This relates generally to electronic devices with touch-sensitive surfaces, including but not limited to electronic devices with touch-sensitive surfaces that detect inputs for manipulating user interfaces.
The use of touch-sensitive surfaces as input devices for computers and other electronic computing devices has increased significantly in recent years. Exemplary touch-sensitive surfaces include touch pads and touch screen displays. Such surfaces are widely used to manipulate user interface objects on a display.
Exemplary manipulations include adjusting the position and/or size of one or more user interface objects or activating buttons or opening files/applications represented by user interface objects, as well as associating metadata with one or more user interface objects or otherwise manipulating user interfaces. Exemplary user interface objects include digital images, video, text, icons, control elements such as buttons and other graphics. A user will, in some circumstances, need to perform such manipulations on user interface objects in a file management program (e.g., Finder from Apple Inc. of Cupertino, California), an image management application (e.g., Aperture or iPhoto from Apple Inc. of Cupertino, California), a digital content (e.g., videos and music) management application (e.g., iTunes from Apple Inc. of Cupertino, California), a drawing application, a presentation application (e.g., Keynote from Apple Inc. of Cupertino, California), a word processing application (e.g., Pages from Apple Inc. of Cupertino, California), a website creation application (e.g., iWeb from Apple Inc. of Cupertino, California), a disk authoring application (e.g., iDVD from Apple Inc. of Cupertino, California), or a spreadsheet application (e.g., Numbers from Apple Inc. of Cupertino, California).
But existing methods for performing these manipulations are cumbersome and inefficient. In addition, existing methods take longer than necessary, thereby wasting energy. This latter consideration is particularly important in battery-operated devices.
Accordingly, there is a need for electronic devices with faster, more efficient methods and interfaces for manipulating user interfaces. Such methods and interfaces optionally complement or replace conventional methods for manipulating user interfaces. Such methods and interfaces reduce the cognitive burden on a user and produce a more efficient human-machine interface. For battery-operated devices, such methods and interfaces conserve power and increase the time between battery charges.
The above deficiencies and other problems associated with user interfaces for electronic devices with touch-sensitive surfaces are reduced or eliminated by the disclosed devices. In some embodiments, the device is a desktop computer. In some embodiments, the device is portable (e.g., a notebook computer, tablet computer, or handheld device). In some embodiments, the device has a touchpad. In some embodiments, the device has a touch-sensitive display (also known as a “touch screen” or “touch screen display”). In some embodiments, the device has a graphical user interface (GUI), one or more processors, memory and one or more modules, programs or sets of instructions stored in the memory for performing multiple functions. In some embodiments, the user interacts with the GUI primarily through finger contacts and gestures on the touch-sensitive surface. In some embodiments, the functions optionally include image editing, drawing, presenting, word processing, website creating, disk authoring, spreadsheet making, game playing, telephoning, video conferencing, e-mailing, instant messaging, workout support, digital photographing, digital videoing, web browsing, digital music playing, and/or digital video playing. Executable instructions for performing these functions are, optionally, included in a non-transitory computer readable storage medium or other computer program product configured for execution by one or more processors.
There is a need for electronic devices with faster, more efficient methods and interfaces for selecting a tactile output corresponding to a change in intensity of a contact when relocating user interface objects. Such methods and interfaces may complement or replace conventional methods for relocating user interface objects. Such methods and interfaces reduce the cognitive burden on a user and produce a more efficient human-machine interface. For battery-operated devices, such methods and interfaces conserve power and increase the time between battery charges.
The above deficiencies and other problems associated with user interfaces for electronic devices with touch-sensitive surfaces are reduced or eliminated by the disclosed devices. In some embodiments, the device is a desktop computer. In some embodiments, the device is portable (e.g., a notebook computer, tablet computer, or handheld device). In some embodiments, the device has a touchpad. In some embodiments, the device has a touch-sensitive display (also known as a “touch screen” or “touch screen display”). In some embodiments, the device has a graphical user interface (GUI), one or more processors, memory and one or more modules, programs or sets of instructions stored in the memory for performing multiple functions. In some embodiments, the user interacts with the GUI primarily through finger contacts and gestures on the touch-sensitive surface. In some embodiments, the functions may include image editing, drawing, presenting, word processing, website creating, disk authoring, spreadsheet making, game playing, telephoning, video conferencing, e-mailing, instant messaging, workout support, digital photographing, digital videoing, web browsing, digital music playing, and/or digital video playing. Executable instructions for performing these functions may be included in a non-transitory computer readable storage medium or other computer program product configured for execution by one or more processors.
In accordance with some embodiments, a method is performed at an electronic device with a touch-sensitive surface and a display, where the device includes one or more sensors to detect intensity of contacts with the touch-sensitive surface. The method includes: displaying a user interface object on the display; detecting, on the touch-sensitive surface, a contact having an intensity above an object-selection threshold; detecting movement of the contact across the touch-sensitive surface, the movement corresponding to a preliminary portion of a gesture for performing an operation corresponding to the user interface object; detecting a reduction in intensity of the contact below an object-release threshold; and in response to detecting the reduction in intensity below the object-release threshold: in accordance with a determination that the movement meets predefined operation-performance criteria: performing the operation and generating a first tactile output on the touch-sensitive surface; and in accordance with a determination that the movement does not meet the predefined operation-performance criteria: forgoing performance of the operation and generating a second tactile output on the touch-sensitive surface, where the second tactile output is different from the first tactile output.
In accordance with some embodiments, an electronic device comprises a display unit configured to display a user interface object; a touch-sensitive surface unit configured to receive contacts; one or more sensor units configured to detect intensity of contacts with the touch-sensitive surface unit; and a processing unit coupled to the display unit, the touch-sensitive surface unit, and the sensor units. The processing unit is configured to: detect, on the touch-sensitive surface unit, a contact having an intensity above an object-selection threshold; detect movement of the contact across the touch-sensitive surface unit, the movement corresponding to a preliminary portion of a gesture for performing an operation corresponding to the user interface object; detect a reduction in intensity of the contact below an object-release threshold; and in response to detecting the reduction in intensity below the object-release threshold: in accordance with a determination that the movement meets predefined operation-performance criteria: perform the operation; and generate a first tactile output on the touch-sensitive surface unit; and in accordance with a determination that the movement does not meet the predefined operation-performance criteria: forgo performance of the operation; and generate a second tactile output on the touch-sensitive surface unit, wherein the second tactile output is different from the first tactile output.
Thus, electronic devices with displays, touch-sensitive surfaces, and one or more sensors to detect intensity of contacts with the touch-sensitive surfaces are provided with faster, more efficient methods and interfaces for selecting a tactile output corresponding to a change in intensity of a contact when relocating user interface objects, thereby increasing the effectiveness, efficiency, and user satisfaction with such devices. Such methods and interfaces optionally complement or replace conventional methods for dragging and dropping user interface objects.
There is a need for electronic devices with faster, more efficient methods and interfaces for providing feedback corresponding to modifier inputs. Such methods and interfaces may complement or replace conventional methods for providing feedback corresponding to modifier inputs. Such methods and interfaces reduce the cognitive burden on a user and produce a more efficient human-machine interface. For battery-operated devices, such methods and interfaces conserve power and increase the time between battery charges.
In accordance with some embodiments, a method is performed at an electronic device with a display, a touch-sensitive surface and one or more sensors to detect intensity of contacts with the touch-sensitive surface. The method includes: detecting a contact on the touch-sensitive surface; detecting an increase in intensity of the contact above a first activation threshold; after detecting the increase in intensity of the contact above the first activation threshold, detecting a reduction in intensity of the contact below a second activation threshold; and in response to detecting the reduction in intensity of the contact below the second activation threshold: in accordance with a determination that a modifier input was detected while detecting the increase in intensity of the contact above the first activation threshold: performing a first operation and generating a first tactile output on the touch-sensitive surface; and in accordance with a determination that the modifier input was not detected while detecting the increase in intensity of the contact above the first activation threshold: performing a second operation different from the first operation and generating a second tactile output on the touch-sensitive surface, where the second tactile output is different from the first tactile output.
In accordance with some embodiments, an electronic device includes a display unit; a touch-sensitive surface unit configured to receive contacts; one or more sensor units configured to detect intensity of contacts with the touch-sensitive surface unit; and a processing unit coupled to the display unit, the touch-sensitive surface unit and the sensor units. The processing unit is configured to: detect a contact on the touch-sensitive surface unit; detect an increase in intensity of the contact above a first activation threshold; after detecting the increase in intensity of the contact above the first activation threshold, detect a reduction in intensity of the contact below a second activation threshold; and in response to detecting the reduction in intensity of the contact below the second activation threshold: in accordance with a determination that a modifier input was detected while detecting the increase in intensity of the contact above the first activation threshold: perform a first operation and generate a first tactile output on the touch-sensitive surface unit; and in accordance with a determination that the modifier input was not detected while detecting the increase in intensity of the contact above the first activation threshold: perform a second operation different from the first operation and generate a second tactile output on the touch-sensitive surface unit, where the second tactile output is different from the first tactile output.
Thus, electronic devices with displays, touch-sensitive surfaces and one or more sensors to detect intensity of contacts with the touch-sensitive surfaces are provided with faster, more efficient methods and interfaces for providing feedback corresponding to modifier inputs, thereby increasing the effectiveness, efficiency, and user satisfaction with such devices. Such methods and interfaces may complement or replace conventional methods for providing feedback corresponding to modifier inputs.
There is a need for electronic devices with more efficient methods and interfaces for providing feedback for changing activation states of a user interface object. Such methods and interfaces may complement or replace conventional methods for providing feedback for changing activation states of a user interface object. Such methods and interfaces reduce the cognitive burden on a user and produce a more efficient human-machine interface. For battery-operated devices, such methods and interfaces conserve power and increase the time between battery charges.
In accordance with some embodiments, a method is performed at an electronic device with a display, a touch-sensitive surface and one or more sensors to detect intensity of contacts with the touch-sensitive surface. The method includes: displaying a user interface object on the display, where the user interface object has a plurality of activation states; detecting a contact on the touch-sensitive surface; detecting an increase of intensity of the contact on the touch-sensitive surface from a first intensity to a second intensity; in response to detecting the increase in intensity: changing activation states of the user interface object M times, where M is a positive integer, and generating a tactile output on the touch-sensitive surface corresponding to each change in activation state of the user interface object; detecting a decrease of intensity of the contact from the second intensity to the first intensity; and in response to detecting the decrease in intensity: changing activation states of the user interface object N times, where N is a positive integer, and generating a tactile output on the touch-sensitive surface corresponding to each change in activation state of the user interface object, where N is different from M.
In accordance with some embodiments, an electronic device includes a display unit configured to display a user interface object, where the user interface object has a plurality of activation states, a touch-sensitive surface unit configured to receive contacts, one or more sensor units configured to detect intensity of contacts with the touch-sensitive surface unit, and a processing unit coupled to the display unit, the touch-sensitive surface unit, and the sensor units. The processing unit is configured to: detect a contact on the touch-sensitive surface unit; detect an increase of intensity of the contact on the touch-sensitive surface unit from a first intensity to a second intensity; in response to detecting the increase in intensity: change activation states of the user interface object M times, where M is a positive integer, and generate a tactile output on the touch-sensitive surface unit corresponding to each change in activation state of the user interface object; detect a decrease of intensity of the contact from the second intensity to the first intensity; and in response to detecting the decrease in intensity: change activation states of the user interface object N times, where N is a positive integer, and generate a tactile output on the touch-sensitive surface unit corresponding to each change in activation state of the user interface object, where N is different from M.
Thus, electronic devices with displays, touch-sensitive surfaces and one or more sensors to detect intensity of contacts with the touch-sensitive surface are provided with more efficient methods and interfaces for providing feedback for changing activation states of a user interface object, thereby increasing the effectiveness, efficiency, and user satisfaction with such devices. Such methods and interfaces may complement or replace conventional methods for providing feedback for changing activation states of a user interface object.
There is a need for electronic devices with faster, more efficient methods and interfaces for providing feedback for changing activation states of a user interface object. Such methods and interfaces may complement or replace conventional methods for providing feedback for changing activation states of a user interface object. Such methods and interfaces reduce the cognitive burden on a user and produce a more efficient human-machine interface. For battery-operated devices, such methods and interfaces conserve power and increase the time between battery charges.
In accordance with some embodiments, a method is performed at an electronic device with a display, a touch-sensitive surface and one or more sensors to detect intensity of contacts with the touch-sensitive surface. The method includes: displaying a user interface object on the display, where the user interface object has a first activation state and a second activation state; detecting a contact on the touch-sensitive surface; detecting an increase of intensity of the contact on the touch-sensitive surface from a first intensity to a second intensity; in response to detecting the increase in intensity: changing activation states of the user interface object from the first activation state to the second activation state; and generating M distinct tactile outputs on the touch-sensitive surface, where M is a positive integer; detecting a decrease of intensity of the contact from the second intensity to the first intensity; and in response to detecting the decrease in intensity: changing activation states of the user interface object from the second activation state to the first activation state; and generating N distinct tactile outputs on the touch-sensitive surface, where N is a positive integer and N is different from M.
In accordance with some embodiments, an electronic device includes a display unit configured to display a user interface object, where the user interface object has a first activation state and a second activation state; a touch-sensitive surface unit configured to receive contacts; one or more sensor units configured to detect intensity of contacts with the touch-sensitive surface unit; and a processing unit coupled to the display unit, the touch-sensitive surface unit and the sensor units. The processing unit is configured to: detect a contact on the touch-sensitive surface unit; detect an increase of intensity of the contact on the touch-sensitive surface unit from a first intensity to a second intensity; in response to detecting the increase in intensity: change activation states of the user interface object from the first activation state to the second activation state; and generate M distinct tactile outputs on the touch-sensitive surface unit, where M is a positive integer; detect a decrease of intensity of the contact from the second intensity to the first intensity; and in response to detecting the decrease in intensity: change activation states of the user interface object from the second activation state to the first activation state; and generate N distinct tactile outputs on the touch-sensitive surface unit, where N is a positive integer and N is different from M.
Thus, electronic devices with displays, touch-sensitive surfaces and one or more sensors to detect intensity of contacts with the touch-sensitive surface are provided with faster, more efficient methods and interfaces for providing feedback for changing activation states of a user interface object, thereby increasing the effectiveness, efficiency, and user satisfaction with such devices. Such methods and interfaces may complement or replace conventional methods for providing feedback for changing activation states of a user interface object.
In accordance with some embodiments, an electronic device includes a display, a touch-sensitive surface, optionally one or more sensors to detect intensity of contacts with the touch-sensitive surface, one or more processors, memory, and one or more programs; the one or more programs are stored in the memory and configured to be executed by the one or more processors and the one or more programs include instructions for performing the operations of any of the methods referred to in the fifth paragraph of the Description of Embodiments. In accordance with some embodiments, a graphical user interface on an electronic device with a display, a touch-sensitive surface, optionally one or more sensors to detect intensity of contacts with the touch-sensitive surface, a memory, and one or more processors to execute one or more programs stored in the memory includes one or more of the elements displayed in any of the methods referred to in the fifth paragraph of the Description of Embodiments, which are updated in response to inputs, as described in any of the methods referred to in the fifth paragraph of the Description of Embodiments. In accordance with some embodiments, a computer readable storage medium has stored therein instructions which when executed by an electronic device with a display, a touch-sensitive surface, and optionally one or more sensors to detect intensity of contacts with the touch-sensitive surface, cause the device to perform the operations of any of the methods referred to in the fifth paragraph of the Description of Embodiments. In accordance with some embodiments, an electronic device includes: a display, a touch-sensitive surface, and optionally one or more sensors to detect intensity of contacts with the touch-sensitive surface; and means for performing the operations of any of the methods referred to in the fifth paragraph of the Description of Embodiments. In accordance with some embodiments, an information processing apparatus, for use in an electronic device with a display and a touch-sensitive surface, optionally one or more sensors to detect intensity of contacts with the touch-sensitive surface, includes means for performing the operations of any of the methods referred to in the fifth paragraph of the Description of Embodiments.
For a better understanding of the various described embodiments, reference should be made to the Description of Embodiments below, in conjunction with the following drawings in which like reference numerals refer to corresponding parts throughout the figures.
The methods, devices and GUIs described herein provide visual and/or haptic feedback that makes manipulation of user interface objects more efficient and intuitive for a user. For example, in a system where the clicking action of a trackpad is decoupled from the contact intensity (e.g., contact force, contact pressure, or a substitute therefore) that is needed to reach an activation threshold, the device can generate different tactile outputs (e.g., “different clicks”) for different activation events (e.g., so that clicks that accomplish a particular result are differentiated from clicks that do not produce any result or that accomplish a different result from the particular result). Additionally, tactile outputs can be generated in response to other events that are not related to increasing intensity of a contact, such as generating a tactile output (e.g., a “detent”) when a user interface object is moved to a particular position, boundary or orientation, or when an event occurs at the device.
Additionally, in a system where a trackpad or touch-screen display is sensitive to a range of contact intensity that includes more than one or two specific intensity values (e.g., more than a simple on/off, binary intensity determination), the user interface can provide responses (e.g., visual or tactile cues) that are indicative of the intensity of the contact within the range. In some implementations, a pre-activation-threshold response and/or a post-activation-threshold response to an input are displayed as continuous animations. As one example of such a response, a preview of an operation is displayed in response to detecting an increase in contact intensity that is still below an activation threshold for performing the operation. As another example of such a response, an animation associated with an operation continues even after the activation threshold for the operation has been reached. Both of these examples provide a user with a continuous response to the force or pressure of a user's contact, which provides a user with visual and/or haptic feedback that is richer and more intuitive. More specifically, such continuous force responses give the user the experience of being able to press lightly to preview an operation and/or press deeply to push “past” or “through” a predefined user interface state corresponding to the operation.
Additionally, for a device with a touch-sensitive surface that is sensitive to a range of contact intensity, multiple contact intensity thresholds can be monitored by the device and different functions can be mapped to different contact intensity thresholds. This serves to increase the available “gesture space” providing easy access to advanced features for users who know that increasing the intensity of a contact at or beyond a second “deep press” intensity threshold will cause the device to perform a different operation from an operation that would be performed if the intensity of the contact is between a first “activation” intensity threshold and the second “deep press” intensity threshold. An advantage of assigning additional functionality to a second “deep press” intensity threshold while maintaining familiar functionality at a first “activation” intensity threshold is that inexperienced users who are, in some circumstances, confused by the additional functionality can use the familiar functionality by just applying an intensity up to the first “activation” intensity threshold, whereas more experienced users can take advantage of the additional functionality by applying an intensity at the second “deep press” intensity threshold.
Additionally, for a device with a touch-sensitive surface that is sensitive to a range of contact intensity, the device can provide additional functionality by allowing users to perform complex operations with a single continuous contact. For example, when selecting a group of objects, a user can move a continuous contact around the touch-sensitive surface and can press while dragging (e.g., applying an intensity greater than a “deep press” intensity threshold) to add additional elements to a selection. In this way, a user can intuitively interact with a user interface where pressing harder with a contact causes objects in the user interface to be “stickier.”
A number of different approaches to providing an intuitive user interface on a device where a clicking action is decoupled from the force that is needed to reach an activation threshold and/or the device is sensitive to a wide range of contact intensities are described below. Using one or more of these approaches (optionally in conjunction with each other) helps to provide a user interface that intuitively provides users with additional information and functionality, thereby reducing the user's cognitive burden and improving the human-machine interface. Such improvements in the human-machine interface enable users to use the device faster and more efficiently. For battery-operated devices, these improvements conserve power and increase the time between battery charges. For ease of explanation, systems, methods and user interfaces for including illustrative examples of some of these approaches are described below, as follows:
Exemplary Devices
Reference will now be made in detail to embodiments, examples of which are illustrated in the accompanying drawings. In the following detailed description, numerous specific details are set forth in order to provide a thorough understanding of the various described embodiments. However, it will be apparent to one of ordinary skill in the art that the various described embodiments may be practiced without these specific details. In other instances, well-known methods, procedures, components, circuits, and networks have not been described in detail so as not to unnecessarily obscure aspects of the embodiments.
It will also be understood that, although the terms first, second, etc. are, in some instances, used herein to describe various elements, these elements should not be limited by these terms. These terms are only used to distinguish one element from another. For example, a first contact could be termed a second contact, and, similarly, a second contact could be termed a first contact, without departing from the scope of the various described embodiments. The first contact and the second contact are both contacts, but they are not the same contact.
The terminology used in the description of the various described embodiments herein is for the purpose of describing particular embodiments only and is not intended to be limiting. As used in the description of the various described embodiments and the appended claims, the singular forms “a”, “an” and “the” are intended to include the plural forms as well, unless the context clearly indicates otherwise. It will also be understood that the term “and/or” as used herein refers to and encompasses any and all possible combinations of one or more of the associated listed items. It will be further understood that the terms “includes,” “including,” “comprises,” and/or “comprising,” when used in this specification, specify the presence of stated features, integers, steps, operations, elements, and/or components, but do not preclude the presence or addition of one or more other features, integers, steps, operations, elements, components, and/or groups thereof.
As used herein, the term “if” is, optionally, construed to mean “when” or “upon” or “in response to determining” or “in response to detecting,” depending on the context. Similarly, the phrase “if it is determined” or “if [a stated condition or event] is detected” is, optionally, construed to mean “upon determining” or “in response to determining” or “upon detecting [the stated condition or event]” or “in response to detecting [the stated condition or event],” depending on the context.
Embodiments of electronic devices, user interfaces for such devices, and associated processes for using such devices are described. In some embodiments, the device is a portable communications device, such as a mobile telephone, that also contains other functions, such as PDA and/or music player functions. Exemplary embodiments of portable multifunction devices include, without limitation, the iPhone®, iPod Touch®, and iPad® devices from Apple Inc. of Cupertino, California Other portable electronic devices, such as laptops or tablet computers with touch-sensitive surfaces (e.g., touch screen displays and/or touch pads), are, optionally, used. It should also be understood that, in some embodiments, the device is not a portable communications device, but is a desktop computer with a touch-sensitive surface (e.g., a touch screen display and/or a touch pad).
In the discussion that follows, an electronic device that includes a display and a touch-sensitive surface is described. It should be understood, however, that the electronic device optionally includes one or more other physical user-interface devices, such as a physical keyboard, a mouse and/or a joystick.
The device typically supports a variety of applications, such as one or more of the following: a drawing application, a presentation application, a word processing application, a website creation application, a disk authoring application, a spreadsheet application, a gaming application, a telephone application, a video conferencing application, an e-mail application, an instant messaging application, a workout support application, a photo management application, a digital camera application, a digital video camera application, a web browsing application, a digital music player application, and/or a digital video player application.
The various applications that are executed on the device optionally use at least one common physical user-interface device, such as the touch-sensitive surface. One or more functions of the touch-sensitive surface as well as corresponding information displayed on the device are, optionally, adjusted and/or varied from one application to the next and/or within a respective application. In this way, a common physical architecture (such as the touch-sensitive surface) of the device optionally supports the variety of applications with user interfaces that are intuitive and transparent to the user.
Attention is now directed toward embodiments of portable devices with touch-sensitive displays.
As used in the specification and claims, the term “intensity” of a contact on a touch-sensitive surface refers to the force or pressure (force per unit area) of a contact (e.g., a finger contact) on the touch sensitive surface, or to a substitute (proxy) for the force or pressure of a contact on the touch sensitive surface. The intensity of a contact has a range of values that includes at least four distinct values and more typically includes hundreds of distinct values (e.g., at least 256). Intensity of a contact is, optionally, determined (or measured) using various approaches and various sensors or combinations of sensors. For example, one or more force sensors underneath or adjacent to the touch-sensitive surface are, optionally, used to measure force at various points on the touch-sensitive surface. In some implementations, force measurements from multiple force sensors are combined (e.g., a weighted average) to determine an estimated force of a contact. Similarly, a pressure-sensitive tip of a stylus is, optionally, used to determine a pressure of the stylus on the touch-sensitive surface. Alternatively, the size of the contact area detected on the touch-sensitive surface and/or changes thereto, the capacitance of the touch-sensitive surface proximate to the contact and/or changes thereto, and/or the resistance of the touch-sensitive surface proximate to the contact and/or changes thereto are, optionally, used as a substitute for the force or pressure of the contact on the touch-sensitive surface. In some implementations, the substitute measurements for contact force or pressure are used directly to determine whether an intensity threshold has been exceeded (e.g., the intensity threshold is described in units corresponding to the substitute measurements). In some implementations, the substitute measurements for contact force or pressure are converted to an estimated force or pressure and the estimated force or pressure is used to determine whether an intensity threshold has been exceeded (e.g., the intensity threshold is a pressure threshold measured in units of pressure).
As used in the specification and claims, the term “tactile output” refers to physical displacement of a device relative to a previous position of the device, physical displacement of a component (e.g., a touch-sensitive surface) of a device relative to another component (e.g., housing) of the device, or displacement of the component relative to a center of mass of the device that will be detected by a user with the user's sense of touch. For example, in situations where the device or the component of the device is in contact with a surface of a user that is sensitive to touch (e.g., a finger, palm, or other part of a user's hand), the tactile output generated by the physical displacement will be interpreted by the user as a tactile sensation corresponding to a perceived change in physical characteristics of the device or the component of the device. For example, movement of a touch-sensitive surface (e.g., a touch-sensitive display or trackpad) is, optionally, interpreted by the user as a “down click” or “up click” of a physical actuator button. In some cases, a user will feel a tactile sensation such as an “down click” or “up click” even when there is no movement of a physical actuator button associated with the touch-sensitive surface that is physically pressed (e.g., displaced) by the user's movements. As another example, movement of the touch-sensitive surface is, optionally, interpreted or sensed by the user as “roughness” of the touch-sensitive surface, even when there is no change in smoothness of the touch-sensitive surface. While such interpretations of touch by a user will be subject to the individualized sensory perceptions of the user, there are many sensory perceptions of touch that are common to a large majority of users. Thus, when a tactile output is described as corresponding to a particular sensory perception of a user (e.g., an “up click,” a “down click,” “roughness”), unless otherwise stated, the generated tactile output corresponds to physical displacement of the device or a component thereof that will generate the described sensory perception for a typical (or average) user.
It should be appreciated that device 100 is only one example of a portable multifunction device, and that device 100 optionally has more or fewer components than shown, optionally combines two or more components, or optionally has a different configuration or arrangement of the components. The various components shown in
Memory 102 optionally includes high-speed random access memory and optionally also includes non-volatile memory, such as one or more magnetic disk storage devices, flash memory devices, or other non-volatile solid-state memory devices. Access to memory 102 by other components of device 100, such as CPU 120 and the peripherals interface 118, is, optionally, controlled by memory controller 122.
Peripherals interface 118 can be used to couple input and output peripherals of the device to CPU 120 and memory 102. The one or more processors 120 run or execute various software programs and/or sets of instructions stored in memory 102 to perform various functions for device 100 and to process data.
In some embodiments, peripherals interface 118, CPU 120, and memory controller 122 are, optionally, implemented on a single chip, such as chip 104. In some other embodiments, they are, optionally, implemented on separate chips.
RF (radio frequency) circuitry 108 receives and sends RF signals, also called electromagnetic signals. RF circuitry 108 converts electrical signals to/from electromagnetic signals and communicates with communications networks and other communications devices via the electromagnetic signals. RF circuitry 108 optionally includes well-known circuitry for performing these functions, including but not limited to an antenna system, an RF transceiver, one or more amplifiers, a tuner, one or more oscillators, a digital signal processor, a CODEC chipset, a subscriber identity module (SIM) card, memory, and so forth. RF circuitry 108 optionally communicates with networks, such as the Internet, also referred to as the World Wide Web (WWW), an intranet and/or a wireless network, such as a cellular telephone network, a wireless local area network (LAN) and/or a metropolitan area network (MAN), and other devices by wireless communication. The wireless communication optionally uses any of a plurality of communications standards, protocols and technologies, including but not limited to Global System for Mobile Communications (GSM), Enhanced Data GSM Environment (EDGE), high-speed downlink packet access (HSDPA), high-speed uplink packet access (HSDPA), Evolution, Data-Only (EV-DO), HSPA, HSPA+, Dual-Cell HSPA (DC-HSPDA), long term evolution (LTE), near field communication (NFC), wideband code division multiple access (W-CDMA), code division multiple access (CDMA), time division multiple access (TDMA), Bluetooth, Wireless Fidelity (Wi-Fi) (e.g., IEEE 802.11a, IEEE 802.11b, IEEE 802.11g and/or IEEE 802.11n), voice over Internet Protocol (VoIP), Wi-MAX, a protocol for e-mail (e.g., Internet message access protocol (IMAP) and/or post office protocol (POP)), instant messaging (e.g., extensible messaging and presence protocol (XMPP), Session Initiation Protocol for Instant Messaging and Presence Leveraging Extensions (SIMPLE), Instant Messaging and Presence Service (IMPS)), and/or Short Message Service (SMS), or any other suitable communication protocol, including communication protocols not yet developed as of the filing date of this document.
Audio circuitry 110, speaker 111, and microphone 113 provide an audio interface between a user and device 100. Audio circuitry 110 receives audio data from peripherals interface 118, converts the audio data to an electrical signal, and transmits the electrical signal to speaker 111. Speaker 111 converts the electrical signal to human-audible sound waves. Audio circuitry 110 also receives electrical signals converted by microphone 113 from sound waves. Audio circuitry 110 converts the electrical signal to audio data and transmits the audio data to peripherals interface 118 for processing. Audio data is, optionally, retrieved from and/or transmitted to memory 102 and/or RF circuitry 108 by peripherals interface 118. In some embodiments, audio circuitry 110 also includes a headset jack (e.g., 212,
I/O subsystem 106 couples input/output peripherals on device 100, such as touch screen 112 and other input control devices 116, to peripherals interface 118. I/O subsystem 106 optionally includes display controller 156, optical sensor controller 158, intensity sensor controller 159, haptic feedback controller 161 and one or more input controllers 160 for other input or control devices. The one or more input controllers 160 receive/send electrical signals from/to other input or control devices 116. The other input control devices 116 optionally include physical buttons (e.g., push buttons, rocker buttons, etc.), dials, slider switches, joysticks, click wheels, and so forth. In some alternate embodiments, input controller(s) 160 are, optionally, coupled to any (or none) of the following: a keyboard, infrared port, USB port, and a pointer device such as a mouse. The one or more buttons (e.g., 208,
Touch-sensitive display 112 provides an input interface and an output interface between the device and a user. Display controller 156 receives and/or sends electrical signals from/to touch screen 112. Touch screen 112 displays visual output to the user. The visual output optionally includes graphics, text, icons, video, and any combination thereof (collectively termed “graphics”). In some embodiments, some or all of the visual output corresponds to user-interface objects.
Touch screen 112 has a touch-sensitive surface, sensor or set of sensors that accepts input from the user based on haptic and/or tactile contact. Touch screen 112 and display controller 156 (along with any associated modules and/or sets of instructions in memory 102) detect contact (and any movement or breaking of the contact) on touch screen 112 and converts the detected contact into interaction with user-interface objects (e.g., one or more soft keys, icons, web pages or images) that are displayed on touch screen 112. In an exemplary embodiment, a point of contact between touch screen 112 and the user corresponds to a finger of the user.
Touch screen 112 optionally uses LCD (liquid crystal display) technology, LPD (light emitting polymer display) technology, or LED (light emitting diode) technology, although other display technologies are used in other embodiments. Touch screen 112 and display controller 156 optionally detect contact and any movement or breaking thereof using any of a plurality of touch sensing technologies now known or later developed, including but not limited to capacitive, resistive, infrared, and surface acoustic wave technologies, as well as other proximity sensor arrays or other elements for determining one or more points of contact with touch screen 112. In an exemplary embodiment, projected mutual capacitance sensing technology is used, such as that found in the iPhone®, iPod Touch®, and iPad® from Apple Inc. of Cupertino, California.
Touch screen 112 optionally has a video resolution in excess of 100 dpi. In some embodiments, the touch screen has a video resolution of approximately 160 dpi. The user optionally makes contact with touch screen 112 using any suitable object or appendage, such as a stylus, a finger, and so forth. In some embodiments, the user interface is designed to work primarily with finger-based contacts and gestures, which can be less precise than stylus-based input due to the larger area of contact of a finger on the touch screen. In some embodiments, the device translates the rough finger-based input into a precise pointer/cursor position or command for performing the actions desired by the user.
In some embodiments, in addition to the touch screen, device 100 optionally includes a touchpad (not shown) for activating or deactivating particular functions. In some embodiments, the touchpad is a touch-sensitive area of the device that, unlike the touch screen, does not display visual output. The touchpad is, optionally, a touch-sensitive surface that is separate from touch screen 112 or an extension of the touch-sensitive surface formed by the touch screen.
Device 100 also includes power system 162 for powering the various components. Power system 162 optionally includes a power management system, one or more power sources (e.g., battery, alternating current (AC)), a recharging system, a power failure detection circuit, a power converter or inverter, a power status indicator (e.g., a light-emitting diode (LED)) and any other components associated with the generation, management and distribution of power in portable devices.
Device 100 optionally also includes one or more optical sensors 164.
Device 100 optionally also includes one or more contact intensity sensors 165.
Device 100 optionally also includes one or more proximity sensors 166.
Device 100 optionally also includes one or more tactile output generators 167.
Device 100 optionally also includes one or more accelerometers 168.
In some embodiments, the software components stored in memory 102 include operating system 126, communication module (or set of instructions) 128, contact/motion module (or set of instructions) 130, graphics module (or set of instructions) 132, text input module (or set of instructions) 134, Global Positioning System (GPS) module (or set of instructions) 135, and applications (or sets of instructions) 136. Furthermore, in some embodiments memory 102 stores device/global internal state 157, as shown in
Operating system 126 (e.g., Darwin, RTXC, LINUX, UNIX, OS X, WINDOWS, or an embedded operating system such as VxWorks) includes various software components and/or drivers for controlling and managing general system tasks (e.g., memory management, storage device control, power management, etc.) and facilitates communication between various hardware and software components.
Communication module 128 facilitates communication with other devices over one or more external ports 124 and also includes various software components for handling data received by RF circuitry 108 and/or external port 124. External port 124 (e.g., Universal Serial Bus (USB), FIREWIRE, etc.) is adapted for coupling directly to other devices or indirectly over a network (e.g., the Internet, wireless LAN, etc.). In some embodiments, the external port is a multi-pin (e.g., 30-pin) connector that is the same as, or similar to and/or compatible with the 30-pin connector used on iPod (trademark of Apple Inc.) devices.
Contact/motion module 130 optionally detects contact with touch screen 112 (in conjunction with display controller 156) and other touch sensitive devices (e.g., a touchpad or physical click wheel). Contact/motion module 130 includes various software components for performing various operations related to detection of contact, such as determining if contact has occurred (e.g., detecting a finger-down event), determining an intensity of the contact (e.g., the force or pressure of the contact or a substitute for the force or pressure of the contact) determining if there is movement of the contact and tracking the movement across the touch-sensitive surface (e.g., detecting one or more finger-dragging events), and determining if the contact has ceased (e.g., detecting a finger-up event or a break in contact). Contact/motion module 130 receives contact data from the touch-sensitive surface. Determining movement of the point of contact, which is represented by a series of contact data, optionally includes determining speed (magnitude), velocity (magnitude and direction), and/or an acceleration (a change in magnitude and/or direction) of the point of contact. These operations are, optionally, applied to single contacts (e.g., one finger contacts) or to multiple simultaneous contacts (e.g., “multitouch”/multiple finger contacts). In some embodiments, contact/motion module 130 and display controller 156 detect contact on a touchpad.
In some embodiments, contact/motion module 130 uses a set of one or more intensity thresholds to determine whether an operation has been performed by a user (e.g., to determine whether a user has “clicked” on an icon). In some embodiments at least a subset of the intensity thresholds are determined in accordance with software parameters (e.g., the intensity thresholds are not determined by the activation thresholds of particular physical actuators and can be adjusted without changing the physical hardware of device 100). For example, a mouse “click” threshold of a trackpad or touch screen display can be set to any of a large range of predefined thresholds values without changing the trackpad or touch screen display hardware. Additionally, in some implementations a user of the device is provided with software settings for adjusting one or more of the set of intensity thresholds (e.g., by adjusting individual intensity thresholds and/or by adjusting a plurality of intensity thresholds at once with a system-level click “intensity” parameter).
Contact/motion module 130 optionally detects a gesture input by a user. Different gestures on the touch-sensitive surface have different contact patterns and intensities. Thus, a gesture is, optionally, detected by detecting a particular contact pattern. For example, detecting a finger tap gesture includes detecting a finger-down event followed by detecting a finger-up (lift off) event at the same position (or substantially the same position) as the finger-down event (e.g., at the position of an icon). As another example, detecting a finger swipe gesture on the touch-sensitive surface includes detecting a finger-down event followed by detecting one or more finger-dragging events, and subsequently followed by detecting a finger-up (lift off) event.
Graphics module 132 includes various known software components for rendering and displaying graphics on touch screen 112 or other display, including components for changing the visual impact (e.g., brightness, transparency, saturation, contrast or other visual property) of graphics that are displayed. As used herein, the term “graphics” includes any object that can be displayed to a user, including without limitation text, web pages, icons (such as user-interface objects including soft keys), digital images, videos, animations and the like.
In some embodiments, graphics module 132 stores data representing graphics to be used. Each graphic is, optionally, assigned a corresponding code. Graphics module 132 receives, from applications etc., one or more codes specifying graphics to be displayed along with, if necessary, coordinate data and other graphic property data, and then generates screen image data to output to display controller 156.
Haptic feedback module 133 includes various software components for generating instructions used by tactile output generator(s) 167 to produce tactile outputs at one or more locations on device 100 in response to user interactions with device 100.
Text input module 134, which is, optionally, a component of graphics module 132, provides soft keyboards for entering text in various applications (e.g., contacts 137, e-mail 140, IM 141, browser 147, and any other application that needs text input).
GPS module 135 determines the location of the device and provides this information for use in various applications (e.g., to telephone 138 for use in location-based dialing, to camera 143 as picture/video metadata, and to applications that provide location-based services such as weather widgets, local yellow page widgets, and map/navigation widgets).
Applications 136 optionally include the following modules (or sets of instructions), or a subset or superset thereof:
Examples of other applications 136 that are, optionally, stored in memory 102 include other word processing applications, other image editing applications, drawing applications, presentation applications, JAVA-enabled applications, encryption, digital rights management, voice recognition, and voice replication.
In conjunction with touch screen 112, display controller 156, contact module 130, graphics module 132, and text input module 134, contacts module 137 are, optionally, used to manage an address book or contact list (e.g., stored in application internal state 192 of contacts module 137 in memory 102 or memory 370), including: adding name(s) to the address book; deleting name(s) from the address book; associating telephone number(s), e-mail address(es), physical address(es) or other information with a name; associating an image with a name; categorizing and sorting names; providing telephone numbers or e-mail addresses to initiate and/or facilitate communications by telephone 138, video conference 139, e-mail 140, or IM 141; and so forth.
In conjunction with RF circuitry 108, audio circuitry 110, speaker 111, microphone 113, touch screen 112, display controller 156, contact module 130, graphics module 132, and text input module 134, telephone module 138 are, optionally, used to enter a sequence of characters corresponding to a telephone number, access one or more telephone numbers in address book 137, modify a telephone number that has been entered, dial a respective telephone number, conduct a conversation and disconnect or hang up when the conversation is completed. As noted above, the wireless communication optionally uses any of a plurality of communications standards, protocols and technologies.
In conjunction with RF circuitry 108, audio circuitry 110, speaker 111, microphone 113, touch screen 112, display controller 156, optical sensor 164, optical sensor controller 158, contact module 130, graphics module 132, text input module 134, contact list 137, and telephone module 138, videoconferencing module 139 includes executable instructions to initiate, conduct, and terminate a video conference between a user and one or more other participants in accordance with user instructions.
In conjunction with RF circuitry 108, touch screen 112, display controller 156, contact module 130, graphics module 132, and text input module 134, e-mail client module 140 includes executable instructions to create, send, receive, and manage e-mail in response to user instructions. In conjunction with image management module 144, e-mail client module 140 makes it very easy to create and send e-mails with still or video images taken with camera module 143.
In conjunction with RF circuitry 108, touch screen 112, display controller 156, contact module 130, graphics module 132, and text input module 134, the instant messaging module 141 includes executable instructions to enter a sequence of characters corresponding to an instant message, to modify previously entered characters, to transmit a respective instant message (for example, using a Short Message Service (SMS) or Multimedia Message Service (MMS) protocol for telephony-based instant messages or using XMPP, SIMPLE, or IMPS for Internet-based instant messages), to receive instant messages and to view received instant messages. In some embodiments, transmitted and/or received instant messages optionally include graphics, photos, audio files, video files and/or other attachments as are supported in a MMS and/or an Enhanced Messaging Service (EMS). As used herein, “instant messaging” refers to both telephony-based messages (e.g., messages sent using SMS or MMS) and Internet-based messages (e.g., messages sent using XMPP, SIMPLE, or IMPS).
In conjunction with RF circuitry 108, touch screen 112, display controller 156, contact module 130, graphics module 132, text input module 134, GPS module 135, map module 154, and music player module 146, workout support module 142 includes executable instructions to create workouts (e.g., with time, distance, and/or calorie burning goals); communicate with workout sensors (sports devices); receive workout sensor data; calibrate sensors used to monitor a workout; select and play music for a workout; and display, store and transmit workout data.
In conjunction with touch screen 112, display controller 156, optical sensor(s) 164, optical sensor controller 158, contact module 130, graphics module 132, and image management module 144, camera module 143 includes executable instructions to capture still images or video (including a video stream) and store them into memory 102, modify characteristics of a still image or video, or delete a still image or video from memory 102.
In conjunction with touch screen 112, display controller 156, contact module 130, graphics module 132, text input module 134, and camera module 143, image management module 144 includes executable instructions to arrange, modify (e.g., edit), or otherwise manipulate, label, delete, present (e.g., in a digital slide show or album), and store still and/or video images.
In conjunction with RF circuitry 108, touch screen 112, display system controller 156, contact module 130, graphics module 132, and text input module 134, browser module 147 includes executable instructions to browse the Internet in accordance with user instructions, including searching, linking to, receiving, and displaying web pages or portions thereof, as well as attachments and other files linked to web pages.
In conjunction with RF circuitry 108, touch screen 112, display system controller 156, contact module 130, graphics module 132, text input module 134, e-mail client module 140, and browser module 147, calendar module 148 includes executable instructions to create, display, modify, and store calendars and data associated with calendars (e.g., calendar entries, to do lists, etc.) in accordance with user instructions.
In conjunction with RF circuitry 108, touch screen 112, display system controller 156, contact module 130, graphics module 132, text input module 134, and browser module 147, widget modules 149 are mini-applications that are, optionally, downloaded and used by a user (e.g., weather widget 149-1, stocks widget 149-2, calculator widget 149-3, alarm clock widget 149-4, and dictionary widget 149-5) or created by the user (e.g., user-created widget 149-6). In some embodiments, a widget includes an HTML (Hypertext Markup Language) file, a CSS (Cascading Style Sheets) file, and a JavaScript file. In some embodiments, a widget includes an XML (Extensible Markup Language) file and a JavaScript file (e.g., Yahoo! Widgets).
In conjunction with RF circuitry 108, touch screen 112, display system controller 156, contact module 130, graphics module 132, text input module 134, and browser module 147, the widget creator module 150 are, optionally, used by a user to create widgets (e.g., turning a user-specified portion of a web page into a widget).
In conjunction with touch screen 112, display system controller 156, contact module 130, graphics module 132, and text input module 134, search module 151 includes executable instructions to search for text, music, sound, image, video, and/or other files in memory 102 that match one or more search criteria (e.g., one or more user-specified search terms) in accordance with user instructions.
In conjunction with touch screen 112, display system controller 156, contact module 130, graphics module 132, audio circuitry 110, speaker 111, RF circuitry 108, and browser module 147, video and music player module 152 includes executable instructions that allow the user to download and play back recorded music and other sound files stored in one or more file formats, such as MP3 or AAC files, and executable instructions to display, present or otherwise play back videos (e.g., on touch screen 112 or on an external, connected display via external port 124). In some embodiments, device 100 optionally includes the functionality of an MP3 player, such as an iPod (trademark of Apple Inc.).
In conjunction with touch screen 112, display controller 156, contact module 130, graphics module 132, and text input module 134, notes module 153 includes executable instructions to create and manage notes, to do lists, and the like in accordance with user instructions.
In conjunction with RF circuitry 108, touch screen 112, display system controller 156, contact module 130, graphics module 132, text input module 134, GPS module 135, and browser module 147, map module 154 are, optionally, used to receive, display, modify, and store maps and data associated with maps (e.g., driving directions; data on stores and other points of interest at or near a particular location; and other location-based data) in accordance with user instructions.
In conjunction with touch screen 112, display system controller 156, contact module 130, graphics module 132, audio circuitry 110, speaker 111, RF circuitry 108, text input module 134, e-mail client module 140, and browser module 147, online video module 155 includes instructions that allow the user to access, browse, receive (e.g., by streaming and/or download), play back (e.g., on the touch screen or on an external, connected display via external port 124), send an e-mail with a link to a particular online video, and otherwise manage online videos in one or more file formats, such as H.264. In some embodiments, instant messaging module 141, rather than e-mail client module 140, is used to send a link to a particular online video.
Each of the above identified modules and applications correspond to a set of executable instructions for performing one or more functions described above and the methods described in this application (e.g., the computer-implemented methods and other information processing methods described herein). These modules (i.e., sets of instructions) need not be implemented as separate software programs, procedures or modules, and thus various subsets of these modules are, optionally, combined or otherwise re-arranged in various embodiments. In some embodiments, memory 102 optionally stores a subset of the modules and data structures identified above. Furthermore, memory 102 optionally stores additional modules and data structures not described above.
In some embodiments, device 100 is a device where operation of a predefined set of functions on the device is performed exclusively through a touch screen and/or a touchpad. By using a touch screen and/or a touchpad as the primary input control device for operation of device 100, the number of physical input control devices (such as push buttons, dials, and the like) on device 100 is, optionally, reduced.
The predefined set of functions that are performed exclusively through a touch screen and/or a touchpad optionally include navigation between user interfaces. In some embodiments, the touchpad, when touched by the user, navigates device 100 to a main, home, or root menu from any user interface that is displayed on device 100. In such embodiments, a “menu button” is implemented using a touchpad. In some other embodiments, the menu button is a physical push button or other physical input control device instead of a touchpad.
Event sorter 170 receives event information and determines the application 136-1 and application view 191 of application 136-1 to which to deliver the event information. Event sorter 170 includes event monitor 171 and event dispatcher module 174. In some embodiments, application 136-1 includes application internal state 192, which indicates the current application view(s) displayed on touch sensitive display 112 when the application is active or executing. In some embodiments, device/global internal state 157 is used by event sorter 170 to determine which application(s) is (are) currently active, and application internal state 192 is used by event sorter 170 to determine application views 191 to which to deliver event information.
In some embodiments, application internal state 192 includes additional information, such as one or more of: resume information to be used when application 136-1 resumes execution, user interface state information that indicates information being displayed or that is ready for display by application 136-1, a state queue for enabling the user to go back to a prior state or view of application 136-1, and a redo/undo queue of previous actions taken by the user.
Event monitor 171 receives event information from peripherals interface 118. Event information includes information about a sub-event (e.g., a user touch on touch-sensitive display 112, as part of a multi-touch gesture). Peripherals interface 118 transmits information it receives from I/O subsystem 106 or a sensor, such as proximity sensor 166, accelerometer(s) 168, and/or microphone 113 (through audio circuitry 110). Information that peripherals interface 118 receives from I/O subsystem 106 includes information from touch-sensitive display 112 or a touch-sensitive surface.
In some embodiments, event monitor 171 sends requests to the peripherals interface 118 at predetermined intervals. In response, peripherals interface 118 transmits event information. In other embodiments, peripheral interface 118 transmits event information only when there is a significant event (e.g., receiving an input above a predetermined noise threshold and/or for more than a predetermined duration).
In some embodiments, event sorter 170 also includes a hit view determination module 172 and/or an active event recognizer determination module 173.
Hit view determination module 172 provides software procedures for determining where a sub-event has taken place within one or more views, when touch sensitive display 112 displays more than one view. Views are made up of controls and other elements that a user can see on the display.
Another aspect of the user interface associated with an application is a set of views, sometimes herein called application views or user interface windows, in which information is displayed and touch-based gestures occur. The application views (of a respective application) in which a touch is detected optionally correspond to programmatic levels within a programmatic or view hierarchy of the application. For example, the lowest level view in which a touch is detected is, optionally, called the hit view, and the set of events that are recognized as proper inputs are, optionally, determined based, at least in part, on the hit view of the initial touch that begins a touch-based gesture.
Hit view determination module 172 receives information related to sub-events of a touch-based gesture. When an application has multiple views organized in a hierarchy, hit view determination module 172 identifies a hit view as the lowest view in the hierarchy which should handle the sub-event. In most circumstances, the hit view is the lowest level view in which an initiating sub-event occurs (i.e., the first sub-event in the sequence of sub-events that form an event or potential event). Once the hit view is identified by the hit view determination module, the hit view typically receives all sub-events related to the same touch or input source for which it was identified as the hit view.
Active event recognizer determination module 173 determines which view or views within a view hierarchy should receive a particular sequence of sub-events. In some embodiments, active event recognizer determination module 173 determines that only the hit view should receive a particular sequence of sub-events. In other embodiments, active event recognizer determination module 173 determines that all views that include the physical location of a sub-event are actively involved views, and therefore determines that all actively involved views should receive a particular sequence of sub-events. In other embodiments, even if touch sub-events were entirely confined to the area associated with one particular view, views higher in the hierarchy would still remain as actively involved views.
Event dispatcher module 174 dispatches the event information to an event recognizer (e.g., event recognizer 180). In embodiments including active event recognizer determination module 173, event dispatcher module 174 delivers the event information to an event recognizer determined by active event recognizer determination module 173. In some embodiments, event dispatcher module 174 stores in an event queue the event information, which is retrieved by a respective event receiver module 182.
In some embodiments, operating system 126 includes event sorter 170. Alternatively, application 136-1 includes event sorter 170. In yet other embodiments, event sorter 170 is a stand-alone module, or a part of another module stored in memory 102, such as contact/motion module 130.
In some embodiments, application 136-1 includes a plurality of event handlers 190 and one or more application views 191, each of which includes instructions for handling touch events that occur within a respective view of the application's user interface. Each application view 191 of the application 136-1 includes one or more event recognizers 180. Typically, a respective application view 191 includes a plurality of event recognizers 180. In other embodiments, one or more of event recognizers 180 are part of a separate module, such as a user interface kit (not shown) or a higher level object from which application 136-1 inherits methods and other properties. In some embodiments, a respective event handler 190 includes one or more of: data updater 176, object updater 177, GUI updater 178, and/or event data 179 received from event sorter 170. Event handler 190 optionally utilizes or calls data updater 176, object updater 177 or GUI updater 178 to update the application internal state 192. Alternatively, one or more of the application views 191 includes one or more respective event handlers 190. Also, in some embodiments, one or more of data updater 176, object updater 177, and GUI updater 178 are included in a respective application view 191.
A respective event recognizer 180 receives event information (e.g., event data 179) from event sorter 170, and identifies an event from the event information. Event recognizer 180 includes event receiver 182 and event comparator 184. In some embodiments, event recognizer 180 also includes at least a subset of: metadata 183, and event delivery instructions 188 (which optionally include sub-event delivery instructions).
Event receiver 182 receives event information from event sorter 170. The event information includes information about a sub-event, for example, a touch or a touch movement. Depending on the sub-event, the event information also includes additional information, such as location of the sub-event. When the sub-event concerns motion of a touch, the event information optionally also includes speed and direction of the sub-event. In some embodiments, events include rotation of the device from one orientation to another (e.g., from a portrait orientation to a landscape orientation, or vice versa), and the event information includes corresponding information about the current orientation (also called device attitude) of the device.
Event comparator 184 compares the event information to predefined event or sub-event definitions and, based on the comparison, determines an event or sub-event, or determines or updates the state of an event or sub-event. In some embodiments, event comparator 184 includes event definitions 186. Event definitions 186 contain definitions of events (e.g., predefined sequences of sub-events), for example, event 1 (187-1), event 2 (187-2), and others. In some embodiments, sub-events in an event 187 include, for example, touch begin, touch end, touch movement, touch cancellation, and multiple touching. In one example, the definition for event 1 (187-1) is a double tap on a displayed object. The double tap, for example, comprises a first touch (touch begin) on the displayed object for a predetermined phase, a first lift-off (touch end) for a predetermined phase, a second touch (touch begin) on the displayed object for a predetermined phase, and a second lift-off (touch end) for a predetermined phase. In another example, the definition for event 2 (187-2) is a dragging on a displayed object. The dragging, for example, comprises a touch (or contact) on the displayed object for a predetermined phase, a movement of the touch across touch-sensitive display 112, and lift-off of the touch (touch end). In some embodiments, the event also includes information for one or more associated event handlers 190.
In some embodiments, event definition 187 includes a definition of an event for a respective user-interface object. In some embodiments, event comparator 184 performs a hit test to determine which user-interface object is associated with a sub-event. For example, in an application view in which three user-interface objects are displayed on touch-sensitive display 112, when a touch is detected on touch-sensitive display 112, event comparator 184 performs a hit test to determine which of the three user-interface objects is associated with the touch (sub-event). If each displayed object is associated with a respective event handler 190, the event comparator uses the result of the hit test to determine which event handler 190 should be activated. For example, event comparator 184 selects an event handler associated with the sub-event and the object triggering the hit test.
In some embodiments, the definition for a respective event 187 also includes delayed actions that delay delivery of the event information until after it has been determined whether the sequence of sub-events does or does not correspond to the event recognizer's event type.
When a respective event recognizer 180 determines that the series of sub-events do not match any of the events in event definitions 186, the respective event recognizer 180 enters an event impossible, event failed, or event ended state, after which it disregards subsequent sub-events of the touch-based gesture. In this situation, other event recognizers, if any, that remain active for the hit view continue to track and process sub-events of an ongoing touch-based gesture.
In some embodiments, a respective event recognizer 180 includes metadata 183 with configurable properties, flags, and/or lists that indicate how the event delivery system should perform sub-event delivery to actively involved event recognizers. In some embodiments, metadata 183 includes configurable properties, flags, and/or lists that indicate how event recognizers interact, or are enabled to interact, with one another. In some embodiments, metadata 183 includes configurable properties, flags, and/or lists that indicate whether sub-events are delivered to varying levels in the view or programmatic hierarchy.
In some embodiments, a respective event recognizer 180 activates event handler 190 associated with an event when one or more particular sub-events of an event are recognized. In some embodiments, a respective event recognizer 180 delivers event information associated with the event to event handler 190. Activating an event handler 190 is distinct from sending (and deferred sending) sub-events to a respective hit view. In some embodiments, event recognizer 180 throws a flag associated with the recognized event, and event handler 190 associated with the flag catches the flag and performs a predefined process.
In some embodiments, event delivery instructions 188 include sub-event delivery instructions that deliver event information about a sub-event without activating an event handler. Instead, the sub-event delivery instructions deliver event information to event handlers associated with the series of sub-events or to actively involved views. Event handlers associated with the series of sub-events or with actively involved views receive the event information and perform a predetermined process.
In some embodiments, data updater 176 creates and updates data used in application 136-1. For example, data updater 176 updates the telephone number used in contacts module 137, or stores a video file used in video player module 145. In some embodiments, object updater 177 creates and updates objects used in application 136-1. For example, object updater 177 creates a new user-interface object or updates the position of a user-interface object. GUI updater 178 updates the GUI. For example, GUI updater 178 prepares display information and sends it to graphics module 132 for display on a touch-sensitive display.
In some embodiments, event handler(s) 190 includes or has access to data updater 176, object updater 177, and GUI updater 178. In some embodiments, data updater 176, object updater 177, and GUI updater 178 are included in a single module of a respective application 136-1 or application view 191. In other embodiments, they are included in two or more software modules.
It shall be understood that the foregoing discussion regarding event handling of user touches on touch-sensitive displays also applies to other forms of user inputs to operate multifunction devices 100 with input-devices, not all of which are initiated on touch screens. For example, mouse movement and mouse button presses, optionally coordinated with single or multiple keyboard presses or holds; contact movements such as taps, drags, scrolls, etc., on touch-pads; pen stylus inputs; movement of the device; oral instructions; detected eye movements; biometric inputs; and/or any combination thereof are optionally utilized as inputs corresponding to sub-events which define an event to be recognized.
Device 100 optionally also includes one or more physical buttons, such as “home” or menu button 204. As described previously, menu button 204 is, optionally, used to navigate to any application 136 in a set of applications that are, optionally executed on device 100. Alternatively, in some embodiments, the menu button is implemented as a soft key in a GUI displayed on touch screen 112.
In one embodiment, device 100 includes touch screen 112, menu button 204, push button 206 for powering the device on/off and locking the device, volume adjustment button(s) 208, Subscriber Identity Module (SIM) card slot 210, head set jack 212, and docking/charging external port 124. Push button 206 is, optionally, used to turn the power on/off on the device by depressing the button and holding the button in the depressed state for a predefined time interval; to lock the device by depressing the button and releasing the button before the predefined time interval has elapsed; and/or to unlock the device or initiate an unlock process. In an alternative embodiment, device 100 also accepts verbal input for activation or deactivation of some functions through microphone 113. Device 100 also, optionally, includes one or more contact intensity sensors 165 for detecting intensity of contacts on touch screen 112 and/or one or more tactile output generators 167 for generating tactile outputs for a user of device 100.
Each of the above identified elements in
Attention is now directed towards embodiments of user interfaces (“UI”) that is, optionally, implemented on portable multifunction device 100.
It should be noted that the icon labels illustrated in
Although some of the examples which follow will be given with reference to inputs on touch screen display 112 (where the touch sensitive surface and the display are combined), in some embodiments, the device detects inputs on a touch-sensitive surface that is separate from the display, as shown in
Additionally, while the following examples are given primarily with reference to finger inputs (e.g., finger contacts, finger tap gestures, finger swipe gestures), it should be understood that, in some embodiments, one or more of the finger inputs are replaced with input from another input device (e.g., a mouse based input or stylus input). For example, a swipe gesture is, optionally, replaced with a mouse click (e.g., instead of a contact) followed by movement of the cursor along the path of the swipe (e.g., instead of movement of the contact). As another example, a tap gesture is, optionally, replaced with a mouse click while the cursor is located over the location of the tap gesture (e.g., instead of detection of the contact followed by ceasing to detect the contact). Similarly, when multiple user inputs are simultaneously detected, it should be understood that multiple computer mice are, optionally, used simultaneously, or a mouse and finger contacts are, optionally, used simultaneously.
As used herein, the term “focus selector” refers to an input element that indicates a current part of a user interface with which a user is interacting. In some implementations that include a cursor or other location marker, the cursor acts as a “focus selector,” so that when an input (e.g., a press input) is detected on a touch-sensitive surface (e.g., touchpad 355 in
The user interface figures described below include various intensity diagrams that show the current intensity of the contact on the touch-sensitive surface relative to one or more intensity thresholds (e.g., a contact detection intensity threshold IT0, a light press intensity threshold ITL, a deep press intensity threshold ITD, and/or one or more other intensity thresholds). This intensity diagram is typically not part of the displayed user interface, but is provided to aid in the interpretation of the figures. In some embodiments, the light press intensity threshold corresponds to an intensity at which the device will perform operations typically associated with clicking a button of a physical mouse or a trackpad. In some embodiments, the deep press intensity threshold corresponds to an intensity at which the device will perform operations that are different from operations typically associated with clicking a button of a physical mouse or a trackpad. In some embodiments, when a contact is detected with an intensity below the light press intensity threshold (e.g., and above a nominal contact-detection intensity threshold IT0 below which the contact is no longer detected), the device will move a focus selector in accordance with movement of the contact on the touch-sensitive surface without performing an operation associated with the light press intensity threshold or the deep press intensity threshold. Generally, unless otherwise stated, these intensity thresholds are consistent between different sets of user interface figures.
An increase of intensity of the contact from an intensity below the light press intensity threshold ITL to an intensity between the light press intensity threshold ITL and the deep press intensity threshold ITD is sometimes referred to as a “light press” input. An increase of intensity of the contact from an intensity below the deep press intensity threshold ITD to an intensity above the deep press intensity threshold ITD is sometimes referred to as a “deep press” input. An increase of intensity of the contact from an intensity below the contact-detection intensity threshold IT0 to an intensity between the contact-detection intensity threshold IT0 and the light press intensity threshold ITL is sometimes referred to as detecting the contact on the touch-surface. A decrease of intensity of the contact from an intensity above the contact-detection intensity threshold IT0 to an intensity below the contact intensity threshold IT0 is sometimes referred to as detecting liftoff of the contact from the touch-surface. In some embodiments IT0 is zero. In some embodiments IT0 is greater than zero. In some illustrations a shaded circle or oval is used to represent intensity of a contact on the touch-sensitive surface. In some illustrations a circle or oval without shading is used represent a respective contact on the touch-sensitive surface without specifying the intensity of the respective contact.
