action received for Japanese Patent Application No. 2016-091460, mailed on Jun. 26, 2017, 6 pages (3 pages of English Translation and 3 pages of Official Copy). |
Office Action received for Japanese Patent Application No. 2016-091460, mailed on Nov. 4, 2016, 6 pages (3 pages of English Translation and 3 pages of Official Copy). |
Office Action received for Japanese Patent Application No. 2016-091460, mailed on Nov. 27, 2017, 7 pages (4 pages of English Translation and 3 pages of Official Copy). |
Office Action received for Japanese Patent Application No. 2016-527367, mailed on Feb. 26, 2018, 15 pages (8 pages of English Translation and 7 pages of Official Copy). |
Office Action received for Japanese Patent Application No. 2016-527367, mailed on Jul. 7, 2017, 16 pages (8 pages of English Translation and 8 pages of Official Copy). |
Office Action received for Japanese Patent Application No. 2017-142812, mailed on Nov. 2, 2018, 6 pages (3 pages of English Translation and 3 pages of Official Copy). |
Office Action received for Japanese Patent Application No. 2017-204561, mailed on Aug. 6, 2018, 7 pages (4 pages of English Translation and 3 pages of Official copy). |
Office Action received for Japanese Patent Application No. 2017-204561, mailed on Nov. 6, 2018, 8 pages (4 pages of English Translation and 4 pages of Official copy). |
Office Action received for Japanese Patent Application No. 2017-223021, mailed on Jul. 30, 2018, 12 pages (6 pages of English Translation and 6 pages of Official copy). |
Office Action received for Japanese Patent Application No. 2017-223021, mailed on Sep. 11, 2020, 20 pages (10 pages of English Translation and 10 pages of Official Copy). |
Office Action received for Japanese Patent Application No. 2017-223021, mailed on Sep. 24, 2019, 6 pages (3 pages of English Translation and 3 pages of Official Copy). |
Office Action received for Japanese Patent Application No. 2018-121118, mailed on Feb. 19, 2021, 17 pages (9 pages of English Translation and 8 pages of Official Copy). |
Office Action received for Japanese Patent Application No. 2018-121118, mailed on May 14, 2019, 10 pages (5 pages of English Translation and 5 pages of Official Copy). |
Office Action received for Japanese Patent Application No. 2018-121118, mailed on Nov. 18, 2019, 10 pages (5 pages of English Translation and 5 pages of Official Copy). |
Office Action received for Japanese Patent Application No. 2018-201088, mailed on Oct. 11, 2019, 9 pages (5 pages of English Translation and 4 pages of Official Copy). |
Office Action received for Japanese Patent Application No. 2019-024663, mailed on Apr. 27, 2020, 8 pages (4 pages of English Translation and 4 pages of Official Copy). |
Office Action received for Japanese Patent Application No. 2019-024663, mailed on Feb. 19, 2021, 8 pages (4 pages of English Translation and 4 pages of Official Copy). |
Office Action received for Japanese Patent Application No. 2019-024663, mailed on Oct. 5, 2020, 7 pages (4 pages of English Translation and 3 pages of Official Copy). |
Office Action received for Japanese Patent Application No. 2019-144763, mailed on Jul. 2, 2021, 6 pages (3 pages of English Translation and 3 pages of Official Copy). |
Office Action received for Japanese Patent Application No. 2019-144763, mailed on Oct. 2, 2020, 6 pages (3 pages of English Translation and 3 pages of Official Copy). |
Office Action received for Japanese Patent Application No. 2019-24663, mailed on Feb. 10, 2022, 4 pages (2 pages of English Translation and 2 pages of Official Copy). |
Office Action received for Japanese Patent Application No. 2020-046707, mailed on Jan. 7, 2022, 10 pages (5 pages of English Translation and 5 pages of Official Copy). |
Office Action received for Japanese Patent Application No. 2020-046707, mailed on Mar. 5, 2021, 8 pages (4 pages of English Translation and 4 pages of Official Copy). |
Office Action received for Japanese Patent Application No. 2020-123882, mailed on Sep. 3, 2021, 8 pages (4 pages of English Translation and 4 pages of Official Copy). |
Office Action received for Korean Patent Application No. 10-2011-7026583, mailed on Oct. 25, 2013, 4 pages (1 page of English Translation and 3 pages of Official Copy). |
Office Action received for Korean Patent Application No. 10-2016-7014051, mailed on Apr. 30, 2018, 14 pages (7 pages of English Translation and 7 pages of Official Copy). |
Office Action received for Korean Patent Application No. 10-2016-7014051, mailed on Jun. 20, 2017, 16 pages (8 pages of English Translation and 8 pages of Official Copy). |
Office Action received for Korean Patent Application No. 10-2019-7005262, mailed on May 3, 2019, 5 pages (2 pages of English Translation and 3 pages of Official Copy). |
Office Action received for Korean Patent Application No. 10-2020-7018655, mailed on Apr. 26, 2021, 9 pages (4 pages of English Translation and 5 pages of Official Copy). |
Office Action received for Korean Patent Application No. 10-2020-7018655, mailed on Oct. 13, 2020, 5 pages (2 pages of English Translation and 3 pages of Official Copy). |
“Pleading notes Mr B.J. Berghuis van Woortman, in matter of Apple Inc. vs Samsung Electronics, Case No. KG ZA 11-730 and KG ZA 11-731”, Aug. 10-11, 2010, pp. 1-16. |
“Pleading notes Mr Kleemans, Mr Blomme and Mr Van Oorschot, in matter of Apple Inc. vs Samsung Electronics, Case No. KG ZA 11-730 and KG ZA 11-731”, Aug. 10, 2011, 35 pages. |
Pre-Interview First Office Action received for U.S. Appl. No. 16/270,801, mailed on Feb. 10, 2020, 5 pages. |
Pre-Interview First Office Action received for U.S. Appl. No. 16/270,902, mailed on Feb. 10, 2020, 5 pages. |
“Qualcomm Toq—smartwatch—User Manual”, Avaliable Online At: URL:https://toq.qualcomm.com/sites/default/files/qualcomm_toq_user_manual.pdf [retrieved on Jun. 25, 2015], Nov. 27, 2013, pp. 1-38. |
Record of Oral Hearing received for U.S. Appl. No. 14/142,640, mailed on Nov. 20, 2019, 15 pages. |
Record of Oral Hearing received for U.S. Appl. No. 14/142,648, mailed on Mar. 2, 2020, 13 pages. |
Record of Oral Hearing received for U.S. Appl. No. 14/261,112, mailed on Sep. 28, 2020, 20 pages. |
