Device of a volute channel of a pump

Information

  • Patent Grant
  • 6779974
  • Patent Number
    6,779,974
  • Date Filed
    Wednesday, December 11, 2002
    21 years ago
  • Date Issued
    Tuesday, August 24, 2004
    20 years ago
Abstract
A device of a volute channel of a pump is contained in a circular casing and cooperates a rotational impeller for pumping and delivering fluid. The device comprises a volute channel structure and a throat partition. The volute channel structure is a spiral volute channel and surrounds an impeller exit side. A leading edge of the volute channel is a water-cut angle. A sectional area of the volute channel is wider and deeper from the water-cut angle. An outer diameter of the volute channel is a concentric arrangement. The throat partition connects to a rear edge of the volute channel and extends toward an exit of the casing so as to that the throat partition is at least and mainly an extension of the volute channel; the extension of the volute channel overlaps the leading edge of the volute channel to have the total length of the volute channel, the total length is able to surround the impeller exit side over 360 degrees.
Description




FIELD OF THE INVENTION




The invention relates to a device of a volute channel of a pump, especially the device cooperates with impellers to pumping fluid, and the total degree of volute channel surrounding the impellers is over 360 degrees.




BACKGROUND OF THE INVENTION




There are two casings for the design of the flow channel of pump, which are the volute casing and the diffuser casing, and both are to recovery the partially transferred pressure energy from the high kinetic energy outputted by impellers. The application theory of the volute casing is to use that the channel area is gradually increased, that is, the diffusing channel can slow down the velocity of fluid flow and recovery partial energy; the diffuser casing adopts the angles of the diffusers to recovery the tangential kinetic energy of the high-speed fluid flow from the diffusers. The two kinds of casings are capable of reaching high efficiency. Further, they can be usually seen in the normal pumps.




For small centrifugal pump, such as small self-priming pump, small centrifugal pump, small in-line pump, etc., whose design focuses on how to save the cost to manufacture products, but the efficiency is ignored. As an example, the small centrifugal pump traditionally adopts the concentric channel of the collect casing to satisfy the goal of easy manufacturing and saving cost. However, the cross-section area of the channel is always a certain value and without the water-cut angle to less the functions of diffusing channel at the channel exit and water-cut of the volute channel so as to let the flow diffusion at the exit of the channel, and the partial fluid return back in channel. When NPSHA at the inlet of the pump is lower down, the cavitations of liquid is then increased so as to that the channel be occupied the most space of the impeller channel, hence the function to deliver liquid is almost blocked to cause the performance of pumping is highly decreased. In some prior arts, adding diffuser structure and nozzle structure to such small centrifugal pump to increase the inlet head, by using the nozzle structure to return high-pressure liquid from pump outlet, and also for better mixing of liquid and gas; the mixture also enters into the impeller with higher speed to normally deliver liquid and increase pump efficiency when pump being under the condition of low NPSHA. However, it is to directly decreasing the performance and increasing the cost, and the dimensions of pump so as to not comply with the requirement of compact size at the present marketing.




There are several prior arts related to the technology of channel of pump casing, such as U.S. Pat. Nos. 5,040,946, 5,358,380, 5,310,310, 5,234,317, 5,385,444 and 5,318,403, wherein the U.S. Pat. Nos. 5,040,946, 5,358,380 and 5,310,310 disclose the casing structure of the volute channel, which adopt to deform the outer diameter of the casing to vary with the radial dimension, (width), of the channel for enlarging the sectional area. The outer diameter of the pump casing is non-concentric because of the volute, and the axial dimensions, (depth), is not varied, further that, the total degree of the channel surrounding impeller is 360 degrees or less. The U.S. Pat. Nos. 5,234,317, 5,385,444 and 5,318,403 disclose the technology related to the pump casing structure of the channel of diffuser. Nevertheless the prior arts have not released the technology regarding the present invention.




Through many years' experience in manufacture, devoted study, continuous research, experimental analysis, and improvement, the inventor finally proposes an invention that can reasonably and effectively improve the shortcomings of the prior arts.




SUMMARY OF THE INVENTION




The main objective of the invention is to submit a creative volute channel device of a small centrifugal pump, which has the benefits of easy manufacturing, low cost and compact size.




The second objective of the invention is to submit a volute channel device, which adopts a circular casing with concentricity to decrease cost, and designs a volute channel structure whose width and depth are gradually increased by the direction of fluid flow. The total surrounding degree of the volute channel is over 360 degrees to promote pumping efficiency.