In some embodiments described herein, one or more operations are performed in response to detecting a gesture that includes a respective press input or in response to detecting the respective press input performed with a respective contact (or a plurality of contacts), where the respective press input is detected based at least in part on detecting an increase in intensity of the contact (or plurality of contacts) above a press-input intensity threshold. In some embodiments, the respective operation is performed in response to detecting the increase in intensity of the respective contact above the press-input intensity threshold (e.g., a “down stroke” of the respective press input). In some embodiments, the press input includes an increase in intensity of the respective contact above the press-input intensity threshold and a subsequent decrease in intensity of the contact below the press-input intensity threshold, and the respective operation is performed in response to detecting the subsequent decrease in intensity of the respective contact below the press-input threshold (e.g., an “up stroke” of the respective press input).
In some embodiments, the device employs intensity hysteresis to avoid accidental inputs sometimes termed “jitter,” where the device defines or selects a hysteresis intensity threshold with a predefined relationship to the press-input intensity threshold (e.g., the hysteresis intensity threshold is X intensity units lower than the press-input intensity threshold or the hysteresis intensity threshold is 75%, 90% or some reasonable proportion of the press-input intensity threshold). Thus, in some embodiments, the press input includes an increase in intensity of the respective contact above the press-input intensity threshold and a subsequent decrease in intensity of the contact below the hysteresis intensity threshold that corresponds to the press-input intensity threshold, and the respective operation is performed in response to detecting the subsequent decrease in intensity of the respective contact below the hysteresis intensity threshold (e.g., an “up stroke” of the respective press input). Similarly, in some embodiments, the press input is detected only when the device detects an increase in intensity of the contact from an intensity at or below the hysteresis intensity threshold to an intensity at or above the press-input intensity threshold and, optionally, a subsequent decrease in intensity of the contact to an intensity at or below the hysteresis intensity, and the respective operation is performed in response to detecting the press input (e.g., the increase in intensity of the contact or the decrease in intensity of the contact, depending on the circumstances).
For ease of explanation, the description of operations performed in response to a press input associated with a press-input intensity threshold or in response to a gesture including the press input are, optionally, triggered in response to detecting either: an increase in intensity of a contact above the press-input intensity threshold, an increase in intensity of a contact from an intensity below the hysteresis intensity threshold to an intensity above the press-input intensity threshold, a decrease in intensity of the contact below the press-input intensity threshold, and/or a decrease in intensity of the contact below the hysteresis intensity threshold corresponding to the press-input intensity threshold. Additionally, in examples where an operation is described as being performed in response to detecting a decrease in intensity of a contact below the press-input intensity threshold, the operation is, optionally, performed in response to detecting a decrease in intensity of the contact below a hysteresis intensity threshold corresponding to, and lower than, the press-input intensity threshold.
Many electronic devices have graphical user interfaces including one or more user interface objects. When users attempt to perform operations associated with these user interface objects, these operations are sometimes successful and sometimes unsuccessful. For example, attempting to move a user interface object to a region of a user interface that does not accept user interface objects will be unsuccessful. In many user interfaces, there are one or more visual or audible cues as to whether or not the operation associated with the user interface object was successful. However, in some situations the user will miss a visual or audible cue as to whether or not an operation was successful (e.g., because the user was not looking at the display and/or has the volume of the device turned down or turned off, or because the user was distracted when the cue was provided). A missed cue can result in the user attempting to repeat an operation that was successfully performed or proceeding to perform other operations without realizing that the attempted operation was not performed. Thus, it would be advantageous to provide additional cues to the user to indicate whether or not an operation was successful. In a touch-sensitive surface with an integrated mechanical button, the sensation of reducing the intensity of a contact on touch-sensitive surface is determined based on the mechanism of the mechanical button and thus is the same (for the same user input) without regard to whether or not an operation associated with the contact was performed. In contrast, when the touch-sensitive surface is associated with sensors for determining the intensity of the contact with the touch-sensitive surface and a separate actuator generates a software controlled tactile output on the touch-sensitive surface, the tactile output generated after the user has attempted to perform an operation can be varied depending on whether or not the operation was successfully performed (e.g., because the tactile outputs are decoupled from the intensity inputs). Providing such tactile feedback as to whether or not an attempted operation has been performed improves the machine-user interface by providing the user with timely, accurate feedback regarding performance of the operation.
Cursor 11706 is also displayed in user interface 11700 on display 450. In some embodiments, cursor 11706 is a mouse pointer. Cursor 11706 is an example of a focus selector. A user optionally positions cursor 11706 at any location in user interface 11700 by making a contact (for example, a finger contact or a stylus contact) on touch-sensitive surface 451 (e.g., touchpad 355) of the device and moving the contact on touch-sensitive surface 451 as desired. In response to the detection of the contact and movement of the contact on touch-sensitive surface 451, cursor 11706 is positioned at a position in user interface 11700 that corresponds to the current position of the contact on touch-sensitive surface 451 and moves in accordance with movement of the contact on touch-sensitive surface 451. In
The device includes one or more sensors that detect the intensity of contacts with touch-sensitive surface 451. In
The intensity of contact 11708 is increased by, for example, the user applying more pressure on touch-sensitive surface 451 with contact 11708. The change in intensity of contact 11708 is detected by the contact intensity sensors in the device. In response to the detection of an increase in the intensity of contact 11708 above the object-selection threshold (with the intensity that is above the object-selection threshold represented by the densely dotted background in contact 11708 as shown in
While the intensity of contact 11708 remains above an object-release threshold (e.g., “IT1” in
The object-release threshold is an intensity threshold that determines whether a selected user interface object is released from selection. In some embodiments, the object-release threshold is below the object-selection threshold. In some other embodiments, the object-release threshold is the same as the object-selection threshold.
While user interface object 11702-2 is located at the new position in user interface 11700, as shown in
Returning to
While user interface object 11702-2 is located at the new position over window 11704, as shown in
Thus, after selection of user interface object 11702-2, movement of contact 11708 and a decrease in the intensity of contact 11708 below the object-release threshold is performed by the user. In response to the detection of the decrease in intensity below the object-release threshold, an attempt to drop user interface object 11702-2 at a new position is made. Depending on whether the new position is a valid drop target/location or an invalid drop target/location, the drop is successful (i.e., the drop is performed) or unsuccessful (i.e., performance of the drop is not performed).
As described above, different tactile outputs are, optionally, generated for a successful drop of a user interface object (for example, as described above with reference to
In some other embodiments, the tactile output for a successful drop and the tactile output for an unsuccessful drop have different movement profiles. For example, the tactile output for the successful drop is, optionally, generated in accordance with a sinusoidal movement profile, and the tactile output for the unsuccessful drop is, optionally, generated in accordance with a sawtooth waveform movement profile.
Returning to
As user interface object 11702-2 is moving, while user interface object 11702-2 is over window 11704, as shown in
As user interface object 11702-2 continues to move, while user interface object 11702-2 is over empty space in user interface 11700, as shown in
When the intensity of contact 11708 is reduced below the object-release threshold while user interface object 11702-2 is over empty space in user interface 11700, as shown in
It should be appreciated that the criteria for a valid drop target/location and an invalid drop target/location described above (whether a location is already occupied by a user interface object 11702 or window 11704) are merely exemplary, and other criteria are, optionally, employed in other embodiments, implementations, or for different categories of user interface objects or for different operations within an embodiment or implementation. For example, dropping an application shortcut or launch icon at a position over another application shortcut/launch icon or over an application window is invalid, while dropping a shape within a drawing program at a position over another shape is valid. As another example, dropping an application shortcut/launch icon at a position over another application shortcut/launch icon is valid if the operation includes swapping the locations of the application shortcuts/launch icons affected.
As described above, tactile outputs are, optionally, generated for a selection of a user interface object, a valid drop, an invalid drop, a valid drop location, and an invalid drop location.
The device includes one or more sensors that detect the intensity of contacts with touch-sensitive display 112. In
The intensity of contact 11738 is increased by, for example, the user applying more pressure on touch-sensitive display 112 with contact 11738. The change in intensity of contact 11738 is detected by the contact intensity sensors in the device. In response to the detection of an increase in the intensity of contact 11738 above the object-selection threshold (with the intensity that is above the object-selection threshold represented by the densely dotted background in contact 11738 and the intensity meter shown in
While the intensity of contact 11738 remains above an object-release threshold and user interface object 11732-2 remains selected, the user moves contact 11738 on touch-sensitive display 112. In response to detection of the movement of contact 11738, user interface object 11732-2 is moved across user interface 11736 in accordance with the movement of contact 11738; user interface object 11732-2 is dragged across user interface 11736 in accordance with the movement of contact 11738. For example, as shown in
While user interface object 11732-2 is located at the new position in user interface 11736, as shown in
Returning to
While user interface object 11732-2 is located at the new position over window 11734, as shown in
As described below, the method 11800 provides an intuitive way to relocate a user interface object. The method reduces the cognitive burden on a user when relocating user interface objects, thereby creating a more efficient human-machine interface. For battery-operated electronic devices, enabling a user to relocate a user interface object faster and more efficiently conserves power and increases the time between battery charges.
The device displays (11802) a user interface object on the display.
The device detects (11804), on the touch-sensitive surface, a contact (e.g., a finger contact or a stylus contact) having an intensity above an object-selection threshold (e.g., “ITL”). The device can, using the one or more sensors, detect an intensity of a contact on the touch-sensitive surface (e.g., touchpad 355). In
In some embodiments, prior to detecting movement of the contact across the touch-sensitive surface (11806), in response to detecting an increase in intensity of the contact above the object-selection threshold, the device generates (11808) a selection tactile output on the touch-sensitive surface indicative of the selection. The contact that is detected as having an intensity above the object-selection threshold has the intensity above the object-selection threshold as a result of an increase in intensity of the contact from below the object-selection threshold to above the object-selection threshold. When the increase in intensity above the object-selection threshold is detected prior to movement of the contact across the touch-sensitive surface, a user interface object is selected and a selection tactile output is generated in response.
For example, in
The device detects (11810) movement of the contact across the touch-sensitive surface, the movement corresponding to a preliminary portion of a gesture for performing an operation corresponding to the user interface object. For example, the movement is part of an operation to relocate an icon representing a file stored on the device, which will be completed if the icon is moved to a valid drop target and dropped onto the valid drop target (e.g., in response to detecting a liftoff of the contact or a reduction in intensity/pressure of the contact on the touch sensitive surface below an object-release threshold, such as “IT1” or “ITL”). For example, in
In some embodiments, for a first time period during the gesture, the user interface object is over an invalid drop target, and for a second time period during the gesture, the user interface object is over a valid drop target (11812). The device, during the first period of time, generates (11814) an invalid-drop-target tactile output on the touch-sensitive surface. The device, during the second period of time, generates (11816) a valid-drop-target tactile output on the touch-sensitive surface, where the invalid-drop-target tactile output is different from the valid-drop-target tactile output. In some situations, when a user interface object is moved, the user interface object is over a valid drop target or location for a time period and is over an invalid drop target or location for another time period (e.g., as illustrated in
For example, in
The device detects (11818) a reduction in intensity of the contact below an object-release threshold. When user interface object 11702-2 is moved to the target location for the drop, the user reduces the intensity of contact 11708 below the object-release threshold (e.g., reducing intensity of the contact while maintaining the contact or lifting the contact off of the touch-sensitive surface) to make the drop attempt, as shown in
In response to detecting the reduction in intensity below the object-release threshold (11820), in accordance with a determination that the movement meets predefined operation-performance criteria (11822), the device performs (11824) the operation and generates (11826) a first tactile output on the touch-sensitive surface. In accordance with a determination that the movement does not meet the predefined operation-performance criteria (11828), the device forgoes (11830) performance of the operation and generates (11832) a second tactile output on the touch-sensitive surface, where the second tactile output is different from the first tactile output. For example, in response to the reduction in intensity of contact 11708 or 11738 below the object-release threshold (e.g., a reduction in intensity of the contact while maintaining the contact or lifting the contact off of the touch-sensitive surface), an attempt to drop user interface object 11702-2 or 11732-2, respectively is made. Whether the drop is performed (e.g., if the drop is successful or not) depends on whether one or more predefined operation-performance criteria are satisfied. In some embodiments, for a drop operation, a criterion for operation performance is whether the drop target/location is valid. If user interface object 11702-2 or 11732-2 is over a valid drop target (and thus a determination is made that the predefined operation-performance criteria for a drop are satisfied), such as empty space in user interface 11700 or 11736, the drop is performed, as shown in
In some embodiments, the operation is an object drop operation (e.g., a file move operation such as dragging an icon representing a file to a new location in a file manager user interface), the movement corresponds to movement of the user interface object to a respective location in the user interface, the movement meets the predefined operation-performance criteria when the respective location is a valid drop location, and the movement does not meet the predefined operation-performance criteria when the respective location is an invalid drop location (11834). As described above, the movement of contact 11708 is, optionally, part of a gesture for performing a drag and drop operation in user interface object 11702-2 that corresponds to movement of user interface object 11702-2 to a new location in user interface 11700. When user interface object 11702-2 is moved to a valid drop target/location, the movement in the gesture is considered to satisfy the criteria for performing a drop operation, and the drop is performed, as shown in
In some embodiments, the first tactile output is generated by movement of the touch-sensitive surface that includes a first dominant movement component (e.g., movement corresponding to the initial impulse, ignoring any unintended resonance), the second tactile output is generated by movement of the touch-sensitive surface that includes a second dominant movement component, and the first dominant movement component and the second dominant movement component have a same movement profile (e.g., same waveform shape such as square, sine, squine, sawtooth or triangle; and/or approximately the same width/period) and different amplitudes (11836). The tactile output for a successful drop and the tactile output for an unsuccessful drop both have respective dominant movement components that have respective movement profiles (for example, the movement profiles depicted in
In some embodiments, the selection tactile output corresponds to a tactile sensation that simulates a down-click of a mechanical button, the first tactile output corresponds to a first tactile sensation that simulates an up-click of the mechanical button, and the second tactile output corresponds to a second tactile sensation that simulates an up-click of the mechanical button, where the second tactile sensation feels different (e.g., to a user of the device) from the first tactile sensation (11838). The selection tactile output corresponds to a simulation of, for example, a click-and-hold of a mouse button on mouse 350 or trackpad of device 300. The first tactile output corresponds to a tactile sensation that simulates a release of the mouse button (or trackpad button). The second tactile output corresponds to a tactile sensation that simulates the release of the mouse button (or trackpad button) in a way that is different from the first tactile output. The first and second tactile sensations optionally simulate the mouse button release differently by using, for example, different amplitudes and/or different movement profiles.
It should be understood that the particular order in which the operations in
In accordance with some embodiments,
The processing unit 11906 configured to: detect, on the touch-sensitive surface unit 11904, a contact having an intensity above an object-selection threshold (e.g., with the detecting unit 11908); detect movement of the contact across the touch-sensitive surface unit 11904, the movement corresponding to a preliminary portion of a gesture for performing an operation corresponding to the user interface object (e.g., with the detecting unit 11908); detect a reduction in intensity of the contact below an object-release threshold (e.g., with the detecting unit 11908); and in response to detecting the reduction in intensity below the object-release threshold: in accordance with a determination that the movement meets predefined operation-performance criteria: perform the operation (e.g., with the performing unit 11910); and generate a first tactile output on the touch-sensitive surface unit 11904 (e.g., with the generating unit 11912); and in accordance with a determination that the movement does not meet the predefined operation-performance criteria: forgo performance of the operation (e.g., with the performing unit 11910); and generate a second tactile output on the touch-sensitive surface unit 11904, wherein the second tactile output is different from the first tactile output (e.g., with the generating unit 11912).
In some embodiments, the operation is an object drop operation, the movement corresponds to movement of the user interface object to a respective location in the user interface, the movement meets the predefined operation-performance criteria when the respective location is a valid drop location, and the movement does not meet the predefined operation-performance criteria when the respective location is an invalid drop location.
In some embodiments, the processing unit 11906 is configured to, prior to detecting movement of the contact across the touch-sensitive surface unit 11904: in response to detecting an increase in intensity of the contact above the object-selection threshold, generate a selection tactile output on the touch-sensitive surface unit 11904 indicative of the selection (e.g., with the generating unit 11912).
In some embodiments, the selection tactile output corresponds to a tactile sensation that simulates a down-click of a mechanical button, the first tactile output corresponds to a first tactile sensation that simulates an up-click of the mechanical button, and the second tactile output corresponds to a second tactile sensation that simulates an up-click of the mechanical button, where the second tactile sensation feels different from the first tactile sensation.
In some embodiments, the first tactile output is generated by movement of the touch-sensitive surface unit 11904 that includes a first dominant movement component, the second tactile output is generated by movement of the touch-sensitive surface unit 11904 that includes a second dominant movement component, and the first dominant movement component and the second dominant movement component have a same movement profile and different amplitudes.
In some embodiments, for a first time period during the gesture, the user interface object is over an invalid drop target, for a second time period during the gesture, the user interface object is over a valid drop target, and the processing unit 11906 is configured to: during the first period of time generate an invalid-drop-target tactile output on the touch-sensitive surface unit 11904 (e.g., with the generating unit 11912), and during the second period of time generate a valid-drop-target tactile output on the touch-sensitive surface unit 11904, where the invalid-drop-target tactile output is different from the valid-drop-target tactile output (e.g., with the generating unit 11912).
The operations in the information processing methods described above are, optionally implemented by running one or more functional modules in information processing apparatus such as general purpose processors (e.g., as described above with respect to
The operations described above with reference to
Many electronic devices include a mouse or similar input device that provides left-click functionality and right-click functionality for activating different operations. As devices economize on the number of buttons and input devices, the left-click functionality and right-click functionality is, optionally, invoked using one input device, such as a trackpad. In existing methods, when either functionality is invoked using the one input device, the user is not given sufficient feedback indicating whether the activated operation was an operation not associated with a modifier input (e.g., a left-click operation) or an operation associated with a modifier input (e.g., a right-click operation). The embodiments below improve on the existing methods by providing different tactile output when device detects an input while a modifier input is detected than when the device detects a similar input while a modifier input is not detected. Thus, the device provides the user with tactile feedback indicating whether or not the modifier input was detected instead of or in addition to any visual or audible feedback indicating that the modifier input was detected. This additional (or alternative) feedback enables the user to operate the device more quickly and efficiently, thereby creating a more efficient human-machine interface.
Cursor 12004 is also displayed on user interface 12000. In some embodiments, cursor 12004 is a mouse pointer. Cursor 12004 is an example of a focus selector. In
The device includes one or more sensors that detect the intensity of contacts with touch-sensitive surface 451 (e.g., touchpad 355) of the device. In
The intensity of a contact (e.g., contact 12006) on touch-sensitive surface 451 is, optionally, increased or decreased by, for example, the user increasing or decreasing, respectively, the pressure on touch-sensitive surface 451 with the contact. The change in intensity of the contact is, optionally, detected by the sensors in the device.
In
In response to the detection of the decrease in intensity of contact 12006 below the second activation threshold (e.g., “IT1”), after detection of the increase in the intensity of contact 12006 above the first activation threshold (e.g., “ITL”), one or more operations associated with user interface object 12002-2, over which cursor 12004 is positioned, are, optionally, performed. In some embodiments, the operation(s) include displaying a new application window associated with user interface object 12002-2. For example, if user interface object 12002-2 is an icon (e.g., an application launch or shortcut icon) corresponding to an application, window 12008 for the corresponding application is, optionally, displayed on user interface 12000, as shown in
In some embodiments, user interface object 12002-2 is visually highlighted in response to the detection of the increase then decrease in intensity, or in response to the detection of the increase in intensity. Examples of visual highlighting include a different color or thicker borders (as shown in
Additionally, in response to detection of the decrease in the intensity of contact 12006 below the second activation threshold, after detection of the increase in the intensity of contact 12006 above the first activation threshold, a tactile output is generated on touch-sensitive surface 451. The tactile output is, optionally, generated in accordance with a movement profile (e.g., movement profiles illustrated in
Returning to
Another example of a modifier input is an additional contact that is detected on touch-sensitive surface 451 concurrently with contact 12006.
A further example of a modifier input is detection of the contact 12006 at a specific area on touch-sensitive surface 451, as opposed to an arbitrary location on touch-sensitive surface 451 outside of the specific area on the touch-sensitive surface.
In some embodiments, the defined area (e.g., area 12018) on touch-sensitive surface 451 for modifying the input is predefined, or it is, optionally, defined by the user (e.g., from a predefined set of choices). Further, it should be appreciated that the size and location of area 12018 as shown in
Additionally, in response to detection of the decrease in the intensity of contact 12006 below the second activation threshold (e.g., “IT1”), after concurrent detection of the increase in the intensity of contact 12006 above the first activation threshold (e.g., “ITL”) and a modifier input (e.g., press 12012 of modifier key 12010, contact 12016, detecting contact 12006 in area 12018 on touch-sensitive surface 451), a tactile output (e.g., a “modifier-active tactile output”) is generated on touch-sensitive surface 451. This tactile output (e.g., a “modifier-active tactile output”) corresponds to a different tactile sensation from the tactile sensation corresponding to a tactile output (e.g., a “no-modifier tactile output”) generated in response to detection of the decrease in intensity of contact 12006 below the second activation threshold without detection of a modifier input when the increase in intensity of contact 12006 above the first activation threshold is detected, as illustrated in
Thus, when an increase in the intensity of contact 12006 above the first activation threshold and a subsequent decrease in the intensity of contact 12006 below the second activation threshold are detected, the operation that is performed depends on whether a modifier input is detected while the increase in intensity above the first activation threshold is detected. In some embodiments, the operation(s) performed in response to detection of the intensity decrease, after detection of the intensity increase without a modifier input, correspond to operations associated with a left-click of a mouse (or similar input device), and the operation(s) performed in response to detection of the intensity decrease, after detection of the intensity increase with a modifier input, correspond to operations associated with a right-click of a mouse (or similar input device). Left-click operations include, for example, activating an application launch or shortcut icon, displaying an application window corresponding to an application associated with an icon, selecting an icon or other user interface object, and so on. Right-click operations include, for example, displaying a context menu (e.g., context menu 12014 or 12024).
In some other embodiments, the association is, optionally, reversed; the operation(s) performed in response to detection of the intensity decrease, after detection of the intensity increase without a modifier input, correspond to operations associated with a right-click of a mouse (or similar input device), and the operation(s) performed in response to detection of the intensity decrease, after detection of the intensity increase with a modifier input, correspond to operations associated with a left-click of a mouse (or similar input device).
Further, the tactile output that is generated in response to the detection of the decrease in the intensity of contact 12006, after detection of the increase in the intensity of contact 12006, depends on the detection of, or lack of, a modifier input along with the detection of the intensity increase. In some embodiments, the tactile output generated when a modifier input is detected (e.g., a “modifier-active tactile output”) is different from the tactile output generated when no modifier input is detected (e.g., a “no-modifier tactile output”) in amplitude, movement profile, or both.
In some embodiments, the operation that is performed, if any, in response to detection of the decrease in intensity of a contact after detection of the increase in intensity of the contact depends on the position of the focus selector (e.g., cursor 12004) when the increase in intensity is detected, as well as whether a modifier input was detected. In the examples described above with reference to
On the other hand,
As described above, different tactile outputs are, optionally, generated depending on whether a modifier input was detected.
In response to the detection of the decrease in intensity of contact 12056 below the second activation threshold, after detection of the increase in the intensity of contact 12056 above the first activation threshold, one or more operations associated with user interface object 12052-2, over which contact 12056 is detected, are, optionally, performed. For example, if user interface object 12052-2 is an icon (e.g., an application launch or shortcut icon) corresponding to an application, window 12058 for the corresponding application is displayed in user interface 12054, as shown in
Additionally, in response to detection of the decrease in the intensity of contact 12056 below the second activation threshold, after detection of the increase in the intensity of contact 12056 above the first activation threshold, a tactile output (e.g., a “no-modifier tactile output”) is generated on touch-sensitive display 112. The tactile output is, optionally, generated in accordance with a movement profile (e.g., movement profiles illustrated in
Returning to
Additionally, in response to detecting the decrease in the intensity of contact 12056 below the second activation threshold, after concurrent detection of the increase in the intensity of contact 12056 above the first activation threshold and a modifier input (e.g., contact 12060), the device generates a tactile output (e.g., a “modifier-active tactile output”) on touch-sensitive display 112. In some embodiments, this tactile output (e.g., a “modifier-active tactile output”) corresponds to a different tactile sensation from the tactile sensation corresponding to a tactile output (e.g., a “no-modifier tactile output”) generated in response to detection of the decrease in intensity of contact 12056 below the second activation threshold without detection of a modifier input when the increase in intensity of contact 12056 above the first activation threshold is detected.
As described below, the method 12100 provides an intuitive way to perform operations based on modified inputs. The method reduces the cognitive burden on a user when providing feedback corresponding to modifier inputs, thereby creating a more efficient human-machine interface. For battery-operated electronic devices, enabling a user to perform operations based on modified inputs faster and more efficiently conserves power and increases the time between battery charges.
The device detects (12102) a contact (e.g., a finger contact) on the touch-sensitive surface. For example, contact 12006 (
The device detects (12104) an increase in intensity of the contact above a first activation threshold (e.g., “ITL”). In some embodiments, the first activation threshold is an “increasing-intensity” activation threshold that indicates a threshold at which a tactile output is generated when the intensity of the contact is increasing. The intensity of contact 12006, for example, is, optionally, increased from a level below the first activation threshold (e.g.,
After detecting the increase in intensity of the contact above the first activation threshold, the device detects (12106) a reduction in intensity of the contact below a second activation threshold (e.g., “IT1”). In some embodiments, the second activation threshold is a “decreasing-intensity” activation threshold that indicates a threshold at which a tactile output is generated when the intensity of the contact is decreasing. The intensity of contact 12006, for example, is, optionally, decreased to a level below the second activation threshold (e.g.,
In some embodiments, the second activation threshold is (12108) different from the first activation threshold (e.g., the first activation threshold is “ITL” and the second activation threshold is “IT1”). In some embodiments, the second activation threshold is (12110) the same as the first activation threshold (e.g., the first activation threshold is “ITL” and the second activation threshold is also “ITL”).
In response to detecting the reduction in intensity of the contact below the second activation threshold (12112), in accordance with a determination that a modifier input was detected while detecting the increase in intensity of the contact above the first activation threshold (12114), the device performs a first operation (12116) and generates (12118) a first tactile output on the touch-sensitive surface. For example, in
In some embodiments, the modifier input is (12120) an input selected from the set consisting of: a key press of a modifier key, an additional contact on the touch-sensitive surface, and detecting the contact on a predefined portion of the touch-sensitive surface designated to modify inputs (e.g., a predefined “right click” region on a touchpad or a predefined region of a touch-sensitive mouse that corresponds to a “right mouse button”). The modifier input is, optionally, for example, press 12012 of modifier key 12010 (
In response to detecting (12112) the reduction in intensity of the contact below the second activation threshold (e.g., “IT1”), in accordance with a determination that the modifier input was not detected (12122) while detecting the increase in intensity of the contact above the first activation threshold (e.g., “ITL”), the device performs (12124) second operation different from the first operation and generates (12126) a second tactile output (e.g., a “no-modifier tactile output”) on the touch-sensitive surface, where the second tactile output is different from the first tactile output. For example, in
In some embodiments, the first operation corresponds (12128) to a right-click operation (e.g., an operation corresponding to clicking on the rightmost button of a two or three button mouse or trackpad, sometimes called a “right-click mouse operation”), and the second operation corresponds to a left-click operation (e.g., an operation corresponding to clicking on the leftmost button of a two or three button mouse or trackpad, sometimes called a “left-click mouse operation”). For example, the displaying of context menu 12014 or 12024 or 12062 is a right-click operation, and the displaying of window 12008 (
In some embodiments, the contact is detected on the touch-sensitive surface while a focus selector is over an icon on the display, the first operation includes (12130) displaying a context menu that includes selectable options to perform operations associated with the icon, and the second operation includes displaying a new application window associated with the icon (e.g., launching an application or, if the application has already been launched, opening a new window of the application that includes a document associated with the icon). For example, in
In some embodiments, the first tactile output is (12132) generated by movement of the touch-sensitive surface that includes a first dominant movement component (e.g., movement corresponding to the initial impulse, ignoring any unintended resonance), the second tactile output is generated by movement of the touch-sensitive surface that includes a second dominant movement component, and the first dominant movement component and the second dominant movement component have a same movement profile (e.g., same waveform shape such as square, sine, squine, sawtooth, triangle, or approximately the same width/period) and different amplitudes, as shown in
It should be understood that the particular order in which the operations in
In accordance with some embodiments,
As shown in
The processing unit 12206 is configured to: detect a contact on the touch-sensitive surface unit 12204 (e.g., with the detecting unit 12208); detect an increase in intensity of the contact above a first activation threshold (e.g., with the detecting unit 12208); after detecting the increase in intensity of the contact above the first activation threshold, detect a reduction in intensity of the contact below a second activation threshold (e.g., with the detecting unit 12208); and in response to detecting the reduction in intensity of the contact below the second activation threshold: in accordance with a determination that a modifier input was detected while detecting the increase in intensity of the contact above the first activation threshold: perform a first operation (e.g., with the performing unit 12210) and generate a first tactile output on the touch-sensitive surface unit 12204 (e.g., with the generating unit 12212); and in accordance with a determination that the modifier input was not detected while detecting the increase in intensity of the contact above the first activation threshold: perform a second operation different from the first operation (e.g., with the performing unit 12210) and generate a second tactile output on the touch-sensitive surface unit 12204, wherein the second tactile output is different from the first tactile output (e.g., with the generating unit 12212).
In some embodiments, the modifier input is an input selected from the set consisting of: a key press of a modifier key, an additional contact on the touch-sensitive surface unit 12204, and detection of the contact on a predefined portion of the touch-sensitive surface unit 12204 designated to modify inputs.
In some embodiments, the first operation corresponds to a right-click operation, and the second operation corresponds to a left-click operation.
In some embodiments, the contact is detected on the touch-sensitive surface unit 12204 while a focus selector is over an icon on the display unit 12202, the first operation includes displaying a context menu that includes selectable options to perform operations associated with the icon, and the second operation includes displaying a new application window associated with the icon.
In some embodiments, the second activation threshold is different from the first activation threshold.
In some embodiments, the second activation threshold is the same as the first activation threshold.
In some embodiments, the first tactile output is generated by movement of the touch-sensitive surface unit 12204 that includes a first dominant movement component, the second tactile output is generated by movement of the touch-sensitive surface unit 12204 that includes a second dominant movement component, and the first dominant movement component and the second dominant movement component have a same movement profile and different amplitudes.
The operations in the information processing methods described above are, optionally implemented by running one or more functional modules in information processing apparatus such as general purpose processors (e.g., as described above with respect to
The operations described above with reference to
Many electronic devices have graphical user interfaces that include user interface objects, such as virtual buttons and switches. In some circumstances, a user activates a user interface object to perform an operation or adjust a parameter or property. To make a virtual button or switch easier to use, the virtual object optionally mimics the behavior of the corresponding physical object. For example, haptic sensations are, in some circumstances, felt when a virtual switch is operated, with the haptic sensations mimicking the sensations of the corresponding physical switch, such as mimicking the clicks of a physical actuator mechanism (e.g., a mouse button) that activates the switch. But physical objects, such as real buttons and switches, will, in some circumstances provide excessive tactile feedback in some circumstances, and too little feedback in others. In such situations, a virtual object that just mimicked sensations of the corresponding physical object would also provide too much (or too little) feedback. But a virtual object does not have to be provided with haptic feedback that just mimics tactile sensations from the corresponding physical object. The embodiments described below provide tactile feedback that corresponds to changes in activation states of a virtual button, switch or other user interface object, rather than tactile feedback that corresponds 1:1 to tactile sensations that would be felt by a user when using a physical control to perform similar operations. When tactile sensations are provided for activation state changes of the virtual button or switch, the user can better discern the activation state of the virtual button without being distracted or confused by too much or too little tactile feedback. This improved haptic feedback for virtual objects enables the user to operate the device more quickly and efficiently, thereby creating a more efficient human-machine interface.
A respective rocker switch 12304 optionally has a “minus” portion for reducing the value of a parameter associated with the rocker switch, indicated by the minus sign, and a “plus” portion for increasing the value of a parameter associated with the rocker switch, indicated by a plus sign. A rocker switch 12304 is, optionally, activated when a focus selector (e.g., cursor 12308) is positioned over a portion of the rocker switch and an intensity of a contact associated with the focus selector changes. In some embodiments, the corresponding value decreases or increases depending on the portion over which the focus selector is positioned. When the focus selector is positioned over the “minus” portion, the corresponding value decreases when the rocker switch is activated. When the focus selector is positioned over the “plus” portion, the corresponding value increases when the rocker switch is activated. In
While rocker switch 12304-1 is not activated, rocker switch 12304-1 is displayed in a neutral position, as shown
The intensity of contact 12310 is, in some circumstances, increased further. While contact 12310 continues to be detected on touch-sensitive surface 451 and cursor 12308 is still positioned over the “minus” portion of rocker switch 12304-1, the device detects an increase in intensity of contact 12310 from the first intensity (e.g., an intensity between ITL and ITD) to a second, higher intensity that is above a deep press intensity threshold (e.g., “ITD”). In response to this increase in intensity, rocker switch 12304-1 changes to a further activation state, as shown in
The intensity of contact 12310 is, in some circumstances, then decreased below the light press intensity threshold (e.g., “ITL”) quickly (e.g., from the second intensity above ITD to an intensity below ITL in 0.05 seconds or less). In response to the detection of the decrease in intensity below the light press intensity threshold (e.g., “ITL”), the brightness value stops changing, and the brightness of image 12302 stops changing, as shown in
Rocker switch 12304-1 includes multiple activation states. In some embodiments, the activation states for rocker switch 12304-1 are different brightness levels as the brightness value changes. In some embodiments, when the brightness value is decreasing at the “slow” rate (e.g., −1 per second), each brightness value increment based on the rate of decrease (e.g., −1, −2, −3, so forth) is considered to be an activation state, and when the brightness value is decreasing at the “fast” rate (e.g., −10 per second), each brightness value increment based on the rate of decrease (e.g., each −10th increment) is considered to be an activation state. In some of these embodiments, at each activation state, a tactile output is, optionally, generated on touch-sensitive surface 451. For example, when the value decreases from −1 to −2, then to −3 and then to −13, tactile outputs are, optionally, generated at −2, −3, and −13.
In some other embodiments, the activation states are the different rates at which the brightness value changes. For example, the “slow” rate is one activation state, the “fast” rate is another activation state, and cessation of activation of rocker switch 12304-1 (e.g., a rate of 0 per second) is another activation state of the rocker switch. A tactile output is, optionally, generated whenever the rate of decrease or increase for the brightness value changes or when rocker switch 12304-1 is activated or ceases to be activated. For example, when the brightness value is not changing, rocker switch 12304-1 is in a first (“neutral”) activation state; when the brightness value is decreasing at the “slow” rate (e.g., −1 per second), rocker switch 12304-1 is in a second (“light press”) activation state; and when the brightness value is decreasing at the “fast” rate (e.g., −10 per second), rocker switch 12304-1 is in a third (“deep press”) activation state. At each activation state, a tactile output is, optionally, generated on touch-sensitive surface 451. For example, when the activation state changes from the first (“neutral”) activation state shown in
In some embodiments, the tactile output generated in response to a change in activation state optionally varies depending on whether the change in activation state was in response to an increase or a decrease in the intensity of contact 12310. A tactile output generated for an activation state change in response to an increase in intensity is, optionally, different from a tactile output generated for an activation state change in response to a decrease in intensity. The tactile outputs are, optionally, different in movement profile, amplitude, or both. In some embodiments, a tactile output generated for an activation state change in response to an increase in intensity corresponds to a tactile sensation that simulates a down-click (e.g., press-and-hold) of a physical button (e.g., a mouse button), and a tactile output generated for an activation state change in response to a decrease in intensity corresponds to a tactile sensation that simulates an up-click (e.g., release from a press-and-hold) of a physical button.
Returning to
As shown in
As shown in
As described above, the activation states of rocker switch 12304-1 optionally correspond to the increments of change in the value, in accordance with the rate of change, or the different rates of change. A tactile output is, optionally, generated whenever one activation state changes to another (e.g., one increment to the next or one rate of change to the next).
A respective rocker switch 12324 optionally has a “minus” portion for reducing the value of a parameter associated with the rocker switch, indicated by the minus sign, and a “plus” portion for increasing the value of a parameter associated with the rocker switch, indicated by a plus sign. A rocker switch 12324 is, optionally activated when a contact is positioned over a portion of the rocker switch and an intensity of a contact associated with the focus selector changes. In some embodiments, the corresponding value decreases or increases depending on the portion over which the contact is positioned. When the contact is positioned over the “minus” portion, the corresponding value decreases when the rocker switch is activated. When the contact is positioned over the “plus” portion, the corresponding value increases when the rocker switch is activated. In
While rocker switch 12324-1 is not activated, rocker switch 12324-1 is displayed in a neutral position, as shown
The intensity of contact 12330 is, in some circumstances, increased further. While contact 12330 continues to be detected on touch-sensitive display 112 over the “minus” portion of rocker switch 12324-1, the device detects an increase in intensity of contact 12330 from the first intensity (e.g., an intensity between ITL and ITD) to a second, higher intensity that is above a deep press intensity threshold (e.g., “ITD”). In response to this increase in intensity, rocker switch 12324-1 changes to a further activation state, as shown in
The intensity of contact 12330 is, in some circumstances, then decreased below the light press intensity threshold (e.g., “ITL”) quickly (e.g., from the second intensity above ITD to an intensity below ITL in 0.05 seconds or less). In response to the detection of the decrease in intensity below the light press intensity threshold (e.g., “ITL”), the brightness value stops changing, and the brightness of image 12322 stops changing, as shown in
Rocker switch 12324-1 includes multiple activation states. In some embodiments, the activation states for rocker switch 12324-1 are different brightness levels as the brightness value changes. In some embodiments, when the brightness value is decreasing at the “slow” rate (e.g., −1 per second), each brightness value increment based on the rate of decrease (e.g., −1, −2, −3, so forth) is considered to be an activation state, and when the brightness value is decreasing at the “fast” rate (e.g., −10 per second), each brightness value increment based on the rate of decrease (e.g., each −10th increment) is considered to be an activation state. In some of these embodiments, at each activation state, a tactile output is, optionally, generated on touch-sensitive display 112. For example, when the value decreases from −1 to −2, then to −3 and then to −13, tactile outputs are, optionally, generated at −2, −3, and −13.
In some other embodiments, the activation states are the different rates at which the brightness value changes. For example, the “slow” rate is one activation state, the “fast” rate is another activation state, and cessation of activation of rocker switch 12324-1 (e.g., a rate of 0 per second) is another activation state. A tactile output is, optionally, generated whenever the rate of decrease or increase for the brightness value changes or when rocker switch 12324-1 is activated or ceases to be activated. For example, when the brightness value is not changing, rocker switch 12324-1 is in a first (“neutral”) activation state; when the brightness value is decreasing at the “slow” rate (e.g., −1 per second), rocker switch 12324-1 is in a second (“light press”) activation state; and when the brightness value is decreasing at the “fast” rate (e.g., −10 per second), rocker switch 12324-1 is in a third (“deep press”) activation state. At each activation state, a tactile output is, optionally, generated on touch-sensitive display 112. For example, when the activation state changes from the first (“neutral”) activation state shown in
In some embodiments, the tactile output generated in response to a change in activation state optionally varies depending on whether the change in activation state was in response to an increase or a decrease in the intensity of contact 12330. A tactile output generated for an activation state change in response to an increase in intensity is, optionally, different from a tactile output generated for an activation state change in response to a decrease in intensity. The tactile outputs is, optionally, different in movement profile, amplitude, or both. In some embodiments, a tactile output generated for an activation state change in response to an increase in intensity corresponds to a tactile sensation that simulates a down-click (e.g., press-and-hold) of a physical button (e.g., a mouse button), and a tactile output generated for an activation state change in response to a decrease in intensity corresponds to a tactile sensation that simulates an up-click (e.g., release from a press-and-hold) of a physical button.
Returning to
As shown in
As shown in
As described above, the activation states of rocker switch 12324-1 optionally correspond to the increments of change in the value, in accordance with the rate of change, or the different rates of change. A tactile output is, optionally, generated whenever one activation state changes to another (e.g., one increment to the next or one rate of change to the next).
As described below, the method 12400 provides a more efficient way to provide feedback when changing activation states of a user interface object. The method reduces the cognitive burden on a user when changing activation states of a user interface object, thereby creating a more efficient human-machine interface. For battery-operated electronic devices, enabling a user to change activation states of a user interface object faster and more efficiently conserves power and increases the time between battery charges.
The device displays (12402) a user interface object on the display, where the user interface object has a plurality of activation states.
The device detects (12404) a contact (e.g., a finger contact) on the touch-sensitive surface. As shown in
The device detects (12406) an increase of intensity of the contact on the touch-sensitive surface from a first intensity (e.g., an intensity between ITL and ITD) to a second intensity (e.g., an intensity above ITD).
In response to detecting the increase in intensity (12408), the device changes (12410) activation states of the user interface object M times, where M is a positive integer, and generates (12412) a tactile output on the touch-sensitive surface corresponding to each change in activation state of the user interface object. For example, in
As another example, in
In some embodiments, the user interface object has a first appearance in a first activation state; the user interface object has a second appearance, different from the first appearance, in a second activation state; and in response to detecting the increase in intensity, the device displays (12414) an animation of the user interface object transitioning from the first appearance to the second appearance. Rocker switch 12304-1 appears in a plurality of activation states in
The device detects (12416) a decrease of intensity of the contact from the second intensity to the first intensity. As shown in
In response to the detection of the decrease in intensity (12418), the device changes (12420) activation states of the user interface object N times, where N is a positive integer, and generates (12424) a tactile output on the touch-sensitive surface corresponding to each change in activation state of the user interface object, where N is different from M. For example, in
In some embodiments, a distinct tactile output is a tactile output that was generated to provide feedback corresponding to a user interface event (e.g., a change in the activation state of the user interface object, such as activation of a button or other control). In some embodiments, the touch-sensitive surface is moved by an actuator in accordance with a separate waveform for each user interface event. The waveforms for different user interface events optionally overlap, but a waveform that was generated to provide a tactile feedback for a particular user interface event (e.g., activation of a button or change in activation state of a control such as a rocker switch) will still generate a distinct tactile output. In some embodiments, an activation state of a user interface object corresponds to an operational state of an application on the electronic device, and changing activation states of the user interface object changes operational states of the application. If the user interface object is an adjustable control interface such as a multi-state button, rocker-switch or slider, the activation states of the button/switch/slider are typically displayed by changing the visual appearance of the adjustable control interface (e.g., as a change in shading of a button, a change in rotation of a rocker switch or a change in position of a slider). Additionally, when the activation state of the button/switch/slider is changed, operation of an application associated with the button/switch/slider is changed accordingly. For example, if a rocker switch controls the brightness of an image, the activation states of the rocker switch correspond to different brightness levels of the image, and when the rocker switch changes from a first activation state to a second activation state, the brightness of the image changes from a first brightness level corresponding to the first activation state of the rocker switch to a second brightness level corresponding to the second activation state of the rocker switch. In some embodiments, activation states correspond to image property levels (e.g., hue, saturation, exposure, brightness, contrast), content navigation states (e.g., channel selection, forward navigation, backward navigation, frame-by-frame navigation), system property adjustments (e.g., volume control, screen brightness, date/time settings), rates of change (e.g., the rate at which an adjustable parameter value increases or decreases, speed of forward or backward seeking through video or audio), or other adjustable properties.
In some embodiments, M is (12424) greater than N. In
In some embodiments, M is (12426) less than N. In
In some embodiments, M is (12428) equal to 1 and N is equal to 2. In
In some embodiments, M is equal to 2 and N is (12430) equal to 1. In
In some embodiments, at least one tactile output generated in response to detecting the increase in intensity corresponds (12432) to a tactile sensation that simulates a down-click of a physical actuator mechanism (e.g., a simulation of the physical “down-click sensation” generated by the mechanical button apparatus of a physical button when a user activates the physical button), and at least one tactile output generated in response to detecting the decrease in intensity corresponds to a tactile sensation that simulates an up-click of a physical actuator mechanism (e.g., a simulation of the physical “up-click sensation” generated by the mechanical button apparatus of a physical button when a user activates the physical button). For example, the tactile outputs generated for the activation state changes in response to the detection of the increase in intensity of contact 12310 or 12330 correspond to tactile sensations that simulate a down-click, and the tactile outputs generated for the activation state changes in response to the detection of the decrease in intensity of contact 12310 or 12330 correspond to tactile sensations that simulate an up-click.
While M and N have been discussed herein as positive integers, in some circumstances M is zero (e.g., no activation states of the user interface object are changed in response to detecting the increase in intensity of the contact) and/or N is zero (e.g., no activation states of the user interface object are changed in response to detecting the decrease in intensity of the contact). Additionally, while M has been described as being different from N, in some circumstances M is equal to N (e.g., the number of activation states that are changed in response to detecting the increase in intensity of the contact is the same as the number of activation states that are changed in response to detecting the decrease in intensity of the contact).
It should be understood that the particular order in which the operations in
In accordance with some embodiments,
As shown in
The processing unit 12506 is configured to: detect a contact on the touch-sensitive surface unit 12504 (e.g., with the detecting unit 12508); detect an increase of intensity of the contact on the touch-sensitive surface unit 12504 from a first intensity to a second intensity (e.g., with the detecting unit 12508); in response to detecting the increase in intensity: change activation states of the user interface object M times, where M is a positive integer (e.g., with the changing unit 12510), and generate a tactile output on the touch-sensitive surface unit 12504 corresponding to each change in activation state of the user interface object (e.g., with the generating unit 12512); detect a decrease of intensity of the contact from the second intensity to the first intensity (e.g., with the detecting unit 12508); and in response to detecting the decrease in intensity: change activation states of the user interface object N times, where N is a positive integer (e.g., with the changing unit 12510), and generate a tactile output on the touch-sensitive surface unit 12504 corresponding to each change in activation state of the user interface object, where N is different from M (e.g., with the generating unit 12512).
In some embodiments, the user interface object has a first appearance in a first activation state, the user interface object has a second appearance, different from the first appearance, in a second activation state, and the processing unit 12506 is configured to: in response to detecting the increase in intensity, enable display of an animation of the user interface object transitioning from the first appearance to the second appearance (e.g., with the display enabling unit 12514).
In some embodiments, M is greater than N.
In some embodiments, M is less than N.
In some embodiments, M is equal to 1 and N is equal to 2.
In some embodiments, M is equal to 2 and N is equal to 1.
In some embodiments, at least one tactile output generated (e.g., with the generating unit 12512) in response to detecting the increase in intensity corresponds to a tactile sensation that simulates a down-click of a physical actuator mechanism, and at least one tactile output generated (e.g., with the generating unit 12512) in response to detecting the decrease in intensity corresponds to a tactile sensation that simulates an up-click of a physical actuator mechanism.
The operations in the information processing methods described above are, optionally implemented by running one or more functional modules in information processing apparatus such as general purpose processors (e.g., as described above with respect to
The operations described above with reference to
Many electronic devices have graphical user interfaces that include user interface objects, such as buttons and switches. In some circumstances, a user activates a user interface object to perform an operation or adjust a parameter or property. In some devices, a tactile sensation is, in some circumstances, perceived by the user for corresponding physical inputs, such as clicks of a physical actuator mechanism (e.g., a mouse button) that activate a switch. To make a virtual button or switch easier to use, the virtual object optionally mimics the behavior of the corresponding physical object. For example, haptic sensations is, in some circumstances, felt when a virtual switch is operated, with the haptic sensations mimicking the sensations of the corresponding physical switch, such as mimicking the clicks of a physical actuator mechanism (e.g., a mouse button) that activates the switch. But physical objects, such as real buttons and switches, provide, in some circumstances, excessive tactile feedback in some situations, and too little feedback in others. In such situations, a virtual object that just mimicked sensations of the corresponding physical object would also provide too much (or too little) feedback. But a virtual object does not have to be provided with haptic feedback that just mimics tactile sensations from the corresponding physical object. The embodiments described below provide tactile feedback that is not tied to actuations of a physical actuator mechanism. For example, tactile sensations related to activation state changes are, optionally, provided. When tactile sensations not tied to physical actuations are provided for, the user can better discern the activation state of the virtual button without being distracted by too much or too little tactile feedback. If a user interface object goes through two or more activation state changes in rapid succession, haptic feedback does not need to be provided for each change in activation state, whereas the corresponding physical object would provide more tactile feedback. Also, the number of times that haptic feedback is provided as a contact increases in intensity does not have to be the same as the number of times that haptic feedback is provided as the contact decreases in intensity. This asymmetry in the number of times that haptic feedback is provided as a contact increases in intensity or decreases in intensity is, in some embodiments, dependent on how rapidly the contact intensity changes, and, in other embodiments, independent of how rapidly the contact intensity changes. This additional (or alternative) feedback enables the user to operate the device more quickly and efficiently, thereby creating a more efficient human-machine interface.
A respective rocker switch 12604 optionally has a “minus” portion for reducing the value of a parameter associated with the rocker switch, indicated by the minus sign, and a “plus” portion for increasing the value of a parameter associated with the rocker switch, indicated by a plus sign. A rocker switch 12604 is, optionally, activated when a focus selector (e.g., cursor 12608) is positioned over either portion of the rocker switch and an intensity of a contact associated with the focus selector changes. In some embodiments, the corresponding value decreases or increases depending on the portion over which the focus selector is positioned. When the focus selector is positioned over the “minus” portion, the corresponding value decreases when the rocker switch is activated. When the focus selector is positioned over the “plus” portion, the corresponding value increases when the rocker switch is activated. In
When rocker switch 12604-1 is not activated, rocker switch 12604-1 is displayed in a neutral position, as shown
The intensity of contact 12610 is, in some circumstances, increased further. While contact 12610 continues to be detected on touch-sensitive surface 451 and cursor 12608 is still positioned over the “minus” portion of rocker switch 12604-1, the device detects an increase in intensity of contact 12610 from the light press intensity (e.g., an intensity between ITL and ITD) to a second, higher intensity that is above a deep press intensity threshold (e.g., “ITD”). In response to this increase in intensity, rocker switch 12604-1 changes to a further activation state, as shown in
The intensity of contact 12610 is, in some circumstances, increased even further. While contact 12610 continues to be detected on touch-sensitive surface 451 and cursor 12608 is still positioned over the “minus” portion of rocker switch 12604-1, the intensity of contact 12610 is increased from the first deep press intensity (e.g., an intensity above ITD shown in
From the second deep press intensity, the intensity of contact 12610 is, in some circumstances, increased even further. Depending on the implementation, the rate at which the brightness level changes optionally does or does not change further in response to the detection of the increase in intensity, as the rate of change at the second deep press intensity is, optionally, a predefined lower-bound (or upper-bound, for a rate of change where the brightness level increases) rate of change.
The intensity of contact 12610 is, optionally, decreased from the second deep press intensity to the first deep press intensity (e.g., an intensity above ITD but below the second deep press intensity). While contact 12610 continues to be detected on touch-sensitive surface 451 and cursor 12608 is still positioned over the “minus” portion of rocker switch 12604-1, the device detects a decrease in intensity of contact 12610 from the second deep press intensity to the first deep press intensity, as shown in
The intensity of contact 12610 is, optionally, further decreased from the first deep press intensity to the light press intensity (e.g., an intensity between ITL and ITD). While contact 12610 continues to be detected on touch-sensitive surface 451 and cursor 12608 is still positioned over the “minus” portion of rocker switch 12604-1, the device detects a decrease in the intensity of contact 12610 from the first deep press intensity to the light press intensity, as shown in
The intensity of contact 12610 is, optionally, further decreased from the light press intensity (e.g., an intensity between ITL and ITD) to an intensity below the light press intensity threshold (e.g., “ITL”). While contact 12610 continues to be detected on touch-sensitive surface 451 and cursor 12608 is still positioned over the “minus” portion of rocker switch 12604-1, the device detects a decrease in intensity of contact 12610 from the light press intensity to an intensity below the light press intensity threshold (e.g., “ITL”), as shown in
A user interface object, such as rocker switch 12604-1, optionally has multiple activation states. For example, the activation states for rocker switch 12604-1 are the different rates at which the brightness level changes. For example, when rocker switch 12604-1 is in a “neutral activation state,” while the contact has an intensity below a light press intensity threshold (e.g., an intensity below ITL), the brightness level is not changing, as shown in
When the intensity of contact 12610 changes, rocker switch 12604-1 optionally changes from the activation state at the starting intensity (e.g., a neutral activation state, as shown in
In some embodiments, from the activation state at the starting intensity, rocker switch 12604-1 optionally changes to zero or more intermediate activation states on the way to changing to the activation state at the destination intensity. For example, when the intensity of contact 12610 increases from below the light press intensity threshold (e.g., “ITL”) to the second deep press intensity, from the activation state at the intensity below the light press intensity threshold (e.g., “ITL”), rocker switch 12604-1 changes to the activation state at the light press intensity (e.g., corresponding to the light press activation state) and then to the activation state at the first deep press intensity (e.g., corresponding to the first deep press activation state), on the way to changing to the activation state at the second deep press intensity (e.g., the second deep press activation state). The activation states at the first and second intensities (e.g., the light press activation state and the first deep press activation state) are the intermediate activation states between the activation state at the intensity below the light press intensity threshold (e.g., “ITL”) and the activation state at the second deep press intensity.
In some embodiments, the number of intermediate activation states between a starting activation state and a destination activation state for an increase in intensity is different than the number of intermediate activation states between a starting activation state and a destination activation state for a decrease in intensity. For example, referring back to
In response to the increase in the intensity of contact 12610, one or more distinct tactile outputs are, optionally, generated on touch-sensitive surface 451. For example, as the intensity increases from below the light press intensity threshold (e.g., “ITL”) to the second deep press intensity, as described above with reference to
In response to the decrease in the intensity of contact 12610, one or more distinct tactile outputs are, optionally, generated on touch-sensitive surface 451. For example, as the intensity decreases from the second deep press intensity to an intensity below the light press intensity threshold (e.g., “ITL”), as described above with reference to
For example, the M tactile outputs are, optionally, tactile outputs generated at increments of the brightness level or increments of the change in brightness level as the brightness level changes in response to the detection of the increase in the intensity of contact 12610. For example, a tactile output is, optionally, generated at each of the 10's in the brightness level or at each 10th level from the starting level. Similarly, the N tactile outputs are, optionally, tactile outputs generated at increments of the brightness level or increments of the change in brightness level as the brightness level changes in response to the detection of the decrease in intensity of contact 12610. In this example, the tactile outputs are not necessarily generated in response to transitions in activation state.
In some embodiments, the M or N tactile outputs are generated for changes or transitions in activation state; the tactile outputs mark the changes or transitions in activation state. For example, a tactile output is, optionally, generated at each change in the rate of change in the brightness level as the intensity of contact 12610 increases (e.g., each of the M tactile outputs correspond to respective changes in activation state), and a tactile output is, optionally, generated at each change in the rate of change in the brightness level as the intensity of contact 12610 decreases (e.g., each of the N tactile outputs correspond to respective changes in activation state). In some embodiments, when a change or transition in activation state is skipped or not noticeable to the user (e.g., because the rate of increase or decrease in the intensity of contact 12610 occurs faster than a rate of change threshold), generation of one or more corresponding tactile sensations is, optionally forgone (e.g., the one or more corresponding tactile sensations associated with corresponding changes in activation state are not generated by the device even though the changes in activation state occur).
In some embodiments, a tactile output varies depending on whether the tactile output was generated in response to an increase or a decrease in the intensity of contact 12610. A tactile output generated in response to detection of an increase in the intensity of contact 12610 is, optionally, different from a tactile output generated in response to detection of a decrease in the intensity of contact 12610. The tactile outputs are, optionally, different in movement profile, amplitude, or both. In some embodiments, a tactile output generated in response to detection of an increase in the intensity of contact 12610 corresponds to a tactile sensation that simulates a down-click (e.g., press-and-hold) of a physical button (e.g., a mouse button), and a tactile output generated in response to detection of a decrease in the intensity of contact 12610 corresponds to a tactile sensation that simulates an up-click (e.g., release from a press-and-hold) of the physical button.
A respective rocker switch 12624 optionally has a “minus” portion, for reducing the value of a parameter associated with the rocker switch indicated by the minus sign, and a “plus” portion for increasing the value of a parameter associated with the rocker switch, indicated by a plus sign. A rocker switch 12624 is, optionally, activated when a contact is positioned over either portion of the rocker switch and an intensity of a contact associated with the focus selector changes. In some embodiments, the corresponding value decreases or increases depending on the portion over which the contact is positioned. When the contact is positioned over the “minus” portion, the corresponding value decreases when the rocker switch is activated. When the contact is positioned over the “plus” portion, the corresponding value increases when the rocker switch is activated. In
When rocker switch 12624-1 is not activated, rocker switch 12624-1 is displayed in a neutral position, as shown
The intensity of contact 12630 is, in some circumstances, increased further. While contact 12630 continues to be detected on touch-sensitive display 112 over the “minus” portion of rocker switch 12624-1, the device detects an increase in intensity of contact 12630 from the light press intensity (e.g., an intensity between ITL and ITD) to a second, higher intensity that is above a deep press intensity threshold (e.g., “ITD”). In response to this increase in intensity, rocker switch 12624-1 changes to a further activation state, as shown in
The intensity of contact 12630 is, in some circumstances, increased even further. While contact 12630 continues to be detected on touch-sensitive display 112 over the “minus” portion of rocker switch 12624-1, the intensity of contact 12630 is increased from the first deep press intensity (e.g., an intensity above ITD) shown in
From the second deep press intensity, the intensity of contact 12630 is, in some circumstances, increased even further. Depending on the implementation, the rate at which the brightness level changes optionally do or do not change further in response to the detection of the increase in intensity, as the rate of change at the second deep press intensity is, optionally, a predefined lower-bound (or upper-bound, for a rate of change where the value increases) rate of change.
The intensity of contact 12630 is, optionally, decreased from the second deep press intensity to the first deep press intensity (e.g., an intensity above ITD) but below the second deep press intensity). While contact 12630 continues to be detected on touch-sensitive display 112 over the “minus” portion of rocker switch 12624-1, the device detects a decrease in intensity of contact 12630 from the second deep press intensity to the first deep press intensity, as shown in
The intensity of contact 12630 is, optionally, further decreased from the first deep press intensity to the light press intensity (e.g., an intensity between ITL and ITD). While contact 12630 continues to be detected on touch-sensitive display 112 over the “minus” portion of rocker switch 12624-1, the device detects a decrease in the intensity of contact 12630 from the first deep press intensity to the light press intensity, as shown in
The intensity of contact 12630 is, optionally, further decreased from the light press intensity (e.g., an intensity between ITL and ITD) to an intensity below the light press intensity threshold (e.g., “ITL”). While contact 12630 continues to be detected on touch-sensitive display 112 over the “minus” portion of rocker switch 12624-1, the device detects a decrease in intensity of contact 12630 from the light press intensity to an intensity below the light press intensity threshold (e.g., “ITL”), as shown in
A user interface object, such as rocker switch 12624-1, optionally has multiple activation states. For example, the activation states for rocker switch 12624-1 are the different rates at which the brightness level changes. For example, when rocker switch 12624-1 is in a “neutral activation state,” while the contact has an intensity below a light press intensity threshold (e.g., an intensity below ITL), the brightness level is not changing, as shown in
When the intensity of contact 12630 changes, rocker switch 12624-1 optionally changes from the activation state at the starting intensity (e.g., a neutral activation state, as shown in
In some embodiments, from the activation state at the starting intensity, rocker switch 12624-1 optionally changes to zero or more intermediate activation states on the way to changing to the activation state at the destination intensity. For example, when the intensity of contact 12630 increases from below the light press intensity threshold (e.g., “ITL”) to the second deep press intensity, from the activation state at the intensity below the light press intensity threshold (e.g., “ITL”), rocker switch 12624-1 changes to the activation state at the light press intensity (e.g., corresponding to the light press activation state) and then to the activation state at the first deep press intensity (e.g., corresponding to the first deep press activation state), on the way to changing to the activation state at the second deep press intensity (e.g., the second deep press activation state). The activation states at the first and second intensities (e.g., the light press activation state and the first deep press activation state) are the intermediate activation states between the activation state at the intensity below the light press intensity threshold (e.g., “ITL”) and the activation state at the second deep press intensity.
