The subject matter of the current application relates to automated fabric/article folding machines. Specifically, it relates to folding mechanisms for automatic or semi-automatic folding machines which fold an article as it moves.
Automatic article folding machines designed to fold articles have existed since the beginning of the previous century. Some folding mechanisms can be more complex than others, however, many automated folding mechanisms mimic the simple folding methods that people have been using to manually fold a clothing article. In other words, during the folding operation, the article is stationary, laying on a planar surface, and it is folded in stages, e.g., one sleeve after another. Specifically, first a fold line is defined, or held down in the article, a portion of the article is then dragged by a respective edge, or pivoted across the fold line. It is a simple, but time-consuming method. These non-continuous automated folding mechanisms are often mechanically complex, slow, noisy and inefficient in terms of energy consumption and maintenance. A further disadvantage of these mechanisms is that they can only fold a narrow selection of articles, or article types. Specifically, these folding mechanisms are not designed to handle articles of different widths, or sometimes even a single article having a variable width. The main reason for this disadvantage is that size adjustability (e.g., to accommodate variable width or thickness) of a folding mechanism usually means additional mechanical and electrical complexity, which usually translates into compromising folding reliability, quality and robustness.
EP2330248B1 discloses a continuous trouser folding method and device, which includes two non-driven, or passive, brush-rollers, which roll the respective trouser legs inwards, with respect to one another during continuous motion in a motion direction. Due to a level-difference between the different paths, or motion planes, the parallel movement inwards towards the trousers centerline folds the two trouser halves by dropping one on top of the other. This method is limited in terms of clothing types, geometry and weight. Furthermore, the level difference may be problematic since it requires more room for the folding device. Another disadvantage is that the resulting fold is not a standard, ‘pivoted’ fold, in terms of two portions of the same article top surface being folded one onto the other (and facing each other), about a fold line. EP2330248B1 discloses a folding method where parallel movement keeps the surfaces facing in the same direction after the fold. Yet another disadvantage is not disclosed by EP2330248B1 but is easy to understand since after being folded, the waist portion of the trousers will include a twist, or entanglement which does not appear in simple, ‘pivoted’ folds, and will probably protrude upwards from the article.
The current invention aims to solve the above mentioned problems while achieving simultaneous continuous folding and conveyance in a folding machine.
In accordance with a first aspect according to the subject matter of the present application there is provided a folding device comprising a driven contact device configured for continuously creating a fold in a moving article during an operative folding mode of the folding device; the folding device orientation being defined with respect to a three dimensional Euclidean space described by first, second and third axes;
in the operative folding mode, the article moving along a base plane defined by the first and second axes in a motion direction parallel to the first axis;
the folding device comprising a support structure connected to and configured for supporting the contact device,
the contact device comprising a peripheral surface extending at least partially about at least one rotation axis; the peripheral surface comprising multiple elongated fingers (44) protruding outwardly away therefrom;
wherein
in the operative folding mode of the folding device, the fingers consecutively and incrementally engage and fold the article.
In accordance with a second aspect according to the subject matter of the present application there is provided a folding system configured for continuously creating at least one fold along a respective fold line in an article during motion thereof, the folding system comprising:
the folding device;
a conveyor configured for conveying the article in a motion direction; before being folded, the article comprising a first article surface facing away from the conveyor and a second article surface facing and contacting the conveyor; and
a holding member comprising a holding member edge, only the holding member configured for holding at least a portion of the article in a direction perpendicular to the motion direction during folding, and configured for defining a fold line in the article along the holding member edge.
In accordance with a third aspect according to the subject matter of the present application there is provided a continuous article folding method comprising the following steps:
In accordance with a fourth aspect according to the subject matter of the present application there is provided a clothing folding device configured to engage and fold an article of clothing moving on a clothing conveyor in a motion direction, the folding device comprising:
a support arm configured to be mounted to a clothes folding machine;
a contact device attached to the support arm such that the contact device is positioned over the clothing conveyor, when the support arm is mounted on the folding machine, the contact device comprising:
first and second pulleys spaced apart from one another along an elongation axis of the contact device, and having respective first and second rotation axes; and
a belt wrapped around the spaced apart pulleys and configured to rotate in a belt rotation direction along the elongation axis, the belt having an outer belt surface provided with a plurality of elongated fingers which protrude outwardly therefrom; and
a driving motor operatively connected to the contact member and configured to drive at least one of the first and second pulleys, to thereby cause the belt to rotate.