Result of Consultation received for European Patent Application No. 08829660.3, mailed on Nov. 18, 2020, 5 pages. |
Result of Consultation received for European Patent Application No. 14734674.6, mailed on May 27, 2022, 3 pages. |
Result of Consultation received for European Patent Application No. 17210062.0, mailed on Apr. 20, 2020, 2 pages. |
“Samsung Electronics GmbH vs Apple Inc., “List scrolling and document translation, scaling and rotation on a touch-screen display”, Opposition”, Jan. 30, 2012, 27 pages. |
“Samsung Electronics vs Apple Inc., Statement of Defense Also Counterclaim, Case No. KG ZA 2011-730”, Jul. 20, 2011, 44 pages. |
“Samsung Electronics vs Apple Inc., Statement of Defense Also Counterclaim, Case No. KG ZA 2011-731”, Jul. 20, 2011, 48 pages. |
“SilverScreen Theme Library”, Online Available at <https://web.archive.org/web/20061113121041/http://www.pocketsensei.com/ss_themes. htm>, Nov. 13, 2006, 3 pages. |
“SilverScreen User Guide”, Online Available at <https://web.archive.org/web/20061113121032/http://www.pocketsensei.com/ss_guide.ht m>, Nov. 13, 2006, 12 pages. |
Summons to Attend oral proceedings received for European Application No. 09170697.8, mailed on Jul. 29, 2016, 9 pages. |
Summons to Attend Oral Proceedings received for European Application No. 09170697.8, mailed on Oct. 19, 2017, 12 pages. |
Summons to Attend Oral Proceedings Received for European Patent Application No. 10762813.3, mailed on Nov. 9, 2016, 9 pages. |
Summons to Attend Oral Proceedings received for European Patent Application No. 12189764.9, mailed on Mar. 12, 2020, 11 pages. |
Summons to Attend Oral Proceedings received for European Patent Application No. 12189764.9, mailed on May 20, 2020, 11 pages. |
Summons to Attend Oral Proceedings received for European Patent Application No. 13795330.3, mailed on Oct. 19, 2018, 13 pages. |
Summons to Attend Oral Proceedings received for European Patent Application No. 14734674.6, mailed on Nov. 23, 2021, 7 pages. |
Summons to Attend Oral Proceedings received for European Patent Application No. 17210062.0, mailed on Oct. 30, 2019, 7 pages. |
Summons to Oral Proceedings received for European Patent Application No. 09170697.8, mailed on Dec. 17, 2020, 4 pages. |
Summons to Oral Proceedings received for European Patent Application No. 12194312.0, mailed on Dec. 8, 2016, 9 pages. |
Summons to Oral Proceedings received for European Patent Application No. 12194315.3, mailed on Dec. 8, 2016, 9 pages. |
Third Party Proceedings received for European Patent Application No. 17210062.0, mailed on Apr. 23, 2020, 6 pages. |
Office Action received from European Patent Application No. 06846840.4, mailed on Oct. 13, 2008, 3 pages. |
Summons to Attend Oral proceedings received for European Patent Application No. 06846840.4, mailed on May 18, 2009, 7 pages. |
Decision to Refuse received for European Patent Application No. 07814689.1, mailed on May 11, 2012, 15 pages. |
Office Action received for European Patent Application No. 07814689.1, mailed on Mar. 4, 2011, 6 pages. |
Summons to Attend Oral Proceedings received for European Patent Application No. 07814689.1, mailed on Dec. 1, 2011, 11 pages. |
Office Action received for European Patent Application No. 08705639.6, mailed on Dec. 19, 2013, 7 pages. |
Office Action received for European Patent Application No. 08829660.3, mailed on Aug. 2, 2013, 7 pages. |
Office Action received for European Patent Application No. 08829660.3, mailed on Oct. 15, 2010, 8 pages. |
Decision to Refuse received for European Patent Application No. 09170697.8, mailed on Oct. 23, 2013, 12 pages. |
Extended European Search Report received for European Patent Application No. 09170697.8, mailed on Apr. 28, 2010, 3 pages. |
Office Action received for European Patent Application No. 09170697.8 mailed on Dec. 13, 2011, 4 pages. |
Summons to attend oral proceedings received for European Application No. 09170697.8 mailed on Apr. 22, 2013, 6 pages. |
Decision To Grant received for European Patent Application No. 09700333.9, mailed on Nov. 7, 2013, 2 pages. |
Intention to Grant received for European Patent Application No. 09700333.9, mailed on Jun. 20, 2013, 7 pages. |
Office Action received for European Patent Application No. 09700333.9, mailed on Jun. 10, 2011, 5 pages. |
Office Action received for European Patent Application No. 09700333.9, mailed on Nov. 26, 2010, 5 pages. |
Summons to Attend Oral Proceedings received for European Patent Application No. 09700333.9, mailed on Sep. 21, 2012, 4 pages. |
Notice of Allowance received for Korean Patent Application No. 10-2011-7026583, mailed on Apr. 29, 2015, 3 pages (1 page of English Translation and 2 pages of Official Copy). |
Office Action received for Korean Patent Application No. 10-2011-7026583, mailed on Aug. 14, 2014, 6 pages (2 pages of English Translation and 4 pages of Official Copy). |
Notice of Allowance received for Korean Patent Application No. 10-2012-7029270, mailed on Sep. 23, 2014, 2 pages. |
Office Action Received for Korean Patent Application No. 10-2012-7029270, mailed on Dec. 4, 2013, 4 pages. |
Notice of Allowance received for Korean Patent Application No. 10-2014-7011273, mailed on Apr. 28, 2015, 3 pages (1 page of English Translation and 2 pages of Official Copy). |
Office Action received for Korean Patent Application No. 10-2014-7011273, mailed on Aug. 14, 2014, 5 pages (2 pages of English Translation and 3 pages of Official Copy). |
Office Action received for Korean Patent Application No. 10-2014-7036624, mailed on Jan. 29, 2016, 10 pages (5 pages of office action and 5 pages of English Translation). |
Office Action received for European Patent Application No. 10762813.3, mailed on Mar. 21, 2016, 6 pages. |
Final Office Action received for U.S. Appl. No. 11/620,687, mailed on Aug. 18, 2009, 7 pages. |
Non-Final Office Action received for U.S. Appl. No. 11/620,687, mailed on Dec. 22, 2008, 9 pages. |
Non-Final Office Action received for U.S. Appl. No. 11/620,687, mailed on Jan. 11, 2010, 9 pages. |
Final Office Action received for U.S. Appl. No. 11/849,938, mailed on Jan. 30, 2013, 31 pages. |
Final Office Action received for U.S. Appl. No. 11/849,938, mailed on May 27, 2011, 21 pages. |