In some embodiments, the number of intermediate activation states between a starting activation state and a destination activation state for an increase in intensity is different than the number of intermediate activation states between a starting activation state and a destination activation state for a decrease in intensity. For example, referring back to
In response to the increase in the intensity of contact 12630, one or more distinct tactile outputs are, optionally, generated on touch-sensitive display 112. For example, as the intensity increases from below the light press intensity threshold (e.g., “ITL”) to the second deep press intensity, as described above with reference to
In response to the decrease in the intensity of contact 12630, one or more distinct tactile outputs are, optionally, generated on touch-sensitive display 112. For example, as the intensity decreases from the second deep press intensity to an intensity below the light press intensity threshold (e.g., “ITL”), as described above with reference to
For example, the M tactile outputs are, optionally, tactile outputs generated at increments of the brightness level or increments of the change in brightness level as the brightness level changes in response to the detection of the increase in the intensity of contact 12630. For example, a tactile output is, optionally, generated at each of the 10's in the brightness level or at each 10th level from the starting level. Similarly, the N tactile outputs are, optionally, tactile outputs generated at increments of the brightness level or increments of the change in brightness level as the brightness level changes in response to the detection of the decrease in intensity of contact 12630. In this example, the tactile outputs are not necessarily generated in response to transitions in activation state.
In some embodiments, the M or N tactile outputs are generated for changes or transitions in activation state; the tactile outputs mark the changes or transitions in activation state. For example, a tactile output is, optionally, generated at each change in the rate of change in the brightness level as the intensity of contact 12630 increases (e.g., each of the M tactile outputs correspond to respective changes in activation state), and a tactile output is, optionally, generated at each change in the rate of change in the brightness level as the intensity of contact 12630 decreases (e.g., each of the N tactile outputs correspond to respective changes in activation state). In some embodiments, when a change or transition in activation state is skipped or not noticeable to the user (e.g., because the rate of increase or decrease in the intensity of contact 12630 occurs faster than a rate of change threshold), generation of one or more corresponding tactile sensations is, optionally, forgone (e.g., the one or more corresponding tactile sensations associated with corresponding changes in activation state are not generated by the device even though the changes in activation state occur).
In some embodiments, a tactile output varies depending on whether the tactile output was generated in response to an increase or a decrease in the intensity of contact 12630. A tactile output generated in response to detection of an increase in the intensity of contact 12630 is, optionally, different from a tactile output generated in response to detection of a decrease in the intensity of contact 12630. The tactile outputs are, optionally, different in movement profile, amplitude, or both. In some embodiments, a tactile output generated in response to detection of an increase in the intensity of contact 12630 corresponds to a tactile sensation that simulates a down-click (e.g., press-and-hold) of a physical button (e.g., a mouse button), and a tactile output generated in response to detection of a decrease in the intensity of contact 12630 corresponds to a tactile sensation that simulates an up-click (e.g., release from a press-and-hold) of the physical button.
As described below, the method 12700 provides an intuitive way to provide feedback for change activation states of a user interface object. The method reduces the cognitive burden on a user when changing activation states of a user interface object, thereby creating a more efficient human-machine interface. For battery-operated electronic devices, enabling a user to change activation states of a user interface object faster and more efficiently conserves power and increases the time between battery charges.
The device displays (12702) a user interface object on the display, where the user interface object has a first activation state and a second activation state.
The device detects (12704) a contact (e.g., a finger contact) on the touch-sensitive surface. As shown in
The device detects (12706) an increase of intensity of the contact on the touch-sensitive surface from a first intensity to a second intensity.
In response to detecting the increase in intensity (12708), the device changes (12710) activation states of the user interface from the first activation state to the second activation state, and generates (12712) M distinct tactile outputs on the touch-sensitive surface, where M is a positive integer. For example, in
In some embodiments, the M distinct tactile outputs correspond to changes in activation state of the user interface object (12714). The M tactile sensations are, optionally, generated whenever the activation state of rocker switch 12604-1 or 12624-1 (e.g., the rate of change for the brightness level) changes.
In some embodiments, while detecting the increase in intensity of the contact, the device determines (12716) a rate at which the intensity of the contact is increasing. In accordance with a determination that the rate at which the intensity of the contact is increasing remains below a predefined threshold (e.g., a rate corresponding to transitioning between the first intensity and the second intensity in less than 0.5, 0.25, 0.1, 0.05 seconds or some other reasonable amount of time), the device generates (12718) a distinct tactile output for each transition between activation states that occurs in response to detecting the increase in intensity of the contact. In accordance with a determination that the rate at which the intensity of the contact is increasing exceeds the predefined threshold (e.g., a rate corresponding to transitioning between the first intensity and the second intensity in less than 0.5, 0.25, 0.1, 0.05 seconds or some other reasonable amount of time), the device forgoes (12720) generation of at least one distinct tactile output for a respective transition between activation states that occurs in response to detecting the increase in intensity of the contact. For example, as the intensity of contact 12610 increases from below the light press intensity threshold (e.g., “ITL”) to an intensity above a deep press intensity threshold (e.g., “ITD”), as depicted in
The device detects (12722) a decrease of intensity of the contact from the second intensity to the first intensity. As shown in
In response to detecting the decrease in intensity (12724), the device changes (12726) activation states of the user interface object from the second activation state (e.g., the second deep press activation state) to the first activation state (e.g., the neutral activation state), and generates (12732) N distinct tactile outputs on the touch-sensitive surface, where N is a positive integer and N is different from M. For example, in
In some embodiments, changing activation states of the user interface object from the first activation state to the second activation state includes transitioning through a first number of intermediate activation states between the first activation state and the second activation state; and changing activation states of the user interface object from the second activation state to the first activation state includes transitioning through a second number of intermediate activation states between the second activation state and the first activation state (12728). For example, in
In some embodiments, the first number of intermediate activation states between the first activation state and the second activation state is different from the second number of intermediate activation states between the second activation state and the first activation state (12730). For example, the increase in intensity of contact 12610 or 12630 is, in some circumstances, at a speed below the predefined threshold, and the decrease in intensity of contact 12610 or 12630 is, in some circumstances, above the predefined threshold, and as a result the intermediate activations states on the decrease in intensity are skipped (e.g., processing the transition between the first deep press activation state and the second deep press activation state shown in
In some embodiments, the N distinct tactile outputs correspond to changes in activation state of the user interface object (12734). The N tactile sensations are, optionally, generated whenever the activation state of rocker switch 12604-1 or 12624-1 (e.g., the rate of change for the brightness level) changes.
In some embodiments, while detecting the decrease in intensity of the contact, the device determines (12736) a rate at which intensity of the contact is decreasing. In accordance with a determination that the rate at which the intensity of the contact is decreasing remains below a predefined threshold (e.g., a rate corresponding to transitioning between the first intensity and the second intensity in less than 0.5, 0.25, 0.1, 0.05 seconds or some other reasonable amount of time), the device generates (12738) a distinct tactile output for each transition between activation states that occurs in response to detecting the decrease in intensity of the contact. In accordance with a determination that the rate at which the intensity of the contact is decreasing exceeds the predefined threshold, the device forgoes (12740) generation of at least one distinct tactile output for a respective transition between activation states that occurs in response to detecting the decrease in intensity of the contact. For example, as the intensity of contact 12610 or 12630 decreases from an intensity above a deep press intensity threshold (e.g., “ITD”) to an intensity below the light press intensity threshold (e.g., “ITL”), as depicted in
In some embodiments, at least one tactile output generated in response to detecting the increase in intensity of the contact (e.g., 12610 or 12630) corresponds to a tactile sensation that simulates a down-click of a physical actuator mechanism (e.g., a tactile sensation that simulates the physical “down-click sensation” generated by the mechanical button apparatus of a physical button when a user activates the physical button), and at least one tactile output generated in response to detecting the decrease in intensity of the contact (e.g., 12610 or 12630) corresponds to a tactile sensation that simulates an up-click of a physical actuator mechanism (e.g., a tactile sensation that simulates the physical “up-click sensation” generated by the mechanical button apparatus of a physical button when a user activates the physical button).
As used herein, a distinct tactile output is a tactile output that was generated to provide feedback corresponding to a user interface event (e.g., a change in the activation state of the user interface object, such as activation of a button or other control). In some embodiments, the touch-sensitive surface is moved by an actuator in accordance with a separate waveform for each user interface event. The waveforms for different user interface events optionally overlap, but a waveform that was generated to provide a tactile feedback for a particular user interface event (e.g., activation of a button or change in activation state of a control such as a rocker switch) will still generate a distinct tactile output. As used herein, an activation state of a user interface object corresponds to an operational state of an application on the electronic device, and changing activation states of the user interface object changes operational states of the application. If the user interface object is an adjustable control interface such as a multi-state button, rocker-switch or slider, the activation states of the button/switch/slider are typically displayed by changing the visual appearance of the adjustable control interface (e.g., as a change in shading of a button, a change in rotation of a rocker switch or a change in position of a slider). Additionally, when the activation state of the button/switch/slider is changed, operation of an application associated with the button/switch/slider is changed accordingly. For example, if a rocker switch controls the brightness of an image, the activation states of the rocker switch correspond to different brightness levels of the image, and when the rocker switch changes from a first activation state to a second activation state, the brightness of the image changes from a first brightness level corresponding to the first activation state of the rocker switch to a second brightness level corresponding to the second activation state of the rocker switch. In some embodiments, activation states correspond to image property levels (e.g., hue, saturation, exposure, brightness, contrast), content navigation states (e.g., channel selection, forward navigation, backward navigation, frame-by-frame navigation), system property adjustments (e.g., volume control, screen brightness, date/time settings), rates of change, and other adjustable properties.
While M and N have been discussed herein as positive integers, in some circumstances M is zero (e.g., tactile outputs are generated in response to detecting the increase in intensity of the contact) and/or N is zero (e.g., no tactile outputs are generated in response to detecting the decrease in intensity of the contact). Additionally, while M has been described as being different from N, in some circumstances M is equal to N (e.g., the number of tactile outputs that are generated in response to detecting the increase in intensity of the contact is the same as the number of tactile outputs that are generated in response to detecting the decrease in intensity of the contact).
It should be understood that the particular order in which the operations in
In accordance with some embodiments,
As shown in
The processing unit 12806 is configured to: detect a contact on the touch-sensitive surface unit 12804 (e.g., with the detecting unit 12808); detect an increase of intensity of the contact on the touch-sensitive surface unit 12804 from a first intensity to a second intensity (e.g., with the detecting unit 12808); in response to detecting the increase in intensity: change activation states of the user interface object from the first activation state to the second activation state (e.g., with the changing unit 12810); and generate M distinct tactile outputs on the touch-sensitive surface unit 12804, where M is a positive integer (e.g., with the generating unit 12812); detect a decrease of intensity of the contact from the second intensity to the first intensity (e.g., with the detecting unit 12808); and in response to detecting the decrease in intensity: change activation states of the user interface object from the second activation state to the first activation state (e.g., with the changing unit 12810); and generate N distinct tactile outputs on the touch-sensitive surface unit 12804 (e.g., with the generating unit 12812), where N is a positive integer and N is different from M.
In some embodiments, changing activation states of the user interface object from the first activation state to the second activation state includes transitioning through a first number of intermediate activation states between the first activation state and the second activation state; and changing activation states of the user interface object from the second activation state to the first activation state includes transitioning through a second number of intermediate activation states between the second activation state and the first activation state.
In some embodiments, the first number of intermediate activation states between the first activation state and the second activation state is different from the second number of intermediate activation states between the second activation state and the first activation state.
In some embodiments, the processing unit 12806 is configured to: while detecting the increase in intensity of the contact, determine a rate at which the intensity of the contact is increasing (e.g., with the determining unit 12814); in accordance with a determination that the rate at which the intensity of the contact is increasing remains below a predefined threshold, generate a distinct tactile output for each transition between activation states that occurs in response to detecting the increase in intensity of the contact (e.g., with the generating unit 12812); and in accordance with a determination that the rate at which the intensity of the contact is increasing exceeds the predefined threshold, forgo generation of at least one distinct tactile output for a respective transition between activation states that occurs in response to detecting the increase in intensity of the contact (e.g., with the generating unit 12812).
In some embodiments, the processing unit 12806 is configured to: while detecting the decrease in intensity of the contact, determine a rate at which intensity of the contact is decreasing (e.g., with the determining unit 12814); in accordance with a determination that the rate at which the intensity of the contact is decreasing remains below a predefined threshold, generate a distinct tactile output for each transition between activation states that occurs in response to detecting the decrease in intensity of the contact (e.g., with the generating unit 12812); and in accordance with a determination that the rate at which the intensity of the contact is decreasing exceeds the predefined threshold, forgo generation of at least one distinct tactile output for a respective transition between activation states that occurs in response to detecting the decrease in intensity of the contact (e.g., with the generating unit 12812).
In some embodiments, the M distinct tactile outputs correspond to changes in activation state of the user interface object.
In some embodiments, the N distinct tactile outputs correspond to changes in activation state of the user interface object.
In some embodiments, at least one tactile output generated in response to detecting the increase in intensity corresponds to a tactile sensation that simulates a down-click of a physical actuator mechanism; and at least one tactile output generated in response to detecting the decrease in intensity corresponds to a tactile sensation that simulates an up-click of a physical actuator mechanism.
The operations in the information processing methods described above are, optionally implemented by running one or more functional modules in information processing apparatus such as general purpose processors (e.g., as described above with respect to
The operations described above with reference to
It should be understood that the particular order in which the operations have been described above is merely exemplary and is not intended to indicate that the described order is the only order in which the operations could be performed. One of ordinary skill in the art would recognize various ways to reorder the operations described herein. Additionally, it should be noted that the various processes separately described herein (e.g., those listed in the fifth paragraph of the Description of Embodiments) can be combined with each other in different arrangements. For example, the contacts, user interface objects, tactile sensations, intensity thresholds, and/or focus selectors described above with reference to any one of the various processes separately described herein (e.g., those listed in the fifth paragraph of the Description of Embodiments) optionally have one or more of the characteristics of the contacts, gestures, user interface objects, tactile sensations, intensity thresholds, and focus selectors described herein with reference to one or more of the other methods described herein (e.g., those listed in the fifth paragraph of the Description of Embodiments). For brevity, all of the various possible combinations are not specifically enumerated here, but it should be understood that the claims described above may be combined in any way that is not precluded by mutually exclusive claim features.
The foregoing description, for purpose of explanation, has been described with reference to specific embodiments. However, the illustrative discussions above are not intended to be exhaustive or to limit the various described embodiments to the precise forms disclosed. Many modifications and variations are possible in view of the above teachings. The embodiments were chosen and described in order to best explain the principles of the various described embodiments and their practical applications, to thereby enable others skilled in the art to best utilize the various described embodiments with various modifications as are suited to the particular use contemplated.
This application is a continuation of U.S. application Ser. No. 16/921,083, filed Jul. 6, 2020, which is a continuation of U.S. application Ser. No. 15/889,115, filed Feb. 5, 2018, now U.S. Pat. No. 10,782,871, which is a continuation of U.S. application Ser. No. 14/536,141, filed Nov. 7, 2014, now U.S. Pat. No. 9,886,184, which is continuation of PCT Patent Application Serial No. PCT/US2013/040072, filed on May 8, 2013, entitled “Device, Method, and Graphical User Interface for Providing Feedback for Changing Activation States of a User Interface Object,” which claims the benefit of and priority to U.S. Provisional Patent Application Ser. No. 61/778,287, filed on Mar. 12, 2013, entitled “Device, Method, and Graphical User Interface for Providing Feedback for Changing Activation States of a User Interface Object;” U.S. Provisional Patent Application No. 61/747,278, filed Dec. 29, 2012, entitled “Device, Method, and Graphical User Interface for Manipulating User Interface Objects with Visual and/or Haptic Feedback;” and U.S. Provisional Patent Application No. 61/688,227, filed May 9, 2012, entitled “Device, Method, and Graphical User Interface for Manipulating User Interface Objects with Visual and/or Haptic Feedback,” which applications are incorporated by reference herein in their entireties. This application is also related to the following: U.S. Provisional Patent Application Ser. No. 61/778,092, filed on Mar. 12, 2013, entitled “Device, Method, and Graphical User Interface for Selecting Object within a Group of Objects;” U.S. Provisional Patent Application Ser. No. 61/778,125, filed on Mar. 12, 2013, entitled “Device, Method, and Graphical User Interface for Navigating User Interface Hierarchies;” U.S. Provisional Patent Application Ser. No. 61/778,156, filed on Mar. 12, 2013, entitled “Device, Method, and Graphical User Interface for Manipulating Framed Graphical Objects;” U.S. Provisional Patent Application Ser. No. 61/778,179, filed on Mar. 12, 2013, entitled “Device, Method, and Graphical User Interface for Scrolling Nested Regions;” U.S. Provisional Patent Application Ser. No. 61/778,171, filed on Mar. 12, 2013, entitled “Device, Method, and Graphical User Interface for Displaying Additional Information in Response to a User Contact;” U.S. Provisional Patent Application Ser. No. 61/778,191, filed on Mar. 12, 2013, entitled “Device, Method, and Graphical User Interface for Displaying User Interface Objects Corresponding to an Application;” U.S. Provisional Patent Application Ser. No. 61/778,211, filed on Mar. 12, 2013, entitled “Device, Method, and Graphical User Interface for Facilitating User Interaction with Controls in a User Interface;” U.S. Provisional Patent Application Ser. No. 61/778,239, filed on Mar. 12, 2013, entitled “Device, Method, and Graphical User Interface for Forgoing Generation of Tactile Output for a Multi-Contact Gesture;” U.S. Provisional Patent Application Ser. No. 61/778,284, filed on Mar. 12, 2013, entitled “Device, Method, and Graphical User Interface for Providing Tactile Feedback for Operations Performed in a User Interface;” U.S. Provisional Patent Application Ser. No. 61/778,363, filed on Mar. 12, 2013, entitled “Device, Method, and Graphical User Interface for Transitioning between Touch Input to Display Output Relationships;” U.S. Provisional Patent Application Ser. No. 61/778,367, filed on Mar. 12, 2013, entitled “Device, Method, and Graphical User Interface for Moving a User Interface Object Based on an Intensity of a Press Input;” U.S. Provisional Patent Application Ser. No. 61/778,265, filed on Mar. 12, 2013, entitled “Device, Method, and Graphical User Interface for Transitioning between Display States in Response to a Gesture;” U.S. Provisional Patent Application Ser. No. 61/778,373, filed on Mar. 12, 2013, entitled “Device, Method, and Graphical User Interface for Managing Activation of a Control Based on Contact Intensity;” U.S. Provisional Patent Application Ser. No. 61/778,412, filed on Mar. 13, 2013, entitled “Device, Method, and Graphical User Interface for Displaying Content Associated with a Corresponding Affordance;” U.S. Provisional Patent Application Ser. No. 61/778,413, filed on Mar. 13, 2013, entitled “Device, Method, and Graphical User Interface for Selecting User Interface Objects;” U.S. Provisional Patent Application Ser. No. 61/778,414, filed on Mar. 13, 2013, entitled “Device, Method, and Graphical User Interface for Moving and Dropping a User Interface Object;” U.S. Provisional Patent Application Ser. No. 61/778,416, filed on Mar. 13, 2013, entitled “Device, Method, and Graphical User Interface for Determining Whether to Scroll or Select Content;” and U.S. Provisional Patent Application Ser. No. 61/778,418, filed on Mar. 13, 2013, entitled “Device, Method, and Graphical User Interface for Switching between User Interfaces,” which are incorporated herein by reference in their entireties. This application is also related to the following: U.S. Provisional Patent Application Ser. No. 61/645,033, filed on May 9, 2012, entitled “Adaptive Haptic Feedback for Electronic Devices;” U.S. Provisional Patent Application Ser. No. 61/665,603, filed on Jun. 28, 2012, entitled “Adaptive Haptic Feedback for Electronic Devices;” and U.S. Provisional Patent Application Ser. No. 61/681,098, filed on Aug. 8, 2012, entitled “Adaptive Haptic Feedback for Electronic Devices,” which are incorporated herein by reference in their entireties.
Number | Name | Date | Kind |
---|---|---|---|
4864520 | Setoguchi et al. | Sep 1989 | A |
5184120 | Schultz | Feb 1993 | A |
5374787 | Miller et al. | Dec 1994 | A |
5428730 | Baker et al. | Jun 1995 | A |
5463722 | Venolia | Oct 1995 | A |
5510813 | Makinwa et al. | Apr 1996 | A |
5555354 | Strasnick et al. | Sep 1996 | A |
5559301 | Bryan, Jr. et al. | Sep 1996 | A |
5589855 | Blumstein et al. | Dec 1996 | A |
5664210 | Fleming et al. | Sep 1997 | A |
5710896 | Seidl | Jan 1998 | A |
5717438 | Kim et al. | Feb 1998 | A |
5793360 | Fleck et al. | Aug 1998 | A |
5793377 | Moore | Aug 1998 | A |
5801692 | Muzio et al. | Sep 1998 | A |
5805144 | Scholder et al. | Sep 1998 | A |
5805167 | Van Cruyningen | Sep 1998 | A |
5809267 | Moran et al. | Sep 1998 | A |
5819293 | Comer et al. | Oct 1998 | A |
5825352 | Bisset et al. | Oct 1998 | A |
5844560 | Crutcher et al. | Dec 1998 | A |
5870683 | Wells et al. | Feb 1999 | A |
5872922 | Hogan et al. | Feb 1999 | A |
5946647 | Miller et al. | Aug 1999 | A |
5956032 | Argiolas | Sep 1999 | A |
5973670 | Barber et al. | Oct 1999 | A |
6002397 | Kolawa et al. | Dec 1999 | A |
6031989 | Cordell | Feb 2000 | A |
6088019 | Rosenberg | Jul 2000 | A |
6088027 | Konar et al. | Jul 2000 | A |
6111575 | Martinez et al. | Aug 2000 | A |
6121960 | Carroll et al. | Sep 2000 | A |
6208329 | Ballare | Mar 2001 | B1 |
6208340 | Amin et al. | Mar 2001 | B1 |
6219034 | Elbing et al. | Apr 2001 | B1 |
6223188 | Albers et al. | Apr 2001 | B1 |
6232891 | Rosenberg | May 2001 | B1 |
6243080 | Molne | Jun 2001 | B1 |
6252594 | Xia et al. | Jun 2001 | B1 |
6292233 | Erba et al. | Sep 2001 | B1 |
6300936 | Braun et al. | Oct 2001 | B1 |
6313836 | Russell, Jr. et al. | Nov 2001 | B1 |
6396523 | Segal et al. | May 2002 | B1 |
6429846 | Rosenberg et al. | Aug 2002 | B2 |
6448977 | Braun et al. | Sep 2002 | B1 |
6459442 | Edwards et al. | Oct 2002 | B1 |
6489978 | Gong et al. | Dec 2002 | B1 |
6512530 | Rzepkowski et al. | Jan 2003 | B1 |
6563487 | Martin et al. | May 2003 | B2 |
6567102 | Kung | May 2003 | B2 |
6583798 | Hoek et al. | Jun 2003 | B1 |
6590568 | Astala et al. | Jul 2003 | B1 |
6661438 | Shiraishi et al. | Dec 2003 | B1 |
6734882 | Becker | May 2004 | B1 |
6735307 | Volckers | May 2004 | B1 |
6750890 | Sugimoto | Jun 2004 | B1 |
6806893 | Kolawa et al. | Oct 2004 | B1 |
6822635 | Shahoian et al. | Nov 2004 | B2 |
6906697 | Rosenberg | Jun 2005 | B2 |
6919927 | Hyodo | Jul 2005 | B1 |
6943778 | Astala et al. | Sep 2005 | B1 |
7036088 | Tunney | Apr 2006 | B2 |
7138983 | Wakai et al. | Nov 2006 | B2 |
7312791 | Hoshino et al. | Dec 2007 | B2 |
7411575 | Hill et al. | Aug 2008 | B2 |
7434177 | Ording et al. | Oct 2008 | B1 |
7453439 | Kushler et al. | Nov 2008 | B1 |
7471284 | Bathiche et al. | Dec 2008 | B2 |
7479949 | Jobs et al. | Jan 2009 | B2 |
7500127 | Fleck et al. | Mar 2009 | B2 |
7516404 | Colby et al. | Apr 2009 | B1 |
7533352 | Chew et al. | May 2009 | B2 |
7552397 | Holecek et al. | Jun 2009 | B2 |
7577530 | Vignalou-Marche | Aug 2009 | B2 |
7614008 | Ording | Nov 2009 | B2 |
7619616 | Rimas Ribikauskas et al. | Nov 2009 | B2 |
7629966 | Anson | Dec 2009 | B2 |
7656413 | Khan et al. | Feb 2010 | B2 |
7683889 | Rimas Ribikauskas et al. | Mar 2010 | B2 |
7702733 | Fleck et al. | Apr 2010 | B2 |
7743348 | Robbins et al. | Jun 2010 | B2 |
7760187 | Kennedy | Jul 2010 | B2 |
7787026 | Flory et al. | Aug 2010 | B1 |
7797642 | Karam et al. | Sep 2010 | B1 |
7801950 | Eisenstadt et al. | Sep 2010 | B2 |
7812826 | Ording et al. | Oct 2010 | B2 |
7890862 | Kompe et al. | Feb 2011 | B2 |
7903090 | Soss et al. | Mar 2011 | B2 |
7952566 | Poupyrev et al. | May 2011 | B2 |
7956847 | Christie | Jun 2011 | B2 |
7973778 | Chen | Jul 2011 | B2 |
8000694 | Labidi et al. | Aug 2011 | B2 |
8040142 | Bokma et al. | Oct 2011 | B1 |
8059104 | Shahoian et al. | Nov 2011 | B2 |
8059105 | Rosenberg et al. | Nov 2011 | B2 |
8106856 | Matas et al. | Jan 2012 | B2 |
8125440 | Guyot-Sionnest et al. | Feb 2012 | B2 |
8125492 | Wainwright et al. | Feb 2012 | B1 |
RE43448 | Kimoto et al. | Jun 2012 | E |
8209628 | Davidson | Jun 2012 | B1 |
8271900 | Walizaka et al. | Sep 2012 | B2 |
8300005 | Tateuchi et al. | Oct 2012 | B2 |
8311514 | Bandyopadhyay et al. | Nov 2012 | B2 |
8325398 | Satomi et al. | Dec 2012 | B2 |
8363020 | Li et al. | Jan 2013 | B2 |
8390583 | Forutanpour et al. | Mar 2013 | B2 |
8423089 | Song et al. | Apr 2013 | B2 |
8446376 | Levy et al. | May 2013 | B2 |
8446382 | Goto et al. | May 2013 | B2 |
8453057 | Stallings et al. | May 2013 | B2 |
8456431 | Victor | Jun 2013 | B2 |
8466889 | Tong et al. | Jun 2013 | B2 |
8482535 | Pryor | Jul 2013 | B2 |
8499243 | Yuki | Jul 2013 | B2 |
8504946 | Williamson et al. | Aug 2013 | B2 |
8508494 | Moore | Aug 2013 | B2 |
8542205 | Keller | Sep 2013 | B1 |
8553092 | Tezuka et al. | Oct 2013 | B2 |
8570296 | Birnbaum et al. | Oct 2013 | B2 |
8581870 | Bokma et al. | Nov 2013 | B2 |
8587542 | Moore | Nov 2013 | B2 |
8593415 | Han et al. | Nov 2013 | B2 |
8593420 | Buuck | Nov 2013 | B1 |
8625882 | Backlund et al. | Jan 2014 | B2 |
8638311 | Kang et al. | Jan 2014 | B2 |
8665227 | Gunawan | Mar 2014 | B2 |
8669945 | Coddington | Mar 2014 | B2 |
8698765 | Keller | Apr 2014 | B1 |
8706172 | Priyantha et al. | Apr 2014 | B2 |
8713471 | Rowley et al. | Apr 2014 | B1 |
8717305 | Williamson et al. | May 2014 | B2 |
8726198 | Rydenhag et al. | May 2014 | B2 |
8743069 | Morton et al. | Jun 2014 | B2 |
8760425 | Crisan | Jun 2014 | B2 |
8769431 | Prasad | Jul 2014 | B1 |
8773389 | Freed | Jul 2014 | B1 |
8788964 | Shin et al. | Jul 2014 | B2 |
8793577 | Schellingerhout et al. | Jul 2014 | B2 |
8799816 | Wells et al. | Aug 2014 | B2 |
8816989 | Nicholson et al. | Aug 2014 | B2 |
8830188 | Verthein | Sep 2014 | B2 |
8854316 | Shenfield | Oct 2014 | B2 |
8872729 | Lyons et al. | Oct 2014 | B2 |
8872773 | Mak et al. | Oct 2014 | B2 |
8875044 | Ozawa et al. | Oct 2014 | B2 |
8881062 | Kim et al. | Nov 2014 | B2 |
8914732 | Jun et al. | Dec 2014 | B2 |
8932412 | Ferragut, II et al. | Jan 2015 | B2 |
8952987 | Momeyer et al. | Feb 2015 | B2 |
8954889 | Fujibayashi | Feb 2015 | B2 |
8959430 | Spivak et al. | Feb 2015 | B1 |
8963853 | Sirpal et al. | Feb 2015 | B2 |
8976128 | Moore | Mar 2015 | B2 |
9026932 | Dixon | May 2015 | B1 |
9030419 | Freed | May 2015 | B1 |
9030436 | Ikeda | May 2015 | B2 |
9032321 | Cohen et al. | May 2015 | B1 |
9043732 | Nurmi et al. | May 2015 | B2 |
9046999 | Teller et al. | Jun 2015 | B1 |
9052820 | Jarrett et al. | Jun 2015 | B2 |
9052925 | Chaudhri | Jun 2015 | B2 |
9063563 | Gray et al. | Jun 2015 | B1 |
9063731 | Heo et al. | Jun 2015 | B2 |
9069460 | Moore | Jun 2015 | B2 |
9078208 | Dutta et al. | Jul 2015 | B1 |
9086755 | Cho et al. | Jul 2015 | B2 |
9086757 | Desai et al. | Jul 2015 | B1 |
9086875 | Harrat et al. | Jul 2015 | B2 |
9092058 | Kasahara et al. | Jul 2015 | B2 |
9098188 | Kim | Aug 2015 | B2 |
9104260 | Marsden et al. | Aug 2015 | B2 |
9111076 | Park et al. | Aug 2015 | B2 |
9116569 | Stacy et al. | Aug 2015 | B2 |
9116571 | Zeliff et al. | Aug 2015 | B2 |
9122364 | Kuwabara et al. | Sep 2015 | B2 |
9128605 | Nan et al. | Sep 2015 | B2 |
9141262 | Nan et al. | Sep 2015 | B2 |
9146914 | Dhaundiyal | Sep 2015 | B1 |
9164779 | Brakensiek et al. | Oct 2015 | B2 |
9170607 | Bose et al. | Oct 2015 | B2 |
9170649 | Ronkainen | Oct 2015 | B2 |
9178971 | Nemoto | Nov 2015 | B2 |
9218105 | Mansson et al. | Dec 2015 | B2 |
9230393 | Davies | Jan 2016 | B1 |
9244562 | Rosenberg et al. | Jan 2016 | B1 |
9244576 | Vadagave et al. | Jan 2016 | B1 |
9244601 | Kim et al. | Jan 2016 | B2 |
9244606 | Kocienda et al. | Jan 2016 | B2 |
9246487 | Casparian et al. | Jan 2016 | B2 |
9262002 | Momeyer et al. | Feb 2016 | B2 |
9280286 | Commarford et al. | Mar 2016 | B2 |
9304668 | Rezende et al. | Apr 2016 | B2 |
9307112 | Molgaard et al. | Apr 2016 | B2 |
9349552 | Huska et al. | May 2016 | B2 |
9361018 | Defazio et al. | Jun 2016 | B2 |
9383887 | Khafizov et al. | Jul 2016 | B1 |
9389718 | Letourneur | Jul 2016 | B1 |
9389722 | Matsuki et al. | Jul 2016 | B2 |
9395800 | Liu et al. | Jul 2016 | B2 |
9400581 | Bokma et al. | Jul 2016 | B2 |
9405367 | Jung et al. | Aug 2016 | B2 |
9405428 | Roh et al. | Aug 2016 | B2 |
9417754 | Smith | Aug 2016 | B2 |
9423938 | Morris | Aug 2016 | B1 |
9436344 | Kuwabara et al. | Sep 2016 | B2 |
9448694 | Sharma et al. | Sep 2016 | B2 |
9451230 | Henderson et al. | Sep 2016 | B1 |
9471145 | Langlois et al. | Oct 2016 | B2 |
9477393 | Zambetti et al. | Oct 2016 | B2 |
9542013 | Dearman et al. | Jan 2017 | B2 |
9547436 | Ohki et al. | Jan 2017 | B2 |
9569093 | Lipman et al. | Feb 2017 | B2 |
9582178 | Grant et al. | Feb 2017 | B2 |
9600114 | Milam et al. | Mar 2017 | B2 |
9600116 | Tao et al. | Mar 2017 | B2 |
9612741 | Brown et al. | Apr 2017 | B2 |
9619076 | Bernstein et al. | Apr 2017 | B2 |
9619113 | Mark | Apr 2017 | B2 |
9625987 | LaPenna et al. | Apr 2017 | B1 |
9645722 | Stasior et al. | May 2017 | B1 |
9665762 | Thompson et al. | May 2017 | B2 |
9671943 | Van Der Velden | Jun 2017 | B2 |
9678571 | Robert et al. | Jun 2017 | B1 |
9733716 | Shaffer | Aug 2017 | B2 |
9740381 | Chaudhri et al. | Aug 2017 | B1 |
9753527 | Connell et al. | Sep 2017 | B2 |
9760241 | Lewbel | Sep 2017 | B1 |
9785305 | Alonso Ruiz et al. | Oct 2017 | B2 |
9798443 | Gray | Oct 2017 | B1 |
9804665 | DeBates et al. | Oct 2017 | B2 |
9829980 | Lisseman et al. | Nov 2017 | B2 |
9891747 | Jang et al. | Feb 2018 | B2 |
10037138 | Bernstein et al. | Jul 2018 | B2 |
10055066 | Lynn et al. | Aug 2018 | B2 |
10057490 | Shin et al. | Aug 2018 | B2 |
10095396 | Kudershian et al. | Oct 2018 | B2 |
10133388 | Sudou | Nov 2018 | B2 |
10133397 | Smith | Nov 2018 | B1 |
10180722 | Lu | Jan 2019 | B2 |
10222980 | Alonso Ruiz et al. | Mar 2019 | B2 |
10235023 | Gustafsson | Mar 2019 | B2 |
10275087 | Smith | Apr 2019 | B1 |
10331769 | Hill et al. | Jun 2019 | B1 |
10386960 | Smith | Aug 2019 | B1 |
10469767 | Shikata | Nov 2019 | B2 |
10496151 | Kim et al. | Dec 2019 | B2 |
10547895 | Morris | Jan 2020 | B1 |
10564792 | Kim | Feb 2020 | B2 |
10739896 | Kim et al. | Aug 2020 | B2 |
10771274 | Reimann et al. | Sep 2020 | B2 |
10782871 | Bernstein et al. | Sep 2020 | B2 |
11112961 | Ikeda | Sep 2021 | B2 |
20010024195 | Hayakawa et al. | Sep 2001 | A1 |
20010045965 | Orbanes et al. | Nov 2001 | A1 |
20020006822 | Krintzman | Jan 2002 | A1 |
20020008691 | Hanajima et al. | Jan 2002 | A1 |
20020015064 | Robotham et al. | Feb 2002 | A1 |
20020042925 | Ebisu et al. | Apr 2002 | A1 |
20020054011 | Bruneau et al. | May 2002 | A1 |
20020057256 | Flack | May 2002 | A1 |
20020101447 | Carro | Aug 2002 | A1 |
20020109668 | Rosenberg et al. | Aug 2002 | A1 |
20020109678 | Marmolin et al. | Aug 2002 | A1 |
20020128036 | Yach et al. | Sep 2002 | A1 |
20020140680 | Lu | Oct 2002 | A1 |
20020140740 | Chen | Oct 2002 | A1 |
20020163498 | Chang et al. | Nov 2002 | A1 |
20020180763 | Kung | Dec 2002 | A1 |
20020186257 | Cadiz et al. | Dec 2002 | A1 |
20030001869 | Nissen | Jan 2003 | A1 |
20030013492 | Bokhari et al. | Jan 2003 | A1 |
20030058241 | Hsu | Mar 2003 | A1 |
20030068053 | Chu | Apr 2003 | A1 |
20030086496 | Zhang et al. | May 2003 | A1 |
20030112269 | Lentz et al. | Jun 2003 | A1 |
20030117440 | Hellyar et al. | Jun 2003 | A1 |
20030122779 | Martin et al. | Jul 2003 | A1 |
20030128242 | Gordon | Jul 2003 | A1 |
20030151589 | Bensen et al. | Aug 2003 | A1 |
20030184574 | Phillips et al. | Oct 2003 | A1 |
20030189552 | Chuang et al. | Oct 2003 | A1 |
20030189647 | Kang | Oct 2003 | A1 |
20030201914 | Fujiwara et al. | Oct 2003 | A1 |
20030206169 | Springer et al. | Nov 2003 | A1 |
20030222915 | Marion et al. | Dec 2003 | A1 |
20040015662 | Cummings | Jan 2004 | A1 |
20040021643 | Hoshino et al. | Feb 2004 | A1 |
20040056849 | Lohbihler et al. | Mar 2004 | A1 |
20040108995 | Hoshino et al. | Jun 2004 | A1 |
20040138849 | Schmidt et al. | Jul 2004 | A1 |
20040141010 | Fitzmaurice et al. | Jul 2004 | A1 |
20040150631 | Fleck et al. | Aug 2004 | A1 |
20040150644 | Kincaid et al. | Aug 2004 | A1 |
20040155752 | Radke | Aug 2004 | A1 |
20040155869 | Robinson et al. | Aug 2004 | A1 |
20040168131 | Blumberg | Aug 2004 | A1 |
20040174399 | Wu et al. | Sep 2004 | A1 |
20040219969 | Casey et al. | Nov 2004 | A1 |
20040267877 | Shiparo et al. | Dec 2004 | A1 |
20050012723 | Pallakoff | Jan 2005 | A1 |
20050039141 | Burke et al. | Feb 2005 | A1 |
20050064911 | Chen et al. | Mar 2005 | A1 |
20050066207 | Fleck et al. | Mar 2005 | A1 |
20050076256 | Fleck et al. | Apr 2005 | A1 |
20050078093 | Peterson, Jr. et al. | Apr 2005 | A1 |
20050091604 | Davis | Apr 2005 | A1 |
20050110769 | DaCosta et al. | May 2005 | A1 |
20050114785 | Finnigan et al. | May 2005 | A1 |
20050125742 | Grotjohn et al. | Jun 2005 | A1 |
20050134578 | Chambers et al. | Jun 2005 | A1 |
20050156892 | Grant | Jul 2005 | A1 |
20050183017 | Cain | Aug 2005 | A1 |
20050190280 | Haas et al. | Sep 2005 | A1 |
20050204295 | Voorhees et al. | Sep 2005 | A1 |
20050223338 | Partanen | Oct 2005 | A1 |
20050229112 | Clay et al. | Oct 2005 | A1 |
20050283726 | Lunati | Dec 2005 | A1 |
20050289476 | Tokkonen | Dec 2005 | A1 |
20060001650 | Robbins et al. | Jan 2006 | A1 |
20060001657 | Monney et al. | Jan 2006 | A1 |
20060012577 | Kyrola | Jan 2006 | A1 |
20060022955 | Kennedy | Feb 2006 | A1 |
20060026536 | Hotelling et al. | Feb 2006 | A1 |
20060031776 | Glein et al. | Feb 2006 | A1 |
20060036945 | Radtke et al. | Feb 2006 | A1 |
20060036971 | Mendel et al. | Feb 2006 | A1 |
20060059436 | Nurmi | Mar 2006 | A1 |
20060067677 | Tokiwa et al. | Mar 2006 | A1 |
20060101347 | Runov et al. | May 2006 | A1 |
20060101581 | Blanchard et al. | May 2006 | A1 |
20060109252 | Kolmykov-Zotov et al. | May 2006 | A1 |
20060109256 | Grant et al. | May 2006 | A1 |
20060119586 | Grant et al. | Jun 2006 | A1 |
20060132455 | Rimas-Ribikauskas | Jun 2006 | A1 |
20060132456 | Anson | Jun 2006 | A1 |
20060132457 | Rimas-Ribikauskas et al. | Jun 2006 | A1 |
20060136834 | Cao et al. | Jun 2006 | A1 |
20060136845 | Rimas-Ribikauskas et al. | Jun 2006 | A1 |
20060161861 | Holecek et al. | Jul 2006 | A1 |
20060161870 | Hotelling et al. | Jul 2006 | A1 |
20060187215 | Rosenberg | Aug 2006 | A1 |
20060190834 | Marcjan | Aug 2006 | A1 |
20060195438 | Galuten | Aug 2006 | A1 |
20060197753 | Hotelling | Sep 2006 | A1 |
20060210958 | Rimas-Ribikauskas et al. | Sep 2006 | A1 |
20060212812 | Simmons et al. | Sep 2006 | A1 |
20060213754 | Jarrett et al. | Sep 2006 | A1 |
20060224989 | Pettiross et al. | Oct 2006 | A1 |
20060233248 | Rynderman et al. | Oct 2006 | A1 |
20060236263 | Bathiche et al. | Oct 2006 | A1 |
20060274042 | Krah et al. | Dec 2006 | A1 |
20060274086 | Forstall et al. | Dec 2006 | A1 |
20060277469 | Chaudhri et al. | Dec 2006 | A1 |
20060282778 | Barsness et al. | Dec 2006 | A1 |
20060284858 | Rekimoto | Dec 2006 | A1 |
20060290681 | Ho et al. | Dec 2006 | A1 |
20070003134 | Song et al. | Jan 2007 | A1 |
20070024595 | Baker et al. | Feb 2007 | A1 |
20070024646 | Saarinen et al. | Feb 2007 | A1 |
20070036456 | Hooper | Feb 2007 | A1 |
20070080953 | Lii | Apr 2007 | A1 |
20070113681 | Nishimura et al. | May 2007 | A1 |
20070120834 | Boillot | May 2007 | A1 |
20070120835 | Sato | May 2007 | A1 |
20070124699 | Michaels | May 2007 | A1 |
20070152959 | Peters | Jul 2007 | A1 |
20070157089 | Van Os et al. | Jul 2007 | A1 |
20070157173 | Klein et al. | Jul 2007 | A1 |
20070168369 | Bruns | Jul 2007 | A1 |
20070168890 | Zhao et al. | Jul 2007 | A1 |
20070176904 | Russo | Aug 2007 | A1 |
20070182999 | Anthony et al. | Aug 2007 | A1 |
20070186178 | Schiller | Aug 2007 | A1 |
20070200713 | Weber | Aug 2007 | A1 |
20070222768 | Geurts et al. | Sep 2007 | A1 |
20070229455 | Martin et al. | Oct 2007 | A1 |
20070229464 | Hotelling et al. | Oct 2007 | A1 |
20070236450 | Colgate et al. | Oct 2007 | A1 |
20070236477 | Ryu et al. | Oct 2007 | A1 |
20070245241 | Bertram et al. | Oct 2007 | A1 |
20070257821 | Son et al. | Nov 2007 | A1 |
20070270182 | Gulliksson et al. | Nov 2007 | A1 |
20070271513 | Andren et al. | Nov 2007 | A1 |
20070288862 | Ording | Dec 2007 | A1 |
20070294295 | Finkelstein et al. | Dec 2007 | A1 |
20070299923 | Skelly et al. | Dec 2007 | A1 |
20080001924 | dos los Reyes et al. | Jan 2008 | A1 |
20080010610 | Lim et al. | Jan 2008 | A1 |
20080024459 | Poupyrev et al. | Jan 2008 | A1 |
20080034306 | Ording | Feb 2008 | A1 |
20080034331 | Josephsoon et al. | Feb 2008 | A1 |
20080036743 | Westerman et al. | Feb 2008 | A1 |
20080051989 | Welsh | Feb 2008 | A1 |
20080052945 | Matas et al. | Mar 2008 | A1 |
20080066010 | Brodersen et al. | Mar 2008 | A1 |
20080094367 | Van De Ven et al. | Apr 2008 | A1 |
20080094368 | Ording et al. | Apr 2008 | A1 |
20080094398 | Ng et al. | Apr 2008 | A1 |
20080106523 | Conrad | May 2008 | A1 |
20080109753 | Karstens | May 2008 | A1 |
20080136790 | Hio | Jun 2008 | A1 |
20080155415 | Yoon et al. | Jun 2008 | A1 |
20080163119 | Kim et al. | Jul 2008 | A1 |
20080165141 | Christie | Jul 2008 | A1 |
20080165160 | Kocienda et al. | Jul 2008 | A1 |
20080168379 | Forstall et al. | Jul 2008 | A1 |
20080168395 | Ording et al. | Jul 2008 | A1 |
20080168403 | Westerman et al. | Jul 2008 | A1 |
20080168404 | Ording | Jul 2008 | A1 |
20080189605 | Kay et al. | Aug 2008 | A1 |
20080202824 | Philipp et al. | Aug 2008 | A1 |
20080204427 | Heesemans et al. | Aug 2008 | A1 |
20080219493 | Tadmor | Sep 2008 | A1 |
20080222569 | Champion et al. | Sep 2008 | A1 |
20080225007 | Nakadaira et al. | Sep 2008 | A1 |
20080244448 | Goering et al. | Oct 2008 | A1 |
20080259046 | Carsanaro | Oct 2008 | A1 |
20080263452 | Tomkins | Oct 2008 | A1 |
20080284866 | Mizutani | Nov 2008 | A1 |
20080294984 | Ramsay et al. | Nov 2008 | A1 |
20080297475 | Woolf et al. | Dec 2008 | A1 |
20080303795 | Lowles et al. | Dec 2008 | A1 |
20080303799 | Schwesig et al. | Dec 2008 | A1 |
20080307335 | Chaudhri et al. | Dec 2008 | A1 |
20080307359 | Louch et al. | Dec 2008 | A1 |
20080307361 | Louch et al. | Dec 2008 | A1 |
20080317378 | Steinberg et al. | Dec 2008 | A1 |
20080320419 | Matas et al. | Dec 2008 | A1 |
20090007017 | Anzures et al. | Jan 2009 | A1 |
20090016645 | Sako et al. | Jan 2009 | A1 |
20090028359 | Terada et al. | Jan 2009 | A1 |
20090046110 | Sadler et al. | Feb 2009 | A1 |
20090058828 | Jiang et al. | Mar 2009 | A1 |
20090061837 | Chaudhri et al. | Mar 2009 | A1 |
20090064031 | Bull et al. | Mar 2009 | A1 |
20090066668 | Kim et al. | Mar 2009 | A1 |
20090073118 | Yamaji et al. | Mar 2009 | A1 |
20090075738 | Pearce | Mar 2009 | A1 |
20090083665 | Anttila et al. | Mar 2009 | A1 |
20090085878 | Heubel et al. | Apr 2009 | A1 |
20090085881 | Keam | Apr 2009 | A1 |
20090085886 | Huang et al. | Apr 2009 | A1 |
20090089293 | Garritano et al. | Apr 2009 | A1 |
20090100343 | Lee et al. | Apr 2009 | A1 |
20090102804 | Wong et al. | Apr 2009 | A1 |
20090102805 | Meijer et al. | Apr 2009 | A1 |
20090140985 | Liu | Jun 2009 | A1 |
20090150775 | Miyazaki et al. | Jun 2009 | A1 |
20090158198 | Hayter et al. | Jun 2009 | A1 |
20090160793 | Rekimoto | Jun 2009 | A1 |
20090160814 | Li et al. | Jun 2009 | A1 |
20090164905 | Ko | Jun 2009 | A1 |
20090167507 | Maenpaa | Jul 2009 | A1 |
20090167508 | Fadell et al. | Jul 2009 | A1 |
20090167509 | Fadell et al. | Jul 2009 | A1 |
20090167701 | Ronkainen | Jul 2009 | A1 |
20090167704 | Terlizzi et al. | Jul 2009 | A1 |
20090169061 | Anderson et al. | Jul 2009 | A1 |
20090178008 | Herz | Jul 2009 | A1 |
20090187824 | Hinckley et al. | Jul 2009 | A1 |
20090189866 | Haffenden et al. | Jul 2009 | A1 |
20090195959 | Ladouceur et al. | Aug 2009 | A1 |
20090198767 | Jakobson et al. | Aug 2009 | A1 |
20090201260 | Lee et al. | Aug 2009 | A1 |
20090219294 | Young et al. | Sep 2009 | A1 |
20090225037 | Williamson et al. | Sep 2009 | A1 |
20090228842 | Westerman et al. | Sep 2009 | A1 |
20090231453 | Huang | Sep 2009 | A1 |
20090237374 | Li et al. | Sep 2009 | A1 |
20090244357 | Huang | Oct 2009 | A1 |
20090247112 | Lundy et al. | Oct 2009 | A1 |
20090247230 | Lundy | Oct 2009 | A1 |
20090251410 | Mori et al. | Oct 2009 | A1 |
20090251421 | Bloebaum | Oct 2009 | A1 |
20090256947 | Ciurea et al. | Oct 2009 | A1 |
20090259975 | Asai et al. | Oct 2009 | A1 |
20090267906 | Schroderus | Oct 2009 | A1 |
20090273563 | Pryor | Nov 2009 | A1 |
20090276730 | Aybes et al. | Nov 2009 | A1 |
20090280860 | Dahlke | Nov 2009 | A1 |
20090282360 | Park et al. | Nov 2009 | A1 |
20090284478 | De la Torre Baltierra et al. | Nov 2009 | A1 |
20090288032 | Chang et al. | Nov 2009 | A1 |
20090289779 | Braun et al. | Nov 2009 | A1 |
20090293009 | Meserth et al. | Nov 2009 | A1 |
20090295713 | Piot et al. | Dec 2009 | A1 |
20090295739 | Nagara | Dec 2009 | A1 |
20090295943 | Kim et al. | Dec 2009 | A1 |
20090298546 | Kim et al. | Dec 2009 | A1 |
20090303187 | Pallakoff | Dec 2009 | A1 |
20090307583 | Tonisson | Dec 2009 | A1 |
20090307633 | Haughay, Jr. et al. | Dec 2009 | A1 |
20090322893 | Stallings et al. | Dec 2009 | A1 |
20090325566 | Bell et al. | Dec 2009 | A1 |
20100005390 | Bong | Jan 2010 | A1 |
20100007926 | Imaizumi et al. | Jan 2010 | A1 |
20100011304 | Van Os | Jan 2010 | A1 |
20100013613 | Weston | Jan 2010 | A1 |
20100013777 | Baudisch et al. | Jan 2010 | A1 |
20100017710 | Kim et al. | Jan 2010 | A1 |
20100020035 | Ryu et al. | Jan 2010 | A1 |
20100020221 | Tupman et al. | Jan 2010 | A1 |
20100026640 | Kim et al. | Feb 2010 | A1 |
20100026647 | Abe et al. | Feb 2010 | A1 |
20100039446 | Hillis et al. | Feb 2010 | A1 |
20100044121 | Simon et al. | Feb 2010 | A1 |
20100045619 | Birnbaum et al. | Feb 2010 | A1 |
20100057235 | Wang et al. | Mar 2010 | A1 |
20100058231 | Duarte et al. | Mar 2010 | A1 |
20100060548 | Choi et al. | Mar 2010 | A1 |
20100060605 | Rimas-Ribikauskas et al. | Mar 2010 | A1 |
20100061637 | Mochizuki et al. | Mar 2010 | A1 |
20100062803 | Yun et al. | Mar 2010 | A1 |
20100070908 | Mori et al. | Mar 2010 | A1 |
20100073329 | Raman et al. | Mar 2010 | A1 |
20100083116 | Akifusa et al. | Apr 2010 | A1 |
20100085302 | Fairweather et al. | Apr 2010 | A1 |
20100085314 | Kwok | Apr 2010 | A1 |
20100085317 | Park et al. | Apr 2010 | A1 |
20100088596 | Griffin et al. | Apr 2010 | A1 |
20100088634 | Tsuruta | Apr 2010 | A1 |
20100088654 | Henhoeffer | Apr 2010 | A1 |
20100102832 | Bartling et al. | Apr 2010 | A1 |
20100110082 | Myrick et al. | May 2010 | A1 |
20100111434 | Madden | May 2010 | A1 |
20100127983 | Irani et al. | May 2010 | A1 |
20100128002 | Stacy et al. | May 2010 | A1 |
20100138776 | Korhonen | Jun 2010 | A1 |
20100141606 | Bae | Jun 2010 | A1 |
20100148999 | Casparian et al. | Jun 2010 | A1 |
20100149096 | Migos et al. | Jun 2010 | A1 |
20100153879 | Rimas-Ribikauskas et al. | Jun 2010 | A1 |
20100156807 | Stallings et al. | Jun 2010 | A1 |
20100156809 | Nutaro | Jun 2010 | A1 |
20100156813 | Duarte et al. | Jun 2010 | A1 |
20100156818 | Burrough | Jun 2010 | A1 |
20100156823 | Paleczny et al. | Jun 2010 | A1 |
20100156825 | Sohn et al. | Jun 2010 | A1 |
20100156830 | Homma et al. | Jun 2010 | A1 |
20100159995 | Stallings et al. | Jun 2010 | A1 |
20100171713 | Kwok et al. | Jul 2010 | A1 |
20100175023 | Gatlin et al. | Jul 2010 | A1 |
20100180136 | Thompson et al. | Jul 2010 | A1 |
20100180225 | Chiba et al. | Jul 2010 | A1 |
20100188327 | Frid | Jul 2010 | A1 |
20100199227 | Xiao et al. | Aug 2010 | A1 |
20100211872 | Rolston et al. | Aug 2010 | A1 |
20100214135 | Bathiche et al. | Aug 2010 | A1 |
20100214239 | Wu | Aug 2010 | A1 |
20100218663 | Choi | Sep 2010 | A1 |
20100220065 | Ma | Sep 2010 | A1 |
20100225456 | Eldering | Sep 2010 | A1 |
20100225604 | Homma et al. | Sep 2010 | A1 |
20100231533 | Chaudhri | Sep 2010 | A1 |
20100231534 | Chaudhri et al. | Sep 2010 | A1 |
20100231539 | Cruz-Hernandez et al. | Sep 2010 | A1 |
20100235118 | Moore et al. | Sep 2010 | A1 |
20100235726 | Ording et al. | Sep 2010 | A1 |
20100235733 | Drislane et al. | Sep 2010 | A1 |
20100235746 | Anzures | Sep 2010 | A1 |
20100240415 | Kim et al. | Sep 2010 | A1 |
20100241955 | Price et al. | Sep 2010 | A1 |
20100248787 | Smuga et al. | Sep 2010 | A1 |
20100251168 | Fujita et al. | Sep 2010 | A1 |
20100259500 | Kennedy | Oct 2010 | A1 |
20100271312 | Alameh et al. | Oct 2010 | A1 |
20100271500 | Park et al. | Oct 2010 | A1 |
20100277419 | Ganey et al. | Nov 2010 | A1 |
20100277496 | Kawanishi et al. | Nov 2010 | A1 |
20100281379 | Meaney et al. | Nov 2010 | A1 |
20100281385 | Meaney et al. | Nov 2010 | A1 |
20100287486 | Coddington | Nov 2010 | A1 |
20100289807 | Yu et al. | Nov 2010 | A1 |
20100293460 | Budelli | Nov 2010 | A1 |
20100295789 | Shin et al. | Nov 2010 | A1 |
20100295805 | Shin et al. | Nov 2010 | A1 |
20100302177 | Kim et al. | Dec 2010 | A1 |
20100302179 | Ahn et al. | Dec 2010 | A1 |
20100306702 | Warner | Dec 2010 | A1 |
20100308983 | Conte et al. | Dec 2010 | A1 |
20100309147 | Fleizach et al. | Dec 2010 | A1 |
20100313050 | Harrat et al. | Dec 2010 | A1 |
20100313124 | Privault et al. | Dec 2010 | A1 |
20100313146 | Nielsen et al. | Dec 2010 | A1 |
20100313156 | Louch et al. | Dec 2010 | A1 |
20100313158 | Lee et al. | Dec 2010 | A1 |
20100313166 | Nakayama et al. | Dec 2010 | A1 |
20100315417 | Cho et al. | Dec 2010 | A1 |
20100315438 | Horodezky et al. | Dec 2010 | A1 |
20100317410 | Song et al. | Dec 2010 | A1 |
20100321301 | Casparian et al. | Dec 2010 | A1 |
20100321312 | Han et al. | Dec 2010 | A1 |
20100325578 | Mital et al. | Dec 2010 | A1 |
20100328229 | Weber et al. | Dec 2010 | A1 |
20110010626 | Fino et al. | Jan 2011 | A1 |
20110012851 | Ciesla et al. | Jan 2011 | A1 |
20110016390 | Oh et al. | Jan 2011 | A1 |
20110018695 | Bells et al. | Jan 2011 | A1 |
20110026099 | Kwon et al. | Feb 2011 | A1 |
20110035145 | Yamasaki | Feb 2011 | A1 |
20110037706 | Pasquero et al. | Feb 2011 | A1 |
20110038552 | Lam | Feb 2011 | A1 |
20110039602 | McNamara et al. | Feb 2011 | A1 |
20110047368 | Sundaramurthy et al. | Feb 2011 | A1 |
20110047459 | Van Der Westhuizen | Feb 2011 | A1 |
20110050576 | Forutanpour et al. | Mar 2011 | A1 |
20110050588 | Li et al. | Mar 2011 | A1 |