In accordance with a fifth aspect according to the subject matter of the present application there is provided a clothing folding system configured to fold a clothing article, comprising:
a clothing conveyor defining a conveyor plane and having a longitudinal axis, the clothing conveyor configured for supporting and transporting the article in a motion direction along the longitudinal axis;
a holding member having a holding member edge, and configured for holding, at least in a direction perpendicular to the motion direction, the article being transported on the clothing conveyor along the movement direction;
the folding device is positioned over the clothing conveyor, and wherein:
in a top view of the clothing conveyor, the holding member and the folding device at least partially overlap; and
during an operative folding mode, as the article is transported on the clothing conveyor in the movement direction, the plurality of elongated fingers provided on the peripheral surface of the belt are configured to engage and urge an edge of the article of clothing over the holding member edge, to thereby form a fold line in the article.
Any of the following features, either alone or in combination, may be applicable to any of the above aspects of the subject matter of the application:
In a top view, the article includes first and second article surfaces and a peripheral article edge which extends therebetween and defines an outline of the article, the first article surface faces towards the contact device and the second article surface faces away from the contact device; and wherein in the operative folding mode, the respective fingers which form the fold are configured to engage mainly the article edge and the second article surface.
The folding device has a driving motor which drives the contact device, which enables continuous folding.
The peripheral surface can be an outwards facing outer belt surface of a belt which extends about at least one pulley, the rotation axis of which coincides respectively with the rotation axis.
The folding device can include first and second pulleys, each of which has first and second rotation axes; and wherein the peripheral surface is an outwards facing outer belt surface of a belt stretched about the first and second pulleys.
The peripheral surface is an outwards facing outer belt surface of a belt which has a belt velocity; and wherein in a view along the third axis, the belt velocity is either directed towards the motion direction, and forms an acute velocity angle aV therewith, or directed away from the motion direction and forms an obtuse angle 180−aV therewith.
The velocity angle aV can ranges between 30 and 70 degrees and preferably between 40 and 60 degrees.
At least one finger can have a rounded or rectangular cross section.
The fingers are made of rubber or polymer.
At least one finger can be at least partially deformable.
At least one finger can have a smooth finger peripheral surface.
Each finger has a finger top surface and a finger peripheral surface which extends therefrom towards the peripheral surface; and wherein the finger peripheral surface can include multiple ridges which protrude outwardly therefrom.
The peripheral surface can include fingers lined up in a row.
At least one finger can be curved, or includes at least one bend in a longitudinal direction thereof.
The fingers can have a finger length EL measured from the peripheral surface, and wherein the finger length EL is at least 10 mm.
The contact device has a contact device length ML and a contact device width MW; and wherein a dimension ratio LWR=ML/MW is larger than 0.5.
The holding member does not rotate about itself.
In the operative folding mode of the folding system, the article is located between the conveyor and the holding member, and the rotation axis of the contact device is located above the article and above the holding member.
In the operative folding mode of the folding system, the fold is created in the article only during relative motion in the motion direction between the article and the folding device.
The at least one rotation axis of the contact device is never perpendicular to the motion direction.
At least one finger can contact the conveyor if no article is located therebetween.
The contact device can include first and second parallel pulleys and at least one belt which is stretched thereabout.
The folding system can include two or four folding devices.
The folding system can include two or four elongated folding devices, and wherein in a top view of the folding system parallel the third axis, the respective rotation axes diverge along the motion direction.
The contact device can include two different belts arranged side-by-side, each of which can include different folding fingers.
The peripheral surface can be an outwards facing outer belt surface of a belt which has a belt velocity BV; and wherein in a view along the third axis, the belt velocity BV is either directed towards the motion direction, and forms an acute velocity angle aV therewith, or directed away from the motion direction and forms and obtuse angle 180−aV therewith.
The contact device cam have a contact device width measured along one of the rotation axes, and a contact device length perpendicular to the contact device width, along the elongation axis; and a ratio of the contact device length to the contact device width is larger than 10.
For a better understanding of the subject matter of the present application and to show how the same may be carried out in practice, reference will now be made to the accompanying drawings, in which:
Where considered appropriate, reference numerals may be repeated among the figures to indicate corresponding or analogous elements.
