Embodiments relate to a device, method and stimulus unit for testing neuromuscular function. In particular, embodiments employ one or more stimulation and sensing electrodes disposed on a substrate for placement on a body part of a test subject.
When performing nerve conduction testing, such as testing for carpal tunnel syndrome, for example, a series of stimuli are provided to a part of the body adjacent to the nerve desired to be tested and the response of the body to each stimulus is measured. Such responses may include a muscle response, in the form of a compound muscle action potential (CMAP), and a nerve response, in the form of a sensory nerve action potential (SNAP).
A relevant parameter in determining whether a subject may be experiencing carpal tunnel syndrome, or other forms of systemic or entrapment neuropathies, is the nerve conduction velocity of the stimulated nerve. Nerve conduction velocity is determined by measuring the distance between the stimulation site and detection site on the stimulated body part and then observing the time elapsed between stimulus of the nerve and detection of the SNAP evoked in response to the stimulus.
Typically, a medical technologist performing the nerve conduction testing will take a measuring tape and place it along the body part to estimate the distance between the stimulating electrode and the sensing electrode, once the electrodes are in place. Alternatively, the technologist may measure a fixed distance and then place the stimulating and sensing electrodes accordingly. Such manual measurement methods are prone to error and can be cumbersome, requiring the physician to locate the measuring tape and position it against the subjects body, while attempting to keep the patient still, in order to take the distance measurement.
It is desired to address or ameliorate one or more of the shortcomings or disadvantages of existing nerve conduction testing techniques, equipment or arrangements, or to at least provide a useful alternative thereto.
Embodiments relate generally to devices, methods and stimulus units for use in measuring neuromuscular function. Certain embodiments relate to a device for use in measuring at least one of nerve and muscle function, comprising: a substrate locatable on a body part, the substrate comprising a base portion, a limb portion and an intermediate portion located intermediate the base portion and the limb portion; first, second and third electrode pairs respectively located on the base, intermediate and limb portions; and wherein at least one of the first, second and third electrode pairs is usable as stimulation electrodes for providing a stimulus to the body part and at least another of the first, second and third electrodes is usable as sensing electrodes for sensing an electrical potential in the body part in response to the stimulus.
The device may further comprise a distance measurement member coupled to one of the base portion, intermediate portion and limb portion for use in indicating separation of the stimulation electrodes and the sensing electrodes. The distance measurement member may comprise indicia for indicating separation of the stimulation electrodes and the sensing electrodes.
The indicia may be selected from the group consisting of: magnetic indicia; electrical indicia; optical indicia; electromechanical indicia and mechanical indicia. The distance measurement member may comprise an elongate strip and may be coupled to the limb portion at a fixed location relative to the third electrode pair. The substrate may be flexible to at least partly conform to a shape of the body part when positioned over the body part. The body part may be a hand and wrist area of an arm.
The stimulation and sensing electrodes may each have a layer of conductive gel disposed on the stimulation and sensing electrodes for contact with the body part. The stimulation and sensing electrodes may be covered by a protective material wherein, in use of the device, the protective material is removed before placement of the stimulation and sensing electrodes on the body part. The sensing electrodes may be positioned distal to the stimulating electrodes along the body part. Alternatively, the sensing electrodes may be positioned proximal to the stimulating electrodes along the body part.
The device may further comprise a scanner for reading the indicia on the distance measurement member. The substrate and the distance measurement member may comprise a unique identifier of the device. The unique identifier may be encoded on one of the distance measurement member and the substrate. The unique identifier may be encoded on one of the distance measurement member and the substrate. The unique identifier may be machine-readable.
The device may further comprise a coupling unit for electrically coupling a current stimulation controller to the stimulating electrodes. The coupling unit may be supportingly connectable to the base portion of the substrate. The coupling unit may be connectable to the base portion by conductive connectors. The coupling unit may comprise a temperature sensor, which may comprise am infrared optical sensor. The substrate may comprise flexible conductors extending through the limb portion for carrying current from the sensing electrodes to the coupling unit.
In an alternative aspect, the base portion, limb portion and intermediate portion comprise more than one (e.g. two, three, four or more) discrete substrate portions.
The device may further comprise a connector limb having a connector on an end of the connector limb. The connector may be connectable to the coupling unit. The connector on the connector limb may be an output connector for providing at least one output of the sensing electrodes. The conductive connectors may be coupled to one of the first, second and third electrode pairs.
The limb portion may be a first limb portion and the substrate may comprise a second limb portion comprising at least one sensing electrode. The substrate may be shaped so that each limb portion may extend to a different designated area of the body part when the substrate is positioned for use on the body part. The designated area may be selected from a group consisting of: thenar, hypothenar, first digit, second digit and third digit.
The coupling unit may comprise a connector for coupling to conductors extending along the substrate. The coupling unit may also comprise a distance measurement sensor for cooperating with a distance measurement member to indicate the separation of the sensing electrodes and the stimulation electrodes. The distance measurement member may comprise an elongate strip and the coupling unit may have an opening for receiving the elongate strip. The distance measurement sensor may be housed within the coupling unit and positioned to cooperate with the distance measurement member to indicate the separation when the elongate strip is received in the opening. The opening may extend through the coupling unit so that at least part of the elongate strip may be drawn through the opening.
The limb portion may comprise a plurality of branches, each branch comprising an electrode pair. The limb portion may also comprise an extensible portion intermediate the intermediate portion and a distal end of the limb portion. The extensible portion may comprise at least one loop formed in the limb portion. The sensing and stimulation electrodes may each have an adhesive material or substance disposed around the respective electrode.
The device may further comprise distance measurement means fixed relative to the substrate for measuring separation of the stimulation electrodes and the sensing electrodes. In one embodiment, the first and second electrode pairs may be usable as stimulation electrodes and the third electrode pair may be usable as sensing electrodes. In an alternative embodiment, the first and second electrode pairs may be usable as sensing electrodes and the third electrode pair may be usable as sensing electrodes. In another alternative embodiment, the second electrode pair may be usable as stimulation electrodes and the first and third electrode pairs may be usable as sensing electrodes. In another alternative embodiment, the first electrode pair may be usable as stimulation electrodes and the second and third pairs may be usable as sensing electrodes.