Non-Final Office Action received for U.S. Appl. No. 11/849,938, mailed on Dec. 14, 2011, 26 pages. |
Non-Final Office Action received for U.S. Appl. No. 11/849,938, mailed on Oct. 12, 2010, 19 pages. |
Notice of Allowance received for U.S. Appl. No. 11/849,938, mailed on Nov. 27, 2013, 2 pages. |
Notice of Allowance received for U.S. Appl. No. 11/849,938, mailed on Oct. 10, 2013, 28 pages. |
Final Office Action received for U.S. Appl. No. 11/850,010 mailed on Oct. 17, 2011, 11 pages. |
Final Office Action received for U.S. Appl. No. 11/850,010, mailed on Apr. 18, 2016, 16 pages. |
Final Office Action received for U.S. Appl. No. 11/850,010, mailed on Feb. 15, 2013, 12 pages. |
Final Office Action received for U.S. Appl. No. 11/850,010, mailed on May 8, 2014, 11 pages. |
Non-Final Office Action received for U.S. Appl. No. 11/850,010, mailed on Dec. 17, 2014, 10 pages. |
Non-Final Office Action received for U.S. Appl. No. 11/850,010 mailed on May 16, 2012, 12 pages. |
Non-Final Office Action received for U.S. Appl. No. 11/850,010 mailed on May 2, 2011, 10 pages. |
Non-Final Office Action received for U.S. Appl. No. 11/850,010, mailed on Jun. 25, 2015, 10 pages. |
Non-Final Office Action received for U.S. Appl. No. 11/850,010, mailed on Oct. 24, 2013, 13 pages. |
Final Office Action received for U.S. Appl. No. 11/850,011, mailed on Dec. 1, 2010, 15 pages. |
Non-Final Office Action received for U.S. Appl. No. 11/850,011, mailed on Aug. 11, 2010, 19 pages. |
Notice of Allowance received for U.S. Appl. No. 11/850,011, mailed on Feb. 11, 2011, 5 pages. |
Notice of Allowance received for U.S. Appl. No. 11/850,011, mailed on Feb. 18, 2011, 4 pages. |
Supplemental Notice of Allowance received for U.S. Appl. No. 11/850,011, mailed on Feb. 24, 2011, 6 pages. |
Final Office Action received for U.S. Appl. No. 11/969,809, mailed on Jul. 14, 2011, 26 pages. |
Non-Final Office Action received for U.S. Appl. No. 11/969,809, mailed on Mar. 14, 2011, 25 pages. |
Notice of Allowance received for U.S. Appl. No. 11/969,809, mailed on Apr. 26, 2013, 17 pages. |
Advisory Action received for U.S. Appl. No. 12/242,851, mailed on Nov. 15, 2013, 4 pages. |
Final Office Action received for U.S. Appl. No. 12/242,851, mailed on Dec. 12, 2011, 13 pages. |
Final Office Action received for U.S. Appl. No. 12/242,851, mailed on May 10, 2013, 20 pages. |
Non-Final Office Action received for U.S. Appl. No. 12/242,851, mailed on Apr. 15, 2011, 20 pages. |
Non-Final Office Action received for U.S. Appl. No. 12/242,851, mailed on Jun. 26, 2015, 33 pages. |
Non-Final Office Action received for U.S. Appl. No. 12/242,851, mailed on Oct. 6, 2014, 27 pages. |
Non-Final Office Action received for U.S. Appl. No. 12/242,851, mailed on Sep. 20, 2012, 19 pages. |
Final Office Action received for U.S. Appl. No. 12/364,470, mailed on May 5, 2010, 16 pages. |
Final Office Action received for U.S. Appl. No. 12/364,470, mailed on Oct. 19, 2011, 20 pages. |
Non-Final Office Action received for U.S. Appl. No. 12/364,470, mailed on Mar. 4, 2011, 17 pages. |
Non-Final Office Action received for U.S. Appl. No. 12/364,470, mailed on Nov. 13, 2009, 15 pages. |
Non-Final Office Action received for U.S. Appl. No. 12/364,470, mailed on Sep. 2, 2010, 26 pages. |
Non-Final Office Action received for U.S. Appl. No. 12/788,278, mailed on Oct. 16, 2012, 19 pages. |
Notice of Allowance received for U.S. Appl. No. 12/788,278, mailed on May 1, 2013, 8 pages. |
Final Office Action received for U.S. Appl. No. 12/848,062, mailed on Dec. 12, 2012, 12 pages. |
Non-Final Office Action received for U.S. Appl. No. 12/848,062, mailed on Jun. 15, 2012, 11 pages. |
Notice of Allowance received for U.S. Appl. No. 12/848,062, mailed on Mar. 25, 2014, 9 pages. |
Non-Final Office Action received for U.S. Appl. No. 12/849,767, mailed on Jul. 9, 2012, 16 pages. |
Notice of Allowance received for U.S. Appl. No. 12/849,767, mailed on Jan. 8, 2013, 9 pages. |
Notice of Allowance received for U.S. Appl. No. 12/849,767, mailed on Apr. 25, 2014, 5 pages. |
Advisory Action received for U.S. Appl. No. 12/888,362, mailed on Sep. 4, 2015, 3 Pages. |
Final Office Action received for U.S. Appl. No. 12/888,362, mailed on Apr. 29, 2015, 12 pages. |
Final Office Action received for U.S. Appl. No. 12/888,362, mailed on Jan. 3, 2013, 13 pages. |
Non-Final Office Action received for U.S. Appl. No. 12/888,362, mailed on Sep. 4, 2014, 10 pages. |
Non-Final Office Action Received for U.S. Appl. No. 12/888,362, mailed on Jul. 20, 2012, 15 pages. |
Non-Final Office Action received for U.S. Appl. No. 12/888,366, mailed on Jul. 31, 2012, 10 pages. |
Notice of Allowance received for U.S. Appl. No. 12/888,366, mailed on Dec. 14, 2012, 11 pages. |
Non-Final Office Action received for U.S. Appl. No. 12/888,370, mailed on Aug. 22, 2012, 13 pages. |
Notice of Allowance received for U.S. Appl. No. 12/888,370, mailed on Feb. 12, 2013, 10 pages. |
Notice of Allowance received for U.S. Appl. No. 12/888,370, mailed on Jul. 1, 2014, 8 pages. |
Non-Final Office Action Received for U.S. Appl. No. 12/888,373, mailed on Sep. 10, 2012, 12 pages. |
Notice of Allowance received for U.S. Appl. No. 12/888,373, mailed on Jul. 1, 2014, 8 pages. |
Notice of Allowance received for U.S. Appl. No. 12/888,373, mailed on Feb. 22, 2013, 12 pages. |
Final Office Action received for U.S. Appl. No. 12/888,375, mailed on Nov. 7, 2012, 14 pages. |
Non-Final Office Action received for U.S. Appl. No. 12/888,375, mailed on Jun. 7, 2012, 11 pages. |
Non-Final Office Action received for U.S. Appl. No. 12/888,375, mailed on Sep. 30, 2013, 10 pages. |
Final Office Action received for U.S. Appl. No. 12/888,376, mailed on Feb. 8, 2013, 11 pages. |
Non-Final Office Action received for U.S. Appl. No. 12/888,376, mailed on Aug. 29, 2014, 12 pages. |
Non-Final Office Action received for U.S. Appl. No. 12/888,376, mailed on Oct. 2, 2012, 12 pages. |
Notice of Allowance received for U.S. Appl. No. 12/888,376, mailed on May 29, 2015, 14 pages. |
Non-Final Office Action received for U.S. Appl. No. 12/888,377, mailed on Sep. 13, 2012, 13 pages. |
Notice of Allowance received for U.S. Appl. No. 12/888,377, mailed on Jan. 30, 2013, 12 pages. |
Extended European Search Report received for European Patent Application No. 12177813.8, mailed on Feb. 1, 2013, 6 pages. |