To approach above objectives, a preferred embodiment of the volute channel device of the present invention accepts a special volute device and a throat partition to be contained in a circular casing. The volute channel device is figured as spiral to surround the exit of the impeller. Based on the direction of pumping fluid, there is a water-cut angle on the leading edge of the spiral volute channel, and the volute channel is gradually wider and deeper since the water-cut angle to enlarge the cross-section of the volute channel. The outer diameter of the volute channel is almost concentric to the inner diameter of the circular casing. The throat partition connects to the rear edge of the volute channel and extends toward the exit of the casing so as to that the throat partition is at least a partial extension of the volute channel; further, due to the extended volute channel of the throat partition overlaps with the leading edge of the volute channel structure, the total degree, surrounding the exit of the impeller, of the volute channel is over 360 degrees. Because of the circular casing, simple volute channel and throat partition, to form aforesaid structures via stamping or casting is easy and saving cost. Besides, the surrounding degree of the volute channel with increasing width and depth is in excess of 360 degrees, and cooperates with the design of the water-cut angle to ensure a better pumping efficiency but without increasing the outer diameter and height of casing.




Preferably, the position of the throat partition corresponds to the exit of the casing so as to that the exit is at the outlet of the throat partition and at the circular casing. It is to limit the fluid around the throat partition and is guided to the exit of the casing.




Preferably, the water-cut angle on the leading edge of the channel bottom plate protrudes out of the top plate and closes further to the exit of the impeller. This is not only the degree being increased, but also the height being added for better water-cut efficiency.




Preferably, there is not only one protruding hole on the channel toward the inlet of the impeller for promoting the self-priming function, by returning the high head fluid from pump outlet.




For your esteemed members of reviewing committee to further understand and recognized the structural objective and function of the invention, a detailed description incorporated with drawings is presented as follows.











BRIEF DESCRIPTION OF THE DRAWINGS





FIG. 1

is a 3-D dimensional view of a first preferred embodiment of a volute channel device of a pump for the present invention.





FIG. 2

is a top view of the volute channel device of the first preferred embodiment of the present invention. (dot lines representing an impeller)





FIG. 3

is a sectional view of the volute channel device and the impeller with other parts in a casing of the first preferred embodiment of the present invention.





FIG. 4

is a sketch of a volute channel structure and a throat partition structure of the volute channel device of the first preferred embodiment of the present invention.





FIG. 5

is a complete view of the throat partition structure of the volute channel device of the first preferred embodiment of the present invention.





FIG. 6

is a sketch of relative positions of the throat partition, a water-cut in the volute channel structure, an inlet and an exit in the casing of the first preferred embodiment of the present invention.





FIG. 7

is a sketch of sectional positions of different portions of the volute channel of the volute channel structure of the first preferred embodiment of the present invention.





FIG. 8

is a sketch of channel depth variations of sectional positions of different portions of the volute channel of the first preferred embodiment of the present invention.





FIG. 9

is a sketch of sectional area variations of sectional positions of different portions of the volute channel of the volute channel device of the first preferred embodiment of the present invention.





FIG. 10

is a sectional view of a second preferred embodiment of the volute channel device of the present invention.





FIG. 11

is a sectional view of a third preferred embodiment of the volute channel device of the present invention.





FIG. 12

is a sectional view of a fourth preferred embodiment of the volute channel device of the present invention.





FIG. 13

is a sectional view of a fifth preferred embodiment of the volute channel device of the present invention, which represents an assembly relationship of the volute channel structure and the throat partition structure and a relative position relationship of the throat partition, the water-cut angle of the volute channel structure, the inlet and the exit of the casing.





FIG. 14

is a complete view of the throat partition structure of the fourth preferred embodiment of the volute channel device of the present invention.











DETAILED DESCRIPTION OF THE INVENTION




The major idea for a volute channel device


1


of the present invention is to design a special volute channel structure


10


and a throat partition


20


for a circular casing


40


containing both of the volute channel structure


10


and the throat partition


20


. The volute channel structure


10


is a spiral volute channel and surrounds an impeller exit side


51


of an impeller


50


. According to the direction of pumping fluid, a water-cut angle


11


is on a leading edge of the spiral volute channel, and the volute channel is gradually wider and deeper since the water-cut angle


11


; besides, an outer diameter of the volute channel is about the same concentric state as an inner diameter of the circular casing


40


. The throat partition


20


connects to a rear edge of the volute channel and extends toward an exit


41


of the casing


40


so as to that throat partition


20


can be at least an extension of the volute channel; further that the extension from throat partition


20


overlaps a front section of volute channel structure


10


, and it makes that the total degree for surrounding the impeller exit side


51


is over 360 degrees. Due to casing


40


being as a cylinder and the simple structures of volute channel structure


10


and throat structure


20


, to manufacture them via stamping or casting may be relatively easier and lower. Additionally, since the volute channel being gradually wider and deeper and its total surrounding degree being over 360 degrees, and the cooperation of the volute channel and the water-cut angle


11


, the present invention surely has a better pumping efficiency, but an outer diameter and a height of casing


40


are not increased comparatively, so the present invention totally corresponds to the needs in current.