The limb may be attachable to one of the first, second and third digits of a hand. The first and second limb portions may be flexibly movable relative to the base portion to accommodate differently sized body parts. The second limb portion may be disposed on the substrate adjacent the intermediate portion and the second limb portion may be flexibly movable relative to the intermediate portion. The substrate may be shaped so that, when the substrate is located in use on the body part, the base portion at least partly overlies the wrist, the intermediate potion at least partly overlies a palm of the hand and the limb portion at least partly overlies a finger of the hand. The second intermediate portion may at least partly overlie an area of the palm through which the median nerve passes. The device may be used for testing for carpal tunnel syndrome.
Other embodiments relate to a device for use in measuring at least one of nerve and muscle function in an arm, comprising: a wrist portion locatable on a wrist; a palm portion locatable on a palm and coupled to the wrist portion; a finger portion locatable on a finger coupled to one of the wrist portion and the palm portion; first, second and third electrode pairs respectively located on the wrist, palm and finger portions; and wherein at least one of the first, second and third electrode pairs is usable as stimulation electrodes for providing a stimulus to the arm at locations corresponding to a respective at least one of the wrist, palm and finger portions and at least another of the first, second and third electrode pairs is usable as sensing electrodes for sensing an electrical potential arm at locations corresponding to a respective at least another of the wrist, palm and finger portions.
Further embodiments relate to use of the devices described above for testing for carpal tunnel syndrome. Other embodiments relate to methods of obtaining results of diagnostic significance using the devices described above. The above-described devices may comprise a stimulus unit as described herein or a combination of a stimulus unit with a coupling unit.
Further embodiments relate to a method of testing nerve function in a body part, comprising: positioning one or more substrate portions on the body part, the one or more substrate portions comprising a base portion, a limb portion and an intermediate portion intermediate the base portion and the limb portion, wherein first, second and third electrode pairs are located on the base, intermediate and limb portions, respectively; providing an electrical stimulus to a site of the body part through at least another of the first, second and third electrode pairs; and sensing am action potential in at least another site of the body part through at least another of the first, second and third electrode pairs in response to the electrical stimulus. The one or more substrate portions may comprise a unitary substrate or multiple discrete substrate portions.
The method may further comprise coupling a coupling unit to the base portion to provide the electrical stimulus and to sense the action potential. The body part may comprise a wrist and hand. In one embodiment, the electrical stimulus may be provided sequentially to the first and second electrode pairs and the action potential may be sequentially sensed at the third electrode pair. In an alternative embodiment, the electrical stimulus may be provided to the third electrode pair and the action potential may be sensed at the second and third electrode pairs. The method may further comprise measuring a separation from one of the base portion and the intermediate portion to the limb portion using a distance measurement member fixed relative to one of the base portion, the intermediate portion and the limb portion.
Still other embodiments relate to a device for use in measuring at least one of nerve and muscle function, comprising: a substrate locatable on a body part, the substrate comprising a base portion, a limb portion and an intermediate portion located intermediate the base portion and the limb portion; first and second electrode pairs respectively located on the base and limb portions; a third electrode located on the intermediate portion, wherein the third electrode is paired with a fourth electrode located on the substrate away from the third electrode to form a third electrode pair; and wherein at least one of the first, second and third electrode pairs is usable as stimulation electrodes for providing a stimulus to the body part and at least another of the first, second and third electrodes is usable as sensing electrodes for sensing an electrical potential in the body part in response to the stimulus.
Embodiments are described below in further detail, by way of example only, with reference to the accompanying drawings, in which:
Embodiments of the invention can be used to apply an automatic nerve conduction test for systemic or entrapment neuropathies, such as Carpal Tunnel Syndrome. During the test, a series of impulse stimuli are applied to a subject's body part adjacent a nerve or nerve group. The responses to the stimuli are analyzed to detect the evoked action potentials (for example, CMAP for a motor nerve test and SNAP for a sensory nerve test), and to measure the onset latency and peak amplitude of the responses. Other measureable parameters of interest include peak latency, duration and the integrated area under the response curve between onset and the peak amplitude or between onset and the end of the response.
Referring to
Control module 110 comprises a processor 114 and memory 112. Control module 110 has a user interface 116 associated therewith that communicates with processor 114 to enable a user to interface with system 100 during, before or after the testing. The memory 112 stores computer program instructions for execution by processor 114 during performance of the automatic nerve conduction testing. Memory 112 also stores a first-in-first-out stack of sampled response waveforms (traces) for analysis by processor 114. Processor 114 controls stimulus and data acquisition module 120, which in turn controls the output of stimulus unit 130.
Stimulus unit 130 has two or more stimulus electrodes (for example, S1, S2, S3 and S4 shown in
Stimulus and data acquisition module 120 has one or more controllers (not shown) for receiving and interpreting commands from processor 114, for conditioning response signals received from stimulus unit 130 and providing such conditioned response signals to processor 114 for analysis according to the stored computer program instructions in memory 112. Example commands received at stimulus and data acquisition module 120 from processor 114 include stimulus intensity setting commands and operational commands, such as start or stop commands. Additionally, if stimulus unit 130 is. configured to provide (or cooperate with stimulus and data acquisition module 120 to provide) a temperature measurement or a measurement of the distance between the stimulation and detection points, such measurements may be provided by stimulus and data acquisition module 120 to processor 114 in response to an appropriate command received at stimulus and data acquisition module 120.
The task of processor 114 is to establish the neuromuscular function testing protocol to be administered via stimulus unit 130 and to analyze each stimulus-response waveform passed from the signal detection and processing framework (i.e. stimulus unit 130 and stimulus and data acquisition module 120).