Extended European Search Report received for European Patent Application No. 12189764.9, mailed on Jan. 4, 2013, 6 pages. |
Office Action Received for European Patent Application No. 12189764.9, mailed on Mar. 1, 2016, 6 pages. |
Extended European Search Report received for European Patent Application No. 12194312.0 mailed on Jan. 16, 2013, 7 pages. |
Office Action received for European Patent Application No. 12194312.0, mailed on Jan. 13, 2014, 4 pages. |
Office Action received for European Patent Application No. 12194312.0, mailed on Oct. 8, 2013, 5 pages. |
Extended European Search Report received for European Patent Application No. 12194315.3, mailed on Jan. 16, 2013, 7 pages. |
Office Action received for European Patent Application No. 12194315.3, mailed on Jan. 13, 2014, 4 pages. |
Office Action received for European Patent Application No. 12194315.3, mailed on Oct. 8, 2013, 5 pages. |
Non-Final Office Action received for U.S. Appl. No. 13/104,903, mailed on Nov. 13, 2012, 9 pages. |
Notice of Allowance received for U.S. Appl. No. 13/104,903, mailed on Apr. 29, 2013, 6 pages. |
Non-Final Office Action received for U.S. Appl. No. 13/104,911, mailed on Feb. 20, 2013, 11 pages. |
Notice of Allowance received for U.S. Appl. No. 13/104,911, mailed on Jun. 10, 2013, 6 pages. |
Notice of Allowance received for U.S. Appl. No. 14/011,639, mailed on Sep. 29, 2015, 11 pages. |
Notice of Allowance received for U.S. Appl. No. 14/011,639, mailed on Feb. 16, 2016, 5 pages. |
Final Office Action received for U.S. Appl. No. 14/142,640, mailed on Mar. 8, 2016, 35 pages. |
Non-Final Office Action received for U.S. Appl. No. 14/142,640, mailed on Jun. 5, 2015, 29 pages. |
Non-Final Office Action received for U.S. Appl. No. 14/142,648, mailed on Apr. 12, 2016, 11 pages. |
Advisory Action received for U.S. Appl. No. 14/261,112, mailed on Apr. 23, 2015, 3 pages. |
Final Office Action received for U.S. Appl. No. 14/261,112, mailed on Mar. 3, 2016, 31 pages. |
Final Office Action received for U.S. Appl. No. 14/261,112, mailed on Oct. 9, 2014, 29 pages. |
Non-Final Office Action received for U.S. Appl. No. 14/261,112, mailed on Jul. 8, 2015, 29 pages. |
Non-Final Office Action received for U.S. Appl. No. 14/261,112, mailed on Jun. 18, 2014, 25 pages. |
Non-Final Office Action received for U.S. Appl. No. 14/710,125, mailed on Apr. 12, 2016, 12 pages. |
Notice of Allowance received for Canadian Patent Application No. 2,845,297, mailed on Nov. 10, 2014, 1 page. |
Office Action received for Canadian Patent Application No. 2,845,297, mailed on Apr. 23, 2014, 2 pages. |
Notice of Allowance received for Japanese Patent Application No. 2009-051921, mailed on Jan. 20, 2014, Jan. 20, 2012, 2 pages. |
Office Action received for Australian Patent Application No. 2009204252, issued on Sep. 16, 2014, 6 pages. |
Notice of Allowance received for Chinese Patent Application No. 200980000229.2, mailed on Oct. 24, 2014, 4 pages (2 pages of English Translation and 2 pages of Official Copy). |
Office Action received for Chinese Patent Application No. 200980000229.2, issued on Jan. 6, 2014, 6 pages (3 pages of English Translation and 3 pages of Official Copy). |
Office Action received for Chinese Patent Application No. 200980000229.2, mailed on Jun. 27, 2014, 7 pages (4 pages of English Translation and 3 pages of Official copy). |
Notice of Allowance received for Chinese Patent Application No. 201010592864.9, mailed on Jan. 30, 2015, 4 pages. |
Office Action Received for Chinese Patent Application No. 201010592864.9, mailed on Jul. 31, 2012, 6 pages (English Translation only). |
Office Action received for Chinese Patent Application No. 201010592864.9, mailed on May 6, 2013, 5 pages. |
Notice of Allowance received for Australian Patent Application No. 2010350739, mailed on Sep. 8, 2014, 2 pages. |
Office Action received for Australian Patent Application No. 2010350739, mailed on Aug. 23, 2013, 3 pages. |
Notice of Acceptance received for Australian Patent Application No. 2012200475, mailed on Aug. 24, 2015, 2 pages. |
Office Action received for Australian Patent Application No. 2012200475, issued on Aug. 4, 2015, 3 pages. |
Office Action received for Australian Patent Application No. 2012200475, issued on Jun. 29, 2015, 3 pages. |
Office Action received for Australian Patent Application No. 2012200475, issued on Nov. 19, 2013, 4 pages. |
Notice of Acceptance received for Australian Patent Application No. 2012202140, mailed on May 28, 2014, 2 pages. |
Office Action received for Australian Patent Application No. 2012202140, mailed on Aug. 12, 2013, 2 pages. |
Notice of Acceptance received for Australia Patent Application No. 2012261534, mailed on Jan. 6, 2015, 2 pages. |
Office Action received for Australian Patent Application No. 2012261534, issued on Dec. 3, 2013, 3 pages. |
Office Action received for Japanese Patent Application No. 2013-011209, mailed on Feb. 7, 2014, 3 pages. |
Office Action received for Japanese Patent Application No. 2015-532193, mailed on Mar. 22, 2016, 7 pages (3 pages of English Translation and 4 pages of Official Copy). |
Apple, “Iphone User's Guide”, iPhone first generation, Available at: <http://pocketpccentral.net/iphone/products/1 g_iphone.htm>, Jun. 29, 2007, 124 pages. |
Apple, “iPhone User's Guide”, Available at <http://mesnotices.20minutes.fr/manuel-notice-mode-emploi/APPLE/IPHONE%2D%5FE#>, Retrieved on 2008-03-27, Jun. 2007, 137 pages. |
Apple, “Keynote '08 User's Guide”, © Apple Inc., 2008, 204 pages. |
Apple Iphone School, “Customize 1.19 Update for the iPhone”, 4:02 minutes video, available at <http://www.youtube.com/watch?v=5ogDzOM89oc>, uploaded on Dec. 8, 2007, 2 pages. |
Apple Iphone School, “SummerBoard 3.0a9 for iPhone”, 4:50 minutes video, available at <http://www.youtube.com/watch?v=s_P_9mrZTKs>, uploaded on Oct. 21, 2007, 2 pages. |
Barsch Bill, “3D Desktop! TouchScreen and XGL on Linux!”, 2:42 minutes video, available at <http://www.youtube.com/watch?v=Yx9FgLr90Tk>, uploaded on Aug. 15, 2006, 2 pages. |
Blickenstorfer Conrad H., “Neonode N2 A new version of the phone that pioneered touchscreens”, Pen Computing Magazine, Online Available at: http://www.pencomputing.com/WinCE/neonode-n2-review.html, Nov. 4, 2007, 9 pages. |