20110050591 | Kim et al. | Mar 2011 | A1 |
20110050594 | Kim et al. | Mar 2011 | A1 |
20110050628 | Homma et al. | Mar 2011 | A1 |
20110050629 | Homma et al. | Mar 2011 | A1 |
20110050630 | Ikeda | Mar 2011 | A1 |
20110050653 | Miyazawa et al. | Mar 2011 | A1 |
20110050687 | Alyshev et al. | Mar 2011 | A1 |
20110054837 | Ikeda | Mar 2011 | A1 |
20110055135 | Dawson et al. | Mar 2011 | A1 |
20110055741 | Jeon et al. | Mar 2011 | A1 |
20110057886 | Ng et al. | Mar 2011 | A1 |
20110057903 | Yamano et al. | Mar 2011 | A1 |
20110061021 | Kang et al. | Mar 2011 | A1 |
20110061029 | Yeh et al. | Mar 2011 | A1 |
20110063236 | Arai et al. | Mar 2011 | A1 |
20110063248 | Yoon | Mar 2011 | A1 |
20110069012 | Martensson | Mar 2011 | A1 |
20110069016 | Victor | Mar 2011 | A1 |
20110074697 | Rapp et al. | Mar 2011 | A1 |
20110080349 | Holbein et al. | Apr 2011 | A1 |
20110080350 | Almalki | Apr 2011 | A1 |
20110080367 | Marchand et al. | Apr 2011 | A1 |
20110084910 | Almalki et al. | Apr 2011 | A1 |
20110087982 | McCann et al. | Apr 2011 | A1 |
20110087983 | Shim | Apr 2011 | A1 |
20110093815 | Gobeil | Apr 2011 | A1 |
20110093817 | Song et al. | Apr 2011 | A1 |
20110102829 | Jourdan | May 2011 | A1 |
20110107272 | Aquilar | May 2011 | A1 |
20110109617 | Snook et al. | May 2011 | A1 |
20110116716 | Kwon et al. | May 2011 | A1 |
20110119610 | Hackborn et al. | May 2011 | A1 |
20110126139 | Jeong et al. | May 2011 | A1 |
20110138295 | Momchilov et al. | Jun 2011 | A1 |
20110141031 | McCullough et al. | Jun 2011 | A1 |
20110141052 | Bernstein et al. | Jun 2011 | A1 |
20110144777 | Firkins et al. | Jun 2011 | A1 |
20110145752 | Fagans | Jun 2011 | A1 |
20110145753 | Prakash | Jun 2011 | A1 |
20110145759 | Leffert et al. | Jun 2011 | A1 |
20110145764 | Higuchi et al. | Jun 2011 | A1 |
20110149138 | Watkins | Jun 2011 | A1 |
20110154199 | Maffitt et al. | Jun 2011 | A1 |
20110159469 | Hwang et al. | Jun 2011 | A1 |
20110163971 | Wagner et al. | Jul 2011 | A1 |
20110163978 | Park et al. | Jul 2011 | A1 |
20110169765 | Aono | Jul 2011 | A1 |
20110175826 | Moore et al. | Jul 2011 | A1 |
20110175832 | Miyazawa et al. | Jul 2011 | A1 |
20110181521 | Reid et al. | Jul 2011 | A1 |
20110181526 | Shaffer et al. | Jul 2011 | A1 |
20110181538 | Aono | Jul 2011 | A1 |
20110181751 | Mizumori | Jul 2011 | A1 |
20110185299 | Hinckley et al. | Jul 2011 | A1 |
20110185300 | Hinckley et al. | Jul 2011 | A1 |
20110185316 | Reid et al. | Jul 2011 | A1 |
20110191675 | Kauranen | Aug 2011 | A1 |
20110193788 | King et al. | Aug 2011 | A1 |
20110193809 | Walley et al. | Aug 2011 | A1 |
20110193881 | Rydenhag | Aug 2011 | A1 |
20110197160 | Kim et al. | Aug 2011 | A1 |
20110201387 | Paek et al. | Aug 2011 | A1 |
20110202834 | Mandryk et al. | Aug 2011 | A1 |
20110202853 | Mujkic | Aug 2011 | A1 |
20110202879 | Stovicek et al. | Aug 2011 | A1 |
20110205163 | Hinckley et al. | Aug 2011 | A1 |
20110209088 | Hinckley et al. | Aug 2011 | A1 |
20110209093 | Hinckley et al. | Aug 2011 | A1 |
20110209097 | Hinckley et al. | Aug 2011 | A1 |
20110209099 | Hinckley et al. | Aug 2011 | A1 |
20110209104 | Hinckley et al. | Aug 2011 | A1 |
20110210834 | Pasquero et al. | Sep 2011 | A1 |
20110210926 | Pasquero et al. | Sep 2011 | A1 |
20110210931 | Shai | Sep 2011 | A1 |
20110215914 | Edwards | Sep 2011 | A1 |
20110221684 | Rydenhag | Sep 2011 | A1 |
20110221776 | Shimotani et al. | Sep 2011 | A1 |
20110231789 | Bukurak et al. | Sep 2011 | A1 |
20110234491 | Nurmi | Sep 2011 | A1 |
20110234639 | Shimotani et al. | Sep 2011 | A1 |
20110238690 | Arrasvouri et al. | Sep 2011 | A1 |
20110239110 | Garrett et al. | Sep 2011 | A1 |
20110242029 | Kasahara et al. | Oct 2011 | A1 |
20110246801 | Seethaler et al. | Oct 2011 | A1 |
20110246877 | Kwak et al. | Oct 2011 | A1 |
20110248916 | Griffin et al. | Oct 2011 | A1 |
20110248930 | Kwok | Oct 2011 | A1 |
20110248942 | Yana et al. | Oct 2011 | A1 |
20110248948 | Griffin et al. | Oct 2011 | A1 |
20110252346 | Chaudhri | Oct 2011 | A1 |
20110252357 | Chaudhri | Oct 2011 | A1 |
20110252362 | Cho et al. | Oct 2011 | A1 |
20110252369 | Chaudhri | Oct 2011 | A1 |
20110252380 | Chaudhri | Oct 2011 | A1 |
20110258537 | Rives et al. | Oct 2011 | A1 |
20110260994 | Saynac et al. | Oct 2011 | A1 |
20110263298 | Park | Oct 2011 | A1 |
20110265035 | Lepage et al. | Oct 2011 | A1 |
20110265045 | Hsieh | Oct 2011 | A1 |
20110267530 | Chun | Nov 2011 | A1 |
20110279380 | Weber et al. | Nov 2011 | A1 |
20110279381 | Tong et al. | Nov 2011 | A1 |
20110279395 | Kuwabara et al. | Nov 2011 | A1 |
20110279852 | Oda et al. | Nov 2011 | A1 |
20110285656 | Yaksick et al. | Nov 2011 | A1 |
20110285659 | Kuwabara et al. | Nov 2011 | A1 |
20110291945 | Ewing, Jr. et al. | Dec 2011 | A1 |
20110291951 | Tong | Dec 2011 | A1 |
20110296334 | Ryu et al. | Dec 2011 | A1 |
20110296351 | Ewing, Jr. et al. | Dec 2011 | A1 |
20110304559 | Pasquero | Dec 2011 | A1 |
20110304577 | Brown et al. | Dec 2011 | A1 |
20110310049 | Homma et al. | Dec 2011 | A1 |
20110319136 | Labowicz et al. | Dec 2011 | A1 |
20120001856 | Davidson | Jan 2012 | A1 |
20120005622 | Park et al. | Jan 2012 | A1 |
20120007857 | Noda et al. | Jan 2012 | A1 |
20120011437 | James et al. | Jan 2012 | A1 |
20120013541 | Boka et al. | Jan 2012 | A1 |
20120013542 | Shenfield | Jan 2012 | A1 |
20120013607 | Lee | Jan 2012 | A1 |
20120019448 | Pitkanen et al. | Jan 2012 | A1 |
20120023591 | Sahita et al. | Jan 2012 | A1 |
20120026110 | Yamano | Feb 2012 | A1 |
20120030623 | Hoellwarth | Feb 2012 | A1 |
20120032979 | Blow et al. | Feb 2012 | A1 |
20120036441 | Basir et al. | Feb 2012 | A1 |
20120036556 | LeBeau et al. | Feb 2012 | A1 |
20120038580 | Sasaki | Feb 2012 | A1 |
20120044153 | Arrasvouri et al. | Feb 2012 | A1 |
20120047380 | Nurmi | Feb 2012 | A1 |
20120056837 | Park et al. | Mar 2012 | A1 |
20120056848 | Yamano et al. | Mar 2012 | A1 |
20120057039 | Gardiner et al. | Mar 2012 | A1 |
20120060123 | Smith | Mar 2012 | A1 |
20120062470 | Chang | Mar 2012 | A1 |
20120062564 | Miyashita et al. | Mar 2012 | A1 |
20120062604 | Lobo | Mar 2012 | A1 |
20120062732 | Marman et al. | Mar 2012 | A1 |
20120066630 | Kim et al. | Mar 2012 | A1 |
20120066636 | Kaprani | Mar 2012 | A1 |
20120066648 | Rolleston et al. | Mar 2012 | A1 |
20120081326 | Heubel et al. | Apr 2012 | A1 |
20120081375 | Robert et al. | Apr 2012 | A1 |
20120084644 | Robert et al. | Apr 2012 | A1 |
20120084689 | Ledet et al. | Apr 2012 | A1 |
20120084713 | Desai et al. | Apr 2012 | A1 |
20120089932 | Kano et al. | Apr 2012 | A1 |
20120089942 | Gammon | Apr 2012 | A1 |
20120089951 | Cassidy | Apr 2012 | A1 |
20120092381 | Hoover et al. | Apr 2012 | A1 |
20120096393 | Shim et al. | Apr 2012 | A1 |
20120096400 | Cho | Apr 2012 | A1 |
20120098780 | Fujisawa et al. | Apr 2012 | A1 |
20120102437 | Worley et al. | Apr 2012 | A1 |
20120105358 | Momeyer et al. | May 2012 | A1 |
20120105367 | Son et al. | May 2012 | A1 |
20120106852 | Khawand et al. | May 2012 | A1 |
20120113007 | Koch et al. | May 2012 | A1 |
20120113023 | Koch et al. | May 2012 | A1 |
20120126962 | Ujii et al. | May 2012 | A1 |
20120131495 | Goossens et al. | May 2012 | A1 |
20120139844 | Ramstein et al. | Jun 2012 | A1 |
20120139864 | Sleeman et al. | Jun 2012 | A1 |
20120144330 | Flint | Jun 2012 | A1 |
20120146945 | Miyazawa et al. | Jun 2012 | A1 |
20120147052 | Homma et al. | Jun 2012 | A1 |
20120154303 | Lazaridis et al. | Jun 2012 | A1 |
20120154328 | Kono | Jun 2012 | A1 |
20120158629 | Hinckley et al. | Jun 2012 | A1 |
20120159380 | Kocienda et al. | Jun 2012 | A1 |
20120162093 | Buxton | Jun 2012 | A1 |
20120174042 | Chang | Jun 2012 | A1 |
20120169646 | Berkes et al. | Jul 2012 | A1 |
20120169716 | Mihara | Jul 2012 | A1 |
20120169768 | Roth | Jul 2012 | A1 |
20120176403 | Cha et al. | Jul 2012 | A1 |
20120179967 | Hayes | Jul 2012 | A1 |
20120180001 | Griffen et al. | Jul 2012 | A1 |
20120182226 | Tuli | Jul 2012 | A1 |
20120183271 | Forutanpour et al. | Jul 2012 | A1 |
20120192108 | Kolb | Jul 2012 | A1 |
20120192114 | DeLuca | Jul 2012 | A1 |
20120200528 | Ciesla et al. | Aug 2012 | A1 |
20120206393 | Hillis et al. | Aug 2012 | A1 |
20120216114 | Privault et al. | Aug 2012 | A1 |
20120218203 | Kanki | Aug 2012 | A1 |
20120235912 | Laubach | Sep 2012 | A1 |
20120236037 | Lessing et al. | Sep 2012 | A1 |
20120240044 | Johnson et al. | Sep 2012 | A1 |
20120242584 | Tuli | Sep 2012 | A1 |
20120242599 | Seo | Sep 2012 | A1 |
20120245922 | Koslova et al. | Sep 2012 | A1 |
20120249575 | Krolczyk et al. | Oct 2012 | A1 |
20120249853 | Krolczyk et al. | Oct 2012 | A1 |
20120250598 | Lonnfors et al. | Oct 2012 | A1 |
20120256829 | Dodge | Oct 2012 | A1 |
20120256846 | Mak | Oct 2012 | A1 |
20120256847 | Mak et al. | Oct 2012 | A1 |
20120256857 | Mak | Oct 2012 | A1 |
20120257071 | Prentice | Oct 2012 | A1 |
20120260208 | Jung | Oct 2012 | A1 |
20120260219 | Piccolotto | Oct 2012 | A1 |
20120260220 | Griffin | Oct 2012 | A1 |
20120274578 | Snow et al. | Nov 2012 | A1 |
20120274591 | Rimas-Ribikauskas et al. | Nov 2012 | A1 |
20120274662 | Kim et al. | Nov 2012 | A1 |
20120278744 | Kozitsyn et al. | Nov 2012 | A1 |
20120284673 | Lamb et al. | Nov 2012 | A1 |
20120293449 | Dietz | Nov 2012 | A1 |
20120293551 | Momeyer et al. | Nov 2012 | A1 |
20120297041 | Momchilov | Nov 2012 | A1 |
20120303548 | Johnson et al. | Nov 2012 | A1 |
20120304108 | Jarrett et al. | Nov 2012 | A1 |
20120304132 | Sareen et al. | Nov 2012 | A1 |
20120304133 | Nan et al. | Nov 2012 | A1 |
20120306632 | Fleizach et al. | Dec 2012 | A1 |
20120306748 | Fleizach et al. | Dec 2012 | A1 |
20120306764 | Kamibeppu | Dec 2012 | A1 |
20120306765 | Moore | Dec 2012 | A1 |
20120306766 | Moore | Dec 2012 | A1 |
20120306772 | Tan et al. | Dec 2012 | A1 |
20120306778 | Wheeldreyer et al. | Dec 2012 | A1 |
20120306927 | Lee et al. | Dec 2012 | A1 |
20120311429 | Decker et al. | Dec 2012 | A1 |
20120311437 | Weeldreyer et al. | Dec 2012 | A1 |
20120311498 | Kluttz et al. | Dec 2012 | A1 |
20120311504 | van Os et al. | Dec 2012 | A1 |
20120313847 | Boda et al. | Dec 2012 | A1 |
20130002561 | Wakasa | Jan 2013 | A1 |
20130011065 | Yoshida | Jan 2013 | A1 |
20130014057 | Reinpoldt et al. | Jan 2013 | A1 |
20130016042 | Makinen et al. | Jan 2013 | A1 |
20130016056 | Shinozaki et al. | Jan 2013 | A1 |
20130016122 | Bhatt et al. | Jan 2013 | A1 |
20130019158 | Watanabe | Jan 2013 | A1 |
20130019174 | Gil et al. | Jan 2013 | A1 |
20130031514 | Gabbert | Jan 2013 | A1 |
20130036386 | Park et al. | Feb 2013 | A1 |
20130042199 | Fong et al. | Feb 2013 | A1 |
20130044062 | Bose et al. | Feb 2013 | A1 |
20130047100 | Kroeger et al. | Feb 2013 | A1 |
20130050131 | Lee et al. | Feb 2013 | A1 |
20130050143 | Kim et al. | Feb 2013 | A1 |
20130050518 | Takemura et al. | Feb 2013 | A1 |
20130061172 | Huang et al. | Mar 2013 | A1 |
20130063364 | Moore | Mar 2013 | A1 |
20130063389 | Moore | Mar 2013 | A1 |
20130067383 | Kataoka et al. | Mar 2013 | A1 |
20130067513 | Takami | Mar 2013 | A1 |
20130067527 | Ashbook et al. | Mar 2013 | A1 |
20130069889 | Pearce et al. | Mar 2013 | A1 |
20130069991 | Davidson | Mar 2013 | A1 |
20130074003 | Dolenc | Mar 2013 | A1 |
20130076649 | Myers et al. | Mar 2013 | A1 |
20130076676 | Gan | Mar 2013 | A1 |
20130077804 | Glebe et al. | Mar 2013 | A1 |
20130082824 | Colley | Apr 2013 | A1 |
20130082937 | Liu et al. | Apr 2013 | A1 |
20130086056 | Dyor et al. | Apr 2013 | A1 |
20130088455 | Jeong | Apr 2013 | A1 |
20130093691 | Moosavi | Apr 2013 | A1 |
20130093764 | Andersson et al. | Apr 2013 | A1 |
20130097520 | Lewin et al. | Apr 2013 | A1 |
20130097521 | Lewin et al. | Apr 2013 | A1 |
20130097534 | Lewin et al. | Apr 2013 | A1 |
20130097539 | Mansson et al. | Apr 2013 | A1 |
20130097556 | Louch | Apr 2013 | A1 |
20130097562 | Kermoian et al. | Apr 2013 | A1 |
20130102366 | Teng et al. | Apr 2013 | A1 |
20130111345 | Newman et al. | May 2013 | A1 |
20130111378 | Newman et al. | May 2013 | A1 |
20130111398 | Lu et al. | May 2013 | A1 |
20130111415 | Newman et al. | May 2013 | A1 |
20130111579 | Newman et al. | May 2013 | A1 |
20130113715 | Grant et al. | May 2013 | A1 |
20130113720 | Van Eerd et al. | May 2013 | A1 |
20130113760 | Gossweiler, III et al. | May 2013 | A1 |
20130120278 | Cantrell | May 2013 | A1 |
20130120280 | Kukulski | May 2013 | A1 |
20130120295 | Kim et al. | May 2013 | A1 |
20130120306 | Furukawa | May 2013 | A1 |
20130125039 | Murata | May 2013 | A1 |
20130127755 | Lynn et al. | May 2013 | A1 |
20130135243 | Hirsch et al. | May 2013 | A1 |
20130135288 | King et al. | May 2013 | A1 |
20130135499 | Song | May 2013 | A1 |
20130141364 | Lynn et al. | Jun 2013 | A1 |
20130141396 | Lynn et al. | Jun 2013 | A1 |
20130145290 | Weber et al. | Jun 2013 | A1 |
20130145313 | Roh et al. | Jun 2013 | A1 |
20130154948 | Schediwy et al. | Jun 2013 | A1 |
20130154959 | Lindsay et al. | Jun 2013 | A1 |
20130155018 | Dagdeviren | Jun 2013 | A1 |
20130159893 | Lewis et al. | Jun 2013 | A1 |
20130159930 | Paretti et al. | Jun 2013 | A1 |
20130162603 | Peng et al. | Jun 2013 | A1 |
20130162667 | Eskolin et al. | Jun 2013 | A1 |
20130169549 | Seymour et al. | Jul 2013 | A1 |
20130174049 | Townsend et al. | Jul 2013 | A1 |
20130174089 | Ki | Jul 2013 | A1 |
20130174094 | Heo et al. | Jul 2013 | A1 |
20130174179 | Park et al. | Jul 2013 | A1 |
20130179840 | Fisher et al. | Jul 2013 | A1 |
20130185642 | Gammons | Jul 2013 | A1 |
20130187869 | Rydenhag et al. | Jul 2013 | A1 |
20130191791 | Rydenhag et al. | Jul 2013 | A1 |
20130194217 | Lee et al. | Aug 2013 | A1 |
20130194480 | Fukata et al. | Aug 2013 | A1 |
20130198690 | Barsoum et al. | Aug 2013 | A1 |
20130201139 | Tanaka | Aug 2013 | A1 |
20130212515 | Eleftheriou | Aug 2013 | A1 |
20130212541 | Dolenc et al. | Aug 2013 | A1 |
20130215079 | Johnson et al. | Aug 2013 | A1 |
20130222274 | Mori et al. | Aug 2013 | A1 |
20130222323 | McKenzie | Aug 2013 | A1 |
20130222333 | Miles et al. | Aug 2013 | A1 |
20130222671 | Tseng et al. | Aug 2013 | A1 |
20130225238 | He | Aug 2013 | A1 |
20130227413 | Thorsander et al. | Aug 2013 | A1 |
20130227419 | Lee et al. | Aug 2013 | A1 |
20130227450 | Na et al. | Aug 2013 | A1 |
20130228023 | Drasnin et al. | Sep 2013 | A1 |
20130232353 | Belesiu et al. | Sep 2013 | A1 |
20130232402 | Lu et al. | Sep 2013 | A1 |
20130234929 | Libin | Sep 2013 | A1 |
20130239057 | Ubillos et al. | Sep 2013 | A1 |
20130246954 | Gray et al. | Sep 2013 | A1 |
20130249814 | Zeng | Sep 2013 | A1 |
20130257793 | Zeliff et al. | Oct 2013 | A1 |
20130257817 | Yliaho | Oct 2013 | A1 |
20130263252 | Lien et al. | Oct 2013 | A1 |
20130265246 | Tae | Oct 2013 | A1 |
20130265452 | Shin et al. | Oct 2013 | A1 |
20130268875 | Han et al. | Oct 2013 | A1 |
20130271395 | Tsai et al. | Oct 2013 | A1 |
20130275422 | Silber et al. | Oct 2013 | A1 |
20130278520 | Weng et al. | Oct 2013 | A1 |
20130293496 | Takamoto | Nov 2013 | A1 |
20130305184 | Kim et al. | Nov 2013 | A1 |
20130307790 | Konttori et al. | Nov 2013 | A1 |
20130307792 | Andres et al. | Nov 2013 | A1 |
20130314359 | Sudou | Nov 2013 | A1 |
20130314434 | Shetterly et al. | Nov 2013 | A1 |
20130321340 | Seo et al. | Dec 2013 | A1 |
20130321457 | Bauermeister et al. | Dec 2013 | A1 |
20130325342 | Pylappan et al. | Dec 2013 | A1 |
20130326420 | Liu et al. | Dec 2013 | A1 |
20130326421 | Jo | Dec 2013 | A1 |
20130326583 | Freihold et al. | Dec 2013 | A1 |
20130328770 | Parham | Dec 2013 | A1 |
20130328793 | Chowdhury | Dec 2013 | A1 |
20130328796 | Al-Dahle et al. | Dec 2013 | A1 |
20130332836 | Cho | Dec 2013 | A1 |
20130332892 | Matsuki | Dec 2013 | A1 |
20130335373 | Tomiyasu | Dec 2013 | A1 |
20130338847 | Lisseman et al. | Dec 2013 | A1 |
20130339001 | Craswell et al. | Dec 2013 | A1 |
20130339909 | Ha | Dec 2013 | A1 |
20140002355 | Lee et al. | Jan 2014 | A1 |
20140002374 | Hunt et al. | Jan 2014 | A1 |
20140002386 | Rosenberg et al. | Jan 2014 | A1 |
20140013271 | Moore et al. | Jan 2014 | A1 |
20140015784 | Oonishi | Jan 2014 | A1 |
20140019786 | Green et al. | Jan 2014 | A1 |
20140024414 | Fuji | Jan 2014 | A1 |
20140026098 | Gilman | Jan 2014 | A1 |
20140026099 | Andersson Reimer et al. | Jan 2014 | A1 |
20140028554 | De Los Reyes et al. | Jan 2014 | A1 |
20140028571 | St. Clair | Jan 2014 | A1 |
20140028601 | Moore | Jan 2014 | A1 |
20140028606 | Giannetta | Jan 2014 | A1 |
20140035804 | Dearman | Feb 2014 | A1 |
20140035826 | Frazier et al. | Feb 2014 | A1 |
20140049491 | Nagar et al. | Feb 2014 | A1 |
20140053116 | Smith et al. | Feb 2014 | A1 |
20140055367 | Dearman et al. | Feb 2014 | A1 |
20140055377 | Kim | Feb 2014 | A1 |
20140059460 | Ho | Feb 2014 | A1 |
20140059485 | Lehrian et al. | Feb 2014 | A1 |
20140063316 | Lee et al. | Mar 2014 | A1 |
20140063541 | Yamazaki | Mar 2014 | A1 |
20140067293 | Parivar et al. | Mar 2014 | A1 |
20140068475 | Li et al. | Mar 2014 | A1 |
20140071060 | Santos-Gomez | Mar 2014 | A1 |
20140072281 | Cho et al. | Mar 2014 | A1 |
20140072283 | Cho et al. | Mar 2014 | A1 |
20140078318 | Alameh | Mar 2014 | A1 |
20140078343 | Dai et al. | Mar 2014 | A1 |
20140082536 | Costa et al. | Mar 2014 | A1 |
20140092025 | Pala et al. | Apr 2014 | A1 |
20140092030 | Van der Velden | Apr 2014 | A1 |
20140092031 | Schwartz et al. | Apr 2014 | A1 |
20140108936 | Khosropour et al. | Apr 2014 | A1 |
20140109016 | Ouyang et al. | Apr 2014 | A1 |
20140111456 | Kashiwa et al. | Apr 2014 | A1 |
20140111480 | Kim et al. | Apr 2014 | A1 |
20140111670 | Lord et al. | Apr 2014 | A1 |
20140118268 | Kuscher | May 2014 | A1 |
20140123080 | Gan | May 2014 | A1 |
20140139456 | Wigdor et al. | May 2014 | A1 |
20140139471 | Matsuki | May 2014 | A1 |
20140145970 | Cho | May 2014 | A1 |
20140152581 | Case et al. | Jun 2014 | A1 |
20140157203 | Jeon et al. | Jun 2014 | A1 |
20140160063 | Yairi et al. | Jun 2014 | A1 |
20140160073 | Matsuki | Jun 2014 | A1 |
20140160168 | Ogle | Jun 2014 | A1 |
20140164955 | Thiruvidam et al. | Jun 2014 | A1 |
20140164966 | Kim et al. | Jun 2014 | A1 |
20140165006 | Chaudhri et al. | Jun 2014 | A1 |
20140168093 | Lawrence | Jun 2014 | A1 |
20140168110 | Araki et al. | Jun 2014 | A1 |
20140168153 | Deichmann et al. | Jun 2014 | A1 |
20140173517 | Chaudhri | Jun 2014 | A1 |
20140179377 | Song et al. | Jun 2014 | A1 |
20140184526 | Cho | Jul 2014 | A1 |
20140201660 | Clausen et al. | Jul 2014 | A1 |
20140208271 | Bell et al. | Jul 2014 | A1 |
20140210741 | Komatsu | Jul 2014 | A1 |
20140210758 | Park et al. | Jul 2014 | A1 |
20140210760 | Aberg et al. | Jul 2014 | A1 |
20140210798 | Wilson | Jul 2014 | A1 |
20140223376 | Tarvainen et al. | Aug 2014 | A1 |
20140223381 | Huang et al. | Aug 2014 | A1 |
20140232669 | Ohlsson et al. | Aug 2014 | A1 |
20140237408 | Ohlsson et al. | Aug 2014 | A1 |
20140245202 | Yoon et al. | Aug 2014 | A1 |
20140245367 | Sasaki et al. | Aug 2014 | A1 |
20140253305 | Rosenberg et al. | Sep 2014 | A1 |
20140267114 | Lisseman et al. | Sep 2014 | A1 |
20140267135 | Chhabra | Sep 2014 | A1 |
20140267362 | Kocienda et al. | Sep 2014 | A1 |
20140282084 | Murarka et al. | Sep 2014 | A1 |
20140282211 | Ady et al. | Sep 2014 | A1 |
20140282214 | Shirzadi et al. | Sep 2014 | A1 |
20140298258 | Doan et al. | Oct 2014 | A1 |
20140300569 | Matsuki et al. | Oct 2014 | A1 |
20140304599 | Alexandersson | Oct 2014 | A1 |
20140304646 | Rossman | Oct 2014 | A1 |
20140304651 | Johansson et al. | Oct 2014 | A1 |
20140306897 | Cueto | Oct 2014 | A1 |
20140306899 | Hicks | Oct 2014 | A1 |
20140310638 | Lee et al. | Oct 2014 | A1 |
20140313130 | Yamano et al. | Oct 2014 | A1 |
20140333551 | Kim et al. | Nov 2014 | A1 |
20140333561 | Bull et al. | Nov 2014 | A1 |
20140344765 | Hicks et al. | Nov 2014 | A1 |
20140351744 | Jeon et al. | Nov 2014 | A1 |
20140354845 | Molgaard et al. | Dec 2014 | A1 |
20140354850 | Kosaka et al. | Dec 2014 | A1 |
20140359438 | Matsuki | Dec 2014 | A1 |
20140359528 | Murata | Dec 2014 | A1 |
20140361982 | Shaffer | Dec 2014 | A1 |
20140365882 | Lemay | Dec 2014 | A1 |
20140365945 | Karunamuni et al. | Dec 2014 | A1 |
20140365956 | Karunamuni et al. | Dec 2014 | A1 |
20140368436 | Abzarian et al. | Dec 2014 | A1 |
20140380247 | Tecarro et al. | Dec 2014 | A1 |
20150002664 | Eppinger et al. | Jan 2015 | A1 |
20150012861 | Loginov | Jan 2015 | A1 |
20150015763 | Lee et al. | Jan 2015 | A1 |
20150019997 | Kim et al. | Jan 2015 | A1 |
20150020032 | Chen | Jan 2015 | A1 |
20150020033 | Newham et al. | Jan 2015 | A1 |
20150020036 | Kim et al. | Jan 2015 | A1 |
20150022328 | Choudhury | Jan 2015 | A1 |
20150022482 | Hewitt et al. | Jan 2015 | A1 |
20150026584 | Kobayakov et al. | Jan 2015 | A1 |
20150026592 | Mohammed et al. | Jan 2015 | A1 |
20150026642 | Wilson et al. | Jan 2015 | A1 |
20150029149 | Andersson et al. | Jan 2015 | A1 |
20150033184 | Kim et al. | Jan 2015 | A1 |
20150040065 | Bianco et al. | Feb 2015 | A1 |
20150042588 | Park | Feb 2015 | A1 |
20150046876 | Goldenberg | Feb 2015 | A1 |
20150049033 | Kim et al. | Feb 2015 | A1 |
20150052464 | Chen et al. | Feb 2015 | A1 |
20150055890 | Lundin et al. | Feb 2015 | A1 |
20150058723 | Cieplinski et al. | Feb 2015 | A1 |
20150062046 | Cho et al. | Mar 2015 | A1 |
20150062052 | Bernstein et al. | Mar 2015 | A1 |
20150062068 | Shih et al. | Mar 2015 | A1 |
20150066950 | Tobe et al. | Mar 2015 | A1 |
20150067495 | Bernstein et al. | Mar 2015 | A1 |
20150067496 | Missig et al. | Mar 2015 | A1 |
20150067497 | Cieplinski et al. | Mar 2015 | A1 |
20150067513 | Zambetti et al. | Mar 2015 | A1 |
20150067519 | Missig et al. | Mar 2015 | A1 |
20150067534 | Choi et al. | Mar 2015 | A1 |
20150067559 | Missig et al. | Mar 2015 | A1 |
20150067560 | Cieplinski et al. | Mar 2015 | A1 |
20150067563 | Bernstein et al. | Mar 2015 | A1 |
20150067596 | Brown et al. | Mar 2015 | A1 |
20150067601 | Bernstein et al. | Mar 2015 | A1 |
20150067602 | Bernstein et al. | Mar 2015 | A1 |
20150067605 | Zambetti et al. | Mar 2015 | A1 |
20150071547 | Keating et al. | Mar 2015 | A1 |
20150082162 | Cho et al. | Mar 2015 | A1 |
20150082238 | Meng | Mar 2015 | A1 |
20150116205 | Westerman et al. | Apr 2015 | A1 |
20150121218 | Kim et al. | Apr 2015 | A1 |
20150121225 | Somasundaram et al. | Apr 2015 | A1 |
20150128092 | Lee et al. | May 2015 | A1 |
20150135108 | Pope et al. | May 2015 | A1 |
20150135109 | Zambetti et al. | May 2015 | A1 |
20150135132 | Josephson | May 2015 | A1 |
20150138126 | Westerman | May 2015 | A1 |
20150138155 | Bernstein et al. | May 2015 | A1 |
20150139605 | Wiklof | May 2015 | A1 |
20150143273 | Bernstein et al. | May 2015 | A1 |
20150143284 | Bennett et al. | May 2015 | A1 |
20150143294 | Piccinato et al. | May 2015 | A1 |
20150143303 | Sarrazin et al. | May 2015 | A1 |
20150149899 | Bernstein et al. | May 2015 | A1 |
20150149964 | Bernstein et al. | May 2015 | A1 |
20150149967 | Bernstein et al. | May 2015 | A1 |
20150153897 | Huang et al. | Jun 2015 | A1 |
20150153929 | Bernstein et al. | Jun 2015 | A1 |
20150160729 | Nakagawa | Jun 2015 | A1 |
20150169059 | Behles et al. | Jun 2015 | A1 |
20150185840 | Golyshko et al. | Jul 2015 | A1 |
20150193099 | Murphy | Jul 2015 | A1 |
20150193951 | Lee et al. | Jul 2015 | A1 |
20150205342 | Ooi et al. | Jul 2015 | A1 |
20150205495 | Koide et al. | Jul 2015 | A1 |
20150205775 | Berdahl et al. | Jul 2015 | A1 |
20150234446 | Nathan et al. | Aug 2015 | A1 |
20150234493 | Parivar et al. | Aug 2015 | A1 |
20150253866 | Amm et al. | Sep 2015 | A1 |
20150268786 | Kitada | Sep 2015 | A1 |
20150268802 | Kim et al. | Sep 2015 | A1 |
20150268813 | Bos | Sep 2015 | A1 |
20150309573 | Brombach et al. | Oct 2015 | A1 |
20150321607 | Cho et al. | Nov 2015 | A1 |
20150332107 | Paniaras | Nov 2015 | A1 |
20150332607 | Gardner, Jr. et al. | Nov 2015 | A1 |
20150378519 | Brown et al. | Dec 2015 | A1 |
20150378982 | McKenzie et al. | Dec 2015 | A1 |
20150381931 | Uhma et al. | Dec 2015 | A1 |
20160004373 | Huang | Jan 2016 | A1 |
20160004393 | Faaborg et al. | Jan 2016 | A1 |
20160004427 | Zambetti et al. | Jan 2016 | A1 |
20160004428 | Bernstein et al. | Jan 2016 | A1 |
20160004430 | Missig et al. | Jan 2016 | A1 |
20160004431 | Bernstein et al. | Jan 2016 | A1 |
20160004432 | Bernstein et al. | Jan 2016 | A1 |
20160011725 | D'Argenio et al. | Jan 2016 | A1 |
20160011771 | Cieplinski | Jan 2016 | A1 |
20160019718 | Mukkamala et al. | Jan 2016 | A1 |
20160021511 | Jin et al. | Jan 2016 | A1 |
20160041750 | Cieplinski et al. | Feb 2016 | A1 |
20160048326 | Kim et al. | Feb 2016 | A1 |
20160062466 | Moussette et al. | Mar 2016 | A1 |
20160062619 | Reeve et al. | Mar 2016 | A1 |
20160070401 | Kim et al. | Mar 2016 | A1 |
20160077721 | Laubach et al. | Mar 2016 | A1 |
20160085385 | Gao et al. | Mar 2016 | A1 |
20160092071 | Lawson et al. | Mar 2016 | A1 |
20160124924 | Greenberg et al. | May 2016 | A1 |
20160125234 | Ota et al. | May 2016 | A1 |
20160132139 | Du et al. | May 2016 | A1 |
20160188181 | Smith | Jun 2016 | A1 |
20160188186 | Yea | Jun 2016 | A1 |
20160196028 | Kenney et al. | Jul 2016 | A1 |
20160210025 | Bernstein et al. | Jul 2016 | A1 |
20160246478 | Davis et al. | Aug 2016 | A1 |
20160259412 | Flint et al. | Sep 2016 | A1 |
20160259413 | Anzures et al. | Sep 2016 | A1 |
20160259495 | Butcher et al. | Sep 2016 | A1 |
20160259496 | Butcher et al. | Sep 2016 | A1 |
20160259498 | Foss et al. | Sep 2016 | A1 |
20160259499 | Kocienda et al. | Sep 2016 | A1 |
20160259516 | Kudurshian et al. | Sep 2016 | A1 |
20160259517 | Butcher et al. | Sep 2016 | A1 |
20160259518 | King et al. | Sep 2016 | A1 |
20160259519 | Foss et al. | Sep 2016 | A1 |
20160259527 | Kocienda et al. | Sep 2016 | A1 |
20160259528 | Foss et al. | Sep 2016 | A1 |
20160259536 | Kudurshian et al. | Sep 2016 | A1 |
20160259548 | Ma | Sep 2016 | A1 |
20160274686 | Ruiz et al. | Sep 2016 | A1 |
20160274728 | Luo et al. | Sep 2016 | A1 |
20160274761 | Ruiz et al. | Sep 2016 | A1 |
20160283054 | Suzuki | Sep 2016 | A1 |
20160306507 | Defazio et al. | Oct 2016 | A1 |
20160320906 | Bokma et al. | Nov 2016 | A1 |
20160357368 | Federighi et al. | Dec 2016 | A1 |
20160357389 | Dakin et al. | Dec 2016 | A1 |
20160357390 | Federighi et al. | Dec 2016 | A1 |
20160357404 | Alonso Ruiz et al. | Dec 2016 | A1 |
20160360116 | Penha et al. | Dec 2016 | A1 |
20170045981 | Karunamuni et al. | Feb 2017 | A1 |
20170046039 | Karunamuni et al. | Feb 2017 | A1 |
20170046058 | Karunamuni et al. | Feb 2017 | A1 |
20170046059 | Karunamuni et al. | Feb 2017 | A1 |
20170046060 | Karunamuni et al. | Feb 2017 | A1 |
20170075520 | Bauer et al. | Mar 2017 | A1 |
20170075562 | Bauer et al. | Mar 2017 | A1 |
20170075563 | Bauer et al. | Mar 2017 | A1 |
20170090617 | Jang et al. | Mar 2017 | A1 |
20170090699 | Pennington et al. | Mar 2017 | A1 |
20170091153 | Thimbleby | Mar 2017 | A1 |
20170109011 | Jiang | Apr 2017 | A1 |
20170115867 | Bargmann | Apr 2017 | A1 |
20170123497 | Yonezawa | May 2017 | A1 |
20170124699 | Lane | May 2017 | A1 |
20170139565 | Choi | May 2017 | A1 |
20170315694 | Alonso Ruiz et al. | Nov 2017 | A1 |
20170357403 | Geary et al. | Dec 2017 | A1 |
20180024681 | Bernstein et al. | Jan 2018 | A1 |
20180059866 | Drake et al. | Mar 2018 | A1 |
20180082522 | Bartosik | Mar 2018 | A1 |
20180188920 | Bernstein et al. | Jul 2018 | A1 |
20180342103 | Schwartz et al. | Nov 2018 | A1 |
20180349362 | Sharp et al. | Dec 2018 | A1 |
20180364898 | Chen | Dec 2018 | A1 |
20190012059 | Kwon et al. | Jan 2019 | A1 |
20190018562 | Bernstein et al. | Jan 2019 | A1 |
20190042075 | Bernstein et al. | Feb 2019 | A1 |
20190042078 | Bernstein et al. | Feb 2019 | A1 |
20190065043 | Zambetti et al. | Feb 2019 | A1 |
20190121493 | Bernstein et al. | Apr 2019 | A1 |
20190121520 | Cieplinski et al. | Apr 2019 | A1 |
20190138101 | Bernstein | May 2019 | A1 |
20190138102 | Missig | May 2019 | A1 |
20190138189 | Missig | May 2019 | A1 |
20190146643 | Foss et al. | May 2019 | A1 |
20190155503 | Alonso Ruiz et al. | May 2019 | A1 |
20190158727 | Penha et al. | May 2019 | A1 |
20190163358 | Dascola et al. | May 2019 | A1 |
20190171353 | Missig et al. | Jun 2019 | A1 |
20190171354 | Dascola et al. | Jun 2019 | A1 |
20190212896 | Karunamuni et al. | Jul 2019 | A1 |
20190332257 | Kudurshian et al. | Oct 2019 | A1 |
20190364194 | Penha et al. | Nov 2019 | A1 |
20190391658 | Missig et al. | Dec 2019 | A1 |
20200081614 | Zambetti | Mar 2020 | A1 |
20200142548 | Karunamuni et al. | May 2020 | A1 |
20200201472 | Bernstein et al. | Jun 2020 | A1 |
20200210059 | Hu et al. | Jul 2020 | A1 |
20200218445 | Alonso Ruiz et al. | Jul 2020 | A1 |
20200301556 | Alonso Ruiz et al. | Sep 2020 | A1 |
20200333936 | Khoe et al. | Oct 2020 | A1 |
20200371683 | Zambetti et al. | Nov 2020 | A1 |
20200394413 | Bhanu et al. | Dec 2020 | A1 |
20200396375 | Penha et al. | Dec 2020 | A1 |
20210081082 | Dascola et al. | Mar 2021 | A1 |
20210117054 | Karunamuni et al. | Apr 2021 | A1 |
20210191602 | Brown et al. | Jun 2021 | A1 |
20210191975 | Lu et al. | Jun 2021 | A1 |
20210311598 | Bernstein et al. | Oct 2021 | A1 |
20210326039 | Alonso Ruiz et al. | Oct 2021 | A1 |
20210382613 | Kudurshian et al. | Dec 2021 | A1 |
20220011932 | Khoe et al. | Jan 2022 | A1 |
20220070359 | Clarke et al. | Mar 2022 | A1 |
20220187985 | Dascola et al. | Jun 2022 | A1 |
20220365671 | Bernstein et al. | Nov 2022 | A1 |
20230133870 | Penha et al. | May 2023 | A1 |
20240019999 | Dascola et al. | Jan 2024 | A1 |
20240103694 | Foss et al. | Mar 2024 | A1 |
Number | Date | Country |
---|---|---|
2780765 | May 2011 | CA |
1356493 | Jul 2002 | CN |
1534991 | Jun 2004 | CN |
1620327 | May 2005 | CN |
1808362 | Jul 2006 | CN |
101068310 | Jul 2007 | CN |
101118469 | Feb 2008 | CN |
101192097 | Jun 2008 | CN |
101202866 | Jun 2008 | CN |
101222704 | Jul 2008 | CN |
101227764 | Jul 2008 | CN |
101241397 | Aug 2008 | CN |
101320303 | Dec 2008 | CN |
101356493 | Jan 2009 | CN |
101384977 | Mar 2009 | CN |
101390039 | Mar 2009 | CN |
101421707 | Apr 2009 | CN |
101464777 | Jun 2009 | CN |
101498979 | Aug 2009 | CN |
101526876 | Sep 2009 | CN |
101527745 | Sep 2009 | CN |
101562703 | Oct 2009 | CN |
101593077 | Dec 2009 | CN |
101609380 | Dec 2009 | CN |
101620507 | Jan 2010 | CN |
101627359 | Jan 2010 | CN |
101630230 | Jan 2010 | CN |
101685370 | Mar 2010 | CN |
101692194 | Apr 2010 | CN |
101727179 | Jun 2010 | CN |
101739206 | Jun 2010 | CN |
101763193 | Jun 2010 | CN |
101784981 | Jul 2010 | CN |
101809526 | Aug 2010 | CN |
101840299 | Sep 2010 | CN |
101896962 | Nov 2010 | CN |
101937304 | Jan 2011 | CN |
101945212 | Jan 2011 | CN |
101952796 | Jan 2011 | CN |
101971603 | Feb 2011 | CN |
101998052 | Mar 2011 | CN |
102004575 | Apr 2011 | CN |
102004576 | Apr 2011 | CN |
102004577 | Apr 2011 | CN |
102004593 | Apr 2011 | CN |
102004602 | Apr 2011 | CN |
102004604 | Apr 2011 | CN |
102016777 | Apr 2011 | CN |
102053790 | May 2011 | CN |
102067068 | May 2011 | CN |
102112946 | Jun 2011 | CN |
102150018 | Aug 2011 | CN |
102160021 | Aug 2011 | CN |
102171629 | Aug 2011 | CN |
102195514 | Sep 2011 | CN |
102203702 | Sep 2011 | CN |
102214038 | Oct 2011 | CN |
102223476 | Oct 2011 | CN |
102243662 | Nov 2011 | CN |
102257460 | Nov 2011 | CN |
102301322 | Dec 2011 | CN |
102349038 | Feb 2012 | CN |
102349040 | Feb 2012 | CN |
102354269 | Feb 2012 | CN |
102365666 | Feb 2012 | CN |
102375605 | Mar 2012 | CN |
102385478 | Mar 2012 | CN |
102388351 | Mar 2012 | CN |
102438092 | May 2012 | CN |
102483666 | May 2012 | CN |
102483677 | May 2012 | CN |
102546925 | Jul 2012 | CN |
102566908 | Jul 2012 | CN |
102576251 | Jul 2012 | CN |
102576282 | Jul 2012 | CN |
102625931 | Aug 2012 | CN |
102646013 | Aug 2012 | CN |
102662571 | Sep 2012 | CN |
102662573 | Sep 2012 | CN |
102722312 | Oct 2012 | CN |
102752441 | Oct 2012 | CN |
102792255 | Nov 2012 | CN |
102819331 | Dec 2012 | CN |
102819401 | Dec 2012 | CN |
102841677 | Dec 2012 | CN |
102880417 | Jan 2013 | CN |
103019586 | Apr 2013 | CN |
103092386 | May 2013 | CN |
103092406 | May 2013 | CN |
103097992 | May 2013 | CN |
103139473 | Jun 2013 | CN |
103186345 | Jul 2013 | CN |
103201714 | Jul 2013 | CN |
103268184 | Aug 2013 | CN |
103279295 | Sep 2013 | CN |
103390017 | Nov 2013 | CN |
103518176 | Jan 2014 | CN |
103562828 | Feb 2014 | CN |
103562841 | Feb 2014 | CN |
103581544 | Feb 2014 | CN |
103620531 | Mar 2014 | CN |
103649885 | Mar 2014 | CN |
103699292 | Apr 2014 | CN |
103699295 | Apr 2014 | CN |
103777850 | May 2014 | CN |
103777886 | May 2014 | CN |
103793134 | May 2014 | CN |
103838465 | Jun 2014 | CN |
103870190 | Jun 2014 | CN |
103888681 | Jun 2014 | CN |
103970474 | Aug 2014 | CN |
103984501 | Aug 2014 | CN |
104011637 | Aug 2014 | CN |
104020868 | Sep 2014 | CN |
104020955 | Sep 2014 | CN |
104021021 | Sep 2014 | CN |
104024985 | Sep 2014 | CN |
104038838 | Sep 2014 | CN |
104049861 | Sep 2014 | CN |
104077014 | Oct 2014 | CN |
104090979 | Oct 2014 | CN |
104142798 | Nov 2014 | CN |
104160362 | Nov 2014 | CN |
104205098 | Dec 2014 | CN |
104238904 | Dec 2014 | CN |
104267902 | Jan 2015 | CN |
104270565 | Jan 2015 | CN |
104331239 | Feb 2015 | CN |
104349124 | Feb 2015 | CN |
104392292 | Mar 2015 | CN |
104412201 | Mar 2015 | CN |
104471521 | Mar 2015 | CN |
104487928 | Apr 2015 | CN |
104487929 | Apr 2015 | CN |
104487930 | Apr 2015 | CN |
105264476 | Jan 2016 | CN |
100 59 906 | Jun 2002 | DE |
0 364178 | Apr 1990 | EP |
0 859 307 | Mar 1998 | EP |
0 880 090 | Nov 1998 | EP |
1 028 583 | Aug 2000 | EP |
1 406 150 | Apr 2004 | EP |
1 674 977 | Jun 2006 | EP |
1 882 902 | Jan 2008 | EP |
2 000 896 | Dec 2008 | EP |
2 017 701 | Jan 2009 | EP |
2 028 583 | Feb 2009 | EP |
2 112 586 | Oct 2009 | EP |
2 141 574 | Jan 2010 | EP |
2 175 357 | Apr 2010 | EP |
2 196 893 | Jun 2010 | EP |
2 214 087 | Aug 2010 | EP |
2 226 715 | Sep 2010 | EP |
2 284 675 | Feb 2011 | EP |
2 299 351 | Mar 2011 | EP |
2 302 496 | Mar 2011 | EP |
2 363 790 | Sep 2011 | EP |
2 375 309 | Oct 2011 | EP |
2 375 314 | Oct 2011 | EP |
2 386 935 | Nov 2011 | EP |
2 407 868 | Jan 2012 | EP |
2 420 924 | Feb 2012 | EP |
2 426 580 | Mar 2012 | EP |
2 445 182 | Apr 2012 | EP |
2 447 818 | May 2012 | EP |
2 527 966 | Nov 2012 | EP |
2 530 677 | Dec 2012 | EP |
2 541 376 | Jan 2013 | EP |
2 555 500 | Feb 2013 | EP |
2 615 535 | Jul 2013 | EP |
2 631 737 | Aug 2013 | EP |
2 674 834 | Dec 2013 | EP |
2 674 846 | Dec 2013 | EP |
2 708985 | Mar 2014 | EP |
2 733 578 | May 2014 | EP |
2 808 764 | Dec 2014 | EP |
2 809 058 | Dec 2014 | EP |
2 813 938 | Dec 2014 | EP |
3 664 092 | Jun 2020 | EP |
2 402 105 | Dec 2004 | GB |
58-182746 | Oct 1983 | JP |
H05-204583 | Aug 1993 | JP |
H06-161647 | Jun 1994 | JP |
H07-098769 | Apr 1995 | JP |
H07-104915 | Apr 1995 | JP |
H07-151512 | Jun 1995 | JP |
H08-227341 | Sep 1996 | JP |
H09-269883 | Oct 1997 | JP |
H09-330175 | Dec 1997 | JP |
H11-203044 | Jul 1999 | JP |
2001-078137 | Mar 2001 | JP |
2001-202192 | Jul 2001 | JP |
2001-222355 | Aug 2001 | JP |
2001-306207 | Nov 2001 | JP |
2002-044536 | Feb 2002 | JP |
2002-149312 | May 2002 | JP |
3085481 | May 2002 | JP |
2002-182855 | Jun 2002 | JP |
2003-157131 | May 2003 | JP |
2003-186597 | Jul 2003 | JP |
2004-054861 | Feb 2004 | JP |
2004-062648 | Feb 2004 | JP |
2004-070492 | Mar 2004 | JP |
2004-078957 | Mar 2004 | JP |
2004-086733 | Mar 2004 | JP |
2004-120576 | Apr 2004 | JP |
2004-152217 | May 2004 | JP |
2004-288208 | Oct 2004 | JP |
2005-031786 | Feb 2005 | JP |
2005-092386 | Apr 2005 | JP |
2005-102106 | Apr 2005 | JP |
2005-135106 | May 2005 | JP |
2005-157842 | Jun 2005 | JP |
2005-196810 | Jul 2005 | JP |
2005-317041 | Nov 2005 | JP |
2005-352927 | Dec 2005 | JP |
2006-059238 | Mar 2006 | JP |
2006-185443 | Jul 2006 | JP |
2007-116384 | May 2007 | JP |
2007-148104 | Jun 2007 | JP |
2007-264808 | Oct 2007 | JP |
2008-009759 | Jan 2008 | JP |
2008-015890 | Jan 2008 | JP |
2008-033739 | Feb 2008 | JP |
2008-516348 | May 2008 | JP |
2008-146453 | Jun 2008 | JP |
2008-191086 | Aug 2008 | JP |
2008-537615 | Sep 2008 | JP |
2008-305174 | Dec 2008 | JP |
2009-500761 | Jan 2009 | JP |
2009-110243 | May 2009 | JP |
2009-129171 | Jun 2009 | JP |
2009-129443 | Jun 2009 | JP |
2009-169452 | Jul 2009 | JP |
2009-211704 | Sep 2009 | JP |
2009-217543 | Sep 2009 | JP |
2009-294688 | Dec 2009 | JP |
2009-545805 | Dec 2009 | JP |
2010-009321 | Jan 2010 | JP |
2010-503126 | Jan 2010 | JP |
2010-503130 | Jan 2010 | JP |
2010-055274 | Mar 2010 | JP |
2010-097353 | Apr 2010 | JP |
2010-146507 | Jul 2010 | JP |
2010-152716 | Jul 2010 | JP |
2010-176174 | Aug 2010 | JP |
2010-176337 | Aug 2010 | JP |
2010-181934 | Aug 2010 | JP |
2010-181940 | Aug 2010 | JP |
2010-198385 | Sep 2010 | JP |
2010-536077 | Nov 2010 | JP |
2010-541071 | Dec 2010 | JP |
2011-501307 | Jan 2011 | JP |
2011-028635 | Feb 2011 | JP |
2011-048023 | Mar 2011 | JP |
2011-048666 | Mar 2011 | JP |
2011-048686 | Mar 2011 | JP |
2011-048762 | Mar 2011 | JP |
2011-048832 | Mar 2011 | JP |
2011-053831 | Mar 2011 | JP |
2011-053972 | Mar 2011 | JP |
2011-053973 | Mar 2011 | JP |
2011-053974 | Mar 2011 | JP |
2011-054196 | Mar 2011 | JP |
2011-059821 | Mar 2011 | JP |
2011-070342 | Apr 2011 | JP |
2011-100290 | May 2011 | JP |
2011-107823 | Jun 2011 | JP |
2011-123773 | Jun 2011 | JP |
2011-141868 | Jul 2011 | JP |
2011-170538 | Sep 2011 | JP |
2011-192179 | Sep 2011 | JP |
2011-192215 | Sep 2011 | JP |
2011-197848 | Oct 2011 | JP |
2011-221640 | Nov 2011 | JP |
2011-232947 | Nov 2011 | JP |
2011-242386 | Dec 2011 | JP |
2011-250004 | Dec 2011 | JP |
2011-253556 | Dec 2011 | JP |
2011-257941 | Dec 2011 | JP |
2011-530101 | Dec 2011 | JP |
2012-027940 | Feb 2012 | JP |
2012-033061 | Feb 2012 | JP |
2012-043266 | Mar 2012 | JP |
2012-043267 | Mar 2012 | JP |
2012-053687 | Mar 2012 | JP |
2012-053754 | Mar 2012 | JP |
2012-053926 | Mar 2012 | JP |
2012-073785 | Apr 2012 | JP |
2012-073873 | Apr 2012 | JP |
2012-509605 | Apr 2012 | JP |
2012-093820 | May 2012 | JP |
2012-118825 | Jun 2012 | JP |
2012-118993 | Jun 2012 | JP |
2012-123564 | Jun 2012 | JP |
2012-128825 | Jul 2012 | JP |
2012-168620 | Sep 2012 | JP |
2012-212473 | Nov 2012 | JP |
2012-527685 | Nov 2012 | JP |
2013-025357 | Feb 2013 | JP |
2013-030050 | Feb 2013 | JP |
2013-058149 | Mar 2013 | JP |
2013-077270 | Apr 2013 | JP |
2013-080521 | May 2013 | JP |
2013-093020 | May 2013 | JP |
2013-098826 | May 2013 | JP |
2013-101465 | May 2013 | JP |
2013-105410 | May 2013 | JP |
2013-520727 | Jun 2013 | JP |
2013-131185 | Jul 2013 | JP |
2013-529339 | Jul 2013 | JP |
2013-200879 | Oct 2013 | JP |
2013-236298 | Nov 2013 | JP |
2013-542488 | Nov 2013 | JP |
2013-250602 | Dec 2013 | JP |
2014-504419 | Feb 2014 | JP |
2014-052852 | Mar 2014 | JP |
2014-130567 | Jul 2014 | JP |
2014-140112 | Jul 2014 | JP |
2014-149833 | Aug 2014 | JP |
2014-519109 | Aug 2014 | JP |
2014-529137 | Oct 2014 | JP |
2014-232347 | Dec 2014 | JP |
2015-099555 | May 2015 | JP |
2015-521315 | Jul 2015 | JP |
2015-153420 | Aug 2015 | JP |
2015-185161 | Oct 2015 | JP |
20020041828 | Jun 2002 | KR |
2006-0071353 | Jun 2006 | KR |
2006-0117870 | Nov 2006 | KR |
100807738 | Feb 2008 | KR |
20080026138 | Mar 2008 | KR |
2008-0045143 | Apr 2008 | KR |
100823871 | Apr 2008 | KR |
2008-0054346 | Jun 2008 | KR |
2009-0066319 | Jun 2009 | KR |
2009-0108065 | Oct 2009 | KR |
2010-0010860 | Feb 2010 | KR |
2010-0014095 | Feb 2010 | KR |
2010 0133246 | Dec 2010 | KR |
2011 0026176 | Mar 2011 | KR |
2011 0086501 | Jul 2011 | KR |
20120130972 | Jan 2012 | KR |
2012 0103670 | Sep 2012 | KR |
20120135488 | Dec 2012 | KR |
20120135723 | Dec 2012 | KR |
20130027017 | Mar 2013 | KR |
20130076397 | Jul 2013 | KR |
2013 0099647 | Sep 2013 | KR |
20130135871 | Dec 2013 | KR |
2014 0016495 | Feb 2014 | KR |
2014 0029720 | Mar 2014 | KR |
2014 0043760 | Apr 2014 | KR |
2014 0067965 | Jun 2014 | KR |
2014 0079110 | Jun 2014 | KR |
2014 0122000 | Oct 2014 | KR |
20150013263 | Feb 2015 | KR |
20150021977 | Mar 2015 | KR |
2007145218 | Jul 2009 | RU |
2503989 | Jan 2014 | RU |
201447740 | Dec 2014 | TW |
WO 2005106637 | Nov 2005 | WO |
WO 2006013485 | Feb 2006 | WO |
WO 2006042309 | Apr 2006 | WO |
WO 2006094308 | Sep 2006 | WO |
WO 2007121557 | Nov 2007 | WO |
WO 2008030976 | Mar 2008 | WO |
WO 2008064142 | May 2008 | WO |
WO 2009155981 | Dec 2009 | WO |
WO 2009158549 | Dec 2009 | WO |
WO 2010013876 | Feb 2010 | WO |
WO 2010032598 | Mar 2010 | WO |
WO 2010090010 | Aug 2010 | WO |
WO 2010122813 | Oct 2010 | WO |
WO 2010134729 | Nov 2010 | WO |
WO 2011024389 | Mar 2011 | WO |
WO 2011024465 | Mar 2011 | WO |
WO 2011024521 | Mar 2011 | WO |
WO 2011093045 | Aug 2011 | WO |
WO 2011105009 | Sep 2011 | WO |
WO 2011108190 | Sep 2011 | WO |
WO 2011115187 | Sep 2011 | WO |
WO 2011121375 | Oct 2011 | WO |
WO 2012021417 | Feb 2012 | WO |
WO 2012037664 | Mar 2012 | WO |
WO 2012096804 | Jul 2012 | WO |
WO 2012108213 | Aug 2012 | WO |
WO 2012114760 | Aug 2012 | WO |
WO 2012137946 | Oct 2012 | WO |
WO 2012150540 | Nov 2012 | WO |
WO 2012153555 | Nov 2012 | WO |
WO 2013022486 | Feb 2013 | WO |
WO 2013035725 | Mar 2013 | WO |
WO 2013112453 | Aug 2013 | WO |
WO 2013127055 | Sep 2013 | WO |
WO 2013169302 | Nov 2013 | WO |
WO 2013169845 | Nov 2013 | WO |
WO 2013169846 | Nov 2013 | WO |
WO 2013169849 | Nov 2013 | WO |
WO 2013169851 | Nov 2013 | WO |
WO 2013169853 | Nov 2013 | WO |
WO 2013169854 | Nov 2013 | WO |
WO 2013169870 | Nov 2013 | WO |
WO 2013169875 | Nov 2013 | WO |
WO 2013169877 | Nov 2013 | WO |
WO 2013169882 | Nov 2013 | WO |
WO 2013173838 | Nov 2013 | WO |
WO 2014034706 | Mar 2014 | WO |
WO 2014105275 | Jul 2014 | WO |
WO 2014105276 | Jul 2014 | WO |
WO 2014105277 | Jul 2014 | WO |
WO 2014105278 | Jul 2014 | WO |
WO 2014105279 | Jul 2014 | WO |
WO 2014129655 | Aug 2014 | WO |
WO 2014149473 | Sep 2014 | WO |
WO 2014152601 | Sep 2014 | WO |
WO 2014200733 | Dec 2014 | WO |
WO 2013145804 | Dec 2015 | WO |
WO 2016200584 | Dec 2016 | WO |
Entry |
---|
Agarwal, “How to Copy and Paste Text on Windows Phone 8,” Guiding Tech, http://web.archive.org/web20130709204246/http://www.guidingtech.com/20280/copy-paste-text-windows-phone-8/, Jul. 9, 2013, 10 pages. |
Angelov, “Sponsor Flip Wall with Jquery & CSS”, Tutorialzine. N.p., Mar. 24, 2010. Web. http://tutorialzine.com/2010/03/sponsor-wall-slip-jquery-css/, Mar. 24, 2010, 8 pages. |
Anonymous, “1-Click Installer for Windows Media Taskbar Mini-Player for Windows 7, 8, 8.1 10”, http://metadataconsulting.blogspot.de/2014/05/installer-for-windows-media-taskbar.htm, May 5, 2014, 6 pages. |
Anonymous, “Acer Liquid Z5 Duo User's Manual”, https://global-download.acer.com, Feb. 21, 2014, 65 pages. |
Anonymous, “Android—What Should Status Bar Toggle Button Behavior Be?”, https://ux.stackechange.com/questions/34814, Jan. 15, 2015, 2 pages. |
Anonymous, “Google Android 5.0 Release Date, Specs and Editors Hands on Review—CNET”, http://www.cnet.com/products/google-an-android-5-0-lollipop/, Mar. 12, 2015, 10 pages. |
Anonymous, “How Do I Add Contextual Menu to My Apple Watch App?”, http://www.tech-recipes.com/rx/52578/how-do-i-add-contextual-menu-to-my-apple-watch-app, Jan. 13, 2015, 3 pages. |
Anonymous, “[new] WMP12 with Taskbar Toolbar for Windows 7—Windows Customization—WinMatrix”, http://www.winmatrix.com/forums/index/php?/topic/25528-new-wmp12-with-taskbar-toolbar-for-windows-7, Jan. 27, 2013, 6 pages. |
Anonymous, “Nokia 808 PureView screenshots”, retrieved from Internet; no URL, Nov. 12, 2012, 8 pages. |
Anonymous, “Nokia 808 PureView User Guide,” http://download-fds.webapps.microsoft.com/supportFiles/phones/files/pdf_guides/devices/808/Nokia 808_UG_en_APAC.pdf, Jan. 1, 2012, 144 pages. |
Anonymous, “Notifications, Android 4.4 and Lower”, Android Developers, https://developer.android.com/design/patterns/notifications_k.html, May 24, 2015, 9 pages. |
Anonymous, “Taskbar Extensions”, https://web.archive.org/web/20141228124434/http://msdn.microsoft.com:80/en-us/library/windows/desktop/dd378460(v=vs.85).aspx, Dec. 28, 2014, 8 pages. |
Apple, “Final Cut Express 4 User Manual”, https://wsi.li.dl/mBGZWEQ8fh556f/, Jan. 1, 2007, 1,152 pages. |
Apple, “Apple—September Event 2014”, https://www.youtube.com/watch?v=38lqQpqwPe7s, Sep. 10, 2014, 5 pages. |
Azundris, “A Fire in the Pie,” http://web.archive.org/web/20140722062639/http://blog.azundrix.com/archives/168-A-fire-in-the-sky.html, Jul. 22, 2014, 8 pages. |
Billibi, “Android 5.0 Lollipop”, https://www.bilibili.comvideo/av1636046?from=search&seid=3128140235778895126, Oct. 19, 2014, 6 pages. |
b-log—betriebsraum weblog, “Extremely Efficient Menu Selection: Marking Menus for the Flash Platform,” http://www.betriebsraum.de/blog/2009/12/11/extremely-efficient-menu-selection-marking -for-the-flash-platform, Dec. 11, 2009, 9 pages. |
Bolluyt, “5 Apple Watch Revelations from Apple's New WatchKit”, http://www.cheatsheet.com/tecnology/5-apple-watch-revelations-from-apples-new-watchkit.html/?a=viewall, Nov. 22, 2014, 3 pages. |
Boring, “The Fat Thumb: Using the Thumb's Contact Size for Single-Handed Mobile Interaction”, https://www.youtube.com/watch?v=E9vGU5R8nsc&feature=youtu.be, Jun. 14, 2012, 2 pages. |
Borowska, “6 Types of Digital Affordance that Impact Your Ux”, https://www.webdesignerdepot.com/2015/04/6-types-of-digital-affordance-that-implact-your-ux, Apr. 7, 2015, 6 pages. |
Brewster, “The Design and Evaluation of a Vibrotactile Progress Bar”, Glasgow Interactive Systems Group, University of Glasgow, Glasgow, G12 8QQ, UK, 2005, 2 pages. |
Brownlee, “Android 5.0 Lollipop Feature Review!”, https//www.youtube.com/watch?v=pEDQ1z1-PvU, Oct. 27, 2014, 5 pages. |
Cheng, “iPhone 5: a little bit taller, a little bit baller”, https://arstechnica.com/gadgets/2012/09/iphone-5-a-little-bit-taller-a little-bit-baller, Oct. 14, 2021, 22 pages. |
Clark, “Global Moxie, Touch Means a Renaissance for Radial Menus,” http://globalmoxie.com/blog/radial-menus-for-touch-ui˜print.shtml, Jul. 17, 2012, 7 pages. |
Cohen, Cinemagraphs are Animated Gifs for Adults, http://www.tubefilter.com/2011/07/10/cinemagraph, Jul. 10, 2011, 3 pages. |
CrackBerry Forums, Windows 8 Bezel Control and Gestures, http://wwwforums.crackberry.com/blackberry-playbook-f222/windows-8-bezel-control-gestures-705129/, Mar. 1, 2012, 8 pages. |
Crook, “Microsoft Patenting Multi-Screen, Milti-Touch Gestures,” http://techcrunch.com/2011/08/25/microsoft-awarded-patents-for-multi-screen-multi-touch-gestures/, Aug. 25, 2011, 8 pages. |
cvil.ly—a design blog, Interesting Touch Interactions on Windows 8, http://cvil.ly/2011/06/04/interesting-touch-interactions-on-windows-8/, Jun. 4, 2011, 3 pages. |
Davidson, et al., “Extending 2D Object Arrangement with Pressure-Sensitive Layering Cues”, Proceedings of the 21st Annual ACM Symposium on User Interface Software and Technology, Oct. 19, 2008, 4 pages. |
Dinwiddie, et al., “Combined-User Interface for Computers, Television, Video Recorders, and Telephone, Etc”, ip.com Journal, Aug. 1, 1990, 3 Pages. |
Drinkwater, “Glossary: Pre/Post Alarm Image Buffer,” http://www.networkwebcams.com/ip-camera-learning-center/2008/07/17/glossary-prepost-alarm-image-buffer/, Jul. 17, 2008, 1 page. |
Dzyre, “10 Android Notification Features You Can Fiddle With”, http://www.hongkiat.com/blog/android-notification-features, Mar. 10, 2014, 10 pages. |
Easton-Ellett, “Three Free Cydia Utilities to Remove iOS Notification Badges”, http://www.ijailbreak.com/cydia/three-free-cydia-utilies-to-remove-ios-notification-badges, Apr. 14, 2012, 2 pages. |
Elliot, “Mac System 7”, YouTube. Web. Mar. 8, 2017, http://www.youtube.com/watch?v=XLv22hfuuik, Aug. 3, 2011, 1 page. |
Farshad, “SageThumbs-Preview And Convert Pictures From Windows Context Menu”, https://web.addictivetips.com/windows-tips/sagethumbs-preview-and-convert-photos-from-windows-context-menu, Aug. 8, 2011, 5 pages. |
Fenlon, “The Case for Bezel Touch Gestures on Apple's iPad,” http://www.tested.com/tech/tablets/3104-the case-for-bezel-touch-gestures-on-apples-ipad/, Nov. 2, 2011, 6 pages. |
Flaherty, “Is Apple Watch's Pressure-Sensitive Screen a Bigger Deal Than The Gadget Itself?”, http://www.wired.com/2014/09/apple-watchs-pressure-sensitive-screen-bigger-deal-gadget, Sep. 15, 2014, 3 pages. |
Flixel, “Cinemagraph Pro for Mac”, https://flixel.com/products/mac/cinemagraph-pro, 2014, 7 pages. |
Flowplayer, “Slowmotion: Flowplayer,” https://web.archive.org/web/20150226191526/http://flash.flowplayer.org/plugins/streaming/slowmotion.html, Feb. 26, 2015, 4 pages. |
Garcia-Hernandez et al., “Orientation Discrimination of Patterned Surfaces through an Actuated and Non-Actuated Tactile Display”, 2011 IEEE World Haptics Conference, Istanbul, Jun. 21-24, 2011, 3 pages. |
Forlines, et al., “Glimpse: a Novel Input Model for Multi-level Devices”, Chi '05 Extended Abstracts on Human Factors in Computing Systems, Apr. 2, 2005, 4 pages. |
Gardner, “Recenz—Recent Apps in One Tap”, You Tube, https://www.youtube.com/watch?v-qailSHRgsTo, May 15, 2015, 1 page. |
Geisler, “Enriched Links: A Framework for Improving Web Navigation Using Pop-Up Views”, Journal of the American Society for Information Science, Chapel Hill, NC, Jan. 1, 2000, 13 pages. |
Gonzalo et al., “Zliding: Fluid Zooming and Sliding for High Precision Parameter Manipulation”, Department of Computer Science, University of Toronto, Seattle, Washington, Oct. 23, 2005, 10 pages. |
Google-Chrome, “Android 5.0 Lollipop”, http://androidlover.net/android-os/android-5-0-lollipop/android-5-0-lollipop-recent-apps-card-google-search.html, Oct. 19, 2014, 10 pages. |
Grant, “Android's Notification Center”, https://www.objc.io/issues/11-android/android-notifications, Apr. 30, 2014, 26 pages. |
Gurman, “Force Touch on iPhone 6S Revealed: Expect Shortcuts, Faster Actions, iOS”, 9To5Mac Aug. 10, 2015, 31 pages. |
Henderson et al., “Opportunistic User Interfaces for Augmented Reality”, Department of Computer Science, New York, NY, Jan. 2010, 13 pages. |
IBM et al., “Pressure-Sensitive Icons”, IBM Technical Disclosure Bulletin, vol. 33, No. 1B, Jun. 1, 1990, 3 pages. |
iCIMS Recruiting Software, “Blackberry Playbook Review,” http://www.tested.com/tech.tablets/5749-blackberry-playbook-review/, 2015, 11 pages. |
iPhoneHacksTV, “Confero allows you to easily manage your Badge notifications—iPhone Hacks”, youtube, https://wwwyoutube.com/watch?v=JCk61pnL4SU, Dec. 26, 2014, 3 pages. |
iPhoneOperator, “Wasser Liveeffekt fur Homescreen & Lockscreen—Aquaboard (Cydia)”, http://www.youtube.com/watch?v=fG9YMF-mB0Q, Sep. 22, 2012, 3 pages. |
iPodHacks 142: “Water Ripple Effects on the Home and Lock Screen: AquaBoard Cydia Tweak Review”, YouTube, https://www.youtube.comwatch?v-Auu_uRaYHJs, Sep. 24, 2012, 3 pages. |
Jauregui, “Design and Evaluation of 3D Cursors and Motion Parallax for the Exploration of Desktop Virtual Environments”, IEEE Symposium on 3D User Interfaces 2012, Mar. 4, 2012, 8 pages. |
Jones, “Touch Screen with Feeling”, IEEE Spectrum, , spectrum.ieee.org/commuting/hardware/touch-screens-with-feeling, May 1, 2009, 2 pages. |
Kaaresoja, “Snap-Crackle-Pop: Tactile Feedback for Mobile Touch Screens,” Nokia Research Center, Helsinki, Finland, Proceedings of Eurohaptics vol. 2006, Jul. 3, 2006, 2 pages. |
Kiener, “Force Touch on iPhone”, https://www.youtube.com/watch?v=CEMmnsU5fC8, Aug. 4, 2015, 4 pages. |
Kleinman, “iPhone 6s Said to Sport Force Touch Display, 2GB of RAM”, https://www.technobuffalo.com/2015/01/15/iphone-6s-said-to-sport-force-touch-display-2gb-of-ram, Jan. 15, 2015, 2 pages. |
Kost, “LR3-Deselect All Images But One”, Julieanne Kost's Blog, blogs.adobe.com/jkost/2011/12/lr3-deselect-all-images-but-one.html, Dec. 22, 2011, 1 page. |
Kronfli, “HTC Zoe Comes to Google Play, Here's Everything You Need to Know,” Know Your Mobile, http://www.knowyourmobile.com/htc/htc-one/19550/what-htc-zoe, Aug. 14, 2014, 5 pages. |
Kumar, “How to Enable Ripple Effect on Lock Screen of Galaxy S2”, YouTube, http, http://www.youtube.com/watch?v+B9-4M5abLXA, Feb. 12, 2013, 3 pages. |
Kurdi, “XnView Shell Extension: A Powerful Image Utility Inside The Context Menu”, http://www.freewaregenius.com/xnview-shell-extension-a-powerful-image-utility-inside-the-context-menu, Jul. 30, 2008, 4 pages. |
Laurie, “The Power of the Right Click,” http://vlaurie.com/right-click/customize-context-menu.html, 2002-2016, 3 pages. |
MacKenzie et al., “The Tactile Touchpad”, Chi '97 Extended Abstracts on Human Factors in Computing Systems Looking to the Future, Chi '97, Mar. 22, 1997, 5 pages. |
Mahdi, Confero now available in Cydia, brings a new way to manage Notification badges [Jailbreak Tweak], http://www.iphonehacks.com/2015/01/confero/tweak-manage-notification-badges.html, Jan. 1, 2015, 2 pages. |
Matthew, “How to Preview Photos and Images From Right-Click Context Menue in Windows [Tip]”, http://www.dottech.org/159009/add-image-preview-in-windows-context-menu-tip, Jul. 4, 2014, 5 pages. |
McGarry, “Everything You Can Do With Force Touch on Apple Watch”, Macworld, www.macworld.com, May 6, 2015, 4 pages. |
McRitchie, “Internet Explorer Right-Click Menus,” http://web.archive.org/web-201405020/http:/dmcritchie.mvps.org/ie/rightie6.htm, May 2, 2014, 10 pages. |
Microsoft, “Lumia—How to Personalize Your Start Screen”, https://www.youtube.com/watch?v=6GI5Z3TrSEs, Nov. 11, 2014, 3 pages. |