Referring also to
Coupling unit 220 forms part of stimulus and data acquisition module 120. Coupling unit 220 may be a dumb unit, in that it may not contain a controller or digital signal processor (DSP) exercising specific control or processing functions. In this case, another processor or controller inside stimulus and data acquisition module 120, located away from coupling unit 220 and in communication therewith via cable 225, performs the stimulation control and signal processing functions. Alternatively, coupling unit 220 may include a controller for performing stimulus control and/or received signal processing functions.
Coupling unit 220 couples to stimulus unit 130 by one or more mechanical connectors to position coupling unit 220 in a fixed location relative to stimulus unit 130. The connectors shown in
In one embodiment, snap connector parts 250, 252 are not used for providing current stimulus signals, but are instead used to close a circuit (with a conductor extending between the two projecting parts 252) to provide an indication to stimulus and data acquisition module 120 that coupling unit 220 is connected to stimulus unit 130. In a further alternative embodiment, one or more non-conductive connecting parts may be used to form a connector connecting coupling unit 220 to stimulus unit 130.
Stimulus unit 130 has an output connector 270 located on an end of a connector limb 272 for providing evoked response signals detected by the one or more sensing electrodes to stimulus and data acquisition module 120, via coupling unit 220. Output connector 270 is releasably received in a socket 222 formed in coupling unit 220. Socket 222 has a structure formed for receipt of output connector 270 and for forming electrical connections with each of the conductors (which are, in turn, connected to the stimulus and/or sensing electrodes) along connector limb 272. Connector limb 272 resembles a flexible ribbon cable. If the current stimulus wave-forms are not provided to stimulus unit 130 by the physical connection of connecting parts 250, 252, then they may be provided by conductors connected to the stimulating electrodes via connector 270.
Stimulus unit 130 has a base portion 230, with at least one limb 232 extending therefrom, in addition to connector limb 272. Limb 232 has at least one sensing electrode positioned on the limb 232 for placement at any desired site for detection of CMAP or SNAP (or both) responses, depending on the type of testing that is to be conducted. One or more stimulus electrodes, together with a ground electrode (GND), are located in or adjacent base portion 230. Limb 232 extends distally of wrist crease 212 and crosses at least part of the palm 214. As shown in
Stimulus unit 130 is formed mostly of flexible materials for placement on anatomical structures and for generally conforming to the shape of such anatomical structures. For example, base portion 230 is intended to be positioned proximally of a wrist crease 212 so is to extend at least partially along and around part of a forearm 210. Certain parts of stimulus unit 130 (for example, those around the electrodes) have an adhesive substance, such as a foam adhesive layer, on a underside thereof, for affixing the stimulus unit to the relevant anatomical structures prior to testing. Flexible circuitry extends through stimulus unit 130 between the electrodes and connectors. Thus, stimulus unit 130 can be used with anatomical structures of varying shapes and sizes due to its flexibility and adaptability to conform and adhere to anatomical structures, as required.
Stimulus unit 130 employs a substrate of a flexible material, such as a medical grade polyester film (or other materials having similar properties). The substrate may be about 3 to 8 thousandths of an inch thick, for example. Where adhesive is required to affix a part of the stimulus unit 130 to an anatomical structure, this adhesive may be provided on a layer of medical grade adhesive foam of about 1/32 of an inch thickness. The foam is adhered to an insulation layer on the substrate on one side with a relatively strong adhesive and has an adhesive of relatively less strength for removable attachment to the test subject. The electrodes may comprise a silver or silver chloride layer formed on the substrate. The substrate also has flexible circuit tracings formed thereon for constituting the conductors between electrodes and the input and/or output connector. Such circuit tracings may comprise silver and a dielectric layer. An example of the layers of stimulus unit 130 is shown and described in further detail in relation to
Prior to affixation to the body part, stimulus unit 130 may have backing sheets on those part of stimulus unit 130 that have an adhesive substance on their undersides for adhesion to the skin. Each such backing sheet is removed immediately prior to adhesion of the relevant part of stimulus unit 130 to the corresponding anatomical structures. For the sensing, stimulus and ground electrodes, an area of conductive gel, such as hydrogel, is interposed between the electrode and the skin surface (instead of the adhesive foam), for facilitating conductivity of electrical signals between the electrodes and the skin.
Stimulus unit 130 is a generally flat device, as viewed from the user's perspective, prior to affixation to the test subject. However, stimulus unit 130 does have several layers, as described above and further in relation to
Coupling unit 220 has a temperature sensor 260, such as an infrared temperature sensor, positioned on a lower surface of coupling unit 220 that is to be positioned to face the body part when coupled to stimulus unit 130. Temperature sensor 260 is used to detect the temperature of the skin prior to and/or during the testing. If temperature sensor 260 is used to take a temperature measurement prior to initiation of the testing, it can be placed over the palmar region or other anatomical structure, as appropriate, prior to connection of coupling unit 220 to stimulus unit 130. Alternatively, the temperature measurement may be obtained after connection of coupling unit 220 to stimulus unit 130, provided that stimulus unit 130 has an appropriate opening 262 to allow temperature sensor 260 to directly sense the skin temperature.
Coupling unit 220 also has a slot 240 formed in a housing of coupling unit 220 for receiving a distance measurement strip 280. Slot 240 extends all the way through coupling unit 220 so that the distance measurement strip 280 can be drawn though slot 240 in order to perform the distance measurement function, as described herein. In the embodiment shown in
Fixed end 282 may be attached to limb 232 by an adhesive or a mechanical connection, for example. Fixed end 282 may be attached to limb 232 in such a way that allows the distance measurement strip to be manually torn off or otherwise removed once it has been used.
Example distance measurement strips having different forms of indicia are shown in FIGS. 11 to 13. For the embodiment shown in
Scanners 290 are located within the housing of coupling unit 220 and are positioned to sense indicia on the distance measurement strip 280 and to provide output signals to stimulus and data acquisition module 120 via cable 225. The electrical signals corresponding to the scanned optical indicia are processed within stimulus and data acquisition module 120 to determine the distance between the stimulus electrodes, which are in a fixed position relative to optical scanners 290, and sensing electrodes located on a distal extremity of the body part, such as a finger, the size and length of which will depend on the physical characteristics of the test subject.