Bott et al., “Table of Contents/Chapter 20: Putting Pictures on Folder Icons”, Microsoft Windows XP Inside Out Deluxe, Second Edition http://proquest.safaribooksonline.com/book/operating-systems/9780735642171, Oct. 6, 2004, pp. 1-8 and 669. |
Cha Bonnie, “HTC Touch Diamond (Sprint)”, CNET Reviews, available at <http://www.cnet.com/products/htc-touch/>, updated on Sep. 12, 2008, 8 pages. |
Clifton Marc, “Detect if Another Process is Running and Bring it to the Foreground”, Online Avialble at : https://www.codeproject.com/Articles/2976/Detect-if-another-process-is-running-andbring-it, Sep. 30, 2002, 6 pages. |
COCOABUILDER.COM, “Single Instance of a Cocoa Application”, Available at: http://www.cocoabuilder.com/archive/cocoa/167892-single-instance-of-cocoa-application.html, Jul. 19, 2006, 4 pages. |
Collomb et al., “Improving drag-and-drop on wall-size displays”, proceedings of Graphics Intertace, May 9, 2005, pp. 25-32. |
Deanhill, “Run a Program or Switch to an Already Running Instance”, Available Online at <https://autohotkey.com/board/topic/7129-run-a-program-or-switch-to-an-already-running-instance/>, Feb. 1, 2006, 16 pages. |
Delltech, “Windows XP: The Complete Reference: Working with Graphics”, http://web.archive.org/web/20050405151925/http:/delltech.150m.corn/XP/graphics/3.htm, Chapter 18,, Apr. 5, 2005, 4 pages. |
Expansystv, “HTC Touch Dual Demonstration by expansys”, 5:26 minutes video, available at <http://www.youtube.com/watch?v=Tupk8MYLhMk>, uploaded on Oct. 1, 2007, 2 pages. |
Fadhley Mohdn., “LauncherX”, Online Available at <http://www.palmx.org/mambo/index2.php?option=com_content&task=view&id=65&1temid>, Nov. 21, 2002, 3 pages. |
Feist Jonathan, “Android customization—how to create a custom clock widget using Zooper Widget”, Available Online at: https://www.androidauthority.com/zooper-widget-clock-366476/, May 15, 2014, 10 pages. |
Fujitsu Ltd, “SX/G Manual of Icons on Desktop, Edition 14/14A V14”, 1st Edition, Mar. 27, 1998, 4 pages. |
Gade Lisa, “Sprint HTC Touch”, Smartphone Reviews by Mobile Tech Review, Available online at <http://www.mobiletechreview.com/phones/HTC-Touch.htm>, Nov. 2, 2007, 7 pages. |
Gsmarena Team, “HTC Touch Review: Smart to Touch the Spot”, available at <http://www.gsmarena.com/htc_touch-review-189.php>, Nov. 28, 2007, 18 pages. |
Gsmarena Team, “HTC Touch review”, Online Available at: <twww.gsmarena.com/htc_touch-review-189p3.php>, Nov. 28, 2007, 5 pages. |
Hayama et al., “To change images of scaled-down representation”, Windows XP SP3 & SP2, Dec. 1, 2008., 6 pages (2 pages of English Translation and 4 pages of official Copy). |
Higuchi Tadahiro, “Try API!, Making a cool application with Visual Basic 6.0”, 1st edition, Japan, AI Publishing, AI Mook 221, Jul. 16, 1999, 23 pages. |
Honeywell, “TH8000 Series Programmable Thermostats”, Retrieved from the Internet: URL:https://ia802507.US.archive.org/1/items/generalmanual_000075065/generalmanual_000075065.pdf, 2004, 44 pages. |
Huang et al., “Effects of Visual Vibratory Perception by Cross-Modali Matching with Tactile Sensation”, Retrieved from the Internet :< URL:http://media.nuas.ac.jp/˜robin/Research/ADC99.html>, 1999, pp. 1-7. |
Jobs Steve, “iPhone Introduction in 2007 (Complete)”, available at <https://www.youtube.com/watch?v=9hUlxyE2Ns8>, Jan. 10, 2013, 3 pages. |
Kondo Daisuke, “Windows XP Tablet PC Edition Quick Review Challenging by Microsoft”, PCfan No.9, No. 28, Japan, Mainichi Communication., Oct. 15, 2002, pp. 12-17. |
Leeon N, “LG Tritan (U.S. Cellular)”, CNET editor's review, updated Sep. 25, 2009, 2009, 4 pages. |
Mac People, “Useful Technique for Web Browser”, Ascii Media Works Inc., vol. 15, No. 6, Jun. 1, 2009, pp. 36-47. |
McGuffin et al., “Acquisition of Expanding Targets”, ACM, Apr. 20-25, 2002, 8 pages. |
Microsoft, “Working screenshot of Microsoft Office 2003”, Aug. 19, 2003, 14 pages. |
Microsoft Help and Support, “How to Arrange or Move Icons on the Desktop”, http://support.microsoft.com/kb/289587, Mar. 29, 2007, 2 pages. |
Microsoft Press, “Microsoft® Windows® XP Inside Out Deluxe”, Microsoft Manual, XP Inside Out, Second Edition, Oct. 6, 2004, 8 pages. |
Microsoft Windows, “Microsoft Windows (Copyright 2009)”, 2 pages. |
Miller Matthew, “HTC Touch and Touch FLO Interface”, 7:53 minutes video, available at <http://www.youtube.com/watch?v=60Up4wOcUc4>, uploaded on Jun. 6, 2007, Jun. 6, 2007, 2 pages. |
Mobilissimo.Ro, “HTC Touch—Touch FLO Demo”, Online Available at: <<https://www.youtube.com/watch?v=YQ8TQ9Rr_7E>, Jun. 5, 2007, 1 page. |
Nakata Atsushi, “Tablet PC aiming at spread pen input by changing target user”, Nikkei Windows for IT Professionals, Nikkei Business Publications, Inc. No. 69, Dec. 1, 2002, pp. 14-16. |
Naver Blog, “iPhone iOS 4 folder management”, Jun. 27, 2010, 2 pages. |
Nishida et al., “Drag-and-Guess: Drag-and-Drop with Prediction”, Interact'07 Proceedings of the 11th IFIP TC 13 International Conference on Human-Computer interaction, Sep. 10, 2007, pp. 461-474. |
Park Will, “Apple iPhone v1.1.1 SpringBoard Hacked to Display Multiple Pages”, available at <http://www.intomobile.com/2007/10/09/apple-iphone-v111-springboard-hacked-to-display-multiple-pages/>, Oct. 9, 2007, 5 pages. |
Pcfan, “Boot Camp Introduction/Data Transition/Operability/Ability Truth Derived from Gap Mac&Win Dual Boot Hard Verification”, Daily Communications, vol. 13, No. 14, Jun. 15, 2006, 4 pages. |
International Preliminary Report on Patentability received for PCT Patent Application No. PCT/US2006/062685, mailed on Jul. 1, 2008, 6 pages. |
International Preliminary Report on Patentability received for PCT Patent Application No. PCT/US2007/077639, issued on Mar. 10, 2009, 6 pages. |
International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2007/077639, mailed on Jul. 8, 2008, 7 pages. |
International Preliminary Report on Patentability received for PCT Patent Application No. PCT/US2007/077643, issued on Mar. 10, 2009, 7 pages. |
International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2007/077643, mailed on May 8, 2008, 9 pages. |