Microsoft, “Use Radial Menus to Display Commands in OneNote for Windows 8,” https://support.office.com/en-us/article/Use-radial-menues-to-display-OneNote-commands-Od75f03f-cde7-493a-a8a0b2ed6f99fbe2, 2016, 5 pages. |
Minsky, “Computational Haptics the Sandpaper System for Synthesizing Texture for a Force-Feedback Display,” Massachusetts Institute of Technology, Jun. 1978, 217 pages. |
Mitroff, “Google Android 5.0 Lollipop,” http://www.cnet.com/products/google-android-5-0-lollipop, Mar. 12, 2015, 5 pages. |
Mohr, “Do Not Disturb—The iPhone Feature You Should Be Using”, http.www.wonderoftech.com/do-not-disturb-iphone, Jul. 14, 2014, 30 pages. |
Nacca, “NiLS Lock Screen Notifications / Floating Panel—Review”, https://www.youtube.com/watch?v=McT4QnS9TDY, Feb. 3, 2014, 4 pages. |
Neuburg, “Detailed Explanation iOS SDK”, Oreilly Japan, Dec. 22, 2014, vol. 4, P175-186, 15 pages. |
Nickinson, How to Use Do Not Disturb on the HTC One M8, https://www.androidcentral.com/how-to-use-do-not-disturb-htc-one-m8, Apr. 7, 2014, 9 pages. |
Nickinson, “Inside Android 4.2: Notifications and Quick Settings”, https://www.andrloidcentral.com/inside-android-42-notifications-and-quick-settings, Nov. 3, 2012, 3 pages. |
Nikon, “Scene Recognition System and Advanced SRS,” http://www.nikonusa.com/en.Learn-And-Explore/Article/ftlzi4rr/Scene-Recognition-System.html, Jul. 22, 2015, 2 pages. |
Nishino, “A Touch Screen Interface Design with Tactile Feedback”, Computer Science, 2011 International Conference on Complex, Intelligent, and Software Intensive Systems, 2011, 4 pages. |
Ogino, “iOS 7 Design Standard”, Japan, Impress Japan Corporation, 1st edition, Nov. 21, 2013, 2 pages. |
Oh, et al., “Moving Objects with 2D Input Devices in CAD Systems and Desktop Virtual Environments”, Proceedings of Graphics Interface 2005, 8 pages, May 2005. |
O'Hara, et al., “Pressure-Sensitive Icons”, ip.com Journal, ip.com Inc., West Henrietta, NY, US, Jun. 1, 1990, 2 Pages. |
Pallenberg, “Wow, the new iPad had gestures.” https://plus.google.com/+SaschaPallenberg/posts/aaJtJogu8ac, Mar. 7, 2012, 2 pages. |
Phonebuff, “How to Pair Bluetooth on the iPhone”, https://www.youtube.com/watch?v=LudNwEar9A8, Feb. 8, 2012, 3 pages. |
Plaisant et al., “Touchscreen Toggle Design”, Proceedings of CHI '92, pp. 667-668, May 3-7, 1992, 2 pages. |
PoliceOne.com, “COBAN Technologies Pre-Event Buffer & Fail Safe Feature,” http://www.policeone.com/police-products/police-technology/mobile-computures/videos/5955587-COBAN-Technologies-Pre-Event, Nov. 11, 2010, 2 pages. |
Pradeep, “Android App Development—Microsoft Awarded With Patents on Gestures Supported on Windows 8,” http://mspoweruser.com/microsoft-awarded-with-patents-on-gestures-supported-on-windows-8/, Aug. 25, 2011, 16 pages. |
“Quickly Preview Songs in Windows Media Player 12 in Windows 7,” Quickly Preview Songs in Windows Media Player 12 in Windows 7. How-to Geek, Apr. 28, 2010, Web. May 8, 2010, http://web.archive.org/web/20100502013134/http://www.howtogeek.com/howto/16157/quickly-preview-songs-in-windows-media-center-12-in-windows-7>, 6 pages. |
Quinn, et al., “Zoofing! Faster List Selections with Pressure-Zoom-Flick-Scrolling”, Proceedings of the 21st Annual Conference of the Australian Computer-Human Interaction Special Interest Group on Design, Nov. 23, 2009, ACM Press, vol. 411, 8 pages. |
Rekimoto, et al., “PreSense: Interaction Techniques for Finger Sensing Input Devices”, Proceedings of the 16th Annual ACM Symposium on User Interface Software and Technology, Nov. 30, 2003, 10 pages. |
Rekimoto, et al., “PreSensell: Bi-directional Touch and Pressure Sensing Interactions with Tactile Feedback”, Conference on Human Factors in Computing Systems Archive, ACM, Apr. 22, 2006, 6 pages. |
Rekimoto, et al., “SmartPad: A Finger-Sensing Keypad for Mobile Interaction”, CHI 2003, Ft. Lauderdale, Florida, ACM 1-58113-637-Apr. 5-10, 2003, 2 pages. |
Ritchie, “How to see all the unread message notifications on your iPhone, all at once, all in the same place | iMore”, https://www.imore.com/how-see-all-unread-message-notifications-your-iphone-all-once-all-same-place, Feb. 22, 2014, 2 pages. |
Roth et al., “Bezel Swipe: Conflict-Free Scrolling and Miltiple Selection on Mobile Touch Screen Devices,” Chi 2009, Boston, Massachusetts, USA, Apr. 4-9, 2009, 4 pages. |
Rubino et al., “How to Enable ‘Living Images’ on your Nokia Lumia with Windows Phone 8.1”, https://www.youtube.com/watch?v=RX7vpoFy1Dg, Jun. 6, 2014, 5 pages. |
Sleepfreaks, “How to Easily Play/Loop an Event Range in Cubase”, https://sleepfreaks-dtm.com/for-advance-cubase/position-3/>, Apr. 4, 2011, 14 pages. |
Sony, “Intelligent Scene Recognition,” https://www.sony-asia.com/article/252999/section/product/product/dsc-t77, downloaded on May 20, 2016, 5 pages. |
Sood, “MultitaskingGestures”, http://cydia.saurik.com/package/org.thebigboxx.multitaskinggestures/, Mar. 3, 2014, 2 pages. |
Stewart, et al., “Characteristics of Pressure-Based Input for Mobile Devices”, Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, Apr. 2010, 10 pages. |
Stross, “Wearing a Badge, and a Video Camera,” The New York Times, http://www.nytimes.com/2013/04/07/business/wearable-video-cameras-for-police-offers.html? R=0, Apr. 6, 2013, 4 pages. |
Taser, “Taser Axon Body Camera User Manual,” https://www.taser.com/images/support/downloads/product-resourses/axon_body_product_manual.pdf, Oct. 1, 2013, 24 pages. |
Tidwell, “Designing Interfaces,” O'Reilly Media, Inc., USA, Nov. 2005, 348 pages. |
Tweak, “QuickCenter—Add 3D-Touch Shortcuts to Control Center”, https://www.youtube.com/watch?v=8rHOFpGvZFM, Mar. 22, 2016, 2 pages. |
Tweak, “iOS 10 Tweak on iOS 9.0.2 Jailbread & 9.2.1—9.3 Support: QuickCenter 3D, Touch Cydia Tweak!” https://wwwyoutube.com/watch?v=opOBr30_Fkl, Mar. 6, 2016, 3 pages. |
UpDown-G, “Using Multiple Selection Mode in Android 4.0 / Getting Started”, https://techbooster.org/android/13946, Mar. 7, 2012, 7 pages. |
VGJFeliz, “How to Master Android Lollipop Notifications in Four Minutes!”, https://www.youtube.com/watch?v=S-zBRG7GJgs, Feb. 8, 2015, 5 pages. |
VisioGuy, “Getting a Handle on Selecting and Subselecting Visio Shapes”, http://www.visguy.com/2009/10/13/getting-a-handle-on-selecting-and-subselecting-visio-shapes/, Oct. 13, 2009, 18 pages. |
Viticci, “Apple Watch: Our Complete Overview—MacStories”, https://www.macstories.net, Sep. 10, 2014, 21 pages. |
Wikipedia, “AirDrop,”, Wikipedia, the free encyclopedia, http://en.wikipedia.org/wiki/AirDrop, May 17, 2016, 5 pages. |
Wikipedia, “Cinemagraph,” Wikipedia, the free encyclopedia, http://en.wikipedia.org/wiki/Cinemagraph, Last Modified Mar. 16, 2016, 2 pages. |
Wikipedia, “Context Menu,” Wikipedia, the free encyclopedia https://en.wikipedia.org/wiki/Context menu, Last Modified May 15, 2016, 4 pages. |
Wikipedia, “HTC One (M7),” Wikipedia, the free encyclopedia, https://en.wikipedia.org/wiki/HTC_One (M7), Mar. 2013, 20 pages. |
Wikipedia, “Mobile Ad Hoc Network,” Wikipedia, the free encyclopedia, http://en.wikipedia.org/wiki/Mobile_ad_hoc_network, May 20, 2016, 4 pages. |
Wikipedia, “Pie Menu,” Wikipedia, the free encyclopedia, http://en.wikipedia.org/wiki/Pie_menu, Last Modified Jun. 4, 2016, 3 pages. |
Wikipedia, “Quick Look,” from Wikipedia, the free encyclopedia, https;//en.wikipedia.org/wiki/Quick_Look, Last Modified Jan. 15, 2016, 3 pages. |
Wikipedia, “Sony Xperia Z1”, Wikipedia, the free encyclopedia, https://enwikipedia.org/wiki/Sony_Experia_Z1, Sep. 2013, 10 pages. |
Wilson, et al., “Augmenting Tactile Interaction with Pressure-Based Input”, School of Computing Science, Glasgow, UK, Nov. 15-17, 2011, 2 pages. |
Yang, et al., “Affordance Application on Visual Interface Design of Desk-Top Virtual Experiments”, 2014 International Conference on Information Science, Electronics and Electrical Engineering, IEEE, vol. 1, Apr. 26, 2014, 5 pages. |
Yatani, et al., SemFeel: A User Interface with Semantic Tactile Feedback for Mobile Touch-Screen Devices, Proceedings of the 22nd annual ACM symposium on user interface software and technology (UIST '09), Oct. 2009, 10 pages. |
YouTube, “Android Lollipop Lock-Screen Notification Tips”, https://www.youtube.com/watch?v=LZTxHBOwzIU, Nov. 13, 2014, 3 pages. |
YouTube, “Blackberry Playbook bezel interaction,” https://www.youtube.com/watch?v=YGkzFqnOwXI, Jan. 10, 2011, 2 pages. |
YouTube, “How to Master Android Lollipop Notifications in Four Minutes!”, Video Gadgets Journal (VGJFelix), https://www.youtube.com/watch?v=S-zBRG7GGJgs, Feb. 8, 2015, 4 pages. |
YouTube, “HTC One Favorite Camera Features”, http://www.youtube.com/watch?v=sUYHfcjl4RU, Apr. 28, 2013, 3 pages. |
YouTube, “Multitasking Gestures: Zephyr Like Gestures on iOS”, https://www.youtube.com/watch?v=Jcod-f7Lw0I, Jan. 27, 2014, 3 pages. |
YouTube, “Recentz—Recent Apps in a Tap”, https://www.youtube.com/watch?v=gailSHRgsTo, May 15, 2015, 1 page. |
Zylom, “House Secrets”, http://game.zylom.com/servlet/Entry?g=38&s=19521&nocache=1438641323066, Aug. 3, 2015, 1 page. |
Office Action, dated Mar. 15, 2017, received in U.S. Appl. No. 14/535,671, 13 pages. |
Office Action, dated Nov. 30, 2017, received in U.S. Appl. No. 14/535,671, 21 pages. |
Notice of Allowance, dated Sep. 5, 2018, received in U.S. Appl. No. 14/535,671, 5 pages. |
Office Action, dated Jun. 29, 2017, received in U.S. Appl. No. 14/608,895, 30 pages. |
Final Office Action, dated Feb. 22, 2018, received in U.S. Appl. No. 14/608,895, 20 pages. |
Notice of Allowance, dated Jun. 26, 2018, received in U.S. Appl. No. 14/608,895, 9 pages. |
Office Action, dated Dec. 18, 2015, received in Australian Patent Application No. 2013368440, which corresponds with U.S. Appl. No. 14/536,426, 3 pages. |
Office Action, dated Oct. 18, 2016, received in Australian Patent Application No. 2013368440, which corresponds with U.S. Appl. No. 14/536,426, 3 pages. |
Notice of Allowance, dated Dec. 20, 2016, received in Australian Patent Application No. 2013368440, which corresponds with U.S. Appl. No. 14/536,426, 3 pages. |
Certificate of Grant, dated Apr. 29, 2017, received in Australian Patent Application No. 2013368440, which corresponds with U.S. Appl. No. 14/536,426, 3 pages. |
Office Action, dated Nov. 6, 2017, received in Chinese Patent Application No. 201380068493.6, which corresponds with U.S. Appl. No. 14/608,895, 5 pages. |
Office Action, dated Oct. 9, 2018, received in Chinese Patent Application No. 201380068493.6, which corresponds with U.S. Appl. No. 14/608,895, 3 pages. |
Patent, dated Dec. 25, 2018, received in Chinese Patent Application No. 201380068493.6, which corresponds with U.S. Appl. No. 14/608,895, 4 pages. |
Office Action, dated Jul. 21, 2016, received in European Patent Application No. 13795391.5, which corresponds with U.S. Appl. No. 14/536,426, 9 pages. |
Office Action, dated Mar. 9, 2018, received in European Patent Application No. 13795391.5, which corresponds with U.S. Appl. No. 14/536,426, 4 pages. |
Intention to Grant, dated Jul. 6, 2018, received in European Patent Application No. 13795391.5, which corresponds with U.S. Appl. No. 14/536,426, 5 pages. |
Certificate of Grant, dated Dec. 26, 2018, received in European Patent Application No. 13795391.5, which corresponds with U.S. Appl. No. 14/536,426, 4 pages. |
Office Action, dated Sep. 13, 2016, received in Japanese Patent Application No. 2015-547948, which corresponds with U.S. Appl. No. 14/536,426, 5 pages. |
Patent, dated May 12, 2017, received in Japanese Patent Application No. 2015-547948, which corresponds with U.S. Appl. No. 14/536,426, 3 pages. |
Office Action, dated Apr. 5, 2016, received in Korean Patent Application No. 10-2015-7018851, which corresponds with U.S. Appl. No. 14/536,426, 7 pages. |
Office Action, dated Feb. 24, 2017, received in Korean Patent Application No. 10-2015-7018851, which corresponds with U.S. Appl. No. 14/536,426, 3 pages. |
Patent, dated May 26, 2017, received in Korean Patent Application No. 2015-7018851, which corresponds with U.S. Appl. No. 14/536,426, 3 pages. |
Office Action, dated Oct. 5, 2018, received in Korean Patent Application No. 2018-7028236, which corresponds with U.S. Appl. No. 14/608,895, 6 pages. |
Notice of Allowance, dated May 24, 2019, received in Korean Patent Application No. 2018-7028236, which corresponds with U.S. Appl. No. 14/608,895, 4 pages. |
Patent, dated Jul. 9, 2019, received in Korean Patent Application No. 2018-7028236, which corresponds with U.S. Appl. No. 14/608,895, 4 pages. |
Office Action, dated Jul. 26, 2017, received in U.S. Appl. No. 14/536,235, 14 pages. |
Final Office Action, dated Feb. 26, 2018, received in U.S. Appl. No. 14/536,235, 13 pages. |
Notice of Allowance, dated Aug. 15, 2018, received in U.S. Appl. No. 14/536,235, 5 pages. |
Office Action, dated Apr. 5, 2017, received in U.S. Appl. No. 14/536,367, 16 pages. |
Notice of Allowance, dated Nov. 30, 2017, received in U.S. Appl. No. 14/536,367, 9 pages. |
Notice of Allowance, dated May 16, 2018, received in U.S. Appl. No. 14/536,367, 5 pages. |
Office Action, dated Dec. 17, 2015, received in U.S. Appl. No. 14/536,426, 28 pages. |
Final Office Action, dated May 6, 2016, received in U.S. Appl. No. 14/536,426, 23 pages. |
Office action, dated Aug. 3, 2017, received in U.S. Appl. No. 14/536,426, 10 pages. |
Office Action, dated Jul. 15, 2015, received in Australian Patent Application No. 2013259606, which corresponds with U.S. Appl. No. 14/536,426, 3 pages. |
Notice of Allowance, dated May 23, 2016, received in Australian Patent Application No. 2013259606, which corresponds with U.S. Appl. No. 14/536,426, 3 pages. |
Certificate of Grant, dated Sep. 15, 2016, received in Australian Patent Australian Patent Application No. 20133259606, which corresponds with U.S. Appl. No. 14/536,426, 1 page. |
Office Action, dated Nov. 18, 2015, received in Australian Patent Application No. 2015101231, which corresponds with U.S. Appl. No. 14/536,426, 3 pages. |
Office Action, dated May 15, 2017, received in Australian Patent Application No. 2016216580, which corresponds with U.S. Appl. No. 14/536,426, 3 pages. |
Office Action, dated May 8, 2018, received in Australian Patent Application No. 2016216580, which corresponds with U.S. Appl. No. 14/536,426, 5 pages. |
Notice of Allowance, dated May 17, 2018, received in Australian Patent Application No. 2016216580, which corresponds with U.S. Appl. No. 14/536,426, 3 pages. |
Certificate of Grant, dated Sep. 13, 2018, received in Australian Patent Application No. 2016216580, which corresponds with U.S. Appl. No. 14/536,426, 1 page. |
Office Action, dated Apr. 12, 2019, received in Australian Patent Application No. 2018223021, which corresponds with U.S. Appl. No. 14/536,426, 3 pages. |
Office Action, dated Nov. 18, 2019, received in Australian Patent Application No. 2018223021, which corresponds with U.S. Appl. No. 14/536,426, 3 pages. |
Office Action, dated Feb. 18, 2020, received in Australian Patent Application No. 2018223021, which corresponds with U.S. Appl. No. 14/536,426, 3 pages. |
Notice of Allowance, dated Mar. 27, 2020, received in Australian Patent Application No. 2018223021, which corresponds with U.S. Appl. No. 14/536,426, 3 pages. |
Certificate of Grant, dated Jul. 23, 2020, received in Australian Patent Application No. 2018223021, which corresponds with U.S. Appl. No. 14/536,426, 4 pages. |
Office Action, dated Sep. 19, 2017, received in Chinese Patent Application No. 201380035982.1, which corresponds with U.S. Appl. No. 14/536,426, 5 pages. |
Notice of Allowance, dated May 10, 2018, received in Chinese Patent Application No. 201380035982.1, which corresponds with U.S. Appl. No. 14/536,426, 2 pages. |
Patent, dated Aug. 17, 2018, received in Chinese Patent Application No. 201380035982.1, which corresponds with U.S. Appl. No. 14/536,426, 4 pages. |
Office Action, dated Sep. 20, 2017, received in Chinese Patent Application No. 201510566550.4, which corresponds with U.S. Appl. No. 14/536,426, 11 pages. |
Notice of Allowance, dated Aug. 8, 2018, received in Chinese Patent Application No. 201510566550.4, which corresponds with U.S. Appl. No. 14/536,426, 3 pages. |
Patent, dated Oct. 23, 2018, received in Chinese Patent Application No. 20151056650.4, which corresponds with U.S. Appl. No. 14/536,426, 4 pages. |
Office Action, dated Jan. 4, 2021, received in Chinese Patent Application No. 201810826224.6, which corresponds with U.S. Appl. No. 14/536,426, 6 pages. |
Office Action, dated Jun. 24, 2021, received in Chinese Patent Application No. 201810826224.6, which corresponds with U.S. Appl. No. 14/536,426, 3 pages. |
Notice of Allowance, dated Oct. 11, 2021, received in Chinese Patent Application No. 201810826224.6, which corresponds with U.S. Appl. No. 14/536,426, 1 page. |
Patent, dated Nov. 12, 2021, received in Chinese Patent Application No. 201810826224.6, which corresponds with U.S. Appl. No. 14/536,426, 7 pages. |
Decision to Grant, dated Jul. 14, 2016, received in European Patent Application No. 13724100.6, which corresponds with U.S. Appl. No. 14/536,426, 1 page. |
Letters Patent, dated Aug. 10, 2016, received in European Patent Application No. 13724100.6, which corresponds with U.S. Appl. No. 14/536,426, 1 page. |
Office Action, dated Jan. 20, 2017, received in European Patent Application No. 15183980.0, which corresponds with U.S. Appl. No. 14/536,426, 5 pages. |
Office Action, dated Aug. 21, 2017, received in European Patent Application No. 15183980.0, which corresponds with U.S. Appl. No. 14/536,426, 3 pages. |
Intention to Grant, dated Mar. 9, 2018, received in European Patent Application No. 15183980.0, which corresponds with U.S. Appl. No. 14/536,426, 5 pages. |
Intention to Grant, dated Aug. 14, 2018, received in European Patent Application No. 15183980.0, which corresponds with U.S. Appl. No. 14/536,426, 5 pages. |
Decision to Grant, dated Jan. 10, 2019, received in European Patent Application No. 15183980.0, which corresponds with U.S. Appl. No. 14/536,426, 4 pages. |
Patent, dated Feb. 6, 2019, received in European Patent Application No. 15183980.0, which corresponds with U.S. Appl. No. 14/536,426, 4 pages. |
Office Action, dated Sep. 6, 2019, received in European Patent Application No. 18180503.7, which corresponds with U.S. Appl. No. 14/536,426, 5 pages. |
Certificate of Grant, dated Nov. 10, 2017, received in Hong Kong Patent Application No. 15107535.0, which corresponds with U.S. Appl. No. 14/536,426, 2 pages. |
Certificate of Grant, dated Jul. 5, 2019, received in Hong Kong Patent Application No. 15108892.5, which corresponds with U.S. Appl. No. 14/536,426, 5 pages. |
Patent, dated Nov. 22, 2019, received in Hong Kong Patent Application No. 16107033.6, which corresponds with U.S. Appl. No. 14/536,426, 6 pages. |
Office Action, dated Mar. 4, 2016, received in Japanese Patent Application No. 2015-511644 , which corresponds with U.S. Appl. No. 14/536,426, 3 pages. |
Office Action, dated Feb. 6, 2017, received in Japanese Patent Application No. 2015-511644, which corresponds with U.S. Appl. No. 14/536,426, 6 pages. |
Notice of Allowance, dated Dec. 8, 2017, received in Japanese Patent Application No. 2015-511644, which corresponds with U.S. Appl. No. 14/536,426, 6 pages. |
Patent, dated Jan. 12, 2018, received in Japanese Patent Application No. 2015-511644, which corresponds with U.S. Appl. No. 14/536,426, 3 pages. |
Office Action, dated Nov. 6, 2018, received in Japanese Patent Application No. 2018-000753, which corresponds with U.S. Appl. No. 14/536,426, 8 pages. |
Office Action, dated Oct. 7, 2019, received in Japanese Patent Application No. 2018-000753, which corresponds with U.S. Appl. No. 14/536,426, 5 pages. |
Office Action, dated Feb. 8, 2021, received in Japanese Patent Application No. 2018-000753, which corresponds with U.S. Appl. No. 14/536,426, 2 pages. |
Office Action, dated Mar. 9, 2017, received in U.S. Appl. No. 14/536,464, 21 pages. |
Final Office Action, dated Aug. 25, 2017, received in U.S. Appl. No. 14/536,464, 30 pages. |
Office Action, dated Feb. 12, 2018, received in U.S. Appl. No. 14/536,464, 33 pages. |
Final Office Action, dated Jun. 22, 2018, received in U.S. Appl. No. 14/536,464, 32 pages. |
Notice of Allowance, dated Jan. 25, 2021, received in U.S. Appl. No. 14/536,464, 5 pages. |
Notice of Allowance, dated Feb. 23, 2021, received in U.S. Appl. No. 14/536,464, 5 pages. |
Office Action, dated Sep. 25, 2017, received in U.S. Appl. No. 14/536,644, 29 pages. |
Final Office Action, dated May 3, 2018, received in U.S. Appl. No. 14/536,644, 28 pages. |
Office Action, dated Nov. 2, 2018, received in U.S. Appl. No. 14/536,644, 24 pages. |
Notice of Allowance, dated Jul. 2, 2019, received in U.S. Appl. No. 14/536,644, 5 pages. |
Office Action, dated Oct. 19, 2017, received in U.S. Appl. No. 14/608,926, 14 pages. |
Final Office Action, dated Jun. 6, 2018, received in U.S. Appl. No. 14/608,926, 19 pages. |
Notice of Allowance, dated Apr. 10, 2019, received in U.S. Appl. No. 14/608,926, 16 pages. |
Notice of Allowance, dated May 21, 2019, received in U.S. Appl. No. 14/608,926, 5 pages. |
Office Action, dated Feb. 1, 2016, received in Australian Patent Application No. 2013368441, which corresponds with U.S. Appl. No. 14/608,926, 3 pages. |
Notice of Allowance, dated Mar. 30, 2016, received in Australian Patent Application No. 2013368441, which corresponds with U.S. Appl. No. 14/608,926, 1 page. |
Certificate of Grant, dated Jul. 29, 2016, received in Australian Patent Application No. 2013368441, which corresponds with U.S. Appl. No. 14/608,926, 1 page. |
Office Action, dated Jan. 3, 2017, received in Australian Patent Application No. 2016201451, which corresponds with U.S. Appl. No. 14/608,926, 3 pages. |
Notice of Acceptance, dated Dec. 20, 2017, received in Australian Patent Application No. 2016201451, which corresponds with U.S. Appl. No. 14/608,926, 3 pages. |
Certificate of Grant, dated May 3, 2018, received in Australian Patent Application No. 2016201451, which corresponds with U.S. Appl. No. 14/608,926, 1 page. |
Office Action, dated May 4, 2017, received in Chinese Patent Application No. 201380068414.1, which corresponds with U.S. Appl. No. 14/608,926, 5 pages. |
Notice of Allowance, dated Feb. 8, 2018, received in Chinese Patent Application No. 201380068414.1, which corresponds with U.S. Appl. No. 14/608,926, 2 pages. |
Patent, dated May 4, 2018, received in Chinese Patent Application No. 201380068414.1, which corresponds with U.S. Appl. No. 14/608,926, 4 pages. |
Office Action, dated Dec. 1, 2020, received in Chinese Patent Application No. 201810369259.1, which corresponds with U.S. Appl. No. 14/608,926, 14 pages. |
Office Action, dated Jul. 14, 2021, received in Chinese Patent Application No. 201810369259.1, which corresponds with U.S. Appl. No. 14/608,926, 5 pages. |
Office Action, dated Apr. 21, 2016, received in European Patent Application No. 13795392.3, which corresponds with U.S. Appl. No. 14/608,926, 6 pages. |
Office Action, dated May 6, 2016, received in European Patent Application No. 13795392.3, which corresponds with U.S. Appl. No. 14/608,926, 6 pages. |
Office Action, dated Nov. 11, 2016, received in European Patent Application No. 13795392.3, which corresponds with U.S. Appl. No. 14/608,926, 6 pages. |
Office Action, dated Jul. 4, 2017, received in European Patent Application No. 13795392.3, which corresponds with U.S. Appl. No. 14/608,926, 4 pages. |
Oral Summons, dated Feb. 13, 2017, received in European Patent Application No. 13795392.3, which corresponds with U.S. Appl. No. 14/608,926, 11 pages. |
Office Action, dated Mar. 14, 2016, received in Japanese Patent Application No. 2015-549392, which corresponds with U.S. Appl. No. 14/608,926, 4 pages. |
Notice of Allowance, dated Jan. 17, 2017, received in Japanese Patent Application No. 2015-549392, which corresponds with U.S. Appl. No. 14/608,926, 2 pages. |
Patent, dated Feb. 17, 2017, received in Japanese Patent Application No. 2015- 549392, which corresponds with U.S. Appl. No. 14/608,926, 3 pages. |
Patent, dated Apr. 27, 2018, received in Japanese Patent Application No. 2017-024234, which corresponds with U.S. Appl. No. 14/608,926, 3 pages. |
Office Action, dated Feb. 22, 2019, received in Japanese Patent Application No. 2018-079290, which corresponds with U.S. Appl. No. 14/608,926, 7 pages. |
Office Action, dated Sep. 30, 2019, received in Japanese Patent Application No. 2018-079290, which corresponds with U.S. Appl. No. 14/608,926, 5 pages. |
Notice of Allowance, dated Apr. 3, 2020, received in Japanese Patent Application No. 2018-079290, which corresponds with U.S. Appl. No. 14/608,926, 5 pages. |
Patent, dated Apr. 14, 2020, received in Japanese Patent Application No. 2018-079290, which corresponds with U.S. Appl. No. 14/608,926, 5 pages. |
Office Action, dated May 12, 2016, received in Korean Patent Application No. 10-2015-7018853, which corresponds with U.S. Appl. No. 14/608,926, 4 pages. |
Notice of Allowance, dated Mar. 31, 2017, received in Korean Patent Application No. 2015-7018853, which corresponds with U.S. Appl. No. 14/608,926, 4 pages. |
Patent, dated Jun. 30, 2017, received in Korean Patent Application No. 2015- 7018853, which corresponds with U.S. Appl. No. 14/608,926, 3 pages. |
Office Action, dated Aug. 22, 2017, received in Korean Patent Application No. 2017-7018250, which corresponds with U.S. Appl. No. 14/608,926, 2 pages. |
Notice of Allowance, dated Dec. 29, 2017, received in Korean Patent Application No. 2017-7018250, which corresponds with U.S. Appl. No. 14/608,926, 3 pages. |
Office Action, dated Oct. 19, 2017, received in U.S. Appl. No. 14/536,646, 21 pages. |
Notice of Allowance, dated Aug. 9, 2018, received in U.S. Appl. No. 14/536,646, 5 pages. |
Office Action, dated Jul. 17, 2015, received in Australian Patent Application No. 2013259613, which corresponds with U.S. Appl. No. 14/536,646, 5 pages. |
Office Action, dated May 31, 2016, received in Australian Patent Application No. 2013259613, which corresponds with U.S. Appl. No. 14/536,646, 4 pages. |
Notice of Allowance, dated Jul. 5, 2016, received in Australian Patent Application No. 2013259613, which corresponds with U.S. Appl. No. 14/536,646, 3 pages. |
Office Action, dated Jun. 6, 2019, received in Australian Patent Application No. 2018256626, which corresponds with U.S. Appl. No. 14/536,646, 3 pages. |
Notice of Acceptance, dated Aug. 1, 2019, received in Australian Patent Application No. 2018256626, which corresponds with U.S. Appl. No. 14/536,646, 3 pages. |
Certificate of Grant, dated Dec. 5, 2019, received in Australian Patent Application No. 2018256626, which corresponds with U.S. Appl. No. 14/536,646, 3 pages. |
Office Action, dated Dec. 1, 2016, received in Chinese Patent Application No. 2013800362059, which corresponds with U.S. Appl. No. 14/536,646, 3 pages. |
Notice of Allowance, dated Oct. 9, 2017, received in Chinese Patent Application No. 2013800362059, which corresponds with U.S. Appl. No. 14/536,646, 3 pages. |
Office Action, dated Jul. 3, 2020, received in Chinese Patent Application No. 201711425148.X, which corresponds with U.S. Appl. No. 14/536,646, 13 pages. |
Office Action, dated Jun. 10, 2021, received in Chinese Patent Application No. 201711425148.X, which corresponds with U.S. Appl. No. 14/536,646, 2 pages. |
Notice of Allowance, dated Oct. 9, 2021, received in Chinese Patent Application No. 201711425148.X, which corresponds with U.S. Appl. No. 14/536,646, 2 pages. |
Office Action, dated Oct. 26, 2020, received in Chinese Patent Application No. 201711422092.2, which corresponds with U.S. Appl. No. 14/536,646, 20 pages. |
Notice of Allowance, dated Mar. 22, 2021, received in Chinese Patent Application No. 201711422092.2, which corresponds with U.S. Appl. No. 14/536,646, 2 pages. |
Certificate of Grant, dated Apr. 13, 2021, received in Chinese Patent Application No. 201711422092.2, which corresponds with U.S. Appl. No. 14/536,646, 8 pages. |
Office Action, dated Nov. 12, 2015, received in European Patent Application No. 13724102.2, which corresponds with U.S. Appl. No. 14/536,646, 6 pages. |
Office Action, dated May 31, 2016, received in European Patent Application No. 13724102.2, which corresponds with U.S. Appl. No. 14/536,646, 5 pages. |
Notice of Allowance, dated Jan. 4, 2017, received in European Patent Application No. 13724102.2, which corresponds with U.S. Pat. No. 14,536,646, 5 pages. |
Patent, dated May 26, 2017, received in European Patent Application No. 13724102.2, which corresponds with U.S. Pat. No. 14,536,646, 1 page. |
Office Action, dated Feb. 29, 2016, received in Japanese Patent Application No. 2015-511645, which corresponds with U.S. Appl. No. 14/536,646, 5 pages. |
Notice of Allowance, dated Dec. 22, 2016, received in Japanese Patent Application No. 2015-511645, which corresponds with U.S. Appl. No. 14/536,646, 2 pages. |
Certificate of Grant, dated Jan. 25, 2019, received in Hong Kong Patent Application No. 2015-511645, which corresponds with U.S. Appl. No. 14/536,646, 4 pages. |
Office Action, dated Apr. 3, 2017, received in U.S. Appl. No. 14/536,141, 11 pages. |
Notice of Allowance, dated Sep. 20, 2017, received in U.S. Appl. No. 14/536,141, 10 pages. |
Office Action, dated Aug. 27, 2015, received in Australian Patent Application No. 2013259614, which corresponds with U.S. Appl. No. 14/536,141, 4 pages. |
Notice of Allowance, dated Aug. 15, 2016, received in Australian Patent Application No. 2013259614, which corresponds with U.S. Appl. No. 14/536,141, 1 page. |
Office Action, dated Jul. 21, 2017, received in Australian Patent Application No. 2016262773, which corresponds with U.S. Appl. No. 14/536,141, 3 pages. |
Notice of Acceptance, dated Jul. 19, 2018, received in Australian Patent Application No. 2016262773, which corresponds with U.S. Appl. No. 14/536,141, 3 pages. |
Office Action, dated Jun. 5, 2019, received in Australian Patent Application No. 2018256616, which corresponds with U.S. Appl. No. 14/536,141, 3 pages. |
Notice of Acceptance, dated Jan. 22, 2020, received in Australian Patent Application No. 2018256616, which corresponds with U.S. Appl. No. 14/536,141, 3 pages. |
Certificate of Grant, dated May 21, 2020, received in Australian Patent Application No. 2018256616, which corresponds with U.S. Appl. No. 14/536,141, 3 pages. |
Office Action, dated Mar. 3, 2017, received in Chinese Patent Application No. 201380035893.7, which corresponds with U.S. Appl. No. 14/536,141, 8 pages. |
Office Action, dated Feb. 2, 2018, received in Chinese Patent Application No. 201380035893.7, which corresponds with U.S. Appl. No. 14/536,141, 5 pages. |
Notice of Allowance, dated Aug. 31, 2018, received in Chinese Patent Application No. 201380035893.7, which corresponds with U.S. Appl. No. 14/536,141, 6 pages. |
Office Action, dated Mar. 10, 2021, received in Chinese Patent Application No. 201811142423.1, which corresponds with U.S. Appl. No. 14/536,141, 6 pages. |
Office Action, dated Aug. 12, 2021, received in Chinese Patent Application No. 201811142423.1, which corresponds with U.S. Appl. No. 14/536,141, 6 pages. |
Notice of Allowance, dated Oct. 26, 2021, received in Chinese Patent Application No. 201811142423.1, which corresponds with U.S. Appl. No. 14/536,141, 2 pages. |
Patent, dated Dec. 31, 2021, received in Chinese Patent Application No. 201811142423.1, which corresponds with U.S. Appl. No. 14/536,141, 6 pages. |
Patent, dated Oct. 23, 2018, received in Chinese Patent Application No. 201380035893.7, which corresponds with U.S. Appl. No. 14/536,141, 4 pages. |
Office Action, dated Jan. 7, 2016, received in European Patent Application No. 13726053.5, which corresponds with U.S. Appl. No. 14/536,141, 10 pages. |
Office Action, dated Aug. 31, 2016, received in European Patent Application No. 13726053.5, which corresponds with U.S. Appl. No. 14/536,141, 10 pages. |
Office Action, dated Apr. 9, 2018, received in European Patent Application No. 13726053.5, which corresponds with U.S. Appl. No. 14/536,141, 9 pages. |
Office Action, dated Mar. 7, 2019, received in European Patent Application No. 13726053.5, which corresponds with U.S. Appl. No. 14/536,141, 5 pages. |
Intention to Grant, dated Sep. 6, 2019, received in European Patent Application No. 13726053.5, which corresponds with U.S. Appl. No. 14/536,141, 7 pages. |
Decision to Grant, dated Jan. 23, 2020, received in European Patent Application No. 13726053.5, which corresponds with U.S. Appl. No. 14/536,141, 1 page. |
Patent, dated Feb. 19, 2020, received in European Patent Application No. 13726053.5, which corresponds with U.S. Appl. No. 14/536,141, 4 page. |
Office Action, dated Feb. 29, 2016, received in Japanese Patent Application No. 2015-511646, which corresponds with U.S. Appl. No. 14/536,141, 3 pages. |
Office Action, dated Oct. 25, 2016, received in Japanese Patent Application No. 2015-511646, which corresponds with U.S. Appl. No. 14/536,141, 6 pages. |
Notice of Allowance, dated Jun. 30, 2017, received in Japanese Patent Application No. 2015-511646, which corresponds with U.S. Appl. No. 14/536,141, 5 pages. |
Patent, dated Jul. 28, 2017, received in Japanese Patent Application No. 2015-511646, which corresponds with U.S. Appl. No. 14/536,141, 3 pages. |
Office Action, dated Aug. 10, 2018, received in Japanese Patent Application No. 2017-141953, which corresponds with U.S. Appl. No. 14/536,141, 6 pages. |
Office Action, dated Jul. 5, 2019, received in Japanese Patent Application No. 2017-141953, which corresponds with U.S. Appl. No. 14/536,141, 6 pages. |
Office Action, dated Dec. 8, 2016, received in U.S. Appl. No. 14/608,942, 9 pages. |
Notice of Allowance, dated May 12, 2017, received in U.S. Appl. No. 14/608,942, 10 pages. |
Office Action, dated Jan. 29, 2016, received in Australian Patent Application No. 2013368443, which corresponds with U.S. Appl. No. 14/608,942, 3 pages. |
Notice of Allowance, dated Mar. 11, 2016, received in Australian Patent Application No. 2013368443, which corresponds with U.S. Appl. No. 14/608,942, 2 pages. |
Certificate of Grant, dated Jul. 7, 2016, received in Australian Patent Application No. 14/608,942, which corresponds with U.S. Appl. No. 14/608,942, 3 pages. |
Office Action, dated Mar. 29, 2017, received in Australian Patent Application No. 2016201303, which corresponds with U.S. Appl. No. 14/608,942, 3 pages. |
Notice of Acceptance, dated Mar. 7, 2018, received in Australian Patent Application No. 2016201303, which corresponds with U.S. Appl. No. 14/608,942, 3 pages. |
Certificate of Grant, dated Jul. 5, 2018, received in Australian Patent Application No. 2016201303, which corresponds with U.S. Appl. No. 14/608,942, 4 pages. |
Office Action, dated Jun. 16, 2017, received in Chinese Patent Application No. 201380068295.X, which corresponds with U.S. Appl. No. 14/608,942, 6 pages. |
Office Action, dated Mar. 28, 2018, received in Chinese Patent Application No. 201380068295.X, which corresponds with U.S. Appl. No. 14/608,942, 5 pages. |
Office Action, dated Oct. 8, 2018, received in Chinese Patent Application No. 201380068295.X, which corresponds with U.S. Appl. No. 14/608,942, 3 pages. |
Notice of Allowance, dated May 7, 2019, received in Chinese Patent Application No. 201380068295.X, which corresponds with U.S. Appl. No. 14/608,942, 3 pages. |
Patent, dated Jul. 5, 2019, received in Chinese Patent Application No. 201380068295.X, which corresponds with U.S. Appl. No. 14/608,942, 8 pages. |
Office Action, dated Oct. 7, 2016, received in European Patent Application No. 13798464.7, which corresponds with U.S. Appl. No. 14/608,942, 7 pages. |
Decision to Grant, dated Sep. 13, 2018, received in European Patent Application No. 13798464.7, which corresponds with U.S. Appl. No. 14/608,942, 2 pages. |
Intention to Grant, dated Nov. 8, 2019, received in European Patent Application No. 18194127.9, which corresponds with U.S. Appl. No. 14/608,942, 7 pages. |
Decision to Grant, dated Aug. 20, 2020, received in European Patent Application No. 18194127.9, which corresponds with U.S. Appl. No. 14/608,942, 4 pages. |
Patent, dated Sep. 16, 2020, received in European Patent Application No. 18194127.9, which corresponds with U.S. Appl. No. 14/608,942, 4 pages. |
Certificate of Grant, dated Jul. 26, 2019, received in Hong Kong, which corresponds with U.S. Appl. No. 14/608,942, 4 pages. |
Office Action, dated Jul. 4, 2016, received in Japanese Patent Application No. 2015-549393, which corresponds with U.S. Appl. No. 14/608,942, 4 pages. |
Notice of Allowance, dated May 12, 2017, received in Japanese Patent Application No. 2015-549393, which corresponds with U.S. Appl. No. 14/608,942, 5 pages. |
Patent, dated Jun. 16, 2017, received in Japanese Patent Application No. 2015-549393, which corresponds with U.S. Appl. No. 14/608,942, 3 pages. |
Office Action, dated Apr. 5, 2016, received in Korean Patent Application No. 2015-7018448, which corresponds with U.S. Appl. No. 14/608,942, 6 pages. |
Office Action, dated Feb. 24, 2017, received in Korean Patent Application No. 2015-7018448, which corresponds with U.S. Appl. No. 14/608,942, 4 pages. |
Notice of Allowance, dated Jan. 15, 2019, received in Korean Patent Application No. 2015-7018448, which corresponds with U.S. Appl. No. 14/608,942, 5 pages. |
Patent, dated Mar. 8, 2019, received in Korean Patent Application No. 2015-7018448, which corresponds with U.S. Appl. No. 14/608,942, 4 pages. |
Office Action, dated Jul. 17, 2017, received in U.S. Appl. No. 14/536,166, 19 pages. |
Notice of Allowance, dated Feb. 28, 2018, received in U.S. Appl. No. 14/536,166, 5 pages. |
Office Action, dated Aug. 1, 2016, received in U.S. Appl. No. 14/536,203, 14 pages. |
Notice of Allowance, dated Feb. 1, 2017, received in U.S. Appl. No. 14/536,203, 9 pages. |
Office Action, dated Jul. 9, 2015, received in Australian Patent Application No. 2013259630, which corresponds with U.S. Appl. No. 14/536,203, 3 pages. |
Notice of Allowance, dated Jun. 15, 2016, received in Australian Patent Application No. 2013259630, which corresponds with U.S. Appl. No. 14/536,203, 3 pages. |
Certificate of Grant, dated Oct. 21, 2016, received in Australian Patent Application No. 2013259630, which corresponds with U.S. Appl. No. 14/536,203, 3 pages. |
Office Action, dated Jul. 4, 2017, received in Australian Patent Application No. 2016238917, which corresponds with U.S. Appl. No. 14/536,203, 5 pages. |
Notice of Acceptance, dated Jul. 19, 2018, received in Australian Patent Application No. 2016238917, which corresponds with U.S. Appl. No. 14/536,203, 3 pages. |
Certificate of Grant, dated Nov. 1, 2018, received in Australian Patent Application No. 2016238917, which corresponds with U.S. Appl. No. 14/536,203, 1 page. |
Office Action, dated Aug. 20, 2018, received in Australian Patent Application No. 2018250481, which corresponds with U.S. Appl. No. 14/536,203, 2 pages. |
Notice of Allowance, dated Apr. 29, 2020, received in Australian Patent Application No. 2018250481, which corresponds with U.S. Appl. No. 14/536,203, 3 pages. |
Certificate of Grant, dated Sep. 3, 2020, received in Australian Patent Application No. 2018250481, which corresponds with U.S. Appl. No. 14/536,203, 4 pages. |
Office Action, dated Oct. 25, 2017, received in Chinese Patent Application No. 201380035977.0, which corresponds with U.S. Appl. No. 14/536,203, 5 pages. |
Notice of Allowance, dated Apr. 4, 2018, received in Chinese Patent Application No. 201380035977.0, which corresponds with U.S. Appl. No. 14/536,203, 3 pages. |
Patent, dated Jul. 6, 2018, received in Chinese Patent Application No. 201380035977.0, which corresponds with U.S. Appl. No. 14/536,203, 4 pages. |
Office Action, dated Jan. 26, 2021, received in Chinese Patent Application No. 201810632507.7, 5 pages. |
Notice of Allowance, dated Aug. 11, 2021, received in Chinese Patent Application No. 201810632507.7, which corresponds with U.S. Appl. No. 14/536,203, 1 page. |
Patent, dated Oct. 22, 2021, received in Chinese Patent Application No. 201810632507.7, which corresponds with U.S. Appl. No. 14/536,203, 7 pages. |
Office Action, dated Nov. 11, 2015, received in European Patent Application No. 13724104.8, which corresponds with U.S. Appl. No. 14/536,203, 5 pages. |
Office Action, dated May 31, 2016, received in European Patent Application No. 13724104.8, which corresponds with U.S. Appl. No. 14/536,203, 5 pages. |
Office Action, dated Dec. 6, 2017, received in European Patent Application No. 13724104.8, which corresponds with U.S. Appl. No. 14/536,203, 9 pages. |
Decision to Grant, dated Oct. 24, 2018, received in European Patent Application No. 13724104.8, which corresponds with U.S. Appl. No. 14/536,203, 5 pages. |
Intention to Grant, dated Mar. 18, 2019, received in European Patent Application No. 13724104.8, which corresponds with U.S. Appl. No. 14/536,203, 9 pages. |
Decision to Grant, dated Aug. 8, 2019, received in European Patent Application No. 13724104.8, which corresponds with U.S. Appl. No. 14/536,203, 1 page. |
Certificate of Grant, dated Sep. 4, 2019, received in European Patent Application No. 13724104.8, which corresponds with U.S. Appl. No. 14/536,203, 4 pages. |
Patent, dated Sep. 27, 2019, received in Hong Kong Patent Application No. 15108904.1, which corresponds with U.S. Appl. No. 14/536,203, 6 pages. |
Office Action, dated Feb. 15, 2016, received in Japanese Patent Application No. 2015-511650, which corresponds with U.S. Appl. No. 14/536,203, 5 pages. |
Notice of Allowance, dated Aug. 5, 2016, received in Japanese Patent Application No. 2015-511650, which corresponds with U.S. Appl. No. 14/536,203, 4 pages. |
Certificate of Patent, dated Sep. 9, 2016, received in Japanese Patent Application No. 2015-511650, which corresponds with U.S. Appl. No. 14/536,203, 3 pages. |
Office Action, dated Jun. 23, 2017, received in Japanese Patent Application No. 2016173113, which corresponds with U.S. Appl. No. 14/536,203, 5 pages. |
Notice of Allowance, dated Jan. 12, 2018, received in Japanese Patent Application No. 2016173113, which corresponds with U.S. Appl. No. 14/536,203, 5 pages. |
Patent, dated Feb. 16, 2018, received in Japanese Patent Application No. 2016173113, which corresponds with U.S. Appl. No. 14/536,203, 3 pages. |
Office Action, dated Oct. 19, 2018, received in Japanese Patent Application No. 2018-022394, which corresponds with U.S. Appl. No. 14/536,203, 4 pages. |
Office Action, dated Sep. 30, 2019, received in Japanese Patent Application No. 2018-022394, which corresponds with U.S. Appl. No. 14/536,203, 5 pages. |
Office Action, dated Jan. 22, 2021, received in Japanese Patent Application No. 2018-022394, which corresponds with U.S. Appl. No. 14/536,203, 2 pages. |
Notice of Allowance, dated Dec. 3, 2021, received in Japanese Patent Application No. 2018-022394, which corresponds with U.S. Appl. No. 14/536,203, 2 pages. |
Office Action, dated Dec. 4, 2015, received in Korean Patent Application No. 2014-7034520, which corresponds with U.S. Appl. No. 14/536,203, 4 pages. |
Notice of Allowance, dated Sep. 1, 2016, received in Korean Patent Application No. 2014-7034520, which corresponds with U.S. Appl. No. 14/536,203, 5 pages. |
Office Action, dated Feb. 6, 2017, received in Korean Patent Application No. 2016-7033834, which corresponds with U.S. Appl. No. 14/536,203, 4 pages. |
Notice of Allowance, dated Oct. 30, 2017, received in Korean Patent Application No. 2016-7033834, which corresponds with U.S. Appl. No. 14/536,203, 5 pages. |
Patent, dated Jan. 23, 2018, received in Korean Patent Application No. 2016-7033834, which corresponds with U.S. Appl. No. 14/536,203, 4 pages. |
Office Action, dated Oct. 20, 2017, received in U.S. Appl. No. 14/608,965, 14 pages. |
Office Action, dated Jul. 2, 2018, received in U.S. Appl. No. 14/608,965, 16 pages. |
Final Office Action, dated Jan. 10, 2019, received in U.S. Appl. No. 14/608,965, 17 pages. |
Notice of Allowance dated Nov. 7, 2019, received in U.S. Appl. No. 14/608,965, 17 pages. |
Notice of Allowance dated Jan. 2, 2020, received in U.S. Appl. No. 14/608,965, 5 pages. |
Office action, dated Oct. 11, 2017, received in Chinese Patent Application No. 201380074060.1, which corresponds with U.S. Appl. No. 14/608,965, 5 pages. |
Office action, dated Aug. 1, 2018, received in Chinese Patent Application No. 201380074060.1, which corresponds with U.S. Appl. No. 14/608,965, 5 pages. |
Office action, dated Nov. 1, 2018, received in Chinese Patent Application No. 201380074060.1, which corresponds with U.S. Appl. No. 14/608,965, 3 pages. |
Office action, dated Apr. 3, 2019, received in Chinese Patent Application No. 201380074060.1, which corresponds with U.S. Appl. No. 14/608,965, 3 pages. |
Patent, dated May 17, 2019, received in Chinese Patent Application No. 201380074060.1, which corresponds with U.S. Appl. No. 14/608,965, 6 pages. |
Office Action, dated Jul. 22, 2016, received in European Office Action No. 13798465.4, which corresponds with U.S. Appl. No. 14/608,965, 3 pages. |
Oral Proceedings, dated Mar. 7, 2018, received in European Office Action No. 13798465.4, which corresponds with U.S. Appl. No. 14/608,965, 5 pages. |
Decision to Grant, dated Sep. 6, 2018, received in European Office Action No. 13798465.4, which corresponds with U.S. Appl. No. 14/608,965, 2 pages. |
Office Action, dated Oct. 20, 2016, received in U.S. Appl. No. 14/536,247, 10 pages. |
Final Office Action, dated Mar. 24, 2017, received in U.S. Appl. No. 14/536,247, 14 pages. |
Notice of Allowance, dated Nov. 22, 2017, received in U.S. Appl. No. 14/536,247, 6 pages. |
Office Action, dated Mar. 24, 2017, received in U.S. Appl. No. 14/536,267, 12 pages. |
Notice of Allowance, dated Nov. 9, 2017, received in U.S. Appl. No. 14/536,267, 8 pages. |
Notice of Allowance, dated Jun. 1, 2018, received in U.S. Appl. No. 14/536,267, 5 pages. |
Office Action, dated Aug. 10, 2015, received in Australian Patent Application No. 2013259637, which corresponds with U.S. Appl. No. 14/536,267, 3 pages. |
Notice of Allowance, dated Jun. 28, 2016, received in Australian Patent Application No. 2013259637, which corresponds with U.S. Appl. No. 14/536,267, 3 pages. |
Certificate of Grant, dated Oct. 21, 2016, received in Australian Patent Application No. 2013259637, which corresponds with U.S. Appl. No. 14/536,267, 3 pages. |
Office Action, dated Mar. 24, 2017, received in Australian Patent Application No. 2016204411, which corresponds with U.S. Appl. No. 14/536,267, 3 pages. |
Notice of Acceptance, dated Feb. 27, 2018, received in Australian Patent Application No. 2016204411, which corresponds with U.S. Appl. No. 14/536,267, 3 pages. |
Certificate of Grant, dated Jun. 28, 2018, received in Australian Patent Application No. 2016204411, which corresponds with U.S. Appl. No. 14/536,267, 4 pages. |
Office Action, dated Mar. 15, 2019, received in Australian Patent Application No. 2018204236, which corresponds with U.S. Appl. No. 14/5326,267, 5 pages. |
Notice of Acceptance, dated Apr. 29, 2019, received in Australian Patent Application No. 2018204236, which corresponds with U.S. Appl. No. 14/5326,267, 3 pages. |
Certificate of Grant, dated Aug. 28, 2019, received in Australian Patent Application No. 2018204236, which corresponds with U.S. Patent Application No. 14/5326,267, 4 pages. |
Office Action, dated Dec. 9, 2016, received in Chinese Patent Application No. 2016120601564130, which corresponds with U.S. Appl. No. 14/536,267, 4 pages. |
Notice of Allowance, dated Jan. 29, 2018, received in Chinese Patent Application No. 201380035968.1, which corresponds with U.S. Appl. No. 14/536,267, 3 pages. |
Patent, dated Apr. 20, 2018, received in Chinese Patent Application No. 201380035968.1, which corresponds with U.S. Appl. No. 14/536,267, 4 pages. |
Office Action, dated Nov. 28, 2018, received in Chinese Patent Application No. 201610537334.1, which corresponds with U.S. Appl. No. 14/536,267, 5 pages. |
Office Action, dated Jul. 11, 2019, received in Chinese Patent Application No. 201610537334.1, which corresponds with U.S. Appl. No. 14/536,267, 3 pages. |
Office Action, dated Sep. 30, 2019, received in Chinese Patent Application No. 201610537334.1, which corresponds with U.S. Appl. No. 14/536,267, 3 pages. |
Office Action, dated Dec. 20, 2019, received in Chinese Patent Application No. 201610537334.1, which corresponds with U.S. Appl. No. 14/536,267, 3 pages. |
Office Action, dated Apr. 20, 2020, received in Chinese Patent Application No. 201610537334.1, which corresponds with U.S. Appl. No. 14/536,267, 4 pages. |
Patent, dated Sep. 29, 2020, received in Chinese Patent Application No. 201610537334.1, which corresponds with U.S. Appl. No. 14/536,267, 7 pages. |
Office Action, dated Jun. 13, 2018, received in Chinese Patent Application No. 201810332044.2, which corresponds with U.S. Appl. No. 14/536,267, 2 pages. |
Office Action, dated Jan. 20, 2021, received in Chinese Patent Application No. 201810332044.2, which corresponds with U.S. Appl. No. 14/536,267, 15 pages. |
Office Action, dated Jul. 19, 2021, received in Chinese Patent Application No. 201810332044.2, which corresponds with U.S. Appl. No. 14/536,267, 1 page. |
Office Action, dated Nov. 23, 2021, received in Chinese Patent Application No. 201810332044.2, which corresponds with U.S. Appl. No. 14/536,267, 2 page. |
Office Action, dated Jan. 25, 2018, received in European Patent Application No. 13724106.3, which corresponds with U.S. Appl. No. 14/536,267, 5 pages. |
Intention to Grant, dated Jun. 27, 2018, received in European Patent Application No. 13724106.3, which corresponds with U.S. Appl. No. 14/536,267, 5 pages. |
Decision to Grant, dated Oct. 18, 2018, received in European Patent Application No. 13724106.3, which corresponds with U.S. Appl. No. 14/536,267, 3 pages. |
Grant Certificate, dated Nov. 14, 2018, received in European Patent Application No. 13724106.3, which corresponds with U.S. Appl. No. 14/536,267, 3 pages. 4 pages. |
Office Action, dated Sep. 13, 2017, received in European Patent Application No. 16177863.4, which corresponds with U.S. Appl. No. 14/536,267, 6 pages. |
Decision to Grant, dated Nov. 29, 2018, received in European Patent Application No. 16177863.4, which corresponds with U.S. Appl. No. 14/536,267, 4 pages. |
Patent, dated Dec. 26, 2018, received in European Patent Application No. 16177863.4, which corresponds with U.S. Appl. No. 14/536,267, 4 pages. |
Office Action, dated Aug. 29, 2019, received in European Patent Application No. 18183789.9, which corresponds with U.S. Appl. No. 16/262,800, 9 pages. |
Office Action, dated Aug. 21, 2020, received in European Patent Application No. 18183789.9, which corresponds with U.S. Appl. No. 16/262,800, 9 pages. |
Patent, dated Aug. 30, 2019, received in Hong Kong Patent Application No. 15107537.8, which corresponds with U.S. Appl. No. 14/536,267, 9 pages. |
Patent, dated Nov. 8, 2019, received in Hong Kong Patent Application No. 15108890.7, which corresponds with U.S. Appl. No. 14/536,267, 4 pages. |
Office Action, dated Jan. 29, 2016, received in Japanese Patent Application No. 2015-511652, which corresponds with U.S. Appl. No. 14/536,267, 3 pages. |
Notice of Allowance, dated Sep. 26, 2016, received in Japanese Patent Application No. 2015-511652, which corresponds with U.S. Appl. No. 14/536,267, 5 pages. |
Office Action, dated Mar. 3, 2017, received in Japanese Patent Application No. 2016-125839, which corresponds with U.S. Appl. No. 14/536,267, 6 pages. |
Notice of Allowance, dated Nov. 17, 2017, received in Japanese Patent Application No. 2016-125839, which corresponds with U.S. Appl. No. 14/536,267, 5 pages. |
Office Action, dated Feb. 4, 2019, received in Japanese Patent Application No. 2017-237035, which corresponds with U.S. Appl. No. 14/536,267, 7 pages. |
Notice of Allowance, dated Sep. 9, 2019, received in Japanese Patent Application No. 2017-237035, which corresponds with U.S. Appl. No. 14/536,267, 5 pages. |
Patent, dated Sep. 27, 2019, received in Japanese Patent Application No. 2017-237035, which corresponds with U.S. Appl. No. 14/536,267, 3 pages. |
Office Action, dated Dec. 4, 2015, received in Korean Patent Application No. 2014-7034530, which corresponds with U.S. Appl. No. 14/536,267, 3 pages. |
Notice of Allowance, dated Sep. 1, 2016, received in Korean Patent Application No. 2014-7034530, which corresponds with U.S. Appl. No. 14/536,267, 3 pages. |
Office Action, dated Jan. 5, 2017, received in Korean Patent Application No. 2016-7029533, which corresponds with U.S. Appl. No. 14/536,267, 2 pages. |
Notice of Allowance, dated Sep. 1, 2017, received in Korean Patent Application No. 2016-7029533, which corresponds with U.S. Appl. No. 14/536,267, 4 pages. |
Patent, dated Dec. 1, 2017, received in Korean Patent Application No. 2016-7029533, which corresponds with U.S. Appl. No. 14/536,267, 2 pages. |
Office Action, dated Jan. 29, 2018, received in Korean Patent Application No. 2017-7034838, which corresponds with U.S. Appl. No. 14/536,267, 4 pages. |