Following will be some preferred embodiments with illustrations for more detail of structures, actions and functions of volute channel device


1


.




Please refer to

FIGS. 1

to


9


, which is a first preferred embodiment of volute channel device


1


of the present invention. Wherein,

FIG. 1

is a 3-D dimensional view of a first preferred embodiment of volute channel device


1


of a pump for the present invention.

FIG. 2

is a top view of volute channel device


1


(dot lines representing an impeller).

FIG. 3

is a sectional view of volute channel device


1


and the impeller


50


with other parts in the casing


40


.

FIG. 4

is a sketch of the volute channel structure


10


and the throat partition structure


20


of volute channel device


1


.

FIG. 5

is a complete view of the throat partition structure


20


.

FIG. 6

is a sketch of relative positions of the throat partition


20


, the water-cut


11


in the volute channel structure


10


, an inlet


42


and an exit


41


in the casing


40


.

FIG. 7

is a sketch of sectional positions of different portions of the volute channel of the volute channel structure of the first preferred embodiment of the present invention.

FIG. 8

is a sketch of channel depth variations of sectional positions of different portions of the volute channel.

FIG. 9

is a sketch of sectional area variations of sectional positions of different portions of the volute channel of volute channel device


1


.




As shown from

FIG. 1



FIG. 6

, volute channel device


1


is contained in the circular casing


40


with cylindrical figure, and volute channel device


1


cooperates with the concentric rotational impeller


50


to deliver fluid. Impeller


50


includes the impeller exit


51


, an impeller inlet


52


, an impeller bottom plate


53


and an axial hole


54


for a rotational axis


60


going through; casing


40


has an exit


41


, an inlet


42


and a flange


43


to combine with a motor. For the preferred embodiment, the exit


41


and the inlet


42


are inclined 45 degrees. Impeller


50


and casing


40


are not in the scope of the present invention, thus they will not be discussed any further hereinafter.




The volute channel device


1


of the present invention roughly comprises: volute channel structure


10


and throat partition


20


.




The volute channel structure


10


is a spiral volute channel and surrounds the impeller exit side


51


of impeller


50


. According to the direction of pumping fluid, the water-cut angle


11


is on a leading edge of the spiral volute channel, and the volute channel is gradually wider and deeper since the water-cut angle


11


for increasing sectional area of the volute channel; besides, an outer diameter of the volute channel is about the same concentric state as an inner diameter of the circular casing


40


; on the other hand, an inner diameter of the volute channel is shaped as volute or spiral.




According to the view of real structure, volute channel structure


10


comprises at least: a channel bottom plate


12


, an outer edge wall


13


, an inner edge wall


14


, a channel inner plate


15


and a top plate


16


. The water-cut angle


11


is on the rear edge of the channel, bottom plate


12


, and the water-cut angle


11


along a circle direction is greater an outer diameter of the impeller exit side


51


(that is, with a space to impeller out diameter); further that water-cut angle


11


extends to an above of the exit


41


. The channel bottom plate


12


surrounds the impeller exit side


51


and is gradually wider and deeper to be a spiral structure; an outer rim of the channel bottom plate


12


is about the same concentric state as the inner diameter of the circular casing


40


; an inner rim for the channel bottom plate


12


is figured as spiral. The outer edge wall


13


surrounds the outer rim of the channel bottom plate


12


and is on the inner sidewall


44


of the circular casing


40


. The channel inner plate


15


is on the inner rim of the channel bottom plate


12


and protrudes toward impeller


50


. The hollow top plate


16


is on a top of the channel inner plate


15


, and a center of the top plate


16


has a hole


17


to contain impeller inlet side


52


; hence impeller exit side


51


and impeller inlet side


52


can be partitioned by top plate


16


, channel inner plate


15


and channel bottom plate


12


. A surface of top plate


16


is perpendicular to a rotational axis direction of impeller


50


. The inner rim of top plate


16


is the same center with the outer rim of channel bottom plate


12


, and the inner rim is smaller than the outer rim. The inner edge wall


14


is an extension along the axial direction for the inner rim of top plate


16


so as to that the impeller inlet side


52


is contained by hole


17


surrounded the inner edge wall


14


of the inner rim of top plate


16


. The outer rim of top plate


16


is formed as a spiral surrounding structure. Due to the increasing width of channel bottom plate