International Preliminary Report on Patentability received for PCT Patent Application No. PCT/US2008/050430, issued on Jul. 7, 2009, 10 pages. |
International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2008/050430, mailed on Sep. 1, 2008, 13 pages. |
International Preliminary Report on Patentability received for PCT Patent Application No. PCT/US2008/074625, issued on Mar. 9, 2010, 6 pages. |
International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2008/074625, mailed on Jan. 8, 2009, 8 pages. |
International Preliminary Report on Patentability received for PCT Patent Application No. PCT/US2009/030225, mailed on Jul. 15, 2010, 10 pages. |
International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2009/030225, mailed on Feb. 25, 2010, 15 pages. |
International Preliminary Report on Patentability received for PCT Patent Application No. PCT/US2010/050056, mailed on Oct. 18, 2012, 21 pages. |
International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2010/050056, mailed on May 13, 2011, 26 pages. |
Invitation to Pay Additional Fees received for PCT Patent Application No. PCT/US2010/050056, mailed on Jan. 5, 2011, 5 pages. |
International Preliminary Report on Patentability received for PCT Patent Application No. PCT/US2013/067634, mailed on May 12, 2016, 9 pages. |
International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2013/067634, mailed on Apr. 16, 2014, 11 pages. |
International Preliminary Report on Patentability received for PCT Patent Application No. PCT/US2014/040414, mailed on Dec. 23, 2015, 10 pages. |
International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2014/040414, mailed on Sep. 16, 2014, 12 pages. |
Ren et al., “The Adaptive Hybrid Cursor: A Pressure-Based Target Selection Technique for Pen-Based User interfaces”, Interact '07, Proceedings of the 11th IFIP TC 13 International Conference on Human-Computer Interaction, Sep. 10, 2007, 14 pages. |
Shima et al., “Android Application-Development”, From basics of development to mashup/hardwareinteraction, a road to “takumi” of Android application-development, Section I, difference from prior platforms, things which can be done with Android, SoftwareDesign, Japan, Gijutsu-Hyohron Co., Ltd., Issue vol. 287 (No. 221), Mar. 18, 2009, pp. 58-65. |
Shiota Shinji, “Special Developer's Story”, DOS / V magazine, vol. 13, No. 10, Jun. 1, 2004, 12 pages. |
Stinson Craig, “Windows 95 Official Manual, ASCII Ltd.”, Ver.1, Mar. 1, 1996, 6 pages. |
Synergy Solutions, “Launch 'Em Version 3.1”, Retrieved from the Internet: http://www.fladnag.net/downloads/telephone/palm/APPS/Inchem31/Documentation/LaunchEm.pdf, 2001, pp. 1-39. |
Takahashi Masaaki, “Inside Macintosh, Mystery of File V, Mystery of Drag & Drop”, NikkeiMAC, Nikkei Business Publications Inc., vol. 17, Aug. 15, 1994, 9 pages. |
Tooeasytoforget, “iPhone—Demo of SummerBoard & Its Features”, 5:05 minutes video, available at <http://www.youtube.com/watch?v=CJOb3ftQLac>, uploaded on Sep. 24, 2007, 2 pages. |
Turetta Jonathan, “Steve Jobs iPhone 2007 Presentation (HD)”, Retrieved from the Internet: URL: https://www.youtube.com/watch?v=vN4U5FqrOdQ&feature=youtu.be, May 13, 2013, 2 pages. |
Windows XP, “Enable or disable AutoArrange desktop icons in Windows XP”, Windows Tutorials, http://www.freemailtutorials.com/microsoftWindows/autoArrangelconsOnTheDesktop.php, Nov. 19, 2009, 3 pages. |
Wright Ben, “Palm OS PDA Application Mini-Reviews”, Online Available at <http://library.indstate.edu/newsletter/feb04/palmmini.htm>, Feb. 3, 2015, 11 pages. |
Zhang et al., “An Ergonomics Study of Menu-Operation on Mobile Phone Interface”, In Proceedings of the workshop on Intelligent Information Technology Application., 2007, pp. 247-251. |
Non-Final Office Action received for U.S. Appl. No. 17/349,226, mailed on Mar. 16, 2023, 9 pages. |
Notice of Allowance received for Chinese Patent Application No. 201910965046.X, mailed on Mar. 8, 2023, 2 pages (1 page of English Translation and 1 page of Official Copy). |
Office Action received for Australian Patent Application No. 2022202583, mailed on Mar. 24, 2023, 4 pages. |
Applicant-Initiated Interview Summary received for U.S. Appl. No. 17/728,725, mailed on Apr. 19, 2023, 2 pages. |
Final Office Action received for U.S. Appl. No. 15/411,110, mailed on Apr. 12, 2023, 27 pages. |
Notice of Allowance received for U.S. Appl. No. 17/586,454, mailed on Apr. 17, 2023, 22 pages. |
Intention to Grant received for European Patent Application No. 17810723.1, mailed on Jun. 12, 2023, 9 pages. |
Notice of Allowance received for U.S. Appl. No. 17/698,979, mailed on Jun. 28, 2023, 8 pages. |
Office Action received for European Patent Application No. 17813879.8, mailed on Jun. 22, 2023, 7 pages. |
Intention to Grant received for European Patent Application No. 17810723.1, mailed on Dec. 16, 2022, 9 pages. |
Decision on Appeal received for U.S. Appl. No. 16/832,285, mailed on May 15, 2023, 12 pages. |
Notice of Allowance received for U.S. Appl. No. 15/411,110, mailed on May 23, 2023, 8 pages. |
Notice of Allowance received for U.S. Appl. No. 17/349,226, mailed on May 24, 2023, 7 pages. |
Office Action received for Chinese Patent Application No. 202010125835.5, mailed on Mar. 11, 2023, 11 pages (05 pages of English Translation and 06 pages of Official Copy). |
Applicant-Initiated Interview Summary received for U.S. Appl. No. 15/411,110, mailed on Oct. 31, 2022, 6 pages. |
Brief Communication Regarding Oral Proceedings received for European Patent Application No. 17810723.1, mailed on Nov. 11, 2022, 1 page. |
Office Action received for Chinese Patent Application No. 201780034059.4, mailed on Oct. 9, 2022, 11 pages (5 pages of English Translation and 6 pages of Official Copy). |
Decision to Refuse received for Japanese Patent Application No. 2020-123882, mailed on Mar. 3, 2023, 6 pages (3 pages of English Translation and 3 pages of Official Copy). |
Notice of Allowance received for Chinese Patent Application No. 201780034059.4, mailed on Feb. 19, 2023, 2 pages (1 page of English Translation and 1 page of Official Copy). |
Summons to Attend Oral Proceedings received for European Patent Application No. 20203888.1, mailed on Mar. 1, 2023, 8 pages. |