Notice of Allowance, dated Dec. 3, 2018, received in Korean Patent Application No. 2017-7034838, which corresponds with U.S. Appl. No. 14/536,267, 5 pages. |
Patent, dated Mar. 4, 2019, received in Korean Patent Application No. 2017-7034838, which corresponds with U.S. Appl. No. 14/536,267, 4 pages. |
Office Action, dated Apr. 7, 2017, received in U.S. Appl. No. 14/536,291, 11 pages. |
Notice of Allowance, dated Dec. 1, 2017, received in U.S. Appl. No. 14/536,291, 19 pages. |
Notice of Allowance, dated Mar. 20, 2018, received in U.S. Appl. No. 14/536,291, 5 pages. |
Office Action, dated Aug. 18, 2015, received in Australian Patent Application No. 2013259642, which corresponds with U.S. Appl. No. 14/536,291, 3 pages. |
Office Action, dated Jul. 25, 2016, received in Australian Patent Application No. 2013259642, which corresponds with U.S. Appl. No. 14/536,291, 3 pages. |
Office Action, dated Aug. 10, 2016, received in Australian Patent Application No. 2013259642, which corresponds with U.S. Appl. No. 14/536,291, 4 pages. |
Office Action, dated Jul. 21, 2017, received in Australian Patent Application No. 2016216658, which corresponds with U.S. Appl. No. 14/536,291, 3 pages. |
Notice of Acceptance, dated Jul. 19, 2018, received in Australian Patent Application No. 2016216658, which corresponds with U.S. Appl. No. 14/536,291, 3 pages. |
Patent, dated Nov. 30, 2018, received in Australian Patent Application No. 2016216658, which corresponds with U.S. Appl. No. 14/536,291, 4 pages. |
Innovation Patent, dated Sep. 1, 2016, received in Australian Patent Application No. 2016101481, which corresponds with U.S. Appl. No. 14/536,291, 1 page. |
Office Action, dated Sep. 29, 2016, received in Australian Patent Application No. 2016101481, which corresponds with U.S. Appl. No. 14/536,291, 3 pages. |
Office Action, dated Oct. 23, 2017, received in Chinese Patent Application No. 201380035986.X, which corresponds with U.S. Appl. No. 14/536,291, 9 pages. |
Notice of Allowance, dated Jun. 24, 2020, received in Chinese Patent Application No. 201710781246.0, which corresponds with U.S. Appl. No. 14/536,291, 5 pages. |
Patent, dated Jul. 31, 2020, received in Chinese Patent Application No. 201710781246.0, which corresponds with U.S. Appl. No. 14/536,291, 6 pages. |
Office Action, dated Jul. 17, 2020, received in Chinese Patent Application No. 2018100116175.X, which corresponds with U.S. Appl. No. 14/536,291, 15 pages. |
Office Action, dated Nov. 17, 2020, received in Chinese Patent Application No. 2018100116175.X, which corresponds with U.S. Appl. No. 14/536,291, 16 pages. |
Notice of Allowance, dated Mar. 29, 2021, received in Chinese Patent Application No. 2018100116175.X, which corresponds with U.S. Appl. No. 14/536,291, 1 page. |
Patent, dated Apr. 27, 2021, received in Chinese Patent Application No. 2018100116175.X, which corresponds with U.S. Appl. No. 14/536,291, 6 pages. |
Office Action, dated Jan. 7, 2016, received in European Patent Application No. 13724107.1, which corresponds with U.S. Appl. No. 14/536,291, 11 pages. |
Office Action, dated Aug. 22, 2016, received in European Patent Application No. 13724107.1, which corresponds with U.S. Appl. No. 14/536,291, 7 pages. |
Office Action, dated Mar. 23, 2017, received in European Patent Application No. 13724107.1, which corresponds with U.S. Appl. No. 14/536,291, 8 pages. |
Intention to Grant, dated Jan. 8, 2019, received in European Patent Application No. 17186744.3, which corresponds with U.S. Appl. No. 14/536,291, 7 pages. |
Decision to Grant, dated Oct. 31, 2019, received in European Patent Application No. 17186744.3, which corresponds with U.S. Appl. No. 14/536,291, 3 pages. |
Patent, dated Nov. 27, 2019, received in European Patent Application No. 17186744.3, which corresponds with U.S. Appl. No. 14/536,291, 4 pages. |
Office Action, dated Mar. 8, 2016, received in Japanese Patent Application No. 2015-511655, which corresponds with U.S. Appl. No. 14/536,291, 4 pages. |
Final Office Action, dated Dec. 22, 2016, received in Japanese Patent Application No. 2015-511655, which corresponds with U.S. Appl. No. 14/536,291, 3 pages. |
Office Action, dated Jun. 29, 2018, received in Japanese Patent Application No. 2017-083027, which corresponds with U.S. Appl. No. 14/536,291, 5 pages. |
Patent, dated Feb. 22, 2019, received in Japanese Patent Application No. 2017-083027, which corresponds with U.S. Appl. No. 14/536,291, 3 pages. |
Notice of Allowance, dated Jan. 15, 2019, received in Japanese Patent Application No. 2017-083027, which corresponds with U.S. Appl. No. 14/536,291, 5 pages. |
Office Action, dated Oct. 19, 2017, received in U.S. Appl. No. 14/608,985, 13 pages. |
Notice of Allowance, dated Apr. 20, 2018, received in U.S. Appl. No. 14/608,985, 5 pages. |
Office Action, dated Jan. 15, 2016, received in Australian Patent Application No. 2013368445, which corresponds with U.S. Appl. No. 14/608,985, 3 pages. |
Notice of Allowance, dated Jan. 18, 2017, received in Australian Patent Application No. 2013368445, which corresponds with U.S. Appl. No. 14/608,985, 3 pages. |
Patent, dated May 18, 2017, received in Australian Patent Application No. 2013368445, which corresponds with U.S. Appl. No. 14/608,985, 1 page. |
Office Action, dated May 19, 2017, received in Chinese Patent Application No. 201380068399.0, which corresponds with U.S. Appl. No. 14/608,985, 5 pages. |
Notice of Allowance, dated Sep. 19, 2017, received in Chinese Patent Application No. 201380068399.0, which corresponds with U.S. Appl. No. 14/608,985, 3 pages. |
Patent, dated Dec. 8, 2017, received in Chinese Patent Application No. 201380068399.0, which corresponds with U.S. Appl. No. 14/608,985, 4 pages. |
Office Action, dated Jul. 25, 2016, received in European Patent Application No. 13811032.5, which corresponds with U.S. Appl. No. 14/608,985, 8 pages. |
Office Action, dated Feb. 27, 2017, received in European Patent Application No. 13811032.5, which corresponds with U.S. Appl. No. 14/608,985, 6 pages. |
Summons, dated Oct. 6, 2017, received in European Patent Application No. 13811032.5, which corresponds with U.S. Appl. No. 14/608,985, 6 pages. |
Intention to Grant, dated Jan. 16, 2019, received in European Patent Application No. 13811032.5, which corresponds with U.S. Appl. No. 14/608,985, 9 pages. |
Decision to Grant, dated Aug. 1, 2019, received in European Patent Application No. 13811032.5, which corresponds with U.S. Appl. No. 14/608,985, 2 pages. |
Certificate of Grant, dated Aug. 28, 2019, received in European Patent Application No. 13811032.5, which corresponds with U.S. Appl. No. 14/608,985, 4 pages. |
Certificate of Grant, dated Jun. 29, 2018, received in Hong Kong Patent Application No. 15112851.6, which corresponds with U.S. Appl. No. 14/608,985, 2 pages. |
Office Action, dated Apr. 25, 2016, received in Japanese Patent Application No. 2015-550384, which corresponds with U.S. Appl. No. 14/608,985, 4 pages. |
Notice of Allowance, dated Jan. 24, 2017, received in Japanese Patent Application No. 2015-550384, which corresponds with U.S. Appl. No. 14/608,985, 5 pages. |
Patent, dated Feb. 24, 2017, received in Japanese Patent Application No. 2015-550384, which corresponds with U.S. Appl. No. 14/608,985, 2 pages. |
Office Action, dated Nov. 4, 2016, received in Korean Patent Application No. 2015-7019984, which corresponds with U.S. Appl. No. 14/608,985, 8 pages. |
Notice of Allowance, dated Sep. 19, 2017, received in Korean Patent Application No. 2015-7019984, which corresponds with U.S. Appl. No. 14/608,985, 4 pages. |
Patent, dated Dec. 19, 2017, received in Korean Patent Application No. 2015-7019984, which corresponds with U.S. Appl. No. 14/608,985, 3 pages. |
Office Action, dated Mar. 24, 2017, received in U.S. Appl. No. 14/609,006, 13 pages. |
Final Office Action, dated Sep. 21, 2017, received in U.S. Appl. No. 14/609,006, 17 pages. |
Office Action, dated Mar. 20, 2018, received in U.S. Appl. No. 14/609,006, 13 pages. |
Office Action, dated Oct. 11, 2018, received in U.S. Appl. No. 14/609,006, 12 pages. |
Final Office Action, dated May 23, 2019, received in U.S. Appl. No. 14/609,006, 14 pages. |
Office Action, dated Jan. 7, 2020, received in U.S. Appl. No. 14/609,006, 17 pages. |
Final Office Action, dated Jun. 15, 2020, received in U.S. Appl. No. 14/609,006, 19 pages. |
Office Action, dated Apr. 19, 2017, received in U.S. Appl. No. 14/536,296, 12 pages. |
Final Office Action, dated Nov. 2, 2017, received in U.S. Appl. No. 14/536,296, 13 pages. |
Notice of Allowance, dated Mar. 14, 2018, received in U.S. Appl. No. 14/536,296, 8 pages. |
Office Action, dated Nov. 1, 2017, received in U.S. Appl. No. 14/536,648, 22 pages. |
Final Office Action, dated Aug. 7, 2018, received in U.S. Appl. No. 14/536,648, 14 pages. |
Office Action, dated Jan. 2, 2019, received in U.S. Appl. No. 14/536,648 12 pages. |
Notice of Allowance, dated Jul. 2, 2019, received in U.S. Appl. No. 14/536,648, 5 pages. |
Office Action, dated Jul. 21, 2017, received in Australian Patent Application No. 2016247194, which corresponds with U.S. Appl. No. 14/536,648, 3 pages. |
Notice of Acceptance, dated Jul. 19, 2018, received in Australian Patent Application No. 2016247194, which corresponds with U.S. Appl. No. 14/536,648, 3 pages. |
Office Action, dated Jul. 24, 2020, received in Chinese Patent Application No. 201711422121.5, which corresponds with U.S. Appl. No. 14/536,648, 10 pages. |
Notice of Allowance, dated Feb. 2, 2021, received in Chinese Patent Application No. 201711422121.5, which corresponds with U.S. Appl. No. 14/536,648, 1 page. |
Patent, dated Mar. 9, 2021, received in Chinese Patent Application No. 201711422121.5, which corresponds with U.S. Appl. No. 14/536,648, 7 pages. |
Intention to Grant, dated Apr. 1, 2019, received in European Patent Application No. 17153418.3, which corresponds with U.S. Appl. No. 14/536,648, 7 pages. |
Decision to Grant, dated Aug. 16, 2019, received in European Patent Application No. 17153418.3, which corresponds with U.S. Appl. No. 14/536,648, 3 pages. |
Grant Certificate, dated Sep. 11, 2019, received in European Patent Application No. 17153418.3, which corresponds with U.S. Appl. No. 14/536,648, 3 pages. |
Office Action, dated Apr. 27, 2018, received in Japanese Patent Application No. 2017-008764, which corresponds with U.S. Appl. No. 14/536,648, 5 pages. |
Notice of Allowance, dated Feb. 4, 2019, received in Japanese Patent Application No. 2017-008764, which corresponds with U.S. Appl. No. 14/536,648, 5 pages. |
Patent, dated Mar. 1, 2019, received in Japanese Patent Application No. 2017-008764, which corresponds with U.S. Appl. No. 14/536,648, 3 pages. |
Office Action, dated Jan. 19, 2017, received in U.S. Appl. No. 14/609,042, 12 pages. |
Notice of Allowance, dated Jul. 10, 2017, received in U.S. Appl. No. 14/609,042, 8 pages. |
Office Action, dated Aug. 24, 2018, received in Japanese Patent Application No. 2017-113598, which corresponds with U.S. Appl. No. 14/609,042, 6 pages. |
Notice of Allowance, dated Apr. 9, 2019, received in Japanese Patent Application No. 2017-113598, which corresponds with U.S. Appl. No. 14/609,042, 5 pages. |
Patent, dated Apr. 19, 2019, received in Japanese Patent Application No. 2017-113598, which corresponds with U.S. Appl. No. 14/609,042, 2 pages. |
Notice of Allowance, dated Dec. 17, 2018, received in Korean Patent Application No. 2017-7008614, which corresponds with U.S. Appl. No. 14/609,042, 5 pages. |
Patent, dated Mar. 8, 2019, received in Korean Patent Application No. 2017-7008614, which corresponds with U.S. Appl. No. 14/609,042, 4 pages. |
Office Action, dated Mar. 31, 2016, received in U.S. Appl. No. 14/864,737, 17 pages. |
Notice of Allowance, dated Feb. 27, 2017, received in U.S. Appl. No. 14/864,737, 9 pages. |
Notice of Allowance, dated Jun. 19, 2017, received in U.S. Appl. No. 14/864,737, 8 pages. |
Office Action, dated Apr. 16, 2018, received in Australian Patent Application No. 2016233792, which corresponds with U.S. Appl. No. 14/864,737, 2 pages. |
Notice of Acceptance, dated Mar. 12, 2019, received in Australian Patent Application No. 2016233792, which corresponds with U.S. Appl. No. 14/864,737, 5 pages. |
Certificate of Grant, dated Jul. 4, 2019, received in Australian Patent Application No. 2016233792, which corresponds with U.S. Appl. No. 14/864,737, 1 page. |
Office Action, dated Sep. 11, 2018, received in Chinese Patent Application No. 201610159295.6, which corresponds with U.S. Appl. No. 14/864,737, 6 pages. |
Notice of Allowance, dated Apr. 17, 2019, received in Chinese Patent Application No. 201610159295.6, which corresponds with U.S. Appl. No. 14/864,737, 3 pages. |
Patent, dated May 31, 2019, received in Chinese Patent Application No. 201610159295.6, which corresponds with U.S. Appl. No. 14/864,737, 7 pages. |
Notice of Allowance, dated Jul. 1, 2016, received in Chinese Patent Application No. 201620214376.7, which corresponds with U.S. Appl. No. 14/864,737, 3 pages. |
Patent, dated Aug. 3, 2016, received in Chinese Patent Application No. 201620214376.7, which corresponds with U.S. Appl. No. 14/864,737, 5 pages. |
Certificate of Registration, dated Jun. 20, 2016, received in German Patent Application No. 202016001845.1, which corresponds with U.S. Appl. No. 14/864,737, 3 pages. |
Office Action, dated Apr. 5, 2016, received in Danish Patent Application No. 201500577, which corresponds with U.S. Appl. No. 14/864,737, 7 pages. |
Intention to Grant, dated Aug. 2, 2016, received in Danish Patent Application No. 201500577, which corresponds with U.S. Appl. No. 14/864,737, 2 pages. |
Decision to grant, dated Mar. 29, 2018, received in European Patent Application No. 16710871.1, which corresponds with U.S. Appl. No. 14/864,737, 2 pages. |
Grant Certificate, dated Apr. 25, 2018, received in European Patent Application No. 16710871.1, which corresponds with U.S. Appl. No. 14/864,737, 2 pages. |
Office Action, dated May 15, 2017, received in Japanese Patent Application No. 2016-558331, which corresponds with U.S. Appl. No. 14/864,737, 5 pages. |
Notice of Allowance, dated Jun. 23, 2017, received in Japanese Patent Application No. 2016-558331, which corresponds with U.S. Appl. No. 14/864,737, 5 pages. |
Patent, dated Jul. 28, 2017, received in Japanese Patent Application No. 2016-558331, which corresponds with U.S. Appl. No. 14/864,737, 3 pages. |
Office Action, dated Feb. 14, 2018, received in Korean Patent Application No. 2017-7030129, which corresponds with U.S. Appl. No. 14/864,737, 17 pages. |
Patent, dated Dec. 26, 2018, received in Korean Patent Application No. 2017-7030129, which corresponds with U.S. Appl. No. 14/864,737, 4 pages. |
Patent, dated Jul. 12, 2017, received in Dutch Patent Application No. 2016452, which corresponds with U.S. Appl. No. 14/864,737, 2 pages. |
Office Action, dated Jun. 27, 2016, received in U.S. Appl. No. 14/866,981, 22 pages. |
Notice of Allowance, dated Oct. 24, 2016, received in U.S. Appl. No. 14/866,981, 7 pages. |
Notice of Allowance, dated Feb. 10, 2017, received in U.S. Appl. No. 14/866,981, 5 pages. |
Office Action, dated May 10, 2016, received in Australian Patent Application No. 2016100254, which corresponds with U.S. Appl. No. 14/866,981, 6 pages. |
Patent, dated Nov. 2, 2016, received in Australian Patent Application No. 2016100254, which corresponds with U.S. Appl. No. 14/866,981, 1 page. |
Office Action, dated Nov. 5, 2018, received in Chinese Patent Application No. 201610131415.1, which corresponds with U.S. Appl. No. 14/866,981, 6 pages. |
Office Action, dated Jul. 16, 2019, received in Chinese Patent Application No. 201610131415.1, which corresponds with U.S. Appl. No. 14/866,981, 4 pages. |
Office Action, dated Mar. 16, 2020, received in Chinese Patent Application No. 201610131415.1, which corresponds with U.S. Appl. No. 14/866,981, 3 pages. |
Notice of Allowance, dated Dec. 4, 2020, received in Chinese Patent Application No. 201610131415.1, which corresponds with U.S. Appl. No. 14/866,981, 3 pages. |
Patent, dated Jan. 22, 2021, received in Chinese Patent Application No. 201610131415.1, which corresponds with U.S. Appl. No. 14/866,981, 6 pages. |
Notice of Allowance, dated Jul. 27, 2016, received in Chinese Patent Application No. 201620176169.7, which corresponds with U.S. Appl. No. 14/866,981, 3 pages. |
Patent, dated Sep. 28, 2016, received in Chinese Patent Application No. 201620176169.7, which corresponds with U.S. Appl. No. 14/866,981, 4 pages. |
Certificate of Registration, dated Jun. 20, 2016, received in German Patent Application No. 202016001514.2, which corresponds with U.S. Appl. No. 14/864,737, 3 pages. |
Office Action, dated Mar. 18, 2016, received in Danish Patent Application No. 201500575, which corresponds with U.S. Appl. No. 14/866,981, 9 pages. |
Office Action, dated Dec. 5, 2016, received in Danish Patent Application No. 201500575, which corresponds with U.S. Appl. No. 14/866,981, 3 pages. |
Office Action, dated Jul. 7, 2017, received in Danish Patent Application No. 201500575, 4 pages. |
Patent, Nov. 16, 2017, received in Dutch Patent Application No. 2016375, which corresponds with U.S. Appl. No. 14/866,981, 2 pages. |
Office Action, dated Dec. 15, 2017, received in U.S. Appl. No. 14/866,159, 35 pages. |
Notice of Allowance, dated May 18, 2018, received in U.S. Appl. No. 14/866,159, 8 pages. |
Office Action, dated May 19, 2016, received in Australian Patent Application No. 2016100251, which corresponds with U.S. Appl. No. 14/866,159, 5 pages. |
Office Action, dated Jun. 5, 2018, received in Chinese Patent Application No. 201610137839.9, which corresponds with U.S. Appl. No. 14/866,159, 11 pages. |
Notice of Allowance, dated Dec. 6, 2018, received in Chinese Patent Application No. 201610137839.9, which corresponds with U.S. Appl. No. 14/866,159, 3 pages. |
Patent, dated Feb. 19, 2019, received in Chinese Patent Application No. 201610137839.9, which corresponds with U.S. Appl. No. 14/866,159, 6 pages. |
Office Action, dated Jul. 5, 2016, received in Chinese Patent Application No. 201620186008.6, which corresponds with U.S. Appl. No. 14/866,159, 3 pages. |
Certificate of Registration, dated Jun. 16, 2016, received in German Patent No. 202016001483.9, which corresponds with U.S. Pat. No. 14,866,159, 3 pages. |
Office Action, dated Mar. 9, 2016, received in Danish Patent Application No. 201500574, which corresponds with U.S. Appl. No. 14/866,159, 11 pages. |
Office Action, dated Sep. 27, 2016, received in Danish Patent Application No. 201500574, which corresponds with U.S. Appl. No. 14/866,159, 4 pages. |
Office Action, dated Mar. 14, 2017, received in Danish Patent Application No. 14/866,159, which corresponds with U.S. Appl. No. 14/866,159, 5 pages. |
Office Action, dated Jul. 6, 2017, received in Danish Patent Application No. 201500574, which corresponds with U.S. Appl. No. 14/866,159, 3 pages. |
Office Action, dated Jan. 10, 2018, received in Danish Patent Application No. 201500574, which corresponds with U.S. Appl. No. 14/866,159, 2 pages. |
Notice of Allowance, dated Mar. 21, 2018, received in Danish Patent Application No. 201500574, which corresponds with U.S. Appl. No. 14/866,159, 2 pages. |
Patent, dated May 22, 2018, received in Danish Patent Application No. 201500574, which corresponds with U.S. Appl. No. 14/866,159, 2 pages. |
Intention to Grant, dated Oct. 28, 2019, received in European Patent Application No. 16707356.8, which corresponds with U.S. Appl. No. 14/866,159, 7 pages. |
Decision to Grant, dated Mar. 5, 2020, received in European Patent Application No. 16707356.8, which corresponds with U.S. Appl. No. 14/866,159, 2 pages. |
Patent, dated Apr. 1, 2020, received in European Patent Application No. 16707356.8, which corresponds with U.S. Appl. No. 14/866,159, 3 pages. |
Patent, dated Sep. 7, 2017, received in Dutch Patent Application No. 2016377, which corresponds with U.S. Appl. No. 14/866,159, 4 pages. |
Office Action, dated Oct. 6, 2017, received in U.S. Appl. No. 14/868,078, 40 pages. |
Notice of Allowance, dated May 24, 2018, received in U.S. Appl. No. 14/868,078, 6 pages. |
Innovation Patent, dated Aug. 4, 2016, received in Australian Patent Application No. 2016101201, which corresponds with U.S. Appl. No. 14/868,078, 1 page. |
Office Action, dated Oct. 12, 2016, received in Australian Patent Application No. 2016101201, which corresponds with U.S. Appl. No. 14/868,078, 3 pages. |
Notice of Allowance, dated Sep. 1, 2017, received in Australian Patent Application No. 2016229421, which corresponds with U.S. Appl. No. 14/868,078, 3 pages. |
Certificate of Grant, dated Jan. 3, 2018, received in Australian Patent Application No. 2016229421, which corresponds with U.S. Appl. No. 14/868,078, 1 page. |
Office Action, dated Feb. 7, 2019, received in Australian Patent Application No. 2017258967, which corresponds with U.S. Appl. No. 14/868,078, 3 page. |
Notice of Acceptance, dated Jun. 21, 2019, received in Australian Patent Application No. 2017258967, which corresponds with U.S. Appl. No. 14/868,078, 3 pages. |
Certificate of Grant, dated Oct. 17, 2019, received in Australian Patent Application No. 2017258967, which corresponds with U.S. Appl. No. 14/868,078, 4 page. |
Office Action, dated Aug. 20, 2018, received in Chinese Patent Application No. 01610130348.1, which corresponds with U.S. Appl. No. 14/868,078, 6 pages. |
Office Action, dated Feb. 26, 2019, received in Chinese Patent Application No. 01610130348.1, which corresponds with U.S. Appl. No. 14/868,078, 4 pages. |
Notice of Allowance, dated May 6, 2019, received in Chinese Patent Application No. 01610130348.1, which corresponds with U.S. Appl. No. 14/868,078, 3 pages. |
Patent, dated Jul. 5, 2019, received in Chinese Patent Application No. 201610130348.1, which corresponds with U.S. Appl. No. 14/868,078, 6 pages. |
Notice of Allowance, dated Oct. 1, 2016, received in Chinese Patent Application No. 201620175847.8, which corresponds with U.S. Appl. No. 14/868,078, 1 page. |
Office Action, dated Nov. 21, 2019, received in Chinese Patent Application No. 201680011338.4, which corresponds with U.S. Appl. No. 14/868,078, 8 pages. |
Office Action, dated May 19, 2020, received in Chinese Patent Application No. 201680011338.4, which corresponds with U.S. Appl. No. 14/868,078, 4 pages. |
Office Action, dated Jun. 30, 2020, received in Chinese Patent Application No. 201680011338.4, which correspondence with U.S. Appl. No. 14/868,078, 4 pages. |
Patent, dated Dec. 11, 2020, received in Chinese Patent Application No. 201680011338.4, which correspondence with U.S. Appl. No. 14/868,078, 3 pages. |
Certificate of Registration, dated Jun. 30, 2016, received in German Patent Application No. 20201600156.9, which corresponds with U.S. Appl. No. 14/868,078, 3 pages. |
Office Action, dated Mar. 30, 2016, received in Danish Patent Application No. 201500588, which corresponds with U.S. Appl. No. 14/868,078, 9 pages. |
Office Action, dated Sep. 2, 2016, received in Danish Patent Application No. 201500588, which corresponds with U.S. Appl. No. 14/868,078, 4 pages. |
Notice of Allowance, dated Jan. 30, 2017, received in received in Danish Patent Application No. 201500588, which corresponds with U.S. Appl. No. 14/868,078, 2 pages. |
Notice of Allowance, dated May 2, 2017, received in received in Danish Patent Application No. 201500588, which corresponds with U.S. Appl. No. 14/868,078, 2 pages. |
Patent, dated Sep. 11, 2017, received in Danish Patent Application No. 201500588, which corresponds with U.S. Appl. No. 14/868,078, 5 pages. |
Office Action, dated Apr. 25, 2018, received in European Patent Application No. 16708916.8, which corresponds with U.S. Appl. No. 14/868,078, 6 pages. |
Intention to Grant, dated May 10, 2019, received in European Patent Application No. 16708916.8, which corresponds with U.S. Appl. No. 14/868,078, 5 pages. |
Decision to Grant, dated Sep. 12, 2019, received in European Patent Application No. 16708916.8, which corresponds with U.S. Appl. No. 14/868,078, 2 pages. |
Patent, dated Oct. 9, 2019, received in European Patent Application No. 16708916.8, which corresponds with U.S. Appl. No. 14/868,078, 3 pages. |
Office Action, dated Oct. 25, 2018, received in European Patent Application No. 17184437.6, which corresponds with U.S. Appl. No. 14/868,078, 6 pages. |
Intention to Grant, dated May 22, 2019, received in European Patent Application No. 17184437.6, which corresponds with U.S. Appl. No. 14/868,078, 7 pages. |
Decision to Grant, dated Sep. 19, 2019, received in European Patent Application No. 17184437.6, which corresponds with U.S. Appl. No. 14/868,078, 2 pages. |
Patent, dated Oct. 16, 2019, received in European Patent Application No. 17184437.6, which corresponds with U.S. Appl. No. 14/868,078, 3 pages. |
Patent, dated Jul. 12, 2017, received in Dutch Patent Application No. 2016376, which corresponds with U.S. Appl. No. 14/868,078, 2 pages. |
Office Action, dated May 9, 2016, received in U.S. Appl. No. 14/863,432, 26 pages. |
Notice of Allowance, dated Nov. 14, 2016, received in U.S. Appl. No. 14/863,432, 7 pages. |
Notice of Allowance, dated Apr. 27, 2017, received in U.S. Appl. No. 14/863,432, 7 pages. |
Notice of Allowance, dated Sep. 18, 2017, received in U.S. Appl. No. 14/863,432, 8 pages. |
Office Action, dated Aug. 19, 2016, received in Australian Patent Application No. 2016100647, which corresponds with U.S. Appl. No. 14/863,432, 5 pages. |
Office Action, dated Dec. 4, 2018, received in Chinese Patent Application No. 201610342313.4, which corresponds with U.S. Appl. No. 14/863,432, 5 pages. |
Office Action, dated Jun. 17, 2019, received in Chinese Patent Application No. 201610342313.4, which corresponds with U.S. Appl. No. 14/863,432, 4 pages. |
Office Action, dated Nov. 5, 2019, received in Chinese Patent Application No. 201610342313.4, which corresponds with U.S. Appl. No. 14/863,432, 4 pages. |
Notice of Allowance, dated Mar. 20, 2020, received in Chinese Patent Application No. 201610342313.4, which corresponds with U.S. Appl. No. 14/863,432, 6 pages. |
Patent, dated May 12, 2020, received in Chinese Patent Application No. 201610342313.4, which corresponds with U.S. Appl. No. 14/863,432, 7 pages. |
Notice of Allowance, dated Jan. 12, 2017, received in Chinese Patent Application No. 201620470063.8, which corresponds with U.S. Appl. No. 14/863,432, 1 page. |
Patent, dated Feb. 8, 2017, received in Chinese Patent Application No. 201620470063.8, which corresponds with U.S. Appl. No. 14/863,432, 5 pages. |
Office Action, dated Apr. 4, 2016, received in Danish Patent Application No. 201500582, which corresponds with U.S. Appl. No. 14/863,432, 10 pages. |
Office Action, dated Oct. 7, 2016, received in Danish Patent Application No. 201500582, which corresponds with U.S. Appl. No. 14/863,432, 6 pages. |
Office Action, dated Jun. 12, 2017, received in Danish Patent Application No. 201500582, which corresponds with U.S. Appl. No. 14/863,432, 5 pages. |
Office Action, dated Jan. 10, 2020, received in Japanese Patent Application No. 2018-243773, which corresponds with U.S. Appl. No. 14/863,432, 6 pages. |
Office Action, dated Jul. 17, 2020, received in Japanese Patent Application No. 2018-243773, which corresponds with U.S. Appl. No. 14/863,432, 5 pages. |
Notice of Allowance, dated Dec. 4, 2020, received in Japanese Patent Application No. 2018-243773, which corresponds with U.S. Appl. No. 14/863,432, 5 pages. |
Patent, dated Jan. 5, 2021, received in Japanese Patent Application No. 2018-243773, which corresponds with U.S. Appl. No. 14/863,432, 4 pages. |
Notice of Allowance, dated Jul. 13, 2020, received in Korean Patent Application No. 2020-7015964, which corresponds with U.S. Appl. No. 14/863,432, 6 pages. |
Patent, dated Oct. 12, 2020, received in Korean Patent Application No. 2020-7015964, which corresponds with U.S. Appl. No. 14/863,432, 8 pages. |
Grant, dated Jul. 21, 2017, received in Dutch Patent Application No. 2016801, which corresponds with U.S. Appl. No. 14/871,227, 8 pages. |
Office Action, dated Oct. 13, 2016, received in U.S. Appl. No. 14/866,511, 27 pages. |
Final Office Action, dated Jan. 27, 2017, received in U.S. Appl. No. 14/866,511, 26 pages. |
Notice of Allowance, dated Oct. 4, 2017, received in U.S. Appl. No. 14/866,511, 37 pages. |
Office Action, dated Aug. 19, 2016, received in U.S. Appl. No. 14/291,880—to be referenced in 7294 per Robby), 19 pages. |
Notice of Allowance, dated Jan. 10, 2017, received in U.S. Appl. No. 14/291,880—to be referenced in 7294 per Robby), 8 pages. |
Patent, dated Aug. 8, 2016, received in Australian Patent Application No. 2016100653, corresponds with U.S. Appl. No. 14/866,511, 1 page. |
Office Action, dated Dec. 5, 2018, received in Chinese Patent Application No. 201610342264.4, which corresponds with U.S. Appl. No. 14/866,511, 4 pages. |
Office Action, dated Jul. 11, 2019, received in Chinese Patent Application No. 201610342264.4, which corresponds with U.S. Appl. No. 14/866,511, 4 pages. |
Office Action, dated Sep. 17, 2019, received in Chinese Patent Application No. 201610342264.4, which corresponds with U.S. Appl. No. 14/866,511, 3 pages. |
Notice of Allowance, dated Nov. 28, 2019, received in Chinese Patent Application No. 201610342264.4, which corresponds with U.S. Appl. No. 14/866,511, 3 pages. |
Patent, dated Feb. 7, 2020, received in Chinese Patent Application No. 201610342264.4, which corresponds with U.S. Appl. No. 14/866,511, 7 pages. |
Notice of Allowance, dated Jan. 12, 2017, received in Chinese Patent Application No. 201620470281.1, which corresponds with U.S. Appl. No. 14/866,511, 1 page. |
Office Action, dated Mar. 22, 2016, received in Danish Patent Application No. 201500576, which corresponds with U.S. Appl. No. 14/866,511, 10 pages. |
Intention to Grant, dated Jun. 8, 2016, received in Danish Patent Application No. 201500576, which corresponds with U.S. Appl. No. 14/866,511, 2 pages. |
Grant, dated Aug. 26, 2016, received in Danish Patent Application No. 201500576, which corresponds with U.S. Appl. No. 14/866,511, 2 pages. |
Patent, dated Jan. 23, 2017, received in Danish Patent Application No. 201500576, which corresponds with U.S. Appl. No. 14/866,511, 3 pages. |
Office Action, dated Nov. 24, 2017, received in European Patent Application No. 16727900.9, which corresponds with U.S. Appl. No. 14/866,511, 5 pages. |
Office Action, dated May 24, 2018, received in European Patent Application No. 16727900.9, which corresponds with U.S. Appl. No. 14/866,511, 7 pages. |
Office Action, dated Jan. 2, 2019, received in European Patent Application No. 16727900.9, which corresponds with U.S. Appl. No. 14/866,511, 5 pages. |
Intention to Grant, dated Jul. 5, 2019, received in European Patent Application No. 16727900.9, which corresponds with U.S. Appl. No. 14/866,511, 5 pages. |
Decision to Grant, dated Dec. 5, 2019, received in European Patent Application No. 16727900.9, which corresponds with U.S. Appl. No. 14/866,511, 2 pages. |
Patent, dated Jan. 1, 2020, received in European Patent Application No. 16727900.9, which corresponds with U.S. Appl. No. 14/866,511, 3 pages. |
Office Action, dated Jun. 9, 2017, received in Japanese Patent Application No. 2016558214, which corresponds with U.S. Appl. No. 14/866,511, 6 pages. |
Notice of Allowance, dated Jul. 14, 2017, received in Japanese Patent Application No. 2016558214, which corresponds with U.S. Appl. No. 14/866,511, 5 pages. |
Patent, dated Aug. 18, 2017, received in Japanese Patent Application No. 2016558214, which corresponds with U.S. Appl. No. 14/866,511, 3 pages. |
Office Action, dated Apr. 24, 2020, received in Korean Patent Application No. 2020-7003065, which corresponds with U.S. Appl. No. 14/866,511, 3 pages. |
Notice of Allowance, dated Jul. 29, 2020, received in Korean Patent Application No. 2020-7003065, which corresponds with U.S. Appl. No. 14/866,511, 5 pages. |
Patent, dated Oct. 29, 2020, received in Korean Patent Application No. 2020- 7003065, which corresponds with U.S. Appl. No. 14/866,511, 5 pages. |
Office Action, dated May 10, 2016, received in U.S. Appl. No. 14/866,489, 15 pages. |
Final Office Action, dated Sep. 16, 2016, received in U.S. Appl. No. 14/866,489, 24 pages. |
Notice of Allowance, dated Apr. 27, 2017, received in U.S. Appl. No. 14/866,489, 27 pages. |
Notice of Allowance, dated Jul. 6, 2017, received in U.S. Appl. No. 14/866,489, 12 pages. |
Office Action, dated Mar. 28, 2016, received in U.S. Appl. No. 14/869,899, 17 pages. |
Office Action, dated Jun. 28, 2016, received in U.S. Appl. No. 14/869,899, 5 pages. |
Final Office Action, dated Sep. 2, 2016, received in U.S. Appl. No. 14/869,899, 22 pages. |
Notice of Allowance, dated Feb. 28, 2017, received in U.S. Appl. No. 14/869,899, 9 pages. |
Innovation Patent, dated Aug. 25, 2016, received in Australian Patent Application No. 2016101438, which corresponds with U.S. Appl. No. 14/869,899, 1 page. |
Certificate of Examination, dated Oct. 11, 2016, received in Australian Patent Application No. 2016101438, which corresponds with U.S. Appl. No. 14/869,899, 1 page. |
Notice of Acceptance, dated Aug. 23, 2018, received in Australian Patent Application No. 2018204611, which corresponds with U.S. Appl. No. 14/869,899, 3 pages. |
Office Action, dated Nov. 6, 2020, received in Chinese Patent Application No. 201610871595.7, which corresponds with U.S. Appl. No. 14/869,899, 15 pages. |
Notice of Allowance, dated Mar. 30, 2021, received in Chinese Patent Application No. 201610871595.7, which corresponds with U.S. Appl. No. 14/869,899, 1 page. |
Patent, dated Jun. 4, 2021, received in Chinese Patent Application No. 201610871595.7, which corresponds with U.S. Appl. No. 14/869,899, 7 pages. |
Office Action, dated Feb. 3, 2016, received in Danish Patent Application No. 201500592, which corresponds with U.S. Appl. No. 14/869,899, 9 pages. |
Office Action, dated Oct. 7, 2016, received in Danish Patent Application No. 201500592, which corresponds with U.S. Appl. No. 14/869,899, 6 pages. |
Office Action, dated Jul. 3, 2017, received in Danish Patent Application No. 201500592, which corresponds with U.S. Appl. No. 14/869,899, 5 pages. |
Office Action, dated Jan. 29, 2018, received in Danish Patent Application No. 201500592, which corresponds with U.S. Appl. No. 14/869,899, 2 pages. |
Notice of Allowance, dated Apr. 24, 2018, received in Danish Patent Application No. 201500592, which corresponds with U.S. Appl. No. 14/869,899, 2 pages. |
Patent, dated May 28, 2018, received in Danish Patent Application No. 201500592, which corresponds with U.S. Appl. No. 14/869,899, 2 pages. |
Office Action, dated Nov. 22, 2016, received in Danish Patent Application No. 201670594, which corresponds with U.S. Appl. No. 14/869,899, 9 pages. |
Office Action, dated Dec. 14, 2017, received in Danish Patent Application No. 201670594, which corresponds with U.S. Appl. No. 14/869,899, 3 pages. |
Office Action, dated May 1, 2018, received in Danish Patent Application No. 201670594, which corresponds with U.S. Appl. No. 14/869,899, 2 pages. |
Office Action, dated Oct. 9, 2018, received in Danish Patent Application No. 201670594, which corresponds with U.S. Appl. No. 14/869,899, 2 pages. |
Patent, dated Feb. 26, 2019, received in Danish Patent Application No. 201670594, which corresponds with U.S. Appl. No. 14/869,899, 3 pages. |
Office Action, dated May 8, 2019, received in European Patent Application No. 18168939.9, which corresponds with U.S. Appl. No. 14/869,899, 10 pages. |
Intention to Grant, dated Oct. 25, 2019, received in European Patent Application No. 18168939.9, which corresponds with U.S. Appl. No. 14/869,899, 8 pages. |
Decision to Grant, dated Mar. 26, 2020, received in European Patent Application No. 14/869,899, which corresponds with U.S. Appl. No. 14/869,899, 3 pages. |
Patent, dated Apr. 22, 2020, received in European Patent Application No. 14/869,899, which corresponds with U.S. Appl. No. 14/869,899, 3 pages. |
Office Action, dated May 23, 2019, received in European Patent Application No. 18175195.9, which corresponds with U.S. Appl. No. 14/869,899, 10 pages. |
Oral Summons, dated Dec. 6, 2019, received in European Patent Application No. 18175195.9, which corresponds with U.S. Appl. No. 14/869,899, 9 pages. |
Office Action, dated Sep. 21, 2018, received in Japanese Patent Application No. 2018-100827, which corresponds with U.S. Appl. No. 14/869,899, 4 pages. |
Notice of Allowance, dated Mar. 1, 2019, received in Japanese Patent Application No. 2018-100827, which corresponds with U.S. Appl. No. 14/869,899, 5 pages. |
Patent, dated Apr. 5, 2019, received in Japanese Patent Application No. 2018-100827, which corresponds with U.S. Appl. No. 14/869,899, 5 pages. |
Office Action, dated Oct. 5, 2018, received in Korean Patent Application No. 2018-7017213, which corresponds with U.S. Appl. No. 14/869,899, 3 pages. |
Office Action, dated Mar. 22, 2019, received in Korean Patent Application No. 2018-7017213, which corresponds with U.S. Appl. No. 14/869,899, 6 pages. |
Patent, dated May 10, 2019, received in Korean Patent Application No. 2018-7017213, which corresponds with U.S. Appl. No. 14/869,899, 8 pages. |
Office Action, dated Mar. 4, 2016, received in U.S. Appl. No. 14/866,992, 30 pages. |
Final Office Action, dated Jul. 29, 2016, received in U.S. Appl. No. 14/866,992, 35 pages. |
Office Action, dated Apr. 13, 2017, received in U.S. Appl. No. 14/866,992, 34 pages. |
Final Office Action, dated Oct. 3, 2017, received in U.S. Appl. No. 14/866,992, 37 pages. |
Office Action, dated Jan. 29, 2018, received in U.S. Appl. No. 14/866,992, 44 pages. |
Final Office Action, dated Aug. 28, 2018, received in U.S. Appl. No. 14/866,992, 52 pages. |
Examiner's Answer, dated May 9, 2019, received in U.S. Appl. No. 14/866,992, 26 pages. |
Innovation Patent, dated Sep. 22, 2016, received in Australian Patent Application No. 2016101418, which corresponds with U.S. Appl. No. 14/866,992, 1 page. |
Office Action, dated Nov. 22, 2016, received in Australian Patent Application No. 2016101418, which corresponds with U.S. Appl. No. 14/866,992, 7 pages. |
Office Action, dated Feb. 7, 2017, received in Australian Patent Application No. 2016101418, which corresponds with U.S. Appl. No. 14/866,992, 5 pages. |
Office Action, dated Mar. 26, 2018, received in Australian Patent Application No. 2016304890, which corresponds with U.S. Appl. No. 14/866,992, 3 pages. |
Notice of Acceptance, dated Mar. 12, 2019, received in Australian Patent Application No. 2016304890, which corresponds with U.S. Appl. No. 14/866,992, 5 pages. |
Certificate of Grant, dated Jul. 4, 2019, received in Australian Patent Application No. 2016304890, which corresponds with U.S. Appl. No. 14/866,992, 1 page. |
Office Action, dated Jan. 19, 2018, received in Australian Patent Application No. 201761478, which corresponds with U.S. Appl. No. 14/866,992, 6 pages. |
Certificate of Grant, dated May 9, 2019, received in Australian Patent Application No. 201761478, which corresponds with U.S. Appl. No. 14/866,992, 3 pages. |
Office Action, dated Sep. 12, 2019, received in Chinese Patent Application No. 201610658351.8, which corresponds with U.S. Appl. No. 14/866,992, 5 pages. |
Office Action, dated Jan. 13, 2020, received in Chinese Patent Application No. 201610658351.8, which corresponds with U.S. Appl. No. 14/866,992, 3 pages. |
Office Action, dated Jun. 30, 2020, received in Chinese Patent Application No. 201610658351.8, which corresponds with U.S. Appl. No. 14/866,992, 11 pages. |
Office Action, dated Nov. 25, 2020, received in Chinese Patent Application No. 201610658351.8, which corresponds with U.S. Appl. No. 14/866,992, 9 pages. |
Office Action, dated Jul. 24, 2020, received in Chinese Patent Application No. 201680041559.6, which corresponds with U.S. Appl. No. 14/866,992, 13 pages. |
Notice of Allowance, dated Apr. 26, 2021, received in Chinese Patent Application No. 201680041559.6, which corresponds with U.S. Appl. No. 14/866,992, 1 page. |
Patent, dated May 28, 2021, received in Chinese Patent Application No. 201680041559.6, which corresponds with U.S. Appl. No. 14/866,992, 7 pages. |
Office Action, dated Mar. 18, 2016, received in Danish Patent Application 201500593, which corresponds with U.S. Appl. No. 14/866,992, 10 pages. |
Office Action, dated Jun. 27, 2016, received in Danish Patent Application No. 201500593, which corresponds with U.S. Appl. No. 14/866,992, 7 pages. |
Office Action, dated Feb. 6, 2017, received in Danish Patent Application No. 201500593, which corresponds with U.S. Appl. No. 14/866,992, 4 pages. |
Office Action, dated Sep. 5, 2017, received in Danish Patent Application No. 201500593, which corresponds with U.S. Appl. No. 14/866,992, 6 pages. |
Office Action, dated Oct. 12, 2018, received in European Patent Application No. 16758008.3, which corresponds with U.S. Appl. No. 14/866,992, 11 pages. |
Summons, dated May 8, 2019, received in European Patent Application No. 16758008.3, which corresponds with U.S. Appl. No. 14/866,992, 14 pages. |
Office Action, dated Jan. 11, 2019, received in Japanese Patent Application No. 2018-506425, which corresponds with U.S. Appl. No. 14/866,992, 6 pages. |
Notice of Allowance, dated Jun. 18, 2019, received in Japanese Patent Application No. 2018-506425, which corresponds with U.S. Appl. No. 14/866,992, 5 pages. |
Patent, dated Jul. 26, 2019, received in Japanese Patent Application No. 2018- 506425, which corresponds with U.S. Appl. No. 14/866,992, 3 pages. |
Notice of Allowance, dated Sep. 10, 2019, received in Korean Patent Application No. 2018-7003890, which corresponds with U.S. Appl. No. 14/866,992, 5 pages. |
Patent, dated Oct. 11, 2019, received in Korean Patent Application No. 2018-7003890, which corresponds with U.S. Appl. No. 14/866,992, 5 pages. |
Office Action, dated Feb. 12, 2018, received in U.S. Appl. No. 15/009,661, 36 pages. |
Final Office Action, dated Sep. 19, 2018, received in U.S. Appl. No. 15/009,661, 28 pages. |
Office Action, dated Jun. 28, 2019, received in U.S. Appl. No. 15/009,661, 33 pages. |
Final Office Action, dated Dec. 30, 2019, received in U.S. Appl. No. 15/009,661, 33 pages. |
Office Action, dated Sep. 16, 2020, received in U.S. Appl. No. 15/009,661, 37 pages. |
Final Office Action, dated Feb. 26, 2021, received in U.S. Appl. No. 15/009,661, 46 pages. |
Office Action, dated Jul. 1, 2021 received in U.S. Appl. No. 15/009,661, 52 pages. |
Office Action, dated Jan. 18, 2018, received in U.S. Appl. No. 15/009,676, 21 Pages. |
Notice of Allowance, dated Aug. 3, 2018, received in U.S. Appl. No. 15/009,676, 6 pages. |
Notice of Allowance, dated Nov. 15, 2018, received in U.S. Appl. No. 15/009,676, 6 pages. |
Office Action, dated Jul. 15, 2020, received in Chinese Patent Application No. 201680047125.7, which corresponds with U.S. Appl. No. 15/009,676, 11 pages. |
Office Action, dated Nov. 30, 2020, received in Chinese Patent Application No. 201680047125.7, which corresponds with U.S. Appl. No. 15/009,676, 11 pages. |
Notice of Allowance, dated Feb. 24, 2021, received in Chinese Patent Application No. 201680047125.7, which corresponds with U.S. Appl. No. 15/009,676, 1 page. |
Patent, dated Apr. 27, 2021, received in Chinese Patent Application No. 201680047125.7, which corresponds with U.S. Appl. No. 15/009,676, 8 pages. |
Intention to Grant, dated Apr. 7, 2020, received in European Patent Application No. 16756866.6, which corresponds with U.S. Appl. No. 15/009,676, 8 pages. |
Decision to Grant, dated Aug. 27, 2020, received in European Patent Application No. 16756866.6, which corresponds with U.S. Appl. No. 15/009,676, 4 pages. |
Patent, dated Sep. 23, 2020, received in European Patent Application No. 16756866.6, which corresponds with U.S. Appl. No. 15/009,676, 4 pages. |
Office Action, dated Mar. 13, 2018, received in U.S. Appl. No. 15/009,688, 10 pages. |
Notice of Allowance, dated Nov. 6, 2018, received in U.S. Appl. No. 15/009,688, 10 pages. |
Office Action, dated Jun. 29, 2020, received in Chinese Patent Application No. 201680047164.7, which corresponds with U.S. Appl. No. 15/009,688, 7 pages. |
Notice of Allowance, dated Oct. 9, 2020, received in Chinese Patent Application No. 201680047164.7, which corresponds with U.S. Appl. No. 15/009,688, 5 pages. |
Patent, dated Nov. 10, 2020, received in Chinese Patent Application No. 201680047164.7, which corresponds with U.S. Appl. No. 15/009,688, 6 pages. |
Intention to Grant, dated Mar. 16, 2020, received in European Patent Application No. 16753796.8, which corresponds with U.S. Appl. No. 15/009,688, 6 pages. |
Decision to Grant, dated Sep. 24, 2020, received in European Patent Application No. 16753796.8, which corresponds with U.S. Appl. No. 15/009,688, 4 pages. |
Certificate of Grant, dated Oct. 21, 2020, received in European Patent Application No. 16753796.8, which corresponds with U.S. Appl. No. 15/009,688, 4 pages. |
Office Action, dated Nov. 30, 2015, received in U.S. Appl. No. 14/845,217, 24 pages. |
Final Office Action, dated Apr. 22, 2016, received in U.S. Appl. No. 14/845,217, 36 pages. |
Notice of Allowance, dated Aug. 26, 2016, received in U.S. Appl. No. 14/845,217, 5 pages. |
Notice of Allowance, dated Jan. 4, 2017, received in U.S. Appl. No. 14/845,217, 5 pages. |
Office Action, dated Feb. 3, 2016, received in U.S. Appl. No. 14/856,517, 36 pages. |
Final Office Action, dated Jul. 13, 2016, received in U.S. Appl. No. 14/856,517, 30 pages. |
Office Action, dated May 2, 2017, received in U.S. Appl. No. 14/856,517, 34 pages. |
Final Office Action, dated Oct. 4, 2017, received in U.S. Appl. No. 14/856,517, 33 pages. |
Notice of Allowance, dated Jun. 29, 2018, received in U.S. Appl. No. 14/856,517, 11 pages. |
Office Action, dated Feb. 11, 2016, received in U.S. Appl. No. 14/856,519, 34 pages. |
Final Office Action, dated Jul. 15, 2016, received in U.S. Appl. No. 14/856,519, 31 pages. |
Office Action, dated May 18, 2017, received in U.S. Appl. No. 14/856,519, 35 pages. |
Final Office Action, dated Nov. 15, 2017, received in U.S. Appl. No. 14/856,519, 31 pages. |
Notice of Allowance, dated Jan. 31, 2018, received in U.S. Appl. No. 14/856,519, 9 pages. |
Notice of Allowance, dated May 2, 2018, received in U.S. Appl. No. 14/856,519, 10 pages. |
Office Action, dated Jun. 9, 2017, received in U.S. Appl. No. 14/856,520, 36 pages. |
Final Office Action, dated Nov. 16, 2017, received in U.S. Appl. No. 14/856,520, 41 pages. |
Office Action, dated Nov. 20, 2018, received in U.S. Appl. No. 14/856,520, 36 pages. |
Final Office Action, dated Apr. 17, 2019, received in U.S. Appl. No. 14/856,520, 38 pages. |
Notice of Allowance, dated Jan. 6, 2020, received in U.S. Appl. No. 14/856,520, 5 pages. |
Notice of Allowance, dated Mar. 4, 2020, received in U.S. Appl. No. 14/856,520, 6 pages. |
Notice of Allowance, dated Oct. 1, 2020, received in U.S. Appl. No. 14/856,520, 5 pages. |
Office Action, dated Jun. 30, 2017, received in U.S. Appl. No. 14/856,522, 22 pages. |
Notice of Allowance, dated Feb. 9, 2018, received in U.S. Appl. No. 14/856,522, 9 pages. |
Office Action, dated Feb. 1, 2016, received in U.S. Appl. No. 14/857,645, 15 pages. |
Final Office Action, dated Jun. 16, 2016, received in U.S. Appl. No. 14/857,645, 12 pages. |
Notice of Allowance, dated Oct. 24, 2016, received in U.S. Appl. No. 14/857,645, 6 pages. |
Notice of Allowance, dated Jun. 16, 2017, received in in U.S. Appl. No. 14/857,645, 5 pages. |
Office Action, dated Nov. 30, 2017, received in U.S. Appl. No. 14/857,636, 19 pages. |
Notice of Allowance, dated Aug. 16, 2018, received in U.S. Appl. No. 14/857,636, 5 pages. |
Office Action, dated Jan. 17, 2018, received in Australian U.S. Appl. No. 14/857,636, which corresponds with U.S. Appl. No. 14/857,636, 3 pages. |
Notice of Allowance, dated Jan. 15, 2019, received in Australian Patent Application No. 2017202816, which corresponds with U.S. Appl. No. 14/857,636, 3 pages. |
Certificate of Grant, dated May 16, 2019, received in Australian Patent Application No. 2017202816, which corresponds with U.S. Appl. No. 14/857,636, 4 pages. |
Office Action, dated Jul. 1, 2020, received in Chinese Patent Application No. 201711262953.5, which corresponds with U.S. Appl. No. 14/857,636, 13 pages. |
Patent, dated Nov. 27, 2020, received in Chinese Patent Application No. 201711262953.5, which corresponds with U.S. Appl. No. 14/857,636, 6 pages. |
Office Action, dated Sep. 22, 2017, received in Japanese Patent Application No. 2017-029201, which corresponds with U.S. Appl. No. 14/857,636, 8 pages. |
Office Action, dated Jun. 25, 2018, received in Japanese Patent Application No. 2017-029201, which corresponds with U.S. Appl. No. 14/857,636, 4 pages. |
Office Action, dated Jan. 20, 2020, received in Japanese Patent Application No. 2017-029201, which corresponds with U.S. Appl. No. 14/857,636, 21 pages. |
Notice of Allowance, dated Oct. 16, 2020, received in Japanese Patent Application No. 2017-029201, which corresponds with U.S. Appl. No. 14/857,636, 4 pages. |
Patent, dated Nov. 12, 2020, received in Japanese Patent Application No. 2017-029201, which corresponds with U.S. Appl. No. 14/857,636, 3 pages. |
Office Action, dated Nov. 28, 2018, received in Korean U.S. Appl. No. 14/857,636, which corresponds with U.S. Appl. No. 14/857,636, 6 pages. |
Notice of Allowance, dated May 10, 2019, received in Korean U.S. Appl. No. 14/857,636, which corresponds with U.S. Appl. No. 14/857,636, 4 pages. |
Patent, dated Jul. 11, 2019, received in Korean Patent Application No. 20177036645, which corresponds with U.S. Appl. No. 14/857,636, 8 pages. |
Office Action, dated Dec. 1, 2017, received in U.S. Appl. No. 14/857,663, 15 pages. |
Notice of Allowance, dated Aug. 16, 2018, received in U.S. Appl. No. 14/857,663, 5 pages. |
Office Action, dated Jul. 14, 2020, received in Chinese Patent Application No. 201711261143.8, which corresponds with U.S. Appl. No. 14/857,663, 12 pages. |
Notice of Allowance, dated Dec. 2, 2020, received in Chinese Patent Application No. 201711261143.8, which corresponds with U.S. Appl. No. 14/857,663, 3 pages. |
Patent, dated Jan. 22, 2021, received in Chinese Patent Application No. 201711261143.8, which corresponds with U.S. Appl. No. 14/857,663, 6 pages. |
Office Action, dated Nov. 11, 2019, received in Japanese Patent Application No. 2018-201076, which corresponds with U.S. Appl. No. 14/857,663, 7 pages. |
Notice of Allowance, dated Sep. 18, 2020, received in Japanese Patent Application No. 2018-201076, which corresponds with U.S. Appl. No. 14/857,663, 5 pages. |
Patent, dated Oct. 19, 2020, received in Japanese Patent Application No. 2018- 201076, which corresponds with U.S. Appl. No. 14/857,663, 4 pages. |
Office Action, dated Mar. 31, 2017, received in U.S. Appl. No. 14/857,700, 14 pages. |
Final Office Action, dated Oct. 11, 2017, received in U.S. Appl. No. 14/857,700, 13 pages. |
Notice of Allowance, dated Feb. 12, 2018, received in U.S. Appl. No. 14/857,700, 13 pages. |
Notice of Allowance, dated Apr. 9, 2018, received in U.S. Appl. No. 14/857,700, 7 pages. |
Notice of Allowance, dated Apr. 19, 2018, received in U.S. Appl. No. 14/864,529, 11 pages. |
Notice of Allowance, dated Oct. 9, 2018, received in U.S. Appl. No. 14/864,529, 11 pages. |
Office Action, dated Dec. 21, 2020, received in Korean Patent Application No. 2020-7029178, which corresponds with U.S. Appl. No. 14/870,882, 2 pages. |
Notice of allowance, dated Jun. 28, 2021, received in Korean Patent Application No. 2020-7029178, which corresponds with U.S. Appl. No. 14/870,882, 2 pages. |
Patent, dated Sep. 28, 2021, received in Korean Patent Application No. 2020-7029178, which corresponds with U.S. Appl. No. 14/870,882, 3 pages. |
Grant of Patent, dated Apr. 16, 2018, received in Dutch Patent Application No. 2019215, 2 pages. |
Office Action, dated Jan. 25, 2016, received in U.S. Pat. No. 14,864,580, 29 pages. |
Notice of Allowance, dated May 23, 2016, received in U.S. Appl. No. 14/864,580, 9 pages. |
Notice of Allowance, dated Aug. 4, 2016, received in U.S. Appl. No. 14/864,580, 9 pages. |
Notice of Allowance, dated Dec. 28, 2016, received in U.S. Appl. No. 14/864,580, 8 pages. |
Office Action, dated Aug. 19, 2016, received in Australian Patent Application No. 2016100648, which corresponds with U.S. Appl. No. 14/864,580, 6 pages. |
Office Action, dated Jul. 1, 2019, received in Australian Patent Application No. 2019200872, which corresponds with U.S. Appl. No. 14/864,580, 6 pages. |
Notice of Acceptance, dated Sep. 19, 2019, received in Australian Patent Application No. 2019200872, which corresponds with U.S. Appl. No. 14/864,580, 3 pages. |
Certificate of Grant, dated Jan. 23, 2020, received in Australian Patent Application No. 2019200872, which corresponds with U.S. Appl. No. 14/864,580, 3 pages. |
Office Action, dated Nov. 7, 2018, received in Chinese Patent Application No. 201610342151.4, which corresponds with U.S. Appl. No. 14/864,580, 3 pages. |