12


, the surface width of top plate


16


may be narrower with the direction of pumping fluid. Water-cut angle


11


of the leading edge of channel bottom plate


12


protrudes out of top plate


16


and is closer to impeller exit side


51


, shown as

FIGS. 4 and 6

, that is, the length and height both are elongated for better water-cut efficiency. The direction for channel bottom plate


12


toward impeller inlet side


52


or another direction for channel inner plate


15


toward impeller inlet side


52


can be alternatively arranged one or more small nozzle,


18


and


19


(not necessary for both), in annular located. A little of the high-pressure fluid in volute channel can return back to impeller inlet side


52


by means of the nozzles


18


and


19


, therefore the inlet head of the fluid is increasing and the mixture of fluid and air around impeller inlet side


52


is better, and the mixture may enter into impeller


50


with higher speed for that pump is capable of normally delivering liquid under low NPSHA, further to increasing self-priming function and pumping efficiency. Besides, the structures of-nozzles


18


and


19


are not only with simple structures for self-priming function, but also that they can be formed via stamping or casting for saving cost and not having dimension increase.




The throat partition


20


connects to the rear edge of the volute channel and extends toward the exit


41


of the casing


40


so as to that throat partition


20


can be at least the extension of the volute channel; further that the extension from throat partition


20


overlaps the front section of volute channel structure


10


, and it makes that the total degree for surrounding the impeller exit side


51


is over 360 degrees. Based on the view of real structure, a position of throat partition


20


corresponding to exit


40


of casing


40


is an arc fillister structure, and it comprises at least: a bottom partition


21


, an outer partition


22


, an inner partition


23


and an upper edge


24


protruded out from a top of the inner partition


23


. According to the direction of pumping fluid, a leading edge of the bottom partition


21


combines with the rear edge (that is, the rear edge of channel bottom plate


12


) of volute channel of volute channel structure I


0


. The outer partition


22


is to join with inner sidewall


44


. The inner partition


23


closes to channel inner plate


15


of volute channel structure


1


. The upper edge


24


units with a surface of a lower side (back side) of top plate


16


. A mutual rear edge of bottom partition


2


l, outer partition


22


and inner partition


23


, the rear edge


25


, is just relative to exit


41


, hence exit


41


is contained around rear edge


25


and channel bottom plate


12


of volute channel. A close space is thus formed at a position of exit


41


around throat partition


20


and a front section of volute channel, and it is to force fluid moving toward exit


41


. On the other hand, due to the designed water-cut angle


11


and throat partition


20


, water-cut angle


11


is a little higher than impeller exit side


51


(view from axial direction) and overlaps the channel from throat partition


20


. So, while the mixture of gas and liquid being rotated by impeller


50


, delivered, diffused and slow down, it is continuously guided by water-cut angle


11


and throat partition


20


to exit


41


for avoiding that gas is accumulated in channel to decrease pumping efficiency.




In the preferred embodiment, volute channel structure


10


and throat partition


20


are individually made and fabricated together by welding or agglutination. For casing


40


, which is made of sheet metal piece or casting piece. However, volute channel structure


10


and throat partition


20


can also be made by casting, or both are made in one body as a single piece; or the structure


10


and the partition


20


can be made in one unit except the portion water-cut angle


11


of a front portion of channel bottom plate


12


; water-cut angle


11


can be manufactured in another way, and then to joint water-cut angle


11


and channel bottom plate


12


together to form volute channel device


1


of the present invention.




Referring to

FIGS. 7

to


9


, which separately describe different variations of volute channel device


1


of the first preferred embodiment, the different variations include sectional positions of different portions of the volute channel, channel depth variations of sectional positions of different portions and sectional area variations of sectional positions of different portions; wherein the cross-section symbols of {circle around (1)}, {circle around (2)} to {circle around (9)} represent the sectional positions of the same position. The volute channel is gradually deeper since water-cut angle


11


along with the pumping direction. Due to the leading edge (that is, an initial point of channel) of water-cut angle


11


is between cross-section symbols {circle around (1)} and {circle around (9)} and exit


41


(that is, a last point of channel) is between cross-section symbols {circle around (2)} and {circle around (9)}, hence the total degree of surrounding volute channel is over 360 degree. A height (that is, an axial height) of a tip of water-cut angle


11


is between a height of impeller exit side


51


and a top height of channel for better water-cut efficiency. The positions along the radial and axial (pumping direction) directions are discussed previously, they will not be described any further hereinafter.