In the following description, various aspects of the subject matter of the present application will be described. For purposes of explanation, specific configurations and details are set forth in sufficient detail to provide a thorough understanding of the subject matter of the present application. However, it will also be apparent to one skilled in the art that the subject matter of the present application can be practiced without some specific configurations and details presented herein.
Reference is made to
The folding system 10 includes a holding member 16, the folding device 14 and a relative motion mechanism 18. The holding member 16 does not rotate, as, for example a roller would about an axis of rotation. The holding member can, however, pivot about an axis to a certain degree, without rotating about it. The main goal is to allow easy passage for articles, and only create enough counter-force to form the fold in the article. The folding device 14 has a contact device 15 which engages the article 12. The relative motion mechanism 18 in the current embodiments is a clothing conveyor 18, which can include multiple mini conveyors 18a which together form a conveyor top surface 22. The conveyor 18 rotates such that the conveyor top surface 22 conveys the article 12 with respect to the stationary folding device 14 that continuously performs a folding operation on the article 12 across the holding member 16 to thereby define a fold line 20. During folding the article passes between the holding member 16 and the conveyor 18. The holding member 16 is configured to hold down the article 12 against the conveyor top surface 22, and the contact device 15 incrementally and continuously urges, or collects, an edge and a portion of the article 12 across the holding member's edge 30, to thereby create a fold in the article 12.
Attention is drawn to
The article 12 can be a clothing article which may lay flat on the conveyor top surface 22. Generally speaking, only portions of the article 12 which are being folded move in the third axis Z direction during folding. According to some embodiments, the fold line 20 is oriented generally parallel to the first axis X or the motion direction MD in a view along the third axis Z.
Attention is drawn to
In the current description, for the sake of explanation simplicity, it is assumed that the article 12 is neatly laid out on the conveyor top surface 22. And since gravity usually plays a part in the shape and/or behavior of the article 12, the article 12 is regarded as having a generally consistent planar, slender, or thin shape as shown at least partially in
A proper, or desired fold is formed along a fold line 20 of the article 12 in the first article surface 24, the fold line's location can be defined by a holding member edge 30 of the holding member 16. The result of creating such a fold is that a first portion of the second article surface 26 faces upwards, with a so-called borderline, or fold line 20 dividing the upward facing and now-folded first portion of the second article surface 26 from the remaining portion of the second article surface 26. This transition between the unfolded and folded positions of the first portion is facilitated by the endlessly, or continuously revolving, or rotating, contact device 15 while the article 12 is conveyed in the motion direction MD. The contact device 15 performs the fold by progressively collecting and urging, or ushering the article 12 in the second axis Y direction. Attention is drawn to
Attention is drawn to
Each holding member 16 is preferably permanently connected to the folding machine via a holding member support 40. Each holding member bottom surface 34 is preferably supported by the holding member support 40 such that it is almost weightless in the third axis Z direction, especially with respect to the conveyor top surface 22. In other words, if the holding member bottom surface 34 contacts the conveyor top surface 22, it does so with applying a minimal, or almost no force. The holding member support 40 preferably allows the holding member 16 one or two degrees of freedom of movement. One degree of freedom can be linear in the vertical direction, and a second degree of freedom can be partially rotational, with respect to a pivot mechanism, or hinges, preferably located between the holding member support 40 and the holding member 16. Nonetheless, the holding member 16 is non-rotating, in a sense that it cannot complete a full rotation about itself, or any other axis. In the present embodiments, each holding member support 40 includes a parallel movement mechanism that allows the holding member 16 to remain parallel to the conveyor top surface during movement in both the third axis Z direction and in the motion direction MD. The holding members 16 are designed with a minimum interference for the article 12, i.e., they can include a relief, or guiding portion 42 bent with respect to the rest of the holding member 16 that enables smooth entrance, or conveyance of the article 12 between the holding member 16 and the conveyor 18. Each holding member 16 is appropriately weighted and supported by the holding member support 40 to apply a counter force sufficient to hold the article 12 at least in the lateral, or width direction (second axis Y), to ensure that a proper fold line 20 is formed in the article 12. Stated differently, the fold line 20 is created in the article 12 generally parallel to the first axis X, because the holding member 16 prevents at least a portion of the article from moving in the second axis Y direction while the rest of the article 12 is incrementally and continuously ushered across the holding member edge 30. The holding member 16 therefore counters, at least at the fold line 20, forces applied on the article 12. In a top view of the conveyor 18, the holding member 16 and the folding device 14″ preferably at least partially overlap.