The distance measurement calculation is performed by stimulus and data acquisition module 120, taking into account the point along distance measurement strip 280 at which scanners 290 are positioned when distance measurement strip 280 is at rest within slot 240, the known distance between scanners 290 and the stimulating electrodes when coupling unit 220 is connected to stimulus unit 130 and the known distance between the point at which fixed end 282 is connected to limb 232 and the sensing electrodes 234, 236 located on limb 232.
Depending on the type and/or configuration of the indicia on distance measurements strip 280, only one scanner 290 may be necessary. For example, if the indicia comprise gray scale indications, such as are shown in
In alternative embodiments, indicia other than optically readable indicia may be formed in, positioned on or otherwise fixed in relation to distance measurement strip 280 for enabling determination of the distance between the sensing electrodes and stimulation electrodes. Mechanical markings or formations may be applied to distance measurement strip 280, for example, in the form of crenelations along one edge or deformations in part of the strip. Alternatively, electrical or magnetic indicia may be formed in, or in relation to, distance measurement strip 280 for sensing by corresponding sensors in coupling unit 220. Whether the indicia is optical, mechanical, electrical, magnetic, a combination of two or more of these or any other machine-readable form, the indicia are, at least according to such embodiments, configured to be read using an appropriate sensing means positioned within or on coupling unit 220 for generating electrical signals for transmission to a signal processor within stimulus and data acquisition module 120 via cable 225.
In other alternative embodiments, the distance measurement strip 280 may be provided with human readable indicia for alignment with a fixed visible alignment marker on coupling unit 220 or a part of base portion 230, so that a person may readily determine from the human readable indicia and the alignment marker the distance between the sensor electrodes and the stimulus electrodes. Alternatively, instead of distance measurement strip 280 being fixed at a location near the sensor electrodes and having its free end extend across base portion 230, distance measurement strip 280 may be fixed at a location on or adjacent base portion 230 and extending toward the sensing electrodes for alignment of human readable indicia on the strip with an alignment marker positioned at a particular location (such as a connection portion analogous to connection portion 640, 740, 840, 940, 1040, or 1640) on limb 232 adjacent to the sensing electrodes. For such embodiments using human readable indicia, the distance measurement determined with reference to the alignment marker would need to be input into control module 110 via user interface 116.
In a further alternative embodiment using human readable indicia, coupling unit 220 may be provided with an extensible measuring strip that retractably extends from coupling unit 220 for visual comparison with an alignment marker positioned adjacent one or more of the SNAP sensing electrodes 234, 236. In an alternative of such an embodiment, the retractable strip may use machine-readable indicia to determine the distance according to indicia that can be read from the strip by a scanner within coupling unit 220 when a free end of the retractable strip is positioned at the alignment marker.
Particular embodiments of further optical distance measurement methods may include use of stereoscopic optical sensors, triangulation of a marker light (where the marker is attached at or adjacent the sensing electrodes and the optical sensor is located in the coupling unit 220) and optical pattern recognition techniques. In a further embodiment, an acoustic time-of-flight calculation may be performed in relation to a marker source attached at or adjacent the sensing electrodes, with the acoustic sensor located in the coupling unit 220. Embodiments employing electrical distance measurement may include sensing a deformation of a wire loop having a modified self-inductance depending on its position along the distance measurement strip or along an extensible section in limb 232.
Electromechanical embodiments may use transducers, such as strain gauges, potentiometers or linear variable differential transformers (LVDT). Such embodiments may use structure embedded within distance measurement strip 280 or an extensible section in limb 232 in combination with corresponding sensing structure and circuitry within coupling unit 220. Specific mechanical distance measurement embodiments may employ a form of tape measure built into coupling unit 220, with sensors to determine the position or rotation of the tape wheel within coupling unit 220 and/or human readable indicia visible on the tape as it is extended from the coupling unit 220.
In certain embodiments, stimulus unit 130 may be employed with only a simple mating connector to connect to connector 270 in place of coupling unit 220. For such an embodiment, as there is no necessity to connect coupling unit 220 to stimulus unit 130, connector projections 252 are not required. Also, without a temperature sensor 260, opening 262 in stimulus unit 130 is not required.
The embodiment of stimulus unit 130 shown in
The base portion 230, distally extending limb 232 and connector limb 272 form a basic configuration of the stimulus unit 130. Variations of such a basic configuration form further embodiments, as described below. For example, stimulus unit 130 may have more than one distally projecting limb 232. Further, connector limb 272 may extend from a different part of the base portion 230, depending on whether the stimulus unit is for right hand or left hand testing, for example. While the precise shape and configuration of base portion 230 may vary, the features and functions of base portion 230 according to the basic configuration described above are common to all embodiments.
Referring also now to
Base portion 230, as shown in
Stimulus unit 130, as shown in
Stimulus unit 130, as shown in
The first and second limbs 232, 432 each have a respective extensible portion 412, 414 for accommodating size differences among hands by allowing lesser or greater extension of the extensible portions 412, 414, depending on hand size. Extensible portions 412, 414 may be formed of a somewhat flattened coil or loop in the respective limb.
The stimulus unit 130 shown in
Referring now to
Connected to base portion 530 is a connector limb 572 having a connector 570 on an end thereof and connector conductors 574 exposed within connector 570. Connector 570 is receivable in the socket 222 of coupling unit 220 in a manner similar to that described in relation to connector 270. Similar to base portion 230, base portion 530 has snap projections 552 for connecting to corresponding recesses in coupling unit 220.
Base portion 530 has a reference stimulation electrode S2 formed on the substrate and an array 516 of active stimulation electrodes (S1a, S1b, S1c, S1d, S1e) formed distally of S2 on the substrate. The array 516 is used to selectively provide stimuli to different locations within a stimulus area covered by the array 516.