Applicant-Initiated Interview Summary received for U.S. Appl. No. 15/411,110, mailed on May 3, 2023, 3 pages. |
Notice of Allowance received for Canadian Patent Application No. 3,109,701, mailed on Apr. 4, 2023, 1 page. |
Record of Oral Hearing received for U.S. Appl. No. 16/832,285, mailed on Apr. 25, 2023, 15 pages. |
Office Action received for Chinese Patent Application No. 201910965046.X, mailed on Dec. 5, 2022, 11 pages (5 pages of English Translation and 6 pages of Official Copy). |
Notice of Allowance received for U.S. Appl. No. 16/737,372, mailed on Feb. 1, 2023, 2 pages. |
Notice of Allowance received for U.S. Appl. No. 16/737,372, mailed on Jan. 25, 2023, 7 pages. |
Notice of Allowance received for U.S. Appl. No. 17/698,979, mailed on Feb. 6, 2023, 10 pages. |
Notice of Allowance received for U.S. Appl. No. 17/894,918, mailed on Jan. 25, 2023, 9 pages. |
Minutes of the Oral Proceedings received for European Patent Application No. 17810723.1, mailed on Dec. 9, 2022, 7 pages. |
Result of Consultation received for European Patent Application No. 17810723.1, mailed on Nov. 30, 2022, 3 pages. |
Applicant-Initiated Interview Summary received for U.S. Appl. No. 16/737,372, mailed on Aug. 31, 2022, 2 pages. |
Corrected Notice of Allowance received for U.S. Appl. No. 17/130,674, mailed on Jul. 29, 2022, 2 pages. |
Corrected Notice of Allowance received for U.S. Appl. No. 17/521,768, mailed on Jul. 29, 2022, 2 pages. |
Examiner's Answer to Appeal Brief received for U.S. Appl. No. 16/832,285, mailed on Sep. 7, 2022, 30 pages. |
Final Office Action received for U.S. Appl. No. 15/421,865, mailed on Jul. 12, 2022, 27 pages. |
Non-Final Office Action received for U.S. Appl. No. 15/411,110, mailed on Jul. 14, 2022, 28 pages. |
Non-Final Office Action received for U.S. Appl. No. 17/321,313, mailed on Jul. 19, 2022, 18 pages. |
Notice of Allowance received for Japanese Patent Application No. 2019-024663, mailed on Sep. 26, 2022, 23 pages (1 page of English Translation and 22 pages of Official Copy). |
Notice of Allowance received for Japanese Patent Application No. 2020-046707, mailed on Aug. 15, 2022, 4 pages (1 page of English Translation and 3 pages of Official Copy). |
Notice of Allowance received for U.S. Appl. No. 17/321,313, mailed on Oct. 24, 2022, 9 pages. |
Notice of Allowance received for U.S. Appl. No. 17/349,226, mailed on Sep. 20, 2022, 7 pages. |
Notice of Allowance received for U.S. Appl. No. 17/521,768, mailed on Jul. 15, 2022, 10 pages. |
Office Action received for Japanese Patent Application No. 2020-123882, mailed on Jul. 29, 2022, 8 pages (4 pages of English Translation and 4 pages of Official Copy). |
Summons to Attend Oral Proceedings received for European Patent Application No. 17810723.1, mailed on Jul. 5, 2022, 8 pages. |
Summons to Attend Oral Proceedings received for German Patent Application No. 112006003600.9, mailed on Jun. 2, 2022, 33 pages (21 pages of English Translation and 12 pages of Official Copy). |
Notice of Allowance received for Chinese Patent Application No. 202010125835.5, mailed on Jul. 27, 2023, 5 pages (1 page of English Translation and 4 pages of Official Copy). |
Hughes John, “Specifying a Visual File System in Z”, IEEE Xplore, Retrieved from: https://ieeexplore.ieee.org/document/199162/metrics#metrics, 2002, 3 pages. |
Lin Xu, “The Mis-operation Research Based on Cognitive Psychology”, China Academic Journal Electronic Publishing House. Online available at: http://www.cnki.net, 2011, 71 pages (official Copy Only). |
Non-Final Office Action received for U.S. Appl. No. 15/421,865, mailed on Jul. 11, 2023, 32 pages. |
Decision to Refuse received for European Patent Application No. 20203888.1, mailed on Nov. 28, 2023, 13 pages. |
Minutes of the Oral Proceedings received for European Patent Application No. 20203888.1, mailed on Nov. 24, 2023, 6 pages. |
Non-Final Office Action received for U.S. Appl. No. 18/130,847, mailed on Dec. 5, 2023, 8 pages. |
Summons to Attend Oral Proceedings received for European Patent Application No. 20203888.1, mailed on Oct. 10, 2023, 2 pages. |
Applicant-Initiated Interview Summary received for U.S. Appl. No. 15/421,865, mailed on Oct. 3, 2023, 6 pages. |
Brief Communication Regarding Oral Proceedings received for European Patent Application No. 20203888.1, mailed on Sep. 22, 2023, 6 pages. |
Corrected Notice of Allowance received for U.S. Appl. No. 17/698,979, mailed on Oct. 2, 2023, 2 pages. |
Decision to Grant received for European Patent Application No. 17810723.1, mailed on Sep. 21, 2023, 2 pages. |
Motley Latonya, “Course Topics”, Windows XP Introduction, Mar. 2005, 19 pages. |
Office Action received for Australian Patent Application No. 2022224726, mailed on Aug. 22, 2023, 6 pages. |
Sams Teach Yourself Microsoft Windows 2000 Professional in 10 Minutes, InformIT, Online Available at: https://www.informit.com/articles/article.aspx?p=411736&seqNum=158, Sep. 9, 2005, 1 page. |
Taskbar basics, Online Available at: www.microsoft.com/windows98/usingwindows/work/articles/811 Nov/WRKfoundation4.asp, Apr. 21, 1999, 1 page. |
Windows XP Tutorial—The Windows XP desktop & icons, www.helpwithpcs.com, Mar. 15, 2006, 13 pages. |
Zisman Alan, “Clean Up your Windows Desktop and Start Menu”, Available online at: https://web.archive.org/web/20060103043656/http://www.zisman.ca/simple95/, Jan. 3, 2006, 7 pages. |
Advisory Action received for U.S. Appl. No. 17/728,725, mailed on Nov. 9, 2023, 5 pages. |
Applicant-Initiated Interview Summary received for U.S. Appl. No. 17/728,725, mailed on Oct. 27, 2023, 2 pages. |
Extended European Search Report received for European Patent Application No. 23201849.9, mailed on Oct. 26, 2023, 9 pages. |
Office Action received for Australian Patent Application No. 2022224726, mailed on Nov. 1, 2023, 4 pages. |
Office Action received for Japanese Patent Application No. 2022-145450, mailed on Nov. 6, 2023, 8 pages (4 pages of English Translation and 4 pages of Official Copy). |
Final Office Action received for U.S. Appl. No. 17/728,725, mailed on Jul. 31, 2023, 15 pages. |
Notice of Acceptance received for Australian Patent Application No. 2022202583, mailed on Aug. 7, 2023, 3 pages. |
Notice of Allowance received for U.S. Appl. No. 15/411,110, mailed on Aug. 2, 2023, 2 pages. |