The conveyor 18 is configured to enable relative motion between the article 12 and the folding device 14. According to the present embodiments, the conveyor 18 is a motorized conveyor, which uses friction to carry the article 12 and move it with respect to, or past, the folding device 14. In the embodiments seen in the figures, during a folding operation, the position of the folding device 14 is fixed relative to the conveyor 18, such as by being rigidly attached to a structural member of the folding system 10 or the folding machine itself. Although the position of the folding device 14 is fixed during a folding operation, at least the contact device 15 of the folding device 14, must be in motion, as will be further explained below.
According to the present embodiments, the conveyor 18 refers to multiple, side-by-side smaller conveyors 18a, which form, or define the conveyor top surface 22 on which the article 12 is placed. In a plan view of the conveyor 18 in the third axis Z direction (see
Attention is drawn to
According to the present example, the contact device 15 is connected to a stationary, or rigid, support structure, or arm 54 which, in turn, is connected to the folding machine. The support structure 54, as its name suggests, supports the contact device 15 in a specific orientation with respect to the three dimensional Euclidean space, while at least a portion of the contact device 15 is continuously moving during folding as will be explained below.
The contact device 15 has a peripheral surface 48 which extends at least partially about, or around, at least one rotation axis R which defines a movement, or rotation, direction RD as shown in
Attention is drawn to
Each contact device 15 can be driven by the electric motor 56. The motor 56 can be directly attached to, and drive, a respective pulley 52 in the rotation direction RD, however, any other direct or indirect driving method can be employed.
The belt 46 has an inner belt surface 49, an opposite, outer belt surface 50 and a total belt length BL. The inner belt surface can have torque transfer ridges 49a which enable torque transfer between the belt 46 and the roller, or pulley 52. In the current embodiment, where there are two folding devices 14″ covering almost the entire conveyor width CW, and BL/2 is preferably at least 50% of the conveyor width CW. In the top view of the folding system 10 parallel the third axis Z, the respective rotation axes R of the two folding devices 14″ diverge along the motion direction MD. This orientation was found to give the best results in terms or repeatability, reliability and article variability.
At any given instant during a folding operation, the belt 46 has operative and inoperative belt portions 58, 60, each having a slightly shorter length than BL/2. The operative belt portion 58 extends between the pulleys 52 and faces at least partially downwards, towards the conveyor 18, and the article 12. The inoperative belt portion 60 is located farther away from the article 12 than the respective rotation axis R.
The belt 46 revolves, or moves in the rotation direction RD. The rotation direction RD is always directed such that the operative belt portion 58 has a velocity vector VV which is at least partially directed in the motion direction MD. In other words, as shown in
The belt 46 has a belt velocity BV which can range between 200 mm/s and 1000 mm/s, depending on the velocity angle Av. According to the present embodiment, the belt velocity equals 540 mm/s. According to the current embodiment, the belt 46 can include multiple elongated fingers 44 which are aligned consecutively in a single row. According to some embodiments the belt 46 has two rows of elongated fingers 44, e.g. as shown in
For each folding system 10 with the second embodiment of the contact device 15″, it was found that mathematical links can be defined between, e.g., the linear belt velocity BV and a conveyor velocity CV. For example, BV=(CV*SC)/Cos(aV). A speed ratio constant SC was empirically discovered, and can range between 0.8 and 1.4, and preferably between 1 and 1.2. If the belt velocity BV is too high with respect to the conveyor velocity CV, the contact device (15) could, e.g., cause the article 12 to displace with respect to the conveyor 18. On the other hand, if the belt velocity BV is too slow, the contact device could, e.g., stretch the fabric. In both cases, article jams can occur. In a view along the third axis Z, the belt velocity BV is either directed towards the motion direction MD, and forms an acute velocity angle aV therewith, or directed away from the motion direction MD and forms an obtuse angle 180−aV therewith.