The substrate of stimulus unit 500 further comprises a distally extending limb 504 connected to, and integrally formed with, base portion 530. Limb 504 has an extensible portion 514 formed therein for allowing adjustment of the distance between the sensing and stimulus electrodes to account for different leg sizes. A distal end portion 540 is formed at a distal end of limb 504 and comprises sensing electrodes E1, E2. A ground electrode GND is also formed in limb 504, intermediate distal end portion 540 and the extensible portion 514.
Distal end portion 540 has adhesive attachment portions 536, 538 for securing electrodes E1, E2 to the skin of the ankle just below, and on either side of, the lateral malleolus 512. Ground electrode GND is attached to the skin using an adhesive attachment portion 534.
Distance measurement strip 280 is connected at fixed end 282 to a part of distal end portion 540 adjacent attachment portion 538. Distance measurement strip 280 extends proximally toward base portion 530 so that free end 284 can be passed through slot 240 of coupling unit 220 for measurement of the distance between the sensing electrodes E1, E2 and the stimulation electrodes S2, S1a to S1e.
As shown in
It should be noted that stimulus unit 500 is one specific embodiment of the more general embodiment of stimulus unit 130 described above. Thus, while stimulus unit 500 is of a different shape and configuration to that shown in
Stimulus unit 600 has a first limb 632 and a second limb 622, both of which extend distally from a distal edge or part of abase portion 630. First limb 632 has a first sensing electrode E1 formed in a part of the substrate that is positioned to generally overlie a thenar muscle. Electrode E1 is held on to the thenar area by an adhesive-backed attachment portion 634.
Extensible portion 614 is formed distally of attachment portion 634 in limb 632. Extensible portion 614, as shown in
Sensing electrode pair E5, E6 can be used to sense evoked SNAP responses resulting from stimulation of the ulnar nerve by stimulation electrodes S3, S4 positioned over the ulnar nerve. Sensing electrode pair E3, E4 can be used to sense evoked SNAP responses for both ulnar and median nerves, in response to stimulus from the ulnar stimulus pair S3, S4 or median stimulus pair S1, S2. Sensing electrode E1 is used to detect CMAP responses to stimulus from the median stimulating electrode pair S1, S2.
Second limb 622 has a sensing electrode E2 positioned toward a distal end of limb 622 and attached to a hypothenar area of the hand by adhesive attachment portion 624. Electrode E2 is positioned to sense evoked CMAP responses resulting from stimulus of the ulnar nerve by stimulation electrode pair S3, S4.
Stimulus electrodes S1 to S4, together with a ground electrode GND are formed in the substrate in base portion 630. The connecting projection parts 652 are also formed in base portion 630 for connecting to coupling unit 220, either as a purely mechanical connection or as electrically conductive connectors for supplying stimulus signals to the stimulus electrodes S1 to S4.
A connector limb 672 extends laterally from base portion 630 and has a connector (not shown) on an end thereof for connecting to socket 222 of coupling unit 220 to provide the detected evoked signals back to the stimulus and data acquisition module 120.
As shown in
Referring now to
Stimulus unit 700 has a first limb 732 and a second limb 722, both of which extend distally from a distal edge or part of base portion 730. First limb 732 has a first sensing electrode E1 formed in a part of the substrate that is positioned to generally overlie a thenar muscle. Electrode E1 is held on to the thenar area by an adhesive-backed attachment portion 734.
Extensible portion 714 is formed distally of attachment portion 734 in limb 732. Extensible portion 714, as shown in
Sensing electrode pair E3, E4 can be used to sense evoked SNAP responses for both ulnar and median nerves, in response to stimulus from the ulnar stimulus pair S3, S4 or median stimulus pair S1, S2. Sensing electrode E1 is used to detect CMAP responses to stimulus from the median stimulating electrode pair S1, S2.
Second limb 722 has a sensing electrode E2 positioned toward a distal end of limb 722 and attached to a hypothenar area of the hand by adhesive attachment portion 724. Electrode E2 is positioned to sense evoked CMAP responses resulting from stimulus of the ulnar nerve by stimulation electrode pair S3, S4.
Stimulus electrodes S1 to S4, together with a ground electrode GND are formed in the substrate in base portion 730. The connecting projection parts 752 are also formed in base portion 730 for connecting to coupling unit 220, either as a purely mechanical connection or as electrically conductive connectors for supplying stimulus signals to the stimulus electrodes S1 to S4.
A connector limb 772 extends laterally from base portion 730 and has a connector (not shown) on an end thereof for connecting to socket 222 of coupling unit 220 to provide the detected evoked signals back to the stimulus and data acquisition module 120.
As shown in
A connection portion 840 is formed at a distal end of extensible portion 814, but proximally of a first branch 845 of stimulus unit 800. The first branch 845 supports sensing electrodes E3, E4 formed at adhesive attachment portions 846, 848 for attaching electrodes E3, E4 to a fourth digit (ring finger). Connection portion 840 is of a sufficient dimension to enable attachment of a fixed end of a distance measurement strip, such as any one of those shown and described in relation to previous embodiments or in relation to
Extensible portion 814 is formed so as to have a plurality of loop portions extending in a snaking pattern in the same plane as that of the rest of the substrate. Proximal of extensible portion 814 on first limb 832 but distal of base portion 830, a sensing electrode E5 is located, laterally surrounded by an adhesive attachment portion 834. Sensing electrode E5 is positioned so as to be able to overlie a hypothenar area of the right hand.
As shown in
Connector limb 872 is formed of a greater length than other embodiments, as it is designed to wrap around the wrist so that connector 870 can connect to socket 222 and coupling unit 220 from the right side (as viewed in plan view on a right hand). As with other embodiments described herein, stimulus unit 800 has projecting connector parts 852 on base portion 830 for connecting to coupling unit 220.
The stimulating electrodes S1 to S4 are surrounded by an adhesive section for placement over a wrist to stimulate the median and ulnar nerves. Sensing electrodes E1, E3, E4 and E5 are located in separate adhesive sections and the separate adhesive sections are connected by extensible and inextensible non-adhesive sections of the unit 800. In this way, the stimulating and (some) sensing electrode sections can be placed a variable distance apart to accommodate different sizes and varying anatomy.