Non-Final Office Action received for U.S. Appl. No. 18/139,311, mailed on Dec. 22, 2023, 11 pages. |
Office Action received for Chinese Patent Application No. 202110957983.8, mailed on Dec. 27, 2023, 23 pages (13 pages of English Translation and 10 pages of Official Copy). |
Intention to Grant received for European Patent Application No. 19176224.4, mailed on Jan. 30, 2024, 9 pages. |
Summons to Oral Proceedings received for European Patent Application No. 14734674.6, mailed on Apr. 5, 2024, 4 pages. |
Office Action received for Japanese Patent Application No. 2013-011209, mailed on Nov. 2, 2015, 9 pages (2 pages of English Translation and 7 pages of Official Copy). |
Office Action received for Japanese Patent Application No. 2013-011209, mailed on Oct. 27, 2014, 3 pages. |
Notice of Allowance received for Japanese Patent Application No. 2013-127963, mailed on Oct. 9, 2015, 3 pages (1 page of English Translation and 2 pages of Official Copy). |
Office Action received for Japanese Patent Application No. 2013-127963, mailed on Aug. 15, 2014, 8 pages (6 pages of English Translation and 2 pages of Official Copy). |
Office Action received for Japanese Patent Application No. 2013-127963, mailed on Mar. 10, 2014, 7 pages (4 pages of English translation and 3 pages of Official copy). |
Office Action received for Japanese Patent Application No. 2013-252338, mailed on Dec. 4, 2015, 4 pages (2 pages of English Translation and 2 pages of official copy). |
Office Action received for Japanese Patent Application No. 2013-252338, mailed on Jan. 30, 2015, 4 pages. |
Office Action received for Japanese Patent Application No. 2013-503721, mailed on Feb. 14, 2014, 8 pages (5 pages of English Translation and 3 pages of Official Copy). |
Office Action Received for Japanese Patent Application No. 2013-503721, mailed on Jun. 6, 2014, 3 pages. |
Office Action received for Australian Patent Application No. 2014100582, issued on Aug. 7, 2014, 5 pages. |
Office Action received for Australian Patent Application No. 2014100582, issued on Feb. 4, 2015, 3 pages. |
Office Action Received for Japanese Patent Application No. 2014-139095, mailed on Aug. 17, 2015, 6 pages (3 pages of English Translation and 3 pages of Official Copy). |
Office Action received for Australian Patent Application No. 2014204422, issued on Aug. 7, 2015, 3 pages. |
Office Action received for Japanese Patent Application No. 2014-253365, mailed on Dec. 14, 2015, 6 pages (3 pages of English Translation and 3 pages Official Copy). |
Office Action Received for Australian Patent Application No. 2014274537, mailed on Aug. 14, 2015, 3 pages. |
Office Action received for Australian Patent Application No. 2014274556, mailed on Aug. 28, 2015, 2 pages. |
Communication for Board of Appeal received for European Patent Application No. 14734674.6, mailed on Jun. 11, 2024, 10 pages. |
Intention to Grant received for European Patent Application No. 19176224.4, mailed on Jun. 14, 2024, 9 pages. |
Notice of Allowance received for U.S. Appl. No. 15/421,865, mailed on Apr. 15, 2024, 11 pages. |
Minutes of the Oral Proceedings received for European Patent Application No. 14734674.6, mailed on Sep. 2, 2024, 3 pages. |
Applicant-Initiated Interview Summary received for U.S. Appl. No. 18/121,539, mailed on May 1, 2024, 5 pages. |
Applicant-Initiated Interview Summary received for U.S. Appl. No. 18/139,311, mailed on Aug. 8, 2024, 4 pages. |
Applicant-Initiated Interview Summary received for U.S. Appl. No. 18/139,311, mailed on Feb. 23, 2024, 2 pages. |
Applicant-Initiated Interview Summary received for U.S. Appl. No. 18/139,311, mailed on May 7, 2024, 2 pages. |
Final Office Action received for U.S. Appl. No. 15/421,865, mailed on Mar. 7, 2024, 27 pages. |
Final Office Action received for U.S. Appl. No. 18/121,539, mailed on Aug. 20, 2024, 29 pages. |
Final Office Action received for U.S. Appl. No. 18/139,311, mailed on Mar. 29, 2024, 10 pages. |
Non-Final Office Action received for U.S. Appl. No. 18/121,539, mailed on Feb. 9, 2024, 22 pages. |
Non-Final Office Action received for U.S. Appl. No. 18/139,311, mailed on Jun. 20, 2024, 11 pages. |
Non-Final Office Action received for U.S. Appl. No. 18/236,340, mailed on Jul. 18, 2024, 8 pages. |
Notice of Acceptance received for Australian Patent Application No. 2022224726, mailed on Mar. 5, 2024, 3 pages. |
Notice of Allowance received for Japanese Patent Application No. 2022-145450, mailed on Jul. 1, 2024, 4 pages (1 page of English Translation and 3 pages of Official Copy). |
Notice of Allowance received for U.S. Appl. No. 17/728,725, mailed on Jan. 11, 2024, 10 pages. |
Notice of Allowance received for U.S. Appl. No. 17/728,725, mailed on May 8, 2024, 9 pages. |
Notice of Allowance received for U.S. Appl. No. 18/130,847, mailed on Feb. 28, 2024, 9 pages. |
Notice of Allowance received for U.S. Appl. No. 18/211,112, mailed on Feb. 21, 2024, 22 pages. |
Office Action received for Chinese Patent Application No. 202110957983.8, mailed on Jul. 6, 2024, 17 pages (11 pages of English Translation and 6 pages of Official Copy). |
Office Action received for Chinese Patent Application No. 202110957983.8, mailed on May 13, 2024, 18 pages (12 pages of English Translation and 6 pages of Official Copy). |
Office Action received for Chinese Patent Application No. 202310508332.X, mailed on Jun. 26, 2024, 13 pages (7 pages of English Translation and 6 pages of Official Copy). |
Office Action received for European Patent Application No. 17810739.7, mailed on Jul. 8, 2024, 9 pages. |
Office Action received for Japanese Patent Application No. 2022-145450, mailed on Mar. 1, 2024, 9 pages (4 pages of English Translation and 5 pages of Official Copy). |
Supplemental Notice of Allowance received for U.S. Appl. No. 15/421,865, mailed on Jun. 20, 2024, 3 pages. |
Number | Date | Country | |
---|---|---|---|
20230152940 A1 | May 2023 | US |
Number | Date | Country | |
---|---|---|---|
61321872 | Apr 2010 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 16994392 | Aug 2020 | US |
Child | 17950972 | US | |
Parent | 16020804 | Jun 2018 | US |
Child | 16994392 | US | |
Parent | 12888362 | Sep 2010 | US |
Child | 16020804 | US |