Attention is drawn to
According to the present embodiments, each elongated finger 44 has opposite base and main finger portions 62, 64. The base finger portion 62 is preferably permanently connected (i.e., non-removable without damage) to the peripheral surface 48, or outer belt surface 50. On the inoperative belt portion 60, i.e., in a non-engaged position of the elongated finger 44, the elongated finger 44 has a finger length EL which is measured between the peripheral surface 48, or outer belt surface 50, and an extremity of the elongated finger 44 on the main finger portion 64. The finger length EL can range between and 10 mm and 130 mm and preferably between 30 mm and 100 mm. In the current embodiments, the finger length equals 50 mm. According to the present embodiments, on the operative belt portion 58, the fingers 44 closest to the conveyor 18 can touch the conveyor 18. Preferably, in a non-operative mode, at least one finger 44 is either in contact with the conveyor 18, or located not more than 1 mm away from the conveyor 18. The advantage being that even very thin fabric will be ‘caught’ by the fingers and 44 will be eventually folded. In the operative folding mode, the respective fingers 44 which form the fold (engage the article 12) are configured to engage mainly the article edge 28 and the second article surface 28.
Each elongated finger 44 can have a finger top surface 66 and a finger peripheral surface 68 which extends towards the outer belt surface 50. In some embodiments, at least one finger 44 has a smooth finger peripheral surface 68. In other words, the finger peripheral surface 68 can be without ridges, or protrusions. According to some embodiments, each finger peripheral surface 68 can include ridges 70 which protrude therefrom, as seen in
As seen the rear view of
According to the present embodiments, in an operative folding mode of the folding system 10, the article 12 is moving, or conveyed through the folding system 10. The article 12 rests on the conveyor top surface 22, which rotates, and conveys the article 12 under the holding member 16. In the operative folding mode, the article 12 is located between the conveyor 18 and the holding member 16, and the rotation axis R, R1, R2 of the contact device 15′, 15″ is located above the article 12 and above the holding member 16.
Attention is drawn to
Attention is drawn to
The contact device 15″ has a contact device elongation axis L which is defined to extend along a direction corresponding to the direction where the shortest distance is measured between the first and second rotation axes R1, R2. The contact device elongation axis L is located midway between, the operative and inoperative belt portions 58, 60. The contact device elongation axis L can be perpendicular to the first and second rotation axes R1, R2. The contact device elongation axis L is parallel to the belt longitudinal direction BL.
A contact device length ML is defined perpendicular to any of the rotation axes R, R1, R2, between the farthest extremities of the peripheral surface 48. According to the second embodiment of the contact device, the contact device length ML can range between 20 and 70 percent of the conveyor width CW and preferably between 30 and 50 percent of the conveyor width CW. According to the present embodiments, the contact device length ML equals 40 percent of the conveyor width CW. The contact device length ML can range between 190 mm and 320 mm. According to the present embodiments, the contact device length ML equals 270 mm.
In the current embodiments, the contact device 15′, 15″ has a contact device width MW is defined in a direction parallel to any of the rotation axes R, R1 or R2 between farthest extremities of the peripheral surface 48. The contact device width MW can range between 4 mm and 50 mm. According to the present embodiments, the contact device width MW equals 15 mm. A length to width ratio, or a dimension ratio LWR=MW/ML is defined between the contact device length ML and the contact device width MW. According to the present embodiment, the dimension ratio LWR ranges between 0.5 and 25, and preferably between 10 and 20. In the present embodiments, the dimension ratio LWR equals 20.
In a view along the first axis X (
In a plan view of the conveyor top surface 22 along the third axis Z (
All of the above mentioned angles ratios and measurements are direct results of a rigorous and constant optimization and research and development process, which led to these numbers. The goal of this effort has been to find a balance between cost-effectiveness and versatility of the folding system 10.
Attention is drawn to
Attention is drawn to
There is further provided a folding method which includes the following steps:
There is further provided a folding method which includes the following steps:
There is further provided a an article folding method for folding the article (12) which includes opposing first and second article lateral edges 28a, 28b, and an article center line CL passing between the article lateral edges 28a, 28b, the method comprising:
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/IL2018/050911 | 8/16/2018 | WO | 00 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2019/043688 | 3/7/2019 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
3131838 | Snayberger et al. | May 1964 | A |
5934523 | Willett | Aug 1999 | A |
6062444 | Tankersley et al. | May 2000 | A |
6776316 | Van Eperen | Aug 2004 | B2 |
Number | Date | Country |
---|---|---|
1988003580 | May 1988 | WO |
Entry |
---|
Int'l. Search Report for PCT/IL2018/050911, dated Jan. 15, 2019. |
Number | Date | Country | |
---|---|---|---|
20210079587 A1 | Mar 2021 | US |
Number | Date | Country | |
---|---|---|---|
62551846 | Aug 2017 | US |