Referring now to
Stimulus unit 900 has an extensible portion 914 formed in limb 932, intermediate a first sensing electrode El for overlying a hypothenar area and distal sensing electrodes E2, E3 for attachment to a fifth digit (little finger). Sensing electrode E1 is attachable to the hypothenar area by an adhesive attachment portion 934, while sensing electrodes E2, E3 are attachable to the fifth digit (little finger) by adhesive attachment portions 946, 948 respectively.
Stimulus unit 900 has a connection portion 940 for receiving in a connecting fashion the fixed end of a distance measurement strip, such as any one of those shown and described in relation to other embodiments or as shown and described in relation to FIGS. 11 to 13. Connection portion 940 is formed in limb 932 distal of extensible portion 914 but proximal of a branch 950 from which electrodes E2, E3 extend laterally.
Like stimulus unit 800, stimulus unit 900 has projecting connection parts 952 for connecting the base portion 930 to coupling unit 220. Further, a connector limb 972 extends from base portion 930 and has a connector 970 on an end thereof for receipt in socket 222 of coupling unit 220.
Referring now to
Stimulus unit 1000 has an extensible portion 1014 formed in limb 1032, intermediate a first sensing electrode El for overlying a thenar area and distal sensing electrodes E2, E3 for attachment to a third digit (middle finger) or optionally the fourth digit (ring finger). Sensing electrode E1 is attachable to the thenar area by adhesive attachment portion 1034, while sensing electrodes E2, E3 are attachable to the third or fourth digit (middle or ring finger) by adhesive attachment portions 1046, 1048 respectively.
Stimulus unit 1000 has a connection portion 1040 for receiving in a connecting fashion the fixed end of a distance measurement strip, such as any one of those shown and described in relation to other embodiments or as shown and described in relation to FIGS. 11 to 13. Connection portion 1040 is formed in limb 1032 distal of extensible portion 1014 but proximal of a branch 1050 from which electrodes E2, E3 extend laterally.
Turning now to
Intermediate fixed end 1182 and free end 1184, quadrature indicia 1186 are printed or otherwise placed on a surface of distance measurement strip 1180 for scanning by scanners 290. The quadrature pattern of indicia 1186 is used by control module 110 to determine the relative amount of progress of distance measurement strip 1180 through slot 240, together with the known separations of other parts of stimulus unit 130 (or 500, 600, 700, 800, 900,1000 or 1600) and the predetermined physical relationship of coupling unit 220 to the base portion of the stimulus unit.
In addition to the distance measurement indicia 1186, identifying indicia 1188 may be provided on a part of distance measurement strip 1180 toward free end 1184. This further indicia specifies a unique identifier of the stimulus unit, such as a serial number or other form of unique identifier for tracking the use of the stimulus unit to ensure that it is used once only. The identifying indicia 1188 may also indicate a type of the stimulus unit (e.g. right median, left sural) and/or a use-by date (because the conductive gel tends to dry over time). Unique identifier indicia 1188 may be encoded, for example, in the form of a barcode or other machine-readable code so that it can be read into stimulus and data acquisition module 120 via scanners 290 and subsequently recorded into memory 112.
Referring now to
Distance measurement strip 1280 has distance related indicia 1286 printed or otherwise placed on a portion thereof toward fixed end 1282, while indicia specifying a unique identifier is provided on distance measurement strip 1280 more toward free end 1284. Distance measurement related indicia 1286 and the identifier related indicia 1288 employ a gray scale for determining the distance or unique identifier. Calibration indicia 1289 may also be provided proximate free end 1284 for calibration of the light intensity signals returned to scanner 290 from light impinging on the gray scale indicia.
Distance measurement indicia 1286 may comprise a strip of continuously darkening gradations corresponding to the distance of travel of distance measurement strip 1280 through slot 240. The light intensity signals thus returned by scanner 290 (only one scanner 290 is required for sensing gray scale intensity) may be interpreted by stimulus and data acquisition module 120 or processor 114 to determine the distance that corresponds to the gray scale position at which distance measurement strip 1280 comes to rest in front of scanner 290. Identification indicia 1288 may use gray-scale blocks to encode a unique identifier.
Referring now to
For each of the distance measurement strip embodiments shown in FIGS. 11 to 13, the length of the elongate strip will depend on the form and configuration of the stimulus unit 130 and the position on the distally extending limb to which it is attached. However, embodiments of the distance measurement strip may have a length in the order of 20 to 40 centimeters or in the vicinity of 30 to 35 centimeters.
Other embodiments of the distance measurement strip may use indicia that can be sensed by a scanner 290 that is not purely optical in nature. Further, according to alternative embodiments, the identification indicia 1188, 1288 or 1388 may be formed on a part of stimulus unit 130, 500, 600, 700, 800, 900, 1100, or 1600 other than the distance measurement strip, such as the base portion.
Referring now to
At step 1420, the distal sensing electrodes are attached in the appropriate locations using the adhesive attachment portions surrounding each sensing electrode, with the backing sheets removed. In step 1430, coupling unit 220 is connected to the base portion using the corresponding connecting parts 250 on coupling unit 220 and connecting parts 252, 552, 652, 752, 852, 952, 1052, 1652 on the base portion of the stimulus unit.
At step 1440, the distance measurement strip 280, 680, 780, 1180, 1280, 1380 is inserted into slot 240 of coupling unit 220 and pulled and/or pushed therethrough so that the indicia on the distance measurement strip is read by one or more scanners 290. The signals generated by scanners 290 in response to the passage or final rest position of the distance measurement strip are transmitted from coupling unit 220 to a controller within stimulus and data acquisition module 120 and then onto processor 114 for processing to determine the separation of the stimulus and sensing electrodes.
At step 1450, the nerve conduction testing is carried out using the stimulus and sensing electrodes on stimulus unit 130, 500, 600, 700, 800, 900, 1000, 1600 and taking into account the determined separation of the stimulus and sensing electrodes as necessary.