Notice of Allowance, dated Jun. 14, 2019, received in Chinese Patent Application No. 201610342151.4, which corresponds with U.S. Appl. No. 14/864,580, 3 pages. |
Patent, dated Jul. 30, 2019, received in Chinese Patent Application No. 201610342151.4, which corresponds with U.S. Appl. No. 14/864,580, 6 pages. |
Notice of Allowance, dated Nov. 8, 2016, received in Chinese Patent Application No. 201620470247.4, which corresponds with U.S. Appl. No. 14/864,580, 3 pages. |
Certificate of Registration, dated Oct. 14, 2016, received in German Patent Application No. 20201600003234.9, which corresponds with U.S. Appl. No. 14/864,580, 3 pages. |
Office Action, dated Apr. 8, 2016, received in Danish Patent Application No. 201500584, which corresponds with U.S. Appl. No. 14/864,580, 9 pages. |
Office Action, dated Oct. 7, 2016, received in Danish Patent Application No. 201500584, which corresponds with U.S. Appl. No. 14/864,580, 3 pages. |
Office Action, dated May 5, 2017, received in Danish Patent Application No. 201500584, which corresponds with U.S. Appl. No. 14/864,580, 3 pages. |
Office Action, dated Dec. 15, 2017, received in Danish Patent Application No. 201500584, which corresponds with U.S. Appl. No. 14/864,580, 4 pages. |
Office Action, dated Jun. 17, 2021, received in European Patent Application No. 19194418.0, which corresponds with U.S. Appl. No. 14/864,580, 7 pages. |
Notice of Allowance, dated Aug. 14, 2019, received in Korean Patent Application No. 2019-7018317, which corresponds with U.S. Appl. No. 14/864,580, 6 pages. |
Patent, dated Nov. 12, 2019, received in Korean Patent Application No. 2019-7018317, which corresponds with U.S. Appl. No. 14/864,580, 6 pages. |
Notice of Allowance, dated Nov. 23, 2016, received in U.S. Appl. No. 14/864,601, 12 pages. |
Notice of Allowance, dated Apr. 20, 2017, received in U.S. Appl. No. 14/864,601, 13 pages. |
Office Action, dated Aug. 31, 2018, received in Australian Patent Application No. 14/864,601, which corresponds with U.S. Appl. No. 14/864,601, 3 pages. |
Certificate of Grant, dated Feb. 21, 2019, received in Australian Patent Application No. 2016276030, which corresponds with U.S. Appl. No. 14/864,601, 4 pages. |
Office Action, dated Feb. 4, 2019, received in European Patent Application No. 16730554.9, which corresponds with U.S. Appl. No. 14/864,601, 10 pages. |
Intention to Grant, dated Jul. 18, 2019, received in European Patent Application No. 16730554.9, which corresponds with U.S. Appl. No. 14/864,601, 5 pages. |
Decision to Grant, dated Sep. 12, 2019, received in European Patent Application No. 16730544.9, which corresponds with U.S. Appl. No. 14/864,601, 2 pages. |
Patent, dated Oct. 9, 2019, received in European Patent Application No. 16730554.9, which corresponds with U.S. Appl. No. 14/864,601, 3 pages. |
Notice of Allowance, dated Dec. 10, 2018, received in Japanese Patent Application No. 2017-561375, which corresponds with U.S. Appl. No. 14/864,601, 5 pages. |
Patent, dated Jan. 11, 2019, received in Japanese Patent Application No. 2017-561375, which corresponds with U.S. Appl. No. 14/864,601, 3 pages. |
Office Action, dated Jan. 25, 2019, received in Korean Patent Application No. 2017-7033756, which corresponds with U.S. Appl. No. 14/864,601, 8 pages. |
Notice of Allowance, dated May 29, 2019, received in Korean Patent Application No. 2017-7033756, which corresponds with U.S. Appl. No. 14/864,601, 6 pages. |
Patent, dated Jun. 25, 2019, received in Korean Patent Application No. 2017-7033756, which corresponds with U.S. Appl. No. 14/864,601, 6 pages. |
Office Action, dated Apr. 19, 2016, received in U.S. Appl. No. 14/864,627, 9 pages. |
Notice of Allowance, dated Jan. 31, 2017, received in U.S. Appl. No. 14/864,627, 7 pages. |
Office Action, dated Apr. 8, 2016, received in Danish Patent Application No. 201500585, which corresponds with U.S. Appl. No. 14/864,627, 9 pages. |
Office Action, dated Oct. 7, 2016, received in Danish Patent Application No. 201500585, which corresponds with U.S. Appl. No. 14/864,627, 3 pages. |
Office Action, dated May 5, 2017, received in Danish Patent Application No. 201500585, which corresponds with U.S. Appl. No. 14/864,627, 4 pages. |
Office Action, dated Dec. 15, 2017, received in Danish Patent Application No. 201500585, which corresponds with U.S. Appl. No. 14/864,627, 5 pages. |
Office Action, dated Mar. 29, 2016, received in U.S. Appl. No. 14/866,361, 22 pages. |
Notice of Allowance, dated Jul. 19, 2016, received in U.S. Appl. No. 14/866,361, 8 pages. |
Office Action, dated Jun. 10, 2016, received in Australian Patent Application No. 2016100292, which corresponds with U.S. Appl. No. 14/866,361, 4 pages. |
Certificate of Examination, dated Dec. 8, 2016, received in Australian Patent Application No. 2016100292, which corresponds with U.S. Appl. No. 14/866,361, 1 page. |
Office Action, dated Oct. 19, 2018, received in Chinese Patent Application No. 201610189298.4, which corresponds with U.S. Appl. No. 14/866,361, 6 pages. |
Notice of Allowance, dated May 23, 2019, received in Chinese Patent Application No. 201610189298.4, which corresponds with U.S. Appl. No. 14/866,361, 3 pages. |
Patent, dated Jul. 23, 2019, received in Chinese Patent Application No. 201610189298.4, which corresponds with U.S. Appl. No. 14/866,361, 7 pages. |
Notice of Allowance/Grant, dated Jul. 1, 2016, received in Chinese Patent Application No. 201620251706.X, which corresponds with U.S. Appl. No. 14/866,361, 3 pages. |
Letters Patent, dated Aug. 3, 2016, received in Chinese Patent Application No. 201620251706.X, which corresponds with U.S. Appl. No. 14/866,361, 3 pages. |
Certificate of Registration, dated Jun. 24, 2016, received in German Patent Application No. 202016001819.2, which corresponds with U.S. Appl. No. 14/866,361, 3 pages. |
Office Action, dated Apr. 7, 2016, received in Danish Patent Application No. 201500579, which corresponds with U.S. Appl. No. 14/866,361, 10 pages. |
Office Action, dated Oct. 28, 2016, received in Danish Patent Application No. 201500579, which corresponds with U.S. Appl. No. 14/866,361, 3 pages. |
Office Action, dated Jun. 15, 2017, received in Danish Patent Application No. 201500579, which corresponds with U.S. Appl. No. 14/866,361, 2 pages. |
Office Action, dated Jan. 4, 2018, received in Danish Patent Application No. 201500579, which corresponds with U.S. Appl. No. 14/866,361, 2 pages. |
Notice of Allowance, dated Mar. 16, 2018, received in Danish Patent Application No. 201500579, which corresponds with U.S. Appl. No. 14/866,361, 2 pages. |
Patent, dated May 22, 2018, received in Danish Patent Application No. 201500579, which corresponds with U.S. Appl. No. 14/866,361, 2 pages. |
Office Action, dated Jun. 11, 2018, received in European Patent Application No. 17188507.2, which corresponds with U.S. Appl. No. 14/866,361, 10 pages. |
Office Action, dated Jan. 30, 2019, received in European Patent Application No. 17188507.2, which corresponds with U.S. Appl. No. 14/866,361, 13 pages. |
Office Action, dated Oct. 8, 2019, received in European Patent Application No. 17188507.2, which corresponds with U.S. Appl. No. 14/866,361, 6 pages. |
Intention to Grant, dated Apr. 14, 2020, received in European Patent Application No. 17188507.2, which corresponds with U.S. Appl. No. 14/866,361, 7 pages. |
Intention to Grant, dated Feb. 3, 2021, received in European Patent Application No. 17188507.2, which corresponds with U.S. Appl. No. 14/866,361, 7 pages. |
Patent, dated May 26, 2021, received in European Patent Application No. 17188507.2, which corresponds with U.S. Appl. No. 14/866,361, 3 pages. |
Office Action, dated Oct. 12, 2018, received in Japanese Patent Application No. 2017-141962, which corresponds with U.S. Appl. No. 14/866,361, 6 pages. |
Office Action, dated Jun. 10, 2019, received in Japanese Patent Application No. 2017-141962, which corresponds with U.S. Appl. No. 14/866,361, 6 pages. |
Notice of Allowance, dated Oct. 7, 2019, received in Japanese Patent Application No. 2017-141962, which corresponds with U.S. Appl. No. 14/866,361, 5 pages. |
Patent, dated Nov. 8, 2019, received in Japanese Patent Application No. 2017-141962, which corresponds with U.S. Appl. No. 14/866,361, 4 pages. |
Office Action, dated Sep. 14, 2018, received in Korean Patent Application No. 2018-7013039, which corresponds with U.S. Appl. No. 14/866,361, 2 pages. |
Notice of Allowance, dated Jan. 30, 2019, received in Korean Patent Application No. 2018-7013039, which corresponds with U.S. Appl. No. 14/866,361, 5 pages. |
Patent, dated Apr. 3, 2019, received in Korean Patent Application No. 2018-7013039, which corresponds with U.S. Appl. No. 14/866,361, 4 pages. |
Office Action, dated Jan. 22, 2018, received in U.S. Appl. No. 14/866,987, 22 pages. |
Final Office Action, dated Oct. 11, 2018, received in U.S. Appl. No. 14/866,987, 20 pages. |
Notice of Allowance, dated Apr. 4, 2019, received in U.S. Appl. No. 14/866,987, 5 pages. |
Patent, dated Aug. 8, 2016, received in Australian Patent Application No. 2016100649, which corresponds with U.S. Appl. No. 14/866,987, 1 page. |
Office Action, dated Dec. 4, 2018, received in Chinese Patent Application No. 201610342336.5, which corresponds with U.S. Appl. No. 14/866,987, 5 pages. |
Rejection Decision, dated Apr. 28, 2019, received in Chinese Patent Application No. 201610342336.5, which corresponds with U.S. Appl. No. 14/866,987, 4 pages. |
Office Action, dated Aug. 15, 2019, received in Chinese Patent Application No. 201610342336.5, which corresponds with U.S. Appl. No. 14/866,987, 3 pages. |
Notice of Allowance, dated Dec. 3, 2019, received in Chinese Patent Application No. 201610342336.5, which corresponds with U.S. Appl. No. 14/866,987, 3 pages. |
Patent, dated Jan. 31, 2020, received in Chinese Patent Application No. 201610342336.5, which corresponds with U.S. Appl. No. 14/866,987, 7 pages. |
Office Action, dated Oct. 19, 2016, received in Chinese Patent Application No. 2016201470246.X, which corresponds with U.S. Appl. No. 14/866,987, 4 pages. |
Patent, dated May 3, 2017, received in Chinese Patent Application No. 2016201470246.X, which corresponds with U.S. Appl. No. 14/866,987, 2 pages. |
Patent, dated Sep. 19, 2016, received in German Patent Application No. 202016002908.9, which corresponds with U.S. Appl. No. 14/866,987, 3 pages. |
Office Action, dated Mar. 22, 2016, received in Danish Patent Application No. 201500587, which corresponds with U.S. Appl. No. 14/866,987, 8 pages. |
Intention to Grant, dated Jun. 10, 2016, received in Danish Patent Application No. 201500587, which corresponds with U.S. Appl. No. 14/866,987, 2 pages. |
Notice of Allowance, dated Nov. 1, 2016, received in Danish Patent Application No. 201500587, which corresponds with U.S. Appl. No. 14/866,987, 2 pages. |
Office Action, dated Sep. 9, 2016, received in Danish Patent Application No. 201670463, which corresponds with U.S. Appl. No. 14/866,987, 7 pages. |
Notice of Allowance, dated Jan. 31, 2017, received in Danish Patent Application No. 201670463, which corresponds with U.S. Appl. No. 14/866,987, 3 pages. |
Office Action, dated Apr. 19, 2017, received in Danish Patent Application No. 201670463, which corresponds with U.S. Appl. No. 14/866,987, 3 pages. |
Notice of Allowance, dated Sep. 29, 2017, received in Danish Patent Application No. 201670463, which corresponds with U.S. Appl. No. 14/866,987, 2 pages. |
Patent, dated Nov. 6, 2017, received in Danish Patent Application No. 201670463, which corresponds with U.S. Appl. No. 14/866,987, 6 pages. |
Office Action, dated May 7, 2018, received in European Patent Application No. 16189421.7, which corresponds with U.S. Appl. No. 14/866,987, 5 pages. |
Office Action, dated Dec. 11, 2018, received in European Patent Application No. 16189421.7, which corresponds with U.S. Appl. No. 14/866,987, 6 pages. |
Intention to Grant, dated Jun. 14, 2019, received in European Patent Application No. 16189421.7, which corresponds with U.S. Appl. No. 14/866,987, 7 pages. |
Intention to Grant, dated Oct. 25, 2019, received in European Patent Application No. 16189421.7, which corresponds with U.S. Appl. No. 14/866,987, 7 pages. |
Decision to Grant, dated Nov. 14, 2019, received in European Patent Application No. 16189421.7, which corresponds with U.S. Appl. No. 14/866,987, 2 pages. |
Patent, dated Dec. 11, 2019, received in European Patent Application No. 16189421.7, which corresponds with U.S. Appl. No. 14/866,987, 3 pages. |
Office Action, dated Feb. 3, 2020, received in European Patent Application No. 17163309.2, which corresponds with U.S. Appl. No. 14/866,987, 6 pages. |
Office Action, dated Dec. 22, 2021, received in European Patent Application No. 17163309.2, which corresponds with U.S. Appl. No. 14/866,987, 4 pages. |
Patent, dated Feb. 5, 2021, received in Hong Kong Patent Application No. 1235878, which corresponds with U.S. Appl. No. 14/866,987, 6 pages. |
Patent, dated Jan. 8, 2021, received in Hong Kong Patent Application No. 18100151.5, which corresponds with U.S. Appl. No. 14/866,987, 6 pages. |
Office Action, dated Aug. 26, 2020, received in Indian Application No. 201617032291, which corresponds with U.S. Appl. No. 14/866,987, 9 pages. |
Notice of Allowance, dated Sep. 22, 2017, received in Japanese Patent Application No. 2016-233449, which corresponds with U.S. Appl. No. 14/866,987, 5 pages. |
Patent, dated Oct. 27, 2017, received in Japanese Patent Application No. 2016-233449, which corresponds with U.S. Appl. No. 14/866,987, 3 pages. |
Office Action, dated Jul. 31, 2017, received in Japanese Patent Application No. 2017126445, which corresponds with U.S. Appl. No. 14/866,987, 6 pages. |
Notice of Allowance, dated Mar. 6, 2018, received in Japanese Patent Application No. 2017-126445, which corresponds with U.S. Appl. No. 14/866,987, 5 pages. |
Patent, dated Apr. 6, 2018, received in Japanese Patent Application No. 2017-126445, which corresponds with U.S. Appl. No. 14/866,987, 3 pages. |
Office Action, dated Nov. 29, 2017, received in U.S. Appl. No. 14/866,989, 31 pages. |
Final Office Action, dated Jul. 3, 2018, received in U.S. Appl. No. 14/866,989, 17 pages. |
Notice of Allowance, dated Jan. 17, 2019, received in U.S. Appl. No. 14/866,989, 8 pages. |
Certificate of Exam, dated Jul. 21, 2016, received in Australian Patent Application No. 2016100652, which corresponds with U.S. Appl. No. 14/866,989, 1 page. |
Office Action, dated Feb. 26, 2018, received in Australian Patent Application No. 2017201079, which corresponds with U.S. Appl. No. 14/866,989, 6 pages. |
Notice of Acceptance, dated Feb. 14, 2019, received in Australian Patent Application No. 2017201079, which corresponds with U.S. Appl. No. 14/866,989, 3 pages. |
Certificate of Grant, dated Jun. 13, 2019, received in Australian Patent Application No. 2017201079, which corresponds with U.S. Appl. No. 14/866,989, 1 page. |
Office Action, dated Sep. 19, 2018, received in Chinese Patent Application No. 201610342314.9, which corresponds with U.S. Appl. No. 14/866,989, 6 pages. |
Office Action, dated Feb. 25, 2019, received in Chinese Patent Application No. 201610342314.9, which corresponds with U.S. Appl. No. 14/866,989, 3 pages. |
Rejection Decision, dated Apr. 24, 2019, received in Chinese Patent Application No. 201610342314.9, which corresponds with U.S. Appl. No. 14/866,989, 3 pages. |
Office Action, dated Jun. 16, 2017, received in Japanese Patent Application No. 2016-233450, which corresponds with U.S. Appl. No. 14/866,989, 6 pages. |
Patent, dated Mar. 9, 2018, received in Japanese Patent Application No. 2016-233450, which corresponds with U.S. Appl. No. 14/866,989, 4 pages. |
Office Action, dated Apr. 1, 2016, received in Danish Patent Application No. 201500589, which corresponds with U.S. Appl. No. 14/866,989, 8 pages. |
Intention to Grant, dated Jun. 10, 2016, received in Danish Patent Application No. 201500589, which corresponds with U.S. Appl. No. 14/866,989, 2 pages. |
Notice of Allowance, dated Nov. 1, 2016, received in Danish Patent Application No. 201500589, which corresponds with U.S. Appl. No. 14/866,989, 2 pages. |
Office Action, dated Feb. 3, 2020, received in European Patent Application No. 16189425.8, which corresponds with U.S. Appl. No. 14/866,989, 6 pages. |
Intention to Grant, dated Dec. 3, 2020, received in European Patent Application No. 16189425.8, which corresponds with U.S. Appl. No. 14/866,989, 7 pages. |
Decision to Grant, dated Feb. 25, 2021, received in European Patent Application No. 16189425.8, which corresponds with U.S. Appl. No. 14/866,989, 1 page. |
Notice of Allowance, dated Feb. 5, 2018, received in Japanese Patent Application No. 2016-233450, which corresponds with U.S. Appl. No. 14/866,989, 5 pages. |
Office Action, dated Apr. 11, 2016, received in U.S. Appl. No. 14/871,236, 23 pages. |
Office Action, dated Jun. 28, 2016, received in U.S. Appl. No. 14/871,236, 21 pages. |
Final Office Action, dated Nov. 4, 2016, received in U.S. Appl. No. 14/871,236, 24 pages. |
Notice of Allowance, dated Feb. 28, 2017, received in U.S. Appl. No. 14/871,236, 9 pages. |
Innovation Patent, dated Aug. 25, 2016, received in Australian Patent Application No. 2016101433, which corresponds with U.S. Appl. No. 14/871,236, 1 page. |
Office Action, dated Oct. 14, 2016, received in Australian Patent Application No. 2016101433, which corresponds with U.S. Appl. No. 14/871,236, 3 pages. |
Office Action, dated Jun. 23, 2020, received in Brazilian Patent Application No. 11201701119-9, which corresponds with U.S. Appl. No. 14/871,236, 9 pages. |
Office Action, dated Sep. 30, 2019, received in Chinese Patent Application No. 201610871466.8, which corresponds with U.S. Appl. No. 14/871,236, 4 pages. |
Notice of Allowance, dated Mar. 24, 2020, received in Chinese Patent Application No. 201610871466.8, which corresponds with U.S. Appl. No. 14/871,236, 3 pages. |
Patent, dated May 19, 2020, received in Chinese Patent Application No. 201610871466.8, which corresponds with U.S. Appl. No. 14/871,236, 8 pages. |
Office Action, dated Apr. 8, 2016, received in Danish Patent Application No. 201500595, which corresponds with U.S. Appl. No. 14/871,236, 12 pages. |
Office Action, dated May 26, 2016, received in Danish Patent Application No. 201500595, which corresponds with U.S. Appl. No. 14/871,236, 14 pages. |
Office Action, dated Sep. 30, 2016, received in Danish Patent Application No. 201500595, which corresponds with U.S. Appl. No. 14/871,236, 10 pages. |
Office Action, dated Jun. 15, 2017, received in Danish Patent Application No. 201500595, which corresponds with U.S. Appl. No. 14/871,236, 4 pages. |
Office Action, dated Jan. 29, 2018, received in Danish Patent Application No. 201500595, which corresponds with U.S. Appl. No. 14/871,236, 2 pages. |
Notice of Allowance, dated Apr. 26, 2018, received in Danish Patent Application No. 201500595, which corresponds with U.S. Appl. No. 14/871,236, 2 pages. |
Patent, dated Jun. 18, 2018, received in Danish Patent Application No. 201500595, which corresponds with U.S. Appl. No. 14/871,236, 3 pages. |
Intention to Grant, dated Dec. 4, 2019, received in European Patent Application No. 18168941.5, which corresponds with U.S. Appl. No. 14/871,236, 8 pages. |
Intention to Grant, dated Oct. 5, 2020, received in European Patent Application No. 18168941.5, which corresponds with U.S. Appl. No. 14/871,236, 8 pages. |
Decision to Grant, dated Mar. 25, 2021, received in European Patent Application No. 18168941.5, which corresponds with U.S. Appl. No. 14/871,236, 2 pages. |
Patent, dated Apr. 21, 2021, received in European Patent Application No. 18168941.5, which corresponds with U.S. Appl. No. 14/871,236, 3 pages. |
Office Action, dated Mar. 17, 2020, received in Mx/a/2017/011610, which corresponds with U.S. Appl. No. 14/871,236, 4 pages. |
Notice of Allowance, dated Sep. 7, 2020, received in Mx/a/2017/011610, which corresponds with U.S. Appl. No. 14/871,236, 12 pages. |
Patent, dated Dec. 2, 2020, received in Mx/a/2017/011610, which corresponds with U.S. Appl. No. 14/871,236, 4 pages. |
Office Action, dated Jul. 19, 2018, received in Russian Patent Application No. 2017131408, which corresponds with U.S. Appl. No. 14/871,236, 8 pages. |
Patent, dated Feb. 15, 2019, received in Russian Patent Application No. 2017131408, which corresponds with U.S. Appl. No. 14/871,236, 2 pages. |
Office Action, dated Sep. 1, 2017, received in U.S. Appl. No. 14/870,754, 22 pages. |
Final Office Action, dated Mar. 9, 2018, received in U.S. Appl. No. 14/870,754, 19 pages. |
Notice of Allowance, dated Jul. 2, 2018, received in U.S. Appl. No. 14/870,754, 9 pages. |
Notice of Allowance, dated Dec. 3, 2018, received in U.S. Appl. No. 14/870,754, 8 pages. |
Office Action, dated Nov. 14, 2017, received in U.S. Appl. No. 14/870,882, 25 pages. |
Final Office Action, dated Apr. 20, 2018, received in U.S. Appl. No. 14/870,882, 7 pages. |
Notice of Allowance, dated Jul. 12, 2018, received in U.S. Appl. No. 14/870,882, 5 pages. |
Notice of Allowance, dated Dec. 5, 2018, received in U.S. Appl. No. 14/870,882, 8 pages. |
Innovation Patent, dated Aug. 25, 2016, received in Australian Patent Application No. 2016101436, which corresponds with U.S. Appl. No. 14/871,236, 1 pages. |
Office Action, dated Oct. 31, 2016, received in Australian Patent Application No. 2016101438, which corresponds with U.S. Appl. No. 14/871,236, 6 pages. |
Office Action, dated Nov. 28, 2019, received in Chinese Patent Application No. 201610870912.3, which corresponds with U.S. Appl. No. 14/870,882, 10 pages. |
Office Action, dated Aug. 3, 2020, received in Chinese Patent Application No. 201610870912.3, which corresponds with U.S. Appl. No. 14/870,882, 4 pages. |
Office Action, dated Dec. 21, 2020, received in Chinese Patent Application No. 201610870912.3, which corresponds with U.S. Appl. No. 14/870,882, 5 pages. |
Notice of Allowance, dated Mar. 22, 2021, received in Chinese Patent Application No. 201610870912.3, which corresponds with U.S. Appl. No. 14/870,882, 1 pages. |
Patent, dated May 25, 2021, received in Chinese Patent Application No. 201610870912.3, which corresponds with U.S. Appl. No. 14/870,882, 8 pages. |
Office Action, dated Apr. 6, 2016, received in Danish Patent Application No. 201500596, which corresponds with U.S. Appl. No. 14/870,882, 7 pages. |
Office Action, dated Jun. 9, 2016, received in Danish Patent Application No. 201500596, which corresponds with U.S. Appl. No. 14/870,882, 9 pages. |
Notice of Allowance, dated Oct. 31, 2017, received in Danish Patent Application No. 201500596, which corresponds with U.S. Appl. No. 14/870,882, 2 pages. |
Patent, dated Jan. 29, 2018, received in Danish Patent Application No. 201500596, which corresponds with U.S. Appl. No. 14/870,882, 4 pages. |
Office Action, dated Feb. 11, 2019, received in European Patent Application No. 17171972.7, which corresponds with U.S. Appl. No. 14/870,882, 7 pages. |
Office Action, dated Sep. 1, 2017, received in U.S. Appl. No. 14/870,988, 14 pages. |
Final Office Action, dated Feb. 16, 2018, received in U.S. Appl. No. 14/870,988, 18 pages. |
Notice of Allowance, dated Aug. 27, 2018, received in U.S. Appl. No. 14/870,988, 11 pages. |
Office Action, dated Nov. 22, 2017, received in U.S. Appl. No. 14/871,227, 24 pages. |
Notice of Allowance, dated Jun. 11, 2018, received in U.S. Appl. No. 14/871,227, 11 pages. |
Office Action, dated Oct. 17, 2016, received in Australian Patent Application No. 2016203040, which corresponds with U.S. Appl. No. 14/871,227, 7 pages. |
Office Action, dated Oct. 16, 2017, received in Australian Patent Application No. 2016203040, which corresponds with U.S. Appl. No. 14/871,227, 5 pages. |
Notice of Acceptance, dated Oct. 30, 2018, received in Australian Patent Application No. 2016203040, which corresponds with U.S. Appl. No. 14/871,227, 4 pages. |
Certificate of Grant, dated Feb. 28, 2019, received in Australian Patent Application No. 2016203040, which corresponds with U.S. Appl. No. 14/871,227, 1 page. |
Office Action, dated Oct. 18, 2016, received in Australian Patent Application No. 2016101431, which corresponds with U.S. Appl. No. 14/871,227, 3 pages. |
Office Action, dated Apr. 13, 2017, received in Australian Patent Application No. 2016101431, which corresponds with U.S. Appl. No. 14/871,227, 4 pages. |
Office Action, dated Oct. 11, 2018, received in Australian Patent Application No. 2017245442, which corresponds with U.S. Appl. No. 14/871,227, 4 pages. |
Office Action, dated Nov. 16, 2018, received in Chinese Patent Application No. 201680000466.9, which corresponds with U.S. Appl. No. 14/871,227, 5 pages. |
Notice of Allowance, dated Jun. 5, 2019, received in Chinese Patent Application No. 201680000466.9, which corresponds with U.S. Appl. No. 14/871,227, 5 pages. |
Patent, dated Aug. 9, 2019, received in Chinese Patent Application No. 201680000466.9, which corresponds with U.S. Appl. No. 14/871,227, 8 pages. |
Intention to Grant, dated Apr. 7, 2016, received in Danish Patent Application No. 201500597, which corresponds with U.S. Appl. No. 14/871,227, 7 pages. |
Grant, dated Jun. 21, 2016, received in Danish Patent Application No. 201500597, which corresponds with U.S. Appl. No. 14/871,227, 2 pages. |
Patent, dated Sep. 26, 2016, received in Danish Patent Application No. 201500597, which corresponds with U.S. Appl. No. 14/871,227, 7 pages. |
Intent to Grant, dated Sep. 17, 2018, received in European Patent No. 16711743.1, which corresponds with U.S. Appl. No. 14/871,227, 5 pages. |
Patent, dated Nov. 28, 2018, received in European Patent No. 16711743.1, which corresponds with U.S. Appl. No. 14/871,227, 1 page. |
Office Action, dated Jul. 20, 2020, received in Indian Patent Application No. 201617032293, which corresponds with U.S. Appl. No. 14/871,227, 9 pages. |
Office Action, dated Mar. 24, 2017, received in Japanese Patent Application No. 2016-533201, which corresponds with U.S. Appl. No. 14/871,227, 6 pages. |
Office Action, dated Aug. 4, 2017, received in Japanese Patent Application No. 2016-533201, which corresponds with U.S. Appl. No. 14/871,227, 6 pages. |
Notice of Allowance, dated Jan. 4, 2018, received in Japanese Patent Application No. 2016-533201, which corresponds with U.S. Appl. No. 14/871,227, 4 pages. |
Patent, dated Feb. 9, 2018, received in Japanese Patent Application No. 2016-533201, which corresponds with U.S. Appl. No. 14/871,227, 4 pages. |
Office Action, dated Feb. 20, 2018, received in Korean Patent Application No. 2016-7019816, which corresponds with U.S. Appl. No. 14/871,227, 8 pages. |
Notice of Allowance, dated Oct. 1, 2018, received in Korean Patent Application No. 2016-7019816, which corresponds with U.S. Appl. No. 14/871,227, 6 pages. |
Patent, dated Dec. 28, 2018, received in Korean Patent Application No. 2016-7019816, which corresponds with U.S. Appl. No. 14/871,227, 8 pages. |
Office Action, dated Oct. 26, 2017, received in U.S. Appl. No. 14/871,336, 22 pages. |
Final Office Action, dated Mar. 15, 2018, received in U.S. Appl. No. 14/871,336, 23 pages. |
Office Action, dated Nov. 5, 2018, received in U.S. Appl. No. 14/871,336, 24 pages. |
Notice of Allowance, dated Feb. 5, 2019, received in U.S. Appl. No. 14/871,336, 10 pages. |
Office Action, dated Oct. 14, 2016, received in Australian Patent Application No. 2016101437, which corresponds with U.S. Appl. No. 14/871,336, 2 pages. |
Office Action, dated Apr. 11, 2017, received in Australian Patent Application No. 2016101437, which corresponds with U.S. Appl. No. 14/871,336, 4 pages. |
Office Action, dated Nov. 4, 2019, received in Chinese Patent Application No. 201610871323.7, which corresponds with U.S. Appl. No. 14/871,336, 12 pages. |
Office Action, dated Aug. 4, 2020, received in Chinese Patent Application No. 201610871323.7, which corresponds with U.S. Appl. No. 14/871,336, 18 pages. |
Office Action, dated Feb. 9, 2021, received in Chinese Patent Application No. 201610871323.7, which corresponds with U.S. Appl. No. 14/871,336, 1 page. |
Office Action, dated Jun. 1, 2021, received in Chinese Patent Application No. 201610871323.7, which corresponds with U.S. Appl. No. 14/871,336, 1 page. |
Office Action, dated Apr. 18, 2016, received in Danish Patent Application No. 201500601, which corresponds with U.S. Appl. No. 14/871,336, 8 pages. |
Office Action, dated Oct. 18, 2016, received in Danish Patent Application No. 201500601, which corresponds with U.S. Appl. No. 14/871,336, 3 pages. |
Notice of Allowance, dated Mar. 23, 2017, received in Danish Patent Application No. 201500601, which corresponds with U.S. Appl. No. 14/871,336, 2 pages. |
Patent, dated Oct. 30, 2017, Danish Patent Application No. 201500601, which corresponds with U.S. Appl. No. 14/871,336, 5 pages. |
Office Action, dated Feb. 12, 2019, received in European Patent Application No. 17172266.3, which corresponds with U.S. Appl. No. 14/871,336, 6 pages. |
Office Action, dated Apr. 2, 2018, received in Japanese Patent Application No. 2018-020324, which corresponds with U.S. Appl. No. 14/871,336, 4 pages. |
Notice of Allowance, dated Oct. 12, 2018, received in Japanese Patent Application No. 2018-020324, which corresponds with U.S. Appl. No. 14/871,336, 5 pages. |
Patent, dated Nov. 16, 2018, received in Japanese Patent Application No. 2018-020324, which corresponds with U.S. Appl. No. 14/871,336, 4 pages. |
Office Action, dated Oct. 16, 2017, received in U.S. Appl. No. 14/871,462, 26 pages. |
Innovation Patent, dated Aug. 25, 2016, received in Australian Patent Application No. 2016101435, which corresponds with U.S. Appl. No. 14/871,462, 1 page. |
Office Action, dated Oct. 4, 2016, received in Australian Patent Application No. 2016101435, which corresponds with U.S. Appl. No. 14/871,462, 3 pages. |
Office Action, dated Sep. 29, 2017, received in Australian Patent Application No. 2016231505, which corresponds with U.S. Appl. No. 14/871,462, 5 pages. |
Innovation Patent, dated Oct. 11, 2017, received in Australian Patent Application No. 2016231505, which corresponds with U.S. Appl. No. 14/871,462, 1 page. |
Office Action, dated Oct. 9, 2021, received in Chinese Patent Application No. 201610869950.7, which corresponds with U.S. Appl. No. 14/871,462, 5 pages. |
Office Action, dated Apr. 20, 2017, received in Chinese Patent Application No. 201621044346.2, which corresponds with U.S. Appl. No. 14/871,462, 3 pages. |
Intention to Grant, dated Apr. 18, 2016, received in Danish Patent Application No. 201500600, which corresponds with U.S. Appl. No. 14/871,462, 7 pages. |
Grant, dated Aug. 30, 2016, received in Danish Patent Application No. 201500600, which corresponds with U.S. Appl. No. 14/871,462, 2 pages. |
Office Action, dated Mar. 13, 2017, received in Japanese Patent Application No. 2016-183289, which corresponds with U.S. Appl. No. 14/871,462, 5 pages. |
Office Action, dated Nov. 13, 2017, received in Japanese Patent Application No. 2016-183289, which corresponds with U.S. Appl. No. 14/871,462, 5 pages. |
Office Action, dated Apr. 29, 2016, received in U.S. Appl. No. 14/867,823, 28 pages. |
Final Office Action, dated Sep. 28, 2016, received in U.S. Appl. No. 14/867,823, 31 pages. |
Office Action, dated May 11, 2017, received in U.S. Appl. No. 14/867,823, 42 pages. |
Final Office Action, dated Nov. 29, 2017, received in U.S. Appl. No. 14/867,823, 47 pages. |
Notice of Allowance, dated Apr. 18, 2018, received in U.S. Appl. No. 14/867,823, 10 pages. |
Notice of Allowance, dated Aug. 7, 2018, received in U.S. Appl. No. 14/867,823, 8 pages. |
Office Action, dated Mar. 18, 2016, received in Danish Patent Application No. 201500594, which corresponds with U.S. Appl. No. 14/867,823, 10 pages. |
Office Action, dated Sep. 7, 2016, received in Danish Patent Application No. 201500594, which corresponds with U.S. Appl. No. 14/867,823, 4 pages. |
Office Action, dated May 15, 2017, received in Danish Patent Application No. 201500594, which corresponds with U.S. Appl. No. 14/867,823, 4 pages. |
Office Action, dated Jan. 23, 2018, received in Danish Patent Application No. 201500594, which corresponds with U.S. Appl. No. 14/867,823, 8 pages. |
Office Action, dated May 10, 2016, received in U.S. Appl. No. 14/867,892, 28 pages. |
Final Office Action, dated Nov. 2, 2016, received in U.S. Appl. No. 14/867,892, 48 pages. |
Office Action, dated Jul. 6, 2017, received in U.S. Appl. No. 14/867,892, 55 pages. |
Final Office Action, dated Dec. 14, 2017, received in U.S. Appl. No. 14/867,892, 53 pages. |
Office Action, dated Apr. 24, 2018, received in U.S. Appl. No. 14/867,892, 63 pages. |
Final Office Action, dated Oct. 17, 2018, received in U.S. Appl. No. 14/867,892, 48 pages. |
Examiner's Answer, dated Jul. 18, 2019, received in U.S. Appl. No. 14/867,892, 17 pages. |
Notice of Allowance, dated May 26, 2021, received in U.S. Appl. No. 14/867,892, 7 pages. |
Notice of Allowance, dated Jul. 13, 2021, received in U.S. Appl. No. 14/867,892, 8 pages. |
Office Action, dated Mar. 21, 2016, received in Danish Patent Application No. 201500598, which corresponds with U.S. Appl. No. 14/867,892, 9 pages. |
Office Action, dated Sep. 14, 2016, received in Danish Patent Application No. 201500598, which corresponds with U.S. Appl. No. 14/867,892, 4 pages. |
Office Action, dated May 4, 2017, received in Danish Patent Application No. 201500598, which corresponds with U.S. Appl. No. 14/867,892, 4 pages. |
Office Action, dated Oct. 31, 2017, received in Danish Patent Application No. 201500598, which corresponds with U.S. Appl. No. 14/867,892, 2 pages. |
Notice of Allowance, dated Jan. 26, 2018, received in Danish Patent Application No. 201500598, which corresponds with U.S. Appl. No. 14/867,892, 2 pages. |
Office Action, dated Feb. 28, 2018, received in U.S. Appl. No. 14/869,361, 26 pages. |
Final Office Action, dated Oct. 4, 2018, received in U.S. Appl. No. 14/869,361, 28 pages. |
Office Action, dated Feb. 27. 2019, received in U.S. Appl. No. 14/869,361, 28 pages. |
Office Action, dated Mar. 1, 2017, received in U.S. Appl. No. 14/869,855, 14 pages. |
Final Office Action, dated Oct. 10, 2017, received in U.S. Appl. No. 14/869,855, 16 pages. |
Office Action, dated Jan. 23, 2018, received in U.S. Appl. No. 14/869,855, 24 pages. |
Notice of Allowance, dated May 31, 2018, received in U.S. Appl. No. 14/869,855, 10 pages. |
Office Action, dated Feb. 9, 2017, received in U.S. Appl. No. 14/869,873, 17 pages. |
Final Office Action, dated Aug. 18, 2017, received in U.S. Appl. No. 14/869,873, 20 pages. |
Office Action, dated Jan. 18, 2018, received in U.S. Appl. No. 14/869,873, 25 pages. |
Final Office Action, dated May 23, 2018, received in U.S. Appl. No. 14/869,873, 18 pages. |
Notice of Allowance, dated Jul. 30, 2018, received in U.S. Appl. No. 14/869,873, 8 pages. |
Office Action, dated Jan. 11, 2018, received in U.S. Appl. No. 14/869,997, 17 pages. |
Office Action, dated Sep. 7, 2018, received in U.S. Appl. No. 14/869,997, 23 pages. |
Notice of Allowance, dated Apr. 4, 2019, received in U.S. Appl. No. 14/869,997, 9 pages. |
Notice of Allowance, dated Jan. 17, 2018, received in U.S. Appl. No. 14/867,990, 12 pages. |
Notice of Allowance, dated Mar. 30, 3018, received in U.S. Appl. No. 14/867,990, 5 pages. |
Office Action, dated May 23, 2016, received in Australian Patent Application No. 2016100253, which corresponds with U.S. Appl. No. 14/867,990, 5 pages. |
Notice of Allowance, dated May 21, 2019, received in Chinese Patent Application No. 201610131507.X, which corresponds with U.S. Appl. No. 14/867,990, 3 pages. |
Patent, dated Jul. 19, 2019, received in Chinese Patent Application No. 201610131507.X, which corresponds with U.S. Appl. No. 14/867,990, 6 pages. |
Office Action, dated Jul. 5, 2016, received in Chinese Patent Application No. 201620176221.9, which corresponds with U.S. Appl. No. 14/867,990, 4 pages. |
Office Action, dated Oct. 25, 2016, received in Chinese Patent Application No. 201620176221.9, which corresponds with U.S. Appl. No. 14/867,990, 7 pages. |
Certificate of Registration, dated Jun. 16, 2016, received in German Patent No. 202016001489.8, which corresponds with U.S. Appl. No. 14/867,990, 3 pages. |
Office Action, dated Mar. 18, 2016, received in Danish Patent Application No. 201500581, which corresponds with U.S. Appl. No. 14/867,990, 9 pages. |
Office Action, dated Sep. 26, 2016, received in Danish Patent Application No. 201500581, which corresponds with U.S. Appl. No. 14/867,990, 5 pages. |
Office Action, dated May 3, 2017, received in Danish Patent Application No. 201500581, which corresponds with U.S. Appl. No. 14/867,990, 5 pages. |
Office Action, dated Feb. 19, 2018, received in Danish Patent Application No. 201500581, which corresponds with U.S. Appl. No. 14/867,990, 4 pages. |
Office Action, dated Feb. 21, 2020, received in European Patent Application No. 16711725.8, which corresponds with U.S. Appl. No. 14/867,990, 13 pages. |
Office Action, dated May 14, 2021, received in European Patent Application No. 16711725.8, which corresponds with U.S. Appl. No. 14/867,990, 7 pages. |
Office Action, dated Apr. 19, 2018, received in U.S. Appl. No. 14/869,703, 19 pages. |
Final Office Action, dated Oct. 26, 2018, received in U.S. Appl. No. 14/869,703, 19 pages. |
Notice of Allowance, dated Mar. 12, 2019, received in U.S. Appl. No. 14/869,703, 6 pages. |
Office Action, dated Dec. 12, 2017, received in U.S. Appl. No. 15/009,668, 32 pages. |
Final Office Action, dated Jul. 3, 2018, received in U.S. Appl. No. 15/009,668, 19 pages. |
Office Action, dated Jan. 10, 2019, received in U.S. Appl. No. 15/009,668, 17 pages. |
Notice of Allowance, dated May 1, 2019, received in U.S. Appl. No. 15/009,668, 12 pages. |
Office Action, dated Aug. 20, 2020, received in Chinese Patent Application No. 201680046985.9, which corresponds with U.S. Appl. No. 15/009,668, 15 pages. |
Notice of Allowance, dated Apr. 20, 2021, received in Chinese Patent Application No. 201680046985.9, which corresponds with U.S. Appl. No. 15/009,668, 1 page. |
Office Action, dated Jan. 31, 2020, received in European Patent Application No. 16753795.0, which corresponds with U.S. Appl. No. 15/009,668, 9 pages. |
Office Action, dated Mar. 19, 2021, received in European Patent Application No. 16753795.0, which corresponds with U.S. Appl. No. 15/009,668, 5 pages. |
Office Action, dated Nov. 25, 2016, received in U.S. Appl. No. 15/081,771, 17 pages. |
Final Office Action, dated Jun. 2, 2017, received in U.S. Appl. No. 15/081,771, 17 pages. |
Notice of Allowance, dated Dec. 4, 2017, received in U.S. Appl. No. 15/081,771, 10 pages. |
Office Action, dated Feb. 1, 2018, received in Australian U.S. Appl. No. 15/081,771, which corresponds with U.S. Appl. No. 15/081,771, 4 pages. |
Notice of Acceptance, dated Jan. 24, 2019, received in Australian Patent Application No. 2017202058, which corresponds with U.S. Appl. No. 15/081,771, 3 pages. |
Certificate of Grant, dated May 23, 2019, received in Australian Patent Application No. 2017202058, which corresponds with U.S. Appl. No. 15/081,771, 1 page. |
Office Action, dated Mar. 2, 2022, received in Chinese Patent Application No. 201811561188.1, which corresponds with U.S. Appl. No. 15/081,771, 1 page. |
Office Action, dated Jan. 24, 2020, received in European Patent Application No. 18205283.7, which corresponds with U.S. Appl. No. 15/081,771, 4 pages. |
Intention to Grant, dated Apr. 30, 2020, received in European Patent Application No. 18205283.7, which corresponds with U.S. Appl. No. 15/081,771, 7 pages. |
Decision to Grant, dated Aug. 27, 2020, received in European Patent Application No. 18205283.7, which corresponds with U.S. Appl. No. 15/081,771, 4 pages. |
Patent, dated Sep. 23, 2020, received in European Patent Application No. 18205283.7, which corresponds with U.S. Appl. No. 15/081,771, 4 pages. |
Office Action, dated Jan. 26, 2018, received in Japanese Patent Application No. 2017-086460, which corresponds with U.S. Appl. No. 15/081,771, 6 pages. |
Notice of Allowance, dated Oct. 12, 2018, received in Japanese Patent Application No. 2017-086460, which corresponds with U.S. Appl. No. 15/081,771, 5 pages. |
Office Action, dated Aug. 29, 2017, received in Korean Patent Application No. 2017-7014536, which corresponds with U.S. Appl. No. 15/081,771, 5 pages. |
Notice of Allowance, dated Jun. 28, 2018, received in Korean Patent Application No. 2017-7014536, which corresponds with U.S. Appl. No. 15/081,771, 4 pages. |
Patent, dated Sep. 28, 2018, received in Korean Patent Application No. 2017-7014536, which corresponds with U.S. Appl. No. 15/081,771, 3 pages. |
Final Office Action, dated May 1, 2017, received in U.S. Appl. No. 15/136,782, 18 pages. |
Notice of Allowance, dated Oct. 20, 2017, received in U.S. Appl. No. 15/136,782, 9 pages. |
Office Action, dated May 4, 2018, received in Australian Patent Application No. 2018202855, which corresponds with U.S. Appl. No. 15/136,782, 3 pages. |
Notice of Acceptance, dated Sep. 10, 2018, received in Australian Patent Application No. 2018202855, which corresponds with U.S. Appl. No. 15/136,782, 3 pages. |
Certificate of Grant, dated Jan. 17. 2019, received in Australian Patent Application No. 2018202855, which corresponds with U.S. Appl. No. 15/136,782, 4 pages. |
Office Action, dated Sep. 27, 2019, received in Chinese Patent Application No. 201810119007.3, which corresponds with U.S. Appl. No. 15/136,782, 6 pages. |
Notice of Allowance, dated Feb. 26, 2020, received in Chinese Patent Application No. 201810119007.3, which corresponds with U.S. Appl. No. 15/136,782, 3 pages. |
Patent, dated Apr. 7, 2020, received in Chinese Patent Application No. 201810119007.3, which corresponds with U.S. Appl. No. 15/136,782, 7 pages. |
Office Action, dated May 23, 2017, received in Danish Patent Application No. 201770190, which corresponds with U.S. Appl. No. 15/136,782, 7 pages. |
Office Action, dated Jan. 8, 2018, received in Danish Patent Application No. 2011770190, which corresponds with U.S. Appl. No. 15/136,782, 2 pages. |
Notice of Allowance, dated Mar. 19, 2018, received in Danish Patent Application No. 201770190, which corresponds with U.S. Appl. No. 15/136,782, 2 pages. |
Patent, dated May 22, 2018, received in Danish Patent Application No. 201770190, which corresponds with U.S. Appl. No. 15/136,782, 2 pages. |
Office Action, dated Apr. 17, 2019, received in European Patent Application No. 18171453.6, which corresponds with U.S. Appl. No. 15/136,782, 4 pages. |
Office Action, dated Oct. 2, 2019, received in European Patent Application No. 18171453.6, which corresponds with U.S. Appl. No. 15/136,782, 5 pages. |
Office Action, dated May 12, 2020, received in European Patent Application No. 18171453.6, which corresponds with U.S. Appl. No. 15/136,782, 5 pages. |
Patent, dated Feb. 5, 2021, received in Hong Kong Patent Application No. 1257553, which corresponds with U.S. Appl. No. 15/136,782, 14 pages. |
Office Action, dated Jun. 1, 2018, received in Japanese Patent Application No. 2018-062161, which corresponds with U.S. Appl. No. 15/136,782, 5 pages. |
Office Action, dated Nov. 12, 2018, received in Japanese Patent Application No. 2018-062161, which corresponds with U.S. Appl. No. 15/136,782, 5 pages. |
Notice of Allowance, dated Feb. 18, 2019, received in Japanese Patent Application No. 2018-062161, which corresponds with U.S. Appl. No. 15/136,782, 5 pages. |
Patent, dated Mar. 22, 2019, received in Japanese Patent Application No. 2018-062161, which corresponds with U.S. Appl. No. 15/136,782, 5 pages. |
Office Action, dated Oct. 31, 2018, received in Korean Patent Application No. 2018-7020659, which corresponds with U.S. Appl. No. 15/136,782, 5 pages. |
Notice of Allowance, dated Feb. 25, 2019, received in Korean Patent Application No. 2018-7020659, which corresponds with U.S. Appl. No. 15/136,782, 5 pages. |
Patent, dated Apr. 3, 2019, received in Korean Patent Application No. 2018-7020659, which corresponds with U.S. Appl. No. 15/136,782, 5 pages. |
Office Action, dated Jan. 20, 2017, received in U.S. Appl. No. 15/231,745, 21 pages. |
Notice of Allowance, dated Jul. 6, 2017, received in U.S. Appl. No. 15/231,745, 18 pages. |
Office Action, dated Oct. 17, 2016, received in Danish Patent Application No. 201670587, which corresponds with U.S. Appl. No. 15/231,745, 9 pages. |
Office Action, dated Jun. 29, 2017, received in Danish Patent Application No. 201670587, which corresponds with U.S. Appl. No. 15/231,745, 4 pages. |
Office Action, dated Feb. 22, 2018, received in Danish Patent Application No. 201670587, which corresponds with U.S. Appl. No. 15/231,745, 4 pages. |
Office Action, dated Dec. 18, 2018, received in Danish Patent Application No. 201670587, which corresponds with U.S. Appl. No. 15/231,745, 4 pages. |
Office Action, dated Dec. 14, 2016, received in Danish Patent Application No. 201670590, which corresponds with U.S. Appl. No. 15/231,745, 9 pages. |
Office Action, dated Jul. 6, 2017, received in Danish Patent Application No. 201670590, which corresponds with U.S. Appl. No. 15/231,745, 3 pages. |
Office Action, dated Jan. 10, 2018, received in Danish Patent Application No. 201670590, which corresponds with U.S. Appl. No. 15/231,745, 2 pages. |
Patent, dated May 28, 2018, received in Danish Patent Application No. 201670590, which corresponds with U.S. Appl. No. 15/231,745, 2 pages. |
Office Action, dated Nov. 10, 2016, received in Danish Patent Application No. 201670591, which corresponds with U.S. Appl. No. 15/231,745, 12 pages. |
Office Action, dated Apr. 11, 2018, received in Danish Patent Application No. 201670591, which corresponds with U.S. Appl. No. 15/231,745, 3 pages. |
Office Action, dated Nov. 23, 2018, received in Danish Patent Application No. 201670591, which corresponds with U.S. Appl. No. 15/231,745, 7 pages. |
Office Action, dated Oct. 26, 2016, received in Danish Patent Application No. 201670592, which corresponds with U.S. Appl. No. 15/231,745, 8 pages. |
Office Action, dated Jan. 5, 2017, received in Danish Patent Application No. 201670592, which corresponds with U.S. Appl. No. 15/231,745, 3 pages. |
Office Action, dated Jan. 30, 2018, received in Danish Patent Application No. 201670592, which corresponds with U.S. Appl. No. 15/231,745, 2 pages. |
Notice of Allowance, dated Mar. 27, 2018, received in Danish Patent Application No. 201670592, which corresponds with U.S. Appl. No. 15/231,745, 2 pages. |
Patent, dated May 28, 2018, received in Danish Patent Application No. 201670592, which corresponds with U.S. Appl. No. 15/231,745, 2 pages. |
Office Action, dated Oct. 12, 2016, received in Danish Patent Application No. 201670593, which corresponds with U.S. Appl. No. 15/231,745, 7 pages. |
Patent, dated Oct. 30, 2017, received in Danish Patent Application No. 201670593, which corresponds with U.S. Appl. No. 15/231,745, 3 pages. |
Notice of Allowance, dated Nov. 1, 2019, received in Japanese Patent Application No. 2018-158502, which corresponds with U.S. Appl. No. 15/231,745, 5 pages. |
Patent, dated Nov. 29, 2019, received in Japanese Patent Application No. 2018-158502, which corresponds with U.S. Appl. No. 15/231,745, 3 pages. |
Notice of Allowance, dated Oct. 4, 2018, received in U.S. Appl. No. 15/272,327, 46 pages. |
Notice of Acceptance, dated Mar. 2, 2018, received in Australian Patent Application No. 2018200705, which corresponds with U.S. Appl. No. 15/272,327, 3 pages. |
Certificate of Grant, dated Jun. 28, 2018, received in Australian Patent Application No. 2018200705, which corresponds with U.S. Appl. No. 15/272,327, 4 pages. |
Office Action, dated Mar. 22, 2019, received in Australian Patent Application No. 2018204234, which corresponds with U.S. Appl. No. 15/272,327, 7 pages. |
Notice of Acceptance, dated Dec. 10, 2019, received in Australian Patent Application No. 2018204234, which corresponds with U.S. Appl. No. 15/272,327, 3 pages. |
Certificate of Grant, dated Apr. 2, 2020, received in Australian Patent Application No. 2018204234, which corresponds with U.S. Appl. No. 15/272,327, 1 page. |
Office Action, dated Aug. 31, 2020, received in Chinese Patent Application No. 201810151593.X, which corresponds with U.S. Appl. No. 15/272,327, 10 pages. |
Notice of Allowance, dated Jan. 27, 2021, received in Chinese Patent Application No. 201810151593.X, which corresponds with U.S. Appl. No. 15/272,327, 3 pages. |
Patent, dated Mar. 19, 2021, received in Chinese Patent Application No. 201810151593.X, which corresponds with U.S. Appl. No. 15/272,327, 6 pages. |
Office Action, dated Sep. 14, 2018, received in European Patent Application No. 15155939.4, which corresponds with U.S. Appl. No. 15/272,327, 5 pages. |
Intention to Grant, dated Mar. 19, 2019, received in European Patent Application No. 15155939.4, which corresponds with U.S. Appl. No. 15/272,327, 6 pages. |
Decision to Grant, dated Apr. 26, 2019, received in European Patent Application No. 15155939.4, which corresponds with U.S. Appl. No. 15/272,327, 2 pages. |
Patent, dated May 22, 2019, received in European Patent Application No. 15155939.4, which corresponds with U.S. Appl. No. 15/272,327, 1 page. |
Notice of Allowance, dated Jul. 30, 2018, received in Japanese Patent Application No. 2018-506989, which corresponds with U.S. Appl. No. 15/272,327, 4 pages. |
Patent, dated Aug. 31, 2018, received in Japanese Patent Application No. 2018-506989, which corresponds with U.S. Appl. No. 15/272,327, 3 pages. |
Office Action, dated Oct. 26, 2018, received in U.S. Appl. No. 15/272,341, 22 pages. |
Final Office Action, dated Mar. 25, 2019, received in U.S. Appl. No. 15/272,341, 25 pages. |
Notice of Allowance, dated Feb. 20, 2020, received in U.S. Appl. No. 15/272,341, 12 pages. |
Office Action, dated Jul. 27, 2017, received in Australian Patent Application No. 217100535, which corresponds with U.S. Appl. No. 15/272,341, 4 pages. |
Notice of Allowance, dated Sep. 20, 2018, received in U.S. Appl. No. 15/272,343, 44 pages. |
Office Action, dated Jun. 5, 2019, received in Chinese Patent Application No. 201810071627.4, which corresponds with U.S. Appl. No. 15/272,343, 6 pages. |
Notice of Allowance, dated Dec. 11, 2019, received in Chinese Patent Application No. 201710071627.4, which corresponds with U.S. Appl. No. 15/272,343, 4 pages. |
Patent, dated Mar. 3, 2020, received in Chinese Patent Application No. 201710071627.4, which corresponds with U.S. Appl. No. 15/272,343, 7 pages. |
Office Action, dated Jan. 8, 2019, received in European Patent Application No. 17206374.5, which corresponds with U.S. Appl. No. 15/272,343, 5 pages. |
Intention to Grant, dated May 13, 2019, received in European Patent Application No. 17206374.5, which corresponds with U.S. Appl. No. 15/272,343, 7 pages. |
Decision to Grant, dated Sep. 12, 2019, received in European Patent Application No. 17206374.5, which corresponds with U.S. Appl. No. 15/272,343, 3 pages. |
Patent, Oct. 9, 2019, received in European Patent Application No. 17206374.5, which corresponds with U.S. Appl. No. 15/272,343, 3 pages. |
Office Action, dated Oct. 15, 2018, received in U.S. Appl. No. 15/272,345. 31 pages. |
Final Office Action, dated Apr. 2, 2019, received in U.S. Appl. No. 15/272,345, 28 pages. |
Notice of Allowance, dated Apr. 22, 2020, received in U.S. Appl. No. 15/272,345, 12 pages. |
Notice of Acceptance, dated Mar. 2, 2018, received in Australian Patent Application No. 2016304832, which corresponds with U.S. Appl. No. 15/272,345, 3 pages. |
Certificate of Grant, dated Jun. 28, 2018, received in Australian Patent Application No. 2016304832, which corresponds with U.S. Appl. No. 15/272,345, 4 pages. |
Office Action, dated Oct. 22, 2019, received in Chinese Patent Application No. 201680022696.5, which corresponds with U.S. Appl. No. 15/272,345, 7 pages. |
Notice of Allowance, dated Jul. 6, 2020, received in Chinese Patent Application No. 201680022696.5, which corresponds with U.S. Appl. No. 15/272,345, 5 pages. |
Patent, dated Sep. 18, 2020, received in Chinese Patent Application No. 201680022696.5, which corresponds with U.S. Appl. No. 15/272,345, 6 pages. |
Office Action, dated Apr. 20, 2018, received in European Patent Application No. 16756862.5, which corresponds with U.S. Appl. No. 15/272,345, 15 pages. |
Office Action, dated Nov. 13, 2018, received in European Patent Application No. 16756862.5, which corresponds with U.S. Appl. No. 15/272,345, 5 pages. |
Decision to Grant, dated Jan. 31, 2019, received in European Patent Application No. 16756862.5, which corresponds with U.S. Appl. No. 15/272,345, 5 pages. |
Patent, dated Feb. 27, 2019, received in European Patent Application No. 16756862.5, which corresponds with U.S. Appl. No. 15/272,345, 3 pages. |
Patent, dated Feb. 7, 2020, received in Hong Kong Patent Application No. 18101477.0, which corresponds with U.S. Appl. No. 15/272,345, 6 pages. |
Office Action, dated Dec. 4, 2020, received in Japanese Patent Application No. 2019-212493, which corresponds with U.S. Appl. No. 15/272,345, 5 pages. |
Notice of Allowance, dated Aug. 27, 2021, received in Japanese Patent Application No. 2019-212493, which corresponds with U.S. Appl. No. 15/272,345, 2 pages. |
Patent, dated Sep. 29, 2021, received in Japanese Patent Application No. 2019-212493, which corresponds with U.S. Appl. No. 15/272,345, 4 pages. |
Office Action, dated Mar. 7, 2018, received in U.S. Appl. No. 15/482,618, 7 pages. |
Notice of Allowance, dated Aug. 15, 2018, received in U.S. Appl. No. 15/482,618, 7 pages. |
Office Action, dated Apr. 23, 2018, received in U.S. Appl. No. 15/499,691, 29 pages. |
Notice of Allowance, dated Oct. 12, 2018, received in U.S. Appl. No. 15/499,693, 8 pages. |
Office Action, dated May 11, 2020, received in Australian Patent Application No. 2019203776, which corresponds with U.S. Appl. No. 15/499,693, 4 pages. |
Notice of Acceptance, dated Jul. 22, 2020, received in Australian Patent Application No. 2019203776, which corresponds with U.S. Appl. No. 15/499,693, 3 pages. |
Certificate of Grant, dated Nov. 26, 2020, received in Australian Patent Application No. 2019203776, which corresponds with U.S. Appl. No. 15/499,693, 3 pages. |
Office action, dated Nov. 20, 2020, received in Japanese Patent Application No. 2019-200174, which corresponds with U.S. Appl. No. 15/499,693, 6 pages. |
Notice of Allowance, dated Jul. 16, 2021, received in Japanese Patent Application No. 2019-200174, which corresponds with U.S. Appl. No. 15/499,693, 2 pages. |
Patent, dated Aug. 18, 2021, received in Japanese Patent Application No. 2019-200174, which corresponds with U.S. Appl. No. 15/499,693, 3 pages. |
Office Action, dated Aug. 2, 2019, received in Korean Patent Application No. 2019-7009439, which corresponds with U.S. Appl. No. 15/499,693, 3 pages. |
Notice of Allowance, dated Dec. 27, 2019, received in Korean Patent Application No. 2019-7009439, which corresponds with U.S. Appl. No. 15/499,693, 5 pages. |
Patent, dated Mar. 27, 2020, received in Korean Patent Application No. 2019-7009439, which corresponds with U.S. Appl. No. 15/499,693, 4 pages. |
Office Action, dated Aug. 30, 2017, received in U.S. Appl. No. 15/655,749, 22 pages. |
Final Office Action, dated May 10, 2018, received in U.S. Appl. No. 15/655,749, 19 pages. |
Office Action, dated Jan. 24, 2019, received in U.S. Appl. No. 15/655,749, 25 pages. |
Final Office Action, dated Jul. 1, 2019, received in U.S. Appl. No. 15/655,749, 24 pages. |
Notice of Allowance, dated Feb. 20, 2020, received in U.S. Appl. No. 15/655,749, 10 pages. |
Office Action, dated Feb. 3, 2020, received in Chinese Patent Application No. 201710331254.5, which corresponds with U.S. Appl. No. 15/655,749, 8 pages. |
Office Action, dated Mar. 22, 2021, received in Chinese Patent Application No. 201710331254.5, which corresponds with U.S. Appl. No. 15/655,749, 4 pages. |
Notice of Allowance, dated May 27, 2021, received in Chinese Patent Application No. 201710331254.5, which corresponds with U.S. Appl. No. 15/655,749, 1 page. |
Patent, dated Jun. 25, 2021, received in Chinese Patent Application No. 201710331254.5, which corresponds with U.S. Appl. No. 15/655,749, 7 pages. |
Notice of Allowance, dated Apr. 18, 2019, received in Korean Patent Application No. 2017-7034248, which corresponds with U.S. Appl. No. 15/655,749, 5 pages. |
Patent, dated Jul. 3, 2019, received in Korean Patent Application No. 2017-7034248, which corresponds with U.S. Appl. No. 15/655,749, 5 pages. |
Office Action, dated Aug. 1, 2019, received in U.S. Appl. No. 15/785,372, 22 pages. |
Final Office Action, dated Feb. 5, 2020, received in U.S. Appl. No. 15/785,372, 26 pages. |
Office Action, dated Jul. 23, 2020, received in U.S. Appl. No. 15/785,372, 23 pages. |
Final Office Action, dated Nov. 18, 2020, received in U.S. Appl. No. 15/785,372, 27 pages. |
Notice of Allowance, dated Jul. 14, 2021, received in U.S. Appl. No. 15/785,372, 11 pages. |
Notice of Allowance, dated Oct. 22, 2021, received in U.S. Appl. No. 15/785,372, 11 pages. |
Office Action, dated Oct. 31, 2017, received in U.S. Appl. No. 15/723,069, 7 pages. |
Notice of Allowance, dated Dec. 21, 2017, received in U.S. Appl. No. 15/723,069, 7 pages. |
Office Action, dated Apr. 11, 2019, received in U.S. Appl. No. 15/889,115, 9 pages. |
Final Office Action, dated Oct. 28, 2019, received in U.S. Appl. No. 15/889,115, 12 pages. |
Notice of Allowance, dated May 19, 2020, received in U.S. Appl. No. 15/889,115, 9 pages. |
Office Action, dated Jul. 25, 2019, received in U.S. Appl. No. 15/979,347, 14 pages. |
Final Office Action, dated Feb. 27, 2020, received in U.S. Appl. No. 15/979,347, 19 pages. |
Office Action, dated Jul. 14, 2020, received in U.S. Appl. No. 15/979,347, 10 pages. |
Final Office Action, dated Jan. 25, 2021, received in U.S. Appl. No. 15/979,347, 12 pages. |
Office Action, dated Sep. 25, 2020, received in U.S. Appl. No. 15/994,843, 5 pages. |
Notice of Allowance, dated Jan. 22, 2021, received in U.S. Appl. No. 15/994,843, 8 pages. |
Office Action, dated Nov. 25, 2019, received in U.S. Appl. No. 16/049,725, 9 pages. |
Notice of Allowance, dated May 14, 2020, received in U.S. Appl. No. 16/049,725, 9 pages. |
Office Action, dated May 31, 2019, received in Australian Patent Application No. 2018253539, which corresponds with U.S. Appl. No. 16/049,725, 3 pages. |
Notice of Acceptance, dated Apr. 2, 2020, received in Australian Patent Application No. 2018253539, which corresponds with U.S. Appl. No. 16/049,725, 3 pages. |
Certificate of Grant, dated Aug. 13, 2020, received in Australian Patent Application No. 2018253539, which corresponds with U.S. Appl. No. 16/049,725, 3 pages. |
Notice of Allowance, dated Oct. 10, 2019, received in U.S. Appl. No. 16/102,409, 9 pages. |
Office Action, dated Nov. 29, 2019, received in U.S. Appl. No. 16/136,163, 9 pages. |
Final Office Action, dated Jun. 9, 2020, received in U.S. Appl. No. 16/136,163, 10 pages. |
Office Action, dated Sep. 17, 2020, received in U.S. Appl. No. 16/136,163, 13 pages. |
Final Office Action, dated May 20, 2021, received in U.S. Appl. No. 16/136,163, 13 pages. |
Office Action, dated Nov. 23, 2021, received in U.S. Appl. No. 16/136,163, 27 pages. |
Office Action, dated Mar. 9, 2020, received in U.S. Appl. No. 16/145,954, 15 pages. |
Office Action, dated Dec. 10, 2020, received in U.S. Appl. No. 16/145,954, 5 pages. |
Office Action, dated Mar. 6, 2020, received in U.S. Appl. No. 16/154,591, 16 pages. |
Final Office Action, dated Oct. 1, 2020, received in U.S. Appl. No. 16/154,591, 19 pages. |
Office Action, dated Mar. 4, 2021, received in U.S. Appl. No. 16/154,591, 20 pages. |
Office Action, dated May 4, 2020, received in Australian Patent Application No. 2019203175, which corresponds with U.S. Appl. No. 16/154,591, 4 pages. |
Office Action, dated Oct. 13, 2020, received in Australian Patent Application No. 2019203175, which corresponds with U.S. Appl. No. 16/154,591, 5 pages. |
Office Action, dated Dec. 2, 2019, received in Japanese Patent Application No. 2018-202048, which corresponds with U.S. Appl. No. 16/154,591, 6 pages. |
Notice of Allowance, dated Jun. 1, 2020, received in Japanese Patent Application No. 2018-202048, which corresponds with U.S. Appl. No. 16/154,591, 3 pages. |
Patent, dated Jun. 25, 2020, received in Japanese Patent Application No. 2018-202048, which corresponds with U.S. Appl. No. 16/154,591, 4 pages. |
Office Action, dated Aug. 20, 2019, received in Korean Patent Application No. 2019-7019946, which corresponds with U.S. Appl. No. 16/154,591, 6 pages. |
Office Action, dated Feb. 27, 2020, received in Korean Patent Application No. 2019-7019946, which corresponds with U.S. Appl. No. 16/154,591, 5 pages. |
Office Action, dated Mar. 29, 2021, received in Korean Patent Application No. 2019-7019946, which corresponds with U.S. Appl. No. 16/154,591, 6 pages. |
Notice of Allowance, dated Aug. 26, 2021, received in Korean Patent Application No. 2019-7019946, which corresponds with U.S. Appl. No. 16/154,591, 2 pages. |
Patent, dated Sep. 7, 2021, received in Korean Patent Application No. 2019-7019946, which corresponds with U.S. Appl. No. 16/154,591, 4 pages. |
Office Action, dated Nov. 25, 2019, received in U.S. Appl. No. 16/174,170, 31 pages. |
Final Office Action, dated Mar. 19, 2020, received in U.S. Appl. No. 16/174,170, 25 pages. |
Notice of Allowance, dated Jun. 18, 2020, received in U.S. Appl. No. 16/174,170, 19 pages. |
Notice of Allowance, dated Aug. 26, 2020, received in U.S. Appl. No. 16/240,669, 18 pages. |
Office Action, dated Oct. 30, 2020, received in U.S. Appl. No. 16/230,707, 20 pages. |
Notice of Allowance, dated Feb. 18, 2021, received in U.S. Appl. No. 16/230,707, 9 pages. |
Office Action, dated Aug. 10, 2020, received in U.S. Appl. No. 16/240,672, 13 pages. |
Final Office Action, dated Nov. 27, 2020, received in U.S. Appl. No. 16/240,672, 12 pages. |
Office Action, dated May 17, 2021, received in U.S. Appl. No. 16/240,672, 14 pages. |
Notice of Allowance, dated Sep. 2, 2021, received in U.S. Appl. No. 16/240,672, 13 pages. |
Office Action, dated Sep. 24, 2020, received in Australian Patent Application No. 2019268116, which corresponds with U.S. Appl. No. 16/240,672, 4 pages. |
Office Action, dated Jan. 28, 2021, received in Australian Patent Application No. 2019268116, which corresponds with U.S. Appl. No. 16/240,672, 4 pages. |
Notice of Allowance, dated Sep. 20, 2021, received in Australian Patent Application No. 2019268116, which corresponds with U.S. Appl. No. 16/240,672, 3 pages. |
Office Action, dated Apr. 21, 2021, received in European Patent Application No. 19195414.8, which corresponds with U.S. Appl. No. 16/240,672, 7 pages. |
Notice of Allowance, dated May 22, 2020, received in Japanese Patent Application No. 2019-027634, which corresponds with U.S. Appl. No. 16/240,672, 5 pages. |
Patent, dated Jun. 23, 2020, received in Japanese Patent Application No. 2019-027634, which corresponds with U.S. Appl. No. 16/240,672, 4 pages. |
Office Action, dated May 22, 2019, received in U.S. Appl. No. 16/230,743, 7 pages. |
Notice of Allowance, dated Sep. 11, 2019, received in U.S. Appl. No. 16/230,743, 5 pages. |
Office Action, dated Mar. 6, 2020, received in U.S. Appl. No. 16/243,834, 19 pages. |
Notice of Allowance, dated Sep. 24, 2020, received in U.S. Appl. No. 16/243,834, 10 pages. |
Office Action, dated Dec. 18, 2019, received in Australian Patent Application No. 2018282409, which corresponds with U.S. Appl. No. 16/243,834, 3 pages. |
Office Action, dated Sep. 18, 2020, received in Australian Patent Application No. 2018282409, which corresponds with U.S. Appl. No. 16/243,834, 3 pages. |
Notice of Acceptance, dated Oct. 21, 2020, received in Australian Patent Application No. 2018282409, which corresponds with U.S. Appl. No. 16/243,834, 3 pages. |
Certificate of Grant, dated Feb. 18, 2021, received in Australian Patent Application No. 2018282409, which corresponds with U.S. Appl. No. 16/243,834, 3 pages. |
Office Action, dated Aug. 7, 2020, received in Japanese Patent Application No. 2019-058800, which corresponds with U.S. Appl. No. 16/243,834, 8 pages. |
Office Action, dated Feb. 12, 2021, received in Japanese Patent Application No. 2019-058800, which corresponds with U.S. Appl. No. 16/243,834, 2 pages. |
Office Action, dated Jul. 5, 2019, received in Korean Patent Application No. 2018-7037896, which corresponds with U.S. Appl. No. 16/243,834, 2 pages. |
Notice of Allowance, dated Dec. 23, 2019, received in Korean Patent Application No. 2018-7037896, which corresponds with U.S. Appl. No. 16/243,834, 6 pages. |
Patent, dated Mar. 13, 2020, received in Korean Patent Application No. 2018-7037896, which corresponds with U.S. Appl. No. 16/243,834, 7 pages. |
Office Action, dated Nov. 30, 2021, received in Russian Patent Application No. 2018146112, which corresponds with U.S. Appl. No. 16/243,834, 15 pages. |
Notice of Allowance, dated Apr. 14, 2022, received in Russian Patent Application No. 2018146112, which corresponds with U.S. Appl. No. 16/243,834, 2 pages. |
Notice of Allowance, dated Nov. 20, 2020, received in U.S. Appl. No. 16/262,784, 8 pages. |
Office action, dated Feb. 25, 2021, received in Australian Patent Application No. 2020201648, which corresponds with U.S. Appl. No. 16/262,784, 3 pages. |
Notice of Allowance, dated Dec. 14, 2021, received in Australian Patent Application No. 2020201648, which corresponds with U.S. Appl. No. 16/262,784, 3 pages. |
Office Action, dated Feb. 5, 2021, received in U.S. Appl. No. 16/262,800, 53 pages. |
Final Office Action, dated Jun. 4, 2021, received in U.S. Appl. No. 16/262,800, 65 pages. |
Office Action, dated Sep. 15, 2020, received in European Patent Application No. 19194439.6, which corresponds with U.S. Appl. No. 16/262,800, 6 pages. |
Office Action, dated Mar. 25, 2021, received in European Patent Application No. 19194439.6, which corresponds with U.S. Appl. No. 16/262,800, 5 pages. |
Notice of Allowance, dated Apr. 19, 2019, received in U.S. Appl. No. 16/252,478, 11 pages. |
Office Action, dated Jun. 11, 2020, received in Australian Patent Application No. 2019257437, which corresponds with U.S. Appl. No. 16/252,478, 3 pages. |
Notice of Allowance, dated Sep. 15, 2020, received in Australian Patent Application No. 2019257437, which corresponds with U.S. Appl. No. 16/252,478, 3 pages. |
Notice of Allowance, dated Dec. 13, 2019, received in Korean Patent Application No. 2019-7033444, which corresponds with U.S. Appl. No. 16/252,478, 6 pages. |
Patent, dated Mar. 12, 2020, received in Korean Patent Application No. 2019-7033444, which corresponds with U.S. Appl. No. 16/252,478, 6 pages. |
Office action, dated Aug. 27, 2020, received in U.S. Appl. No. 16/241,883, 11 pages. |
Notice of Allowance, dated Sep. 28, 2020, received in U.S. Appl. No. 16/241,883, 10 pages. |
Office Action, dated Aug. 10, 2021, received in European Patent Application No. 19181042.3, which corresponds with U.S. Appl. No. 16/241,883, 7 pages. |
Office Action, dated Oct. 1, 2021, received in Japanese Patent Applicat No. 2020-174097, which corresponds with U.S. Appl. No. 16/241,883, 2 pages. |
Office Action, dated Jul. 15, 2019, received in U.S. Appl. No. 16/258,394, 8 pages. |
Notice of Allowance, dated Nov. 6, 2019, received in U.S. Appl. No. 16/258,394, 8 pages. |
Office Action, dated Oct. 21, 2021, received in Australian Patent Application No. 2020267298, which corresponds with U.S. Appl. No. 16/258,394, 2 pages. |
Office Action, dated May 14, 2020, received in U.S. Appl. No. 16/354,035, 16 pages. |
Notice of Allowance, dated Aug. 25, 2020, received in U.S. Appl. No. 16/354,035, 14 pages. |
Office Action, dated Jun. 9, 2021, received in U.S. Appl. No. 16/896,141, 21 pages. |
Final Office Action, dated Dec. 13, 2021, received in U.S. Appl. No. 16/896,141, 29 pages. |
Office Action, dated Oct. 11, 2019, received in Australian Patent Application No. 2019202417, which corresponds with U.S. Appl. No. 16/896,141, 4 pages. |
Notice of Allowance, dated Jul. 6, 2020, received in Australian Patent Application No. 2019202417, which corresponds with U.S. Appl. No. 16/896,141, 3 pages. |
Certificate of Grant, dated Nov. 5, 2020, received in Australian Patent Application No. 2019202417, which corresponds with U.S. Appl. No. 16/896,141, 4 pages. |
Office Action, dated Aug. 21, 2020, received in Japanese Patent Application No. 2019-047319, which corresponds with U.S. Appl. No. 16/896,141, 6 pages. |
Office Action, dated Apr. 9, 2021, received in Japanese Patent Application No. 2019-047319, which corresponds with U.S. Appl. No. 16/896,141, 2 pages. |
Office Action, dated Aug. 30, 2019, received in Korean Patent Application No. 2019-7019100, 2 pages. |
Notice of Allowance, dated Nov. 1, 2019, received in Korean Patent Application No. 2019-7019100, 5 pages. |
Patent, dated Jan. 31, 2020, received in Korean Patent Application No. 2019-7019100, 5 pages. |
Office Action, dated May 14, 2020, received in U.S. Appl. No. 16/509,438, 16 pages. |
Notice of Allowance, dated Jan. 6, 2021, received in U.S. Appl. No. 16/509,438, 5 pages. |
Notice of Allowance, dated Apr. 29, 2021, received in U.S. Appl. No. 16/509,438, 9 pages. |
Office Action, dated Sep. 6, 2021, received in Chinese Patent Application No. 201910718931.8, 6 pages. |
Notice of Allowance, dated May 20, 2020, received in U.S. Appl. No. 16/534,214, 16 pages. |
Office Action, dated Oct. 7, 2020, received in U.S. Appl. No. 16/563,505, 20 pages. |
Final Office Action, dated May 12, 2021, received in U.S. Appl. No. 16/563,505, 19 pages. |
Office Action, dated Oct. 5, 2021, received in U.S. Appl. No. 16/563,505, 19 pages. |
Office Action, dated Oct. 19, 2020, received in U.S. Appl. No. 16/685,773, 15 pages. |
Final Office Action, dated Feb. 2, 2021, received in U.S. Appl. No. 16/685,773, 20 pages. |
Office Action, dated Dec. 14, 2021, received in U.S. Appl. No. 16/685,773, 20 pages. |
Office Action, dated Oct. 30, 2020, received in U.S. Appl. No. 16/824,490, 15 pages. |
Notice of Allowance, dated Feb. 24, 2021, received in U.S. Appl. No. 16/824,490, 8 pages. |
Office Action, dated Sep. 21, 2020, received in U.S. Appl. No. 16/803,904, 5 pages. |
Notice of Allowance, dated Jan. 6, 2021, received in U.S. Appl. No. 16/803,904, 9 pages. |
Notice of Allowance, dated Oct. 25, 2021, received in U.S. Appl. No. 17/003,869, 21 pages. |
Office Action, dated Aug. 30, 2021, received in Australian Patent Application No. 2020244406, which corresponds with U.S. Appl. No. 17/003,869, 4 pages. |
Notice of Allowance, dated May 4, 2020, received in Korean Patent Application No. 2019-7033444, which corresponds with U.S. Appl. No. 17/003,869, 5 pages. |
Patent, dated Jun. 3, 2020, received in Korean Patent Application No. 2019-7033444, which corresponds with U.S. Appl. No. 17/003,869, 7 pages. |
Notice of Allowance, dated Dec. 21, 2021, received in U.S. Appl. No. 16/921,083, 25 pages. |
Office Action, dated Sep. 8, 2021, received in Japanese Patent Application No. 2020-106360, 2 pages. |
Office Action, dated May 26, 2021, received in U.S. Appl. No. 16/988,509, 25 pages. |
Final Office Action, dated Sep. 16, 2021, received in U.S. Appl. No. 16/988,509, 38 pages. |
Office Action, dated Feb. 23, 2021, received in Korean Patent Application No. 2020-7031330, which corresponds with U.S. Appl. No. 15/272,398, 3 pages. |
Office Action, dated Aug. 27, 2021, received in Korean Patent Application No. 2020-7031330, which corresponds with U.S. Appl. No. 15/272,398, 6 pages. |
Office Action, dated Dec. 23, 2021, received in Korean Patent Application No. 2020-7031330, which corresponds with U.S. Appl. No. 15/272,398, 8 pages. |
Office Action, dated Oct. 26, 2021, received in U.S. Appl. No. 17/103,899 21 pages. |
Office Action, dated Nov. 11, 2021, received in Australian Patent Application No. 2021200655, which corresponds with U.S. Appl. No. 17/103,899, 4 pages. |
Office Action, dated Oct. 29, 2021, received in Korean Patent Application No. 2021-7031223, 2 pages. |
International Search Report and Written Opinion dated May 26, 2014, received in International Application No. PCT/US2013/040053, which corresponds to U.S. Appl. No. 14/535,671, 32 pages. |
International Preliminary Report on Patentability dated Nov. 20, 2014, received in International Application No. PCT/US2013/040053, which corresponds to U.S. Appl. No. 14/535,671, 26 pages. |
International Search Report and Written Opinion dated Apr. 7, 2014, received in International Application No. PCT/US2013/069472, which corresponds to U.S. Appl. No. 14/608,895, 24 pages. |
International Preliminary Report on Patentability, dated Jun. 30, 2015, received in International Patent Application No. PCT/US2013/069472, which corresponds with U.S. Appl. No. 14/608,895, 18 pages. |
International Search Report and Written Opinion dated Aug. 7, 2013, received in International Application No. PCT/US2013/040054, which corresponds to U.S. Appl. No. 14/536,235, 12 pages. |
International Preliminary Report on Patentability dated Nov. 20, 2014, received in International Application No. PCT/US2013/040054, which corresponds to U.S. Appl. No. 14/536,235, 11 pages. |
International Search Report and Written Opinion dated Aug. 7, 2013, received in International Application No. PCT/US2013/040056, which corresponds to U.S. Appl. No. 14/536,367, 12 pages. |
International Preliminary Report on Patentability dated Nov. 20, 2014, received in International Application No. PCT/US2013/040056, which corresponds to U.S. Appl. No. 14/536,367, 11 pages. |
Extended European Search Report, dated Nov. 6, 2015, received in European Patent Application No. 15183980.0, which corresponds with U.S. Appl. No. 14/536,426, 7 pages. |
Extended European Search Report, dated Jul. 30, 2018, received in European Patent Application No. 14/536,426, which corresponds with U.S. Appl. No. 14/536,426, 7 pages. |
International Search Report and Written Opinion dated Aug. 6, 2013, received in International Application No. PCT/US2013/040058, which corresponds to U.S. Appl. No. 14/536,426, 12 pages. |
International Preliminary Report on Patentability dated Nov. 20, 2014, received in International Application No. PCT/US2013/040058, which corresponds to U.S. Appl. No. 14/536,426, 11 pages. |
International Search Report and Written Opinion dated Feb. 5, 2014, received in International Application No. PCT/US2013/040061, which corresponds to U.S. Appl. No. 14/536,464, 30 pages. |
International Preliminary Report on Patentability dated Nov. 20, 2014, received in International Application No. PCT/US2013/040061, which corresponds to U.S. Appl. No. 14/536,464, 26 pages. |
International Search Report and Written Opinion dated May 8, 2014, received in International Application No. PCT/US2013/040067, which corresponds to U.S. Appl. No. 14/536,644, 45 pages. |
International Preliminary Report on Patentability dated Nov. 20, 2014, received in International Application No. PCT/US2013/040067, which corresponds to U.S. Appl. No. 14/536,644, 36 pages. |
International Search Report and Written Opinion dated Mar. 12, 2014, received in International Application No. PCT/US2013/069479, which corresponds with U.S. Appl. No. 14/608,926, 14 pages. |
International Preliminary Report on Patentability, dated Jun. 30, 2015, received in International Patent Application No. PCT/US2013/069479, which corresponds with U.S. Appl. No. 14/608,926, 11 pages. |
International Search Report and Written Opinion dated Aug. 7, 2013, received in International Application No. PCT/US2013/040070, which corresponds to U.S. Appl. No. 14/535,646, 12 pages. |
International Preliminary Report on Patentability dated Nov. 20, 2014, received in International Application No. PCT/US2013/040070, which corresponds to U.S. Appl. No. 14/535,646, 10 pages. |
International Search Report and Written Opinion dated Apr. 7, 2014, received in International Application No. PCT/US2013/040072, which corresponds to U.S. Appl. No. 14/536,141, 38 pages. |
International Preliminary Report on Patentability dated Nov. 20, 2014, received in International Application No. PCT/US2013/040072, which corresponds to U.S. Appl. No. 14/536,141, 32 pages. |
Extended European Search Report, dated Dec. 5, 2018, received in European Patent Application No. 18194127.9, which corresponds with U.S. Appl. No. 14/608,942, 8 pages. |
International Search Report and Written Opinion dated Apr. 7, 2014, received in International Application No. PCT/US2013/069483, which corresponds with U.S. Appl. No. 14/608,942, 18 pages. |
International Preliminary Report on Patentability, dated Jun. 30, 2015, received in International Application No. PCT/2013/069483, which corresponds to U.S. Appl. No. 14/608,942, 13 pages. |
International Search Report and Written Opinion dated Mar. 3, 2014, received in International Application No. PCT/US2013/040087, which corresponds to U.S. Appl. No. 14/536,166, 35 pages. |
International Preliminary Report on Patentability dated Nov. 20, 2014, received in International Application No. PCT/2013/040087, which corresponds to U.S. Appl. No. 14/536,166, 29 pages. |
International Search Report and Written Opinion dated Aug. 7, 2013, received in International Application No. PCT/US2013/040093, which corresponds to U.S. Appl. No. 14/536,203, 11 pages. |
International Preliminary Report on Patentability dated Nov. 20, 2014, received in International Application No. PCT/2013040093, which corresponds to U.S. Pat. No. 14,536,203, 9 pages. |
International Search Report and Written Opinion dated Jul. 9, 2014, received in International Application No. PCT/US2013/069484, which corresponds with U.S. Appl. No. 14/608,965, 17 pages. |
International Preliminary Report on Patentability, dated Jun. 30, 2015, received in International Patent Application No. PCT/US2013/069484, which corresponds with U.S. Appl. No. 14/608,965, 12 pages. |
International Search Report and Written Opinion dated Feb. 5, 2014, received in International Application No. PCT/US2013/040098, which corresponds to U.S. Appl. No. 14/536,247, 35 pages. |
International Preliminary Report on Patentability dated Nov. 20, 2014, received in International Application No. PCT/2013/040098, which corresponds to U.S. Appl. No. 14/536,247, 27 pages. |
Extended European Search Report, dated Oct. 7, 2016, received in European Patent Application No. 16177863.4, which corresponds with U.S. Appl. No. 14/536,267, 12 pages. |
Extended European Search Report, dated Oct. 30, 2018, received in European Patent Application No. 18183789.9, which corresponds with U.S. Appl. No. 14/536,267, 11 pages. |
International Search Report and Written Opinion dated Jan. 27, 2014, received in International Application No. PCT/US2013/040101, which corresponds to U.S. Appl. No. 14/536,267, 30 pages. |
International Preliminary Report on Patentability dated Nov. 20, 2014, received in International Application No. PCT/2013/040101, which corresponds to U.S. Appl. No. 14/536,267, 24 pages. |
Extended European Search Report, dated Nov. 24, 2017, received in European Patent Application No. 17186744.3, which corresponds with U.S. Appl. No. 14/536,291, 10 pages. |
International Search Report and Written Opinion dated Jan. 8, 2014, received in International Application No. PCT/US2013/040108, which corresponds to U.S. Appl. No. 14/536,291, 30 pages. |
International Preliminary Report on Patentability dated Nov. 20, 2014, received in International Application No. PCT/2013/040108, which corresponds to U.S. Appl. No. 14/536,291, 25 pages. |
International Search Report and Written Opinion dated Jun. 2, 2014, received in International Application No. PCT/US2013/069486, which corresponds with U.S. Appl. No. 14/608,985, 7 pages. |
International Preliminary Report on Patentability, dated Jun. 30, 2015, received in International Patent Application No. PCT/US2013/069486, which corresponds with U.S. Appl. No. 14/608,985, 19 pages. |
International Search Report and Written Opinion dated Mar. 6, 2014, received in International Application No. PCT/US2013/069489, which corresponds with U.S. Appl. No. 14/609,006, 12 pages. |
International Preliminary Report on Patentability, dated Jun. 30, 2015, received in International Patent Application No. PCT/US2013/069489, which corresponds with U.S. Appl. No. 14/609,006, 10 pages. |
Extended European Search Report, dated Mar. 15, 2017, received in European Patent Application No. 17153418.3, which corresponds with U.S. Appl. No. 14/536,648, 7 pages. |
Search Report, dated Apr. 13, 2017, received in Dutch Patent Application No. 2016452, which corresponds with U.S. Appl. No. 14/864,737, 22 pages. |
Search Report, dated Jun. 22, 2017, received in Dutch Patent Application No. 2016375, which corresponds with U.S. Appl. No. 14/866,981, 17 pages. |
International Search Report and Written Opinion, dated Oct. 14, 2016, received in International Patent Application No. PCT/US2016/020697, which corresponds with U.S. Appl. No. 14/866,981, 21 pages. |
Search Report, dated Jun. 19, 2017, received in Dutch Patent Application No. 2016377, which corresponds with U.S. Appl. No. 14/866,159, 13 pages. |
International Search Report and Written Opinion, dated Apr. 25, 2016, received in International Patent Application No. PCT/US2016/018758, which corresponds with U.S. Appl. No. 14/866,159, 15 pages. |
Extended European Search Report, dated Oct. 17, 2017, received in European Patent Application No. 17184437.6, Which corresponds with U.S. Appl. No. 14/868,078, 8 pages. |
Search Report, dated Apr. 13, 2017, received in Dutch Patent Application No. 2016376, which corresponds with U.S. Appl. No. 14/868,078, 15 pages. |
International Search Report and Written Opinion, dated Jul. 21, 2016, received in International Patent Application No. PCT/US2016/019913, which corresponds with U.S. Appl. No. 14/868,078, 16 pages. |
Search Report, dated Apr. 18, 2017, received in Dutch Patent Application No. 2016801, which corresponds with U.S. Appl. No. 14/863,432, 34 pages. |
International Search Report and Written Opinion, dated Oct. 31, 2016, received in International Patent Application No. PCT/US2016/033578, which corresponds with U.S. Appl. No. 14/863,432, 36 pages. |
International Search Report and Written Opinion, dated Nov. 14, 2016, received in International Patent Application No. PCT/US2016/033541, which corresponds with U.S. Appl. No. 14/866,511, 29 pages. |
Extended European Search Report, dated Aug. 17, 2018, received in European Patent Application No. 18175195.9, which corresponds with U.S. Appl. No. 14/869,899, 13 pages. |
International Search Report and Written Opinion, dated Aug. 29, 2016, received in International Patent Application No. PCT/US2016/021400, which corresponds with U.S. Appl. No. 14/869,899, 48 pages. |
International Preliminary Report on Patentability, dated Sep. 12, 2017, received in International Patent Application No. PCT/US2016/021400, which corresponds with U.S. Appl. No. 14/869,899, 39 pages. |
International Search Report and Written Opinion, dated Jan. 12, 2017, received in International Patent No. PCT/US2016/046419, which corresponds with U.S. Appl. No. 14/866,992, 23 pages. |
International Search Report and Written Opinion, dated Dec. 15, 2016, received in International Patent Application No. PCT/US2016/046403, which corresponds with U.S. Appl. No. 15/009,661, 17 pages. |
International Search Report and Written Opinion, dated Feb. 27, 2017, received in International Patent Application No. PCT/US2016/046407, which corresponds with U.S. Appl. No. 15/009,688, 30 pages. |
International Preliminary Report on Patentability, dated Feb. 13, 2018, received in International Patent Application No. PCT/US2016/046407, which corresponds with U.S. Appl. No. 15/009,688, 20 pages. |
Search Report, dated Feb. 15, 2018, received in Dutch Patent Application No. 2019215, which corresponds with U.S. Appl. No. 14/864,529, 13 pages. |
Extended European Search Report, dated Nov. 14, 2019, received in European Patent Application No. 19194418.0, which corresponds with U.S. Appl. No. 14/864,580, 8 pages. |
Search Report, dated Feb. 15, 2018, received in Dutch Patent Application No. 2019214, which corresponds with U.S. Appl. No. 14/864,601, 12 pages. |
Extended European Search Report, dated Oct. 10, 2017, received in European Patent Application No. 17188507.2, which corresponds with U.S. Appl. No. 14/866,361, 9 pages. |
Extended European Search Report, dated Jun. 22, 2017, received in European Patent Application No. 16189421.7, which corresponds with U.S. Appl. No. 14/866,987, 7 pages. |
Extended European Search Report, dated Sep. 11, 2017, received in European Patent Application No. 17163309.2, which corresponds with U.S. Appl. No. 14/866,987, 8 pages. |
Extended European Search Report, dated Jun. 8, 2017, received in European Patent Application No. 16189425.8, which corresponds with U.S. Appl. No. 14/866,989, 8 pages. |
Extended European Search Report, dated Aug. 2, 2018, received in European Patent Application No. 18168941.5, which corresponds with U.S. Appl. No. 14/871,236, 11 pages. |
Extended European Search Report, dated Jul. 25, 2017, received in European Patent Application No. 17171972.7, which corresponds with U.S. Appl. No. 14/870,882, 12 pages. |
Extended European Search Report, dated Jul. 25, 2017, received in European Patent Application No. 17172266.3, which corresponds with U.S. Appl. No. 14/871,336, 9 pages. |
Extended European Search Report, dated Dec. 21, 2016, received in European Patent Application No. 16189790.5, which corresponds with U.S. Appl. No. 14/871,462, 8 pages. |
Extended European Search Report, dated Mar. 8, 2019, received in European Patent Application No. 18205283.7, which corresponds with U.S. Appl. No. 15/081,771, 15 pages. |
Extended European Search Report, dated Aug. 24, 2018, received in European Patent Application No. 18171453.6, which corresponds with U.S. Appl. No. 15/136,782, 9 pages. |
International Search Report and Written Opinion, dated Jan. 3, 2017, received in International Patent Application No. PCT/US2016/046214, which corresponds with U.S. Appl. No. 15/231,745, 25 pages. |
Extended European Search Report, dated May 30, 2018, received in European Patent Application No. 18155939.4, which corresponds with U.S. Appl. No. 15/272,327, 8 pages. |
Extended European Search Report, dated Mar. 2, 2018, received in European Patent Application No. 17206374.5, which corresponds with U.S. Appl. No. 15/272,343, 11 pages. |
Extended European Search Report, dated Oct. 6, 2020, received in European Patent Application No. 20188553.0, which corresponds with U.S. Appl. No. 15/499,693, 11 pages. |
Extended European Search Report, dated Oct. 28, 2019, received in European Patent Application No. 19195414.8, which corresponds with U.S. Appl. No. 16/240,672, 6 pages. |
Extended European Search Report, dated Nov. 13, 2019, received in European Patent Application No. 19194439.6, which corresponds with U.S. Appl. No. 16/262,800, 12 pages. |
Extended European Search Report, dated Oct. 9, 2019, received in European Patent Application No. 19181042.3, which corresponds with U.S. Appl. No. 15/272,343, 10 pages. |
Anonymous, RX-V3800AV Receiver Owner's Manual, Yamaha Music Manuals, www.Manualslib.com, Dec. 31, 2007, 169 pages. |
Office Action, dated Jan. 10, 2022, received in Chinese Patent Application No. 201810369259.1, which corresponds with U.S. Appl. No. 14/608,926, 4 pages. |
Patent, dated Dec. 13, 2021, received in Japanese Patent Application No. 2018-022394, which corresponds with U.S. Appl. No. 14/536,203, 3 pages. |
Notice of Allowance, dated Mar. 21, 2022, received in Chinese Patent Application No. 201810332044.2, which corresponds with U.S. Appl. No. 14/536,267, 1 page. |
Intent to Grant, dated Mar. 16, 2022, received in European Patent Application No. 18183789.9, which corresponds with U.S. Appl. No. 16/262,800, 7 pages. |
Notice of Allowance, dated Feb. 4, 2022, received in Japanese Patent Application No. 2020-185336, which corresponds with U.S. Appl. No. 14/864,580, 2 pages. |
Patent, dated Mar. 3, 2022, received in Japanese Patent Application No. 2020-185336, which corresponds with U.S. Appl. No. 14/864,580, 3 pages. |
Notice of Allowance, dated Feb. 9, 2022, received in Chinese Patent Application No. 201610869950.7, which corresponds with U.S. Appl. No. 14/871,462, 1 page. |
Patent, dated Mar. 8, 2022, received in Chinese Patent Application No. 201610869950.7, which corresponds with U.S. Appl. No. 14/871,462, 7 pages. |
Patent, dated Jan. 27, 2022, received in Australian Patent Application No. 2019268116, which corresponds with U.S. Appl. No. 16/240,672, 3 pages. |
Office Action, dated Apr. 11, 2022, received in Japanese Patent Application No. 2019-058800, which corresponds with U.S. Appl. No. 16/243,834, 4 pages. |
Notice of Allowance, dated Jan. 24, 2022, received in U.S. Appl. No. 16/262,800, 26 pages. |
Notice of Allowance, dated Jan. 14, 2022, received in Australian Patent Application No. 2020267298, which corresponds with U.S. Appl. No. 16/258,394, 3 pages. |
Final Office Action, dated Mar. 4, 2022, received in Japanese Patent Application No. 2019-047319, which corresponds with U.S. Appl. No. 16/896,141, 2 pages. |
Office Action, dated Mar. 17, 2022, received in Chinese Patent Application No. 201910718931.8, 1 page. |
Notice of Allowance, dated Jan. 14, 2022, received in Australian Patent Application No. 2020244406, which corresponds with U.S. Appl. No. 17/003,869, 3 pages. |
Office Action, dated Mar. 16, 2022, received in U.S. Appl. No. 17/138,676, 22 pages. |
Patent, dated Jan. 27, 2022, received in Korean Patent Application No. 2021-7031223, 5 pages. |
Notice of Allowance, dated Feb. 21, 2022, received in Korean Patent Application No. 2022-7003345, 2 gages. |
International Search Report and Written Opinion, dated Jan. 11, 2022, received in International Application No. PCT/US2021/042402, which corresponds with U.S. Appl. No. 17/031,637, 50 pages. |
Bognot, “Microsoft Windows 7 Aero Shake, Snap, and Peek”, https://www.outube.com/watch?v=vgD7wGrsQg4, Apr. 3, 2012, 4 pages. |
Microsoft, “Windows 7 Aero Shake, Snap, and Peek”, hr.msu.edu.techtipshrsds/window 7 snappeekandshake.pdf, Apr. 4, 2012, 6 pages. |
Intent to Grant, dated May 11, 2022, received in European Patent Application No. 13795392.3, which corresponds with U.S. Appl. No. 14/608,926, 7 pages. |
Decision to Grant, dated Jun. 17, 2022, received in European Patent Application No. 13795392.3, which corresponds with U.S. Appl. No. 14/608,926, 7 pages. |
Patent, dated Jul. 13, 2022, received in European Patent Application No. 13795392.3, which corresponds with U.S. Appl. No. 14/608,926, 4 pages. |
Patent, dated May 27, 2022, received in Chinese Patent Application No. 201810332044.2, which corresponds with U.S. Appl. No. 14/536,267, 6 pages. |
Decision to Grant, dated Jul. 21, 2022, received in European Patent Application No. 18183789.9, which corresponds with U.S. Appl. No. 16/262,800, 3 pages. |
Patent, dated Aug. 17, 2022, received in European Patent Application No. 18183789.9, which corresponds with U.S. Appl. No. 16/262,800, 4 pages. |
Decision on Appeal, dated Jun. 9, 2022, received in U.S. Appl. No. 14/609,006, 11 pages. |
Office Action, dated Jul. 29, 2022, received in Indian Patent Application No. 202118007136, which corresponds with U.S. Appl. No. 14/866,511, 9 pages. |
Office Action, dated Aug. 23, 2022, received in European Patent Application No. 19194418.0, which corresponds with U.S. Appl. No. 14/864,580, 6 pages. |
Intent to Grant, dated Jan. 9, 2023, received in European Patent Application No. 16711725.8, which corresponds with U.S. Appl. No. 14/867,990, 7 pages. |
Intention to Grant, dated Sep. 26, 2022, received in European Patent Application No. 16753795.0, which corresponds with U.S. Appl. No. 15/009,668, 7 pages. |
Decision to Grant, dated Nov. 24, 2022, received in European Patent Application No. 16753795.0, which corresponds with U.S. Appl. No. 15/009,668, 4 pages. |
Patent, dated Dec. 21, 2023, received in European Patent Application No. 16753795.0, which corresponds with U.S. Appl. No. 15/009,668, 4 pages. |
Notice of Allowance, dated Oct. 14, 2022, received in Japanese Patent Application No. 2021-157204, which corresponds with U.S. Appl. No. 15/272,327, 2 pages. |
Office Action, dated Jun. 7, 2022, received in European Patent Application No. 20188553.0, which corresponds with U.S. Appl. No. 15/499,693, 7 pages. |
Notice of Allowance, dated Jan. 20, 2023, reveived in Japanese Patent Application No. 2019-058800, which corresponds with U.S. Appl. No. 16/243,834, 2 pages. |
Office Action, dated Jul. 25, 2022, received in Japanese Patent Application No. 2021-099049, which corresponds with U.S. Appl. No. 16/243,834, 2 pages. |
Office Action, dated Jul. 18, 2022, received in Mexican Patent Application No. MX/a/2020/011482, which corresponds with U.S. Appl. No. 16/243,834, 4 pages. |
Office Action, dated Jan. 5, 2023, received in Mexican Patent Application No. MX/a/2020/011482, which corresponds with U.S. Appl. No. 16/243,834, 5 pages. |
Certificate of Grant, dated Apr. 21, 2022, received in Australian Patent Application No. 2020201648, which corresponds with U.S. Appl. No. 16/262,784, 3 pages. |
Patent, dated Jun. 14, 2022, received in Japanese Patent Application No. 2020-174097, which corresponds with U.S. Appl. No. 16/241,883, 3 pages. |
Patent, dated May 19, 2022, received in Australian Patent Application No. 2020267298, which corresponds with U.S. Appl. No. 16/258,394, 4 pages. |
Office Action, dated Oct. 3, 2022, received in Japanese Patent Application No. 2021-132350, which corresponds with U.S. Appl. No. 16/258,394, 2 pages. |
Final Office Action, dated Sep. 16, 2022, received in Japanese Patent Application No. 2019-047319, which corresponds with U.S. Appl. No. 16/896,141, 2 pages. |
Notice of Allowance, dated Sep. 20, 2022, received in Chinese Patent Application No. 201910610331.X, 1 page. |
Patent, dated Nov. 25, 2022, received in Chinese Patent Application No. 201910610331.X, 7 pages. |
Office Action, dated Jul. 18, 2022, received in Chinese Patent Application No. 201910718931.8, 2 pages. |
Notice of Allowance, dated Jan. 5, 2023, received in Chinese Patent Application No. 201910718931.8, 4 pages. |
Final Office Action, dated Jul. 18, 2022, received in U.S. Appl. No. 16/685,773, 20 pages. |
Office Action, dated Dec. 16, 2022, received in Australian Patent Application No. 2022200212, 3 pages. |
Office Action, dated May 17, 2022, received in Korean Patent Application No. 2020-7008888, 2 pages. |
Notice of Allowance, dated Nov. 23, 2022, received in Korean Patent Application No. 2020-7008888, 2 pages. |
Patent, dated May 19, 2022, received in Australian Patent Application No. 2020244406, which corresponds with U.S. Appl. No. 17/003,869, 3 pages. |
Office Action, dated Jan. 5, 2023, received in Japanese Patent Application No. 2022-031194, which corresponds with U.S. Appl. No. 17/003,869, 6 pages. |
Notice of Allowance, dated Feb. 7, 2022, received in U.S. Appl. No. 16/988,509, 16 pages. |
Office Action, dated Apr. 27, 2022, received in Australian Patent Application No. 2020257134, 3 pages. |
Notice of Allowance, dated Aug. 23, 2022, received in Australian Patent Application No. 2020257134, 2 pages. |
Patent, dated Dec. 22, 2022, received in Australian Patent Application No. 2020257134, 3 pages. |
Office Action, dated Apr. 28, 2022, received in Korean Patent Application No. 2022-7005994, 5 pages. |
Notice of Allowance, dated Oct. 18, 2022, received in Korean Patent Application No. 2022-7005994, 5 pages. |
Final Office Action, dated May 2, 2022, received in U.S. Appl. No. 17/103,899 21 pages. |
Office Action, date Aug. 19, 2022, received in U.S. Appl. No. 17/103,899 24 pages. |
Final Office Action, dated Jan. 24, 2023, received in U.S. Appl. No. 17/103,899 27 pages. |
Office Action, dated Nov. 11, 2021, received in Australian U.S. Appl. No. 17/103,899, which corresponds with U.S. Appl. No. 17/103,899, 4 pages. |
Notice of Acceptance, dated Nov. 10, 2022, received in Australian Patent Application No. 2021200655, which corresponds with U.S. Appl. No. 17/103,899, 4 pages. |
Office Action, dated Nov. 8, 2022, received in U.S. Appl. No. 17/333,810, 9 pages. |
Office Action, dated Jun. 10, 2022, received in U.S. Appl. No. 17/362,852, 12 pages. |
Notice of Allowance, dated Aug. 24, 2022, received in U.S. Appl. No. 17/362,852, 9 pages. |
Office Action, dated Nov. 9, 2022, received in U.S. Appl. No. 17/409,573, 20 pages. |
Notice of Allowance, dated Sep. 22, 2022, received in U.S. Appl. No. 17/524,692, 22 pages. |
Office Action, dated Jan. 11, 2023, received in Australian Patent Application No. 2022202892, which corresponds with U.S. Appl. No. 15/113,779, 3 pages. |
Office Action, dated Nov. 28, 2022, received in U.S. Appl. No. 17/560,013, 13 pages. |
Patent, dated May 10, 2022, received in Korean Patent Application No. 2022-7003345, 8 pages. |
Office Action, dated May 23, 2022, received in Korean Patent Application No. 2022-7015718, 2 pages. |
Patent, dated Aug. 10, 2022, received in Korean Patent Application No. 2022-7015718, 6 pages. |
Office Action, dated Mar. 2, 2023, received in Chinese Patent Application No. 202010281684.2, which corresponds with U.S. Appl. No. 14/864,601, 4 pages. |
Office Action, dated Mar. 7, 2023, received in Brazilian Patent Application No. 11201701119-9, which corresponds with U.S. Appl. No. 14/871,236, 4 pages. |
Notice of Allowance, dated May 19, 2023, received in Japanese Patent Application No. 2021-099049, which corresponds with U.S. Appl. No. 16/243,834, 2 pages. |
Office Action, dated Mar. 2, 2023, received in Indian Patent Application No. 202118003907, which corresponds with U.S. Appl. No. 16/243,834, 11 pages. |
Office Action, dated Mar. 12, 2023, received in Chinese Patent Application No. 202010281127.0, which corresponds with U.S. Appl. No. 16/252,478, 4 pages. |
Final Office Action, dated Feb. 24, 2023, received in U.S. Appl. No. 16/896,141, 23 pages. |
Patent, dated Mar. 17, 2023, received in Chinese Patent Application No. 201910718931.8, 7 pages. |
Office Action, dated Feb. 22, 2023, received in Chinese Patent Application No. 202010290361.X, which corresponds with U.S. Appl. No. 17/003,869, 4 pages. |
Patent, dated Mar. 16, 2023, received in Australian Patent Application No. 2021200655, which corresponds with U.S. Appl. No. 17/103,899, 3 pages. |
Final Office Action, dated Apr. 24, 2023, received in U.S. Appl. No. 17/333,810, 12 pages. |
Office Action, dated Mar. 16, 2023, received in U.S. Appl. No. 17/351,035, 23 pages. |
Notice of Allowance, dated Mar. 6, 2023, received in U.S. Appl. No. 17/524,692, 14 pages. |
Office Action, dated Sep. 20, 2022, received in Australian Patent Application No. 2021254568, which corresponds with U.S. Appl. No. 17/560,013, 4 pages. |
Notice of Allowance, dated Mar. 24, 2023, received in U.S. Appl. No. 17/666,495, 28 pages. |
Notice of Allowance, dated Apr. 27, 2023, received in U.S. Appl. No. 18/089,397, 16 pages. |
Office Action, dated Mar. 30, 2023, received in U.S. Appl. No. 17/875,307, 15 pages. |
Office Action, dated Aug. 10, 2023, received in Chinese Patent Application No. 201610658351.8, which corresponds with U.S. Appl. No. 14/866,992, 4 pages. |
Patent, dated Aug. 4, 2023, received in Indian Patent Application No. 21617032293, which corresponds with U.S. Appl. No. 14/871,227, 4 pages. |
Intent to Grant, dated Jun. 1, 2023, received in European Patent Application No. 14/867,990, which corresponds with U.S. Appl. No. 14/867,990, 8 pages. |
Decision to Grant, dated Sep. 7, 2023, received in European Patent Application No. 14/867,990, which corresponds with U.S. Appl. No. 14/867,990, 4 pages. |
Intent to Grant, dated Aug. 16, 2023, received in European Patent Application No. 15/499,693, which corresponds with U.S. Appl. No. 15/499,693, 10 pages. |
Patent, dated Jan. 27, 2023, received in Japanese Patent Application No. 2019-058800, which corresponds with U.S. Appl. No. 16/243,834, 4 pages. |
Patent, dated Jun. 19, 2023, received in Japanese Patent Application No. 2021-099049, which corresponds with U.S. Appl. No. 16/243,834, 4 pages. |
Patent, dated Jul. 3, 2023, received in Mexican Patent Application No. MX/a/2020/011482, which corresponds with U.S. Appl. No. 16/243,834, 2 pages. |
Final Office Action, dated Jul. 14, 2023, received in Japanese Patent Application No. 2021-132350, which corresponds with U.S. Appl. No. 16/258,394, 2 pages. |
Final Office Action, dated Jul. 14, 2023, received in Japanese Patent Application No. 2019-047319, which corresponds with U.S. Appl. No. 16/896,141, 2 pages. |
Notice of Allowance, dated Aug. 9, 2023, received in U.S. Appl. No. 17/103,899 7 pages. |
Final Office Action, dated May 31, 2023, received in U.S. Appl. No. 17/409,573, 22 pages. |
Notice of Allowance, dated Jun. 13, 2023, received in Australian Patent Application No. 2022202892, which corresponds with U.S. Appl. No. 15/113,779, 3 pages. |
Office Action, dated Aug. 3, 2023, received in U.S. Appl. No. 17/560,013, 15 pages. |
Office Action, dated Jun. 28, 2023, received in Australian Patent Application No. 2021254568, which corresponds with U.S. Appl. No. 17/560,013, 3 pages. |
Patent, dated Sep. 15, 2023, received in Chinese Patent Application No. 202010281684.2, which corresponds with U.S. Appl. No. 14/864,601, 7 pages. |
Patent, dated Sep. 12, 2023, received in Chinese Patent Application No. 202010281127.0, which corresponds with U.S. Appl. No. 16/252,478, 8 pages. |
Patent, dated Sep. 12, 2023, received in Chinese Patent Application No. 202010290361.X, which corresponds with U.S. Appl. No. 17/003,869, 7 pages. |
Office Action, dated Sep. 18, 2023, received in U.S. Appl. No. 17/333,810, 12 pages. |
Final Office Action, dated Sep. 21, 2023, received in U.S. Appl. No. 17/875,307, 16 pages. |
Notice of Allowance, dated Sep. 21, 2023, received in Korean Patent Application No. 2023-702268, 2 pages. |
Notice of Allowance, dated Dec. 13, 2023, received in U.S. Appl. No. 17/409,573, 11 pages. |
Office Action, dated Oct. 26, 2023, received in U.S. Appl. No. 17/172,032, 17 pages. |
Final Office Action, dated Oct. 30, 2023, received in U.S. Appl. No. 17/351,035, 23 pages. |
Notice of Allowance, dated Nov. 22, 2023, received in U.S. Appl. No. 17/560,013, 13 pages. |
Office Action, dated Nov. 6, 2023, received in Chinese Patent Application No. 201610658351.8, which corresponds with U.S. Appl. No. 14/866,992, 2 pages. |
Office Action, dated Oct. 30, 2023, received in European Patent Application No. 19194418.0, which corresponds with U.S. Appl. No. 14/864,580, 9 pages. |
Patent, dated Nov. 6, 2023, received in Indian Patent Application No. 201617032291, which corresponds with U.S. Appl. No. 14/866,987, 4 pages. |
Patent, dated Oct. 4, 2023, received in European Patent Application No. 16711725.8, which corresponds with U.S. Appl. No. 14/867,990, 2 pages. |
Notice of Allowance, dated Oct. 20, 2023, received in Australian Patent Application No. 2022200212, 3 pages. |
Patent, dated Oct. 12, 2023, received in Australian Patent Application No. 2022202892, which corresponds with U.S. Appl. No. 15/113,779, 3 pages. |
Grant Certificate, dated Oct. 26, 2023, received in Australian Patent Application No. 2021254568, which corresponds with U.S. Appl. No. 17/560,013, 3 pages. |
Notice of Allowance, dated Jan. 8, 2024, received in Chinese Patent Application No. 201610658351.8, which corresponds with U.S. Appl. No. 14/866,992, 2 pages. |
Office Action, dated Jan. 5, 2024, received in Chinese Patent Application No. 202010969867.3, which corresponds with U.S. Appl. No. 16/262,784, 2 pages. |
Notice of Allowance, dated Jan. 12, 2024, received in Japanese Patent Application No. 2021-132350, which corresponds with U.S. Appl. No. 16/258,394, 2 pages. |
Notice of Allowance, dated Dec. 6, 2023, received in U.S. Appl. No. 17/103,899 9 pages. |
Office Action, dated Dec. 13, 2023, received in Australian Patent Application No. 2023226703, which corresponds with U.S. Appl. No. 18/089,397, 2 pages. |
Patent, dated Dec. 21, 2023, received in Korean Patent Application No. 2023-702268, 5 pages. |
Notice of Allowance, dated Mar. 1, 2024, received in U.S. Appl. No. 17/333,810, 8 pages. |
Notice of Allowance, dated Mar. 14, 2024, received in U.S. Appl. No. 17/351,035, 8 pages. |
Notice of Allowance, dated Apr. 2, 2024, received in U.S. Appl. No. 17/875,307, 18 pages. |
Patent, dated Feb. 27, 2024, received in Chinese Patent Application No. 201610658351.8, which corresponds with U.S. Appl. No. 14/866,992, 8 pages. |
Office Action, dated Apr. 6, 2024, received in Indian U.S. Appl. No. 15/136,782 (7399IN), which corresponds with U.S. Appl. No. 15/136,782, 12 pages. |
Intent to Grant, dated Feb. 16, 2024, received in European Application No. 20188553.0, which corresponds with U.S. Appl. No. 15/499,693, 8 pages. |
Patent, dated Feb. 14, 2024, received in Japanese Patent Application No. 2021-132350, which corresponds with U.S. Appl. No. 16/258,394, 3 pages. |
Office Action, dated Mar. 22, 2024, received in Chinese Patent Application No. 202110696612,9, which corresponds with U.S. Appl. No. 16/896,141, 5 pages. |
Patent, dated Feb. 8, 2024, received in Japanese Patent Application No. 2019-047319, which corresponds with U.S. Appl. No. 16/896,141, 3 pages. |
Patent, dated Jan. 25, 2024, received in Japanese Patent Application No. 2022-031194, which corresponds with U.S. Appl. No. 17/003,869, 3 pages. |
Office Action, dated Feb. 19, 2024, received in Australian Patent Application No. 2022-283731, 5 pages. |
Number | Date | Country | |
---|---|---|---|
20220261131 A1 | Aug 2022 | US |
Number | Date | Country | |
---|---|---|---|
61778287 | Mar 2013 | US | |
61747278 | Dec 2012 | US | |
61688227 | May 2012 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 16921083 | Jul 2020 | US |
Child | 17728909 | US | |
Parent | 15889115 | Feb 2018 | US |
Child | 16921083 | US | |
Parent | 14536141 | Nov 2014 | US |
Child | 15889115 | US | |
Parent | PCT/US2013/040072 | May 2013 | WO |
Child | 14536141 | US |