It should be noted that, while the sensing electrodes are generally described herein as being distally positioned and the stimulation electrodes are described as being more proximally positioned, these positions represent nerve conduction testing in an antidromic orientation. It should be understood, however, that the relative functions of the sensing and stimulating electrodes may be reversed to an orthodromic orientation. In an orthodromic orientation, the stimulus may be applied at the fingers and/or thenar and/or hypothenar areas and the evoked response sensing may occur at the wrist, for example.
Referring now to
Substrate 1500 has a base layer 1510, which forms the top (or upper or outer) layer facing away from the body part. This base layer 1510 is formed of medical grade polyester or a similar material and has sufficient rigidity to form the base for flexible circuitry and enable subsequent conductive and insulative layers to be formed thereon, while having sufficient flexibility to enable the entire substrate 1500 to bend to generally conform to the shape of the body part to which it is to be affixed.
Electrodes 1520 are formed on base layer 1510, either directly or on a thin priming or separation layer (not shown) coating the underside of base layer 1510. Electrodes 1520 are electrically coupled to external connectors via conductors 1530 in the form of flexible circuit tracings formed on base layer 1510. As with electrodes 1520, conductors 1530 may be directly formed on base layer 1510 or may be separated therefrom by a priming or separation layer.
Portions of substrate 1500 that are not to be exposed to the body part (such as conductors 1520) are covered by an insulation layer 1535. This insulation layer 1535 covers conductors 1530 for electrodes 1520, which in the example cross-section are stimulating electrodes. Electrodes 1520 have a layer of conductive gel 1540 formed around them for facilitating conduction between electrodes 1520 and the skin of the body part on which the substrate 1500 is positioned.
For portions of substrate 1500 that are not covered by conductive gel 1540, but that surround the electrodes 1520 and conductive gel 1540, a double-sided adhesive layer 1550 is formed over the insulation layer 1535. Adhesive layer 1550 may be a foam (or other) material impregnated or coated with one or more adhesive substances or it may be a layer of the adhesive substance itself.
The adhesive layer 1550 and conductive gel 1540 is covered by a protective backing sheet or layer 1560 so that the adhesive and conductive qualities of the adhesive layer 1550 and conductive gel 1540 are preserved until application of substrate 1500 to the body part. The total thickness of substrate 1500 may be in the order of 0.7 to 1.5 millimeters, approximately.
The embodiment shown in
Referring now to
Stimulus unit 1600 also comprises an intermediate portion 1660 on which stimulating electrodes S3 and S4 are located to overlie a central part of the palm. Extending distally from intermediate portion 1660 is the first limb 1632. In an alternative embodiment, the first limb 1632 may be coupled to base portion 1630, rather than intermediate portion 1660.
The first limb 1632 has an extensible portion 1614 formed in between a finger portion 1650 and intermediate portion 1660. Extensible portion 1614 is shown in
The first limb 1632 comprises a sensing electrode pair E2, E3 disposed on finger portion 1650 at a distal extremity of the stimulus unit 1600. Sensing electrodes E2, E3 are formed as lateral strips on adhesive attachment portions 1646, 1648, respectively, for wrapping around the third digit when the stimulus unit 1600 is in use.
As with the other stimulus unit embodiments, stimulus unit 1600 has a connection portion 1640 formed on the distally extending limb in fixed relation to the sensing electrodes E2, E3. Connection portion 1640 allows for connection of a measurement member, such as distance measurement strip 1180, 1280, 1380, or other distance measurement members shown and described herein, in order to facilitate determination of the separation of the distal sensing electrodes from the proximal stimulation electrodes. Connection portion 1640 is formed in limb 1632 distal of extensible portion 1614 but proximal of finger portion 1650. Connection portion 1640 may alternatively be formed at another position adjacent finger portion 1650, in either a lateral or distal position relative to finger portion 1650.
In alternative embodiments, stimulus unit 1600, an alternative arrangement or form of distance measurement may be used in place of the distance measurement strip end connection portion. Examples of such alternative arrangements or forms of distance measurement are described above in relation to
As shown in
Extending distally from adhesive attachment portion 1625 are the second limb 1634 and the intermediate portion 1660. Second limb 1634 is connected to intermediate portion 1660 and adhesive attachment portion 1625 by a bridging portion 1664 that comprises a thin strip of substrate material, sufficient to allow one or more conductors to be performed hereon and to allow flexible movement of limb 1634 for placement over the thenar area of different sized hands. Limb 1634 has an area of adhesive foam 1634a formed on the underside thereof to surround sensing electrode E1 and secure it in place during the testing.
Intermediate portion 1660 is connected to base portion 1630 via bridging portions 1662 and 1664 that connect to adhesive attachment portion 1625, which in turn connects to base portion 1630. Bridging portion 1664 also connects intermediate portion 1660 to second limb 1634. Intermediate portion 1660 has an area of adhesive foam 1660a formed on an underside thereof, for facilitating secure placement of sensing electrodes S3, S4 over an area of the palm that has the median nerve running therethrough.
The shape of intermediate portion 1660, as shown in
In the configuration of operation and sensing electrodes shown in
In the configuration of stimulus unit 1600 shown in
In an alternative configuration of stimulus unit 1600, the distance between intermediate portion 1660 and finger portion 1650 may be fixed, while intermediate portion 1660 and base portion 1630 are coupled by an extensible portion similar to extensible portion 1614. With such a configuration, a distance measurement member may be used to determine the variable distance between the intermediate portion 1660 and the base portion 1630 in the same manner as previously described.
Stimulus unit 1600 enables the measurement of the latency and amplitude of the evoked action potential at the finger when stimulating at the wrist and then from the finger when stimulating from the palm. The difference in these latencies allows calculation of the latency from the wrist to the palm. The difference in latency can be with respect to the onset or the peak latency of the evoked response. Similarly, the conduction velocity (in the form of an absolute value, a difference or a ratio) can be calculated from the onset or peak latency. Once the latency from wrist to palm is calculated, the conduction velocity from the wrist to palm segment is calculated by dividing the fixed distance (cathode to cathode) between the wrist and palm by the wrist to palm latency.
The described testing configuration also allows calculation of the conduction velocity of the palm to finger segment as a function of the distance between the palm and finger cathodes and the determined latency between the palm stimulus and the sensed response at the finger.
Further results of diagnostic significance that may be derived or calculated include the difference in conduction velocity between the wrist to palm segment and the palm to finger segment, as well as the ratio of these two conduction velocities. The determined latencies, conduction velocities and conduction velocity differences and ratios may be used by medical or technical personnel, as desired, in order to increase the information gained from the testing protocol.
The various calculations and determinations mentioned above are made by the processor 114, based on data received from the stimulus and data acquisition module 120, which in turn is based on signals supplied to and received from stimulus unit 1600.
The two nerve segments (and three electrode pairs) of the described configurations of stimulus unit 1600 allow a higher sensitivity to evoked responses due to the shorter segments. By using a wrist to palm segment separate to the palm to finger segment, mild localized nerve conduction slowing is not diluted, as it would be in a longer single segment between the wrist and finger. Such configurations readily enable a determination that the neuropathy is localized in the wrist, in the case of entrapment of the median nerve, when the wrist to palm segment has prolonged latency and the palm to finger segment does not evidence such latency. Such configurations also provide the ability to detect entrapment of the median nerve at the wrist in the presence of concomitant neuropathies, based on a determination of the ratio or difference of latencies between the wrist to palm and palm to finger segments.
According to the electrode configuration of stimulus unit 1600 shown in
Using the electrode configuration of stimulus unit 1600 shown in
The configuration of stimulus unit 1600 shown in
In a second configuration, sensing electrodes E2, E3 may instead be employed as a stimulus electrode pair to measure the sensory responses at the palm and wrist orthodromically. Thus, the sensing and stimulation functions of the electrodes described in the first configuration are reversed for the second configuration.
In the third configuration, the stimulating electrode pair S3, S4 may be used to stimulate the median nerve at the palm for antidromic sensing using electrode pair E2, E3 at the digit, while using the electrode pair S1, S2 at the wrist as a sensing electrode pair to measure the mixed nerve response at the wrist orthodromically.
In the fourth configuration, stimulation electrode pair S1, S2 may be used for stimulus while electrode pair S3, S4 at the palm is used as a sensing electrode pair, together with sensing electrode pair E2, E3 at the digit. Further, all of these four configurations may be employed using either of the first and second digits instead of, or in addition to, the third digit, to achieve the same result, because each of the first, second and third digits is innervated by the median nerve. If stimulus unit 1600 employs sensing electrode pairs on more than one digit, first limb 1632 may comprise braches in a branch structure, similar to those shown and described in relation to
In an alternative embodiment of stimulus unit 1600, extensible portion 1614 is replaced with an inextensible portion. In such an embodiment, there are fixed distances between the wrist to palm and palm to finger electrode sites. The wrist to palm and palm to finger segments are the same length, or nearly the same. The segments may be between about 7 cm and 8 cm in length, cathode to cathode. For this embodiment, the finger electrodes E2, E3 are positioned on the finger first and then the palm and wrist portions are positioned on the patient. Thus the location of electrode pairs S1, S2 and S3, S4 would vary based on hand size.
Further alternative embodiments of stimulus unit 1600 may employ only a single electrode on the intermediate portion on the palm. In such embodiments, for sensing and/or stimulus purposes, the single palmar electrode (ie. S3 or S4) may be paired with another electrode located away from the palmar electrode, for example on another limb or on the finger portion 1650 or base portion 1630. This other electrode to be paired with the palmar electrode may be thenar electrode E1 or one of the wrist electrodes S1, S2 or one of the finger electrodes E2, E3.
While the stimulus unit embodiments shown and described herein generally have a unitary substrate including one or more limbs and a base portion, each of the areas or portions of the stimulus unit having sensing or stimulation electrodes may be formed on a separate substrate. For example, distal sensing electrodes positioned around a finger may be formed on a substrate distinct from the substrate on which the proximal stimulation electrodes are formed. In such embodiments of the stimulus unit, as conductors 1530 cannot be formed to cross between substrates, the conductors on the separate substrates must be either electrically coupled to each other (for example, by connectors) or have separate connectors for interfacing with coupling unit 220. Such embodiments may be useful where, for example, the extensible portion in one of the limbs is formed as a strain gauge or other electromechanical sensor to indicate the degree of extension of the limb and thereby provide a measurement of the separation of the separate substrates and their respective electrodes. Such embodiments therefore do not require a distance measurement strip.
It should be understood that various features and/or functions of elements described in relation to different embodiments may be replaced or combined with other elements of other described embodiments, provided that such combination or replacement is operable to achieve the functions described herein. Reference herein to a limb is not intended to include a reference to a human limb, such as an arm or leg. Rather, it is a reference to a part of a stimulus unit embodiment.
Further, it should be understood that, where a stimulus unit is described as being configured for use on a right hand or a left hand, it may be readily reconfigured for use on an opposite hand. Further, while FIGS. 1 to 3 show stimulus unit 130 used in combination with a coupling unit 220 (as part of stimulus and data acquisition module 120), it should be understood that stimulus unit 130 may be replaced with any other of the stimulus units described herein in alternative embodiments of system 100.
Embodiments have been described herein by way of example, with reference to the accompanying illustrative drawings. It should be understood that variations of these embodiments, as described and as illustrated, are possible while remaining within the spirit and scope of the principles of the described embodiments.
This application is a continuation-in-part of U.S. Utility patent application Ser. No. 11/407,296, filed Apr. 20, 2006, which claims the benefit of U.S. Provisional Patent Application No. 60/672,853, filed Apr. 20, 2005 and U.S. Provisional Patent Application No. 60/774,646, filed Feb. 21, 2006, the entire contents of all of which are hereby incorporated by reference.
Number | Date | Country | |
---|---|---|---|
60672853 | Apr 2005 | US | |
60774646 | Feb 2006 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 11407296 | Apr 2006 | US |
Child | 11557390 | Nov 2006 | US |