Cross-section symbol {circle around (1)} whose sectional area is the smallest according to

FIGS. 7 and 9

, then being greater; a sectional area of cross-section symbol {circle around (9)} is the greatest, thus a better fluid diffusion efficiency can be reached.




Along with above mention, volute channel device


1


of the present invention not only has the increasing sectional area of channel, but also with the extended and overlapped volute channel because of installing throat partition


20


; that's why the total length of volute channel can surround impeller exit side


51


over 360 degrees. So, comparing to “the concentric circle”, “equivalent sectional area” and “the surrounding channel not approaching 360 degrees” in prior arts, the present invention obviously has a better diffusion function. Because of the circular casing


40


, simple volute channel structure


10


and throat partition


20


, to form aforesaid structures via stamping or casting is easy and saving cost; on the contrary, prior arts may use special technologies to manufacture the pump casing with variable outer diameters; further, according to the prior art of adding diffusers, the cost and the dimensions for the present invention are apparently better than ever. Besides, firstly the length of the surrounding volute channel is able to approach surrounding angle more than 360 degrees, and secondly adding the water-cut angle


10


, thus the present invention ensures that a better pumping, efficiency is reached, but without adding the dimensions of outer diameter and axial length; hence, the present invention absolutely conform to the marketing needs of small centrifugal pump.




Following is other preferred embodiments. Because most of the components are same as the first preferred embodiment, thus the same components will be given the same numbers, and without further description for structure.




Referring to

FIG. 10

, which is a sectional view of a second preferred embodiment of the volute channel device of the present invention. The most components and structures in

FIG. 10

are similar to the embodiment in

FIGS. 1 and 3

. The only difference is that exit


41


and inlet


42


of casing


40


are arranged as a line, that is, 180 degrees. Continuously, the position of water-cut angle


11


of volute channel structure


10


and the dimensions of volute channel structure


10


may be revised. Channel bottom plate


12


around exit


41


is inclined (downward toward outer diameter). Throat partition is not independently manufactured, and it is constructed with volute channel structure in one body.




Referring to

FIG. 11

, which is a sectional view of a third preferred embodiment of the volute channel device of the present invention. The most components and structures in

FIG. 11

are similar to the embodiment in

FIGS. 1 and 3

. The only difference is that exit


41


and inlet


42


of casing


40


is vertical and end suction at up side of the casing arrangement. Continuously, the position of water-cut angle


11


of volute channel structure


10


and the throat partition


20


may be revised. Although exit


41


shown in the figure is toward down, it is just a different view than a view in real operation, and the view of the real operation actually shows that exit


41


is toward up.




Referring to

FIG. 12

, which is a sectional view of a fourth preferred embodiment of the volute channel device of the present invention. The most components and structures in

FIG. 12

are similar to the embodiment in

FIGS. 1 and 3

. The only difference is that exit


41


and inlet


42


of casing


40


is vertical and center end suction arrangement; further that, inlet


42


has a concentric axis with impeller inlet side


52


. Continuously, the position of water-cut angle


11


of volute channel structure


10


and the throat partition


20


may be revised. Although exit


41


shown in the figure is toward down, it is just a different view than a view in real operation, and the view of the real operation actually shows that exit


41


is toward up.




Referring to

FIGS. 13 and 14

, which are sketches of a fifth embodiment of the volute channel device of the present invention. The most components and structures in

FIG. 13

are similar to the embodiment in

FIGS. 1 and 3

. The only difference is that the water-cut angle


11


(that is, a front section of channel bottom plate


12


) of

FIGS. 13 and 14

is extended much longer, and the dimension of throat partition


20


is relative longer as well. That is, the total length of channel is longer so as to have more space to separate the gas and water in the exit channel, and prevent the gas stay in the volute channel, a better self-priming pumping efficiency.




Above description is the preferable embodiments according to the invention; however, the claimed fields of the invention are not restricted to the embodiments shown in the invention, but any variation made according to the contents of the invention, the generated function and the characteristic that are similar to the embodiment of the invention, and the concepts conceivable by those who are skilled in such arts are all belonged to the claimed fields of the invention.




In summary, the improved structure for centrifugal pumps according to the invention has the characteristics of simple structure, easy manufacture and assembly. Not only may the shortcomings in the prior structure—poor endurance caused by inferior design of parts and even the influential smoothness of operation—be indeed improved, but also had the invention never seen in any journal or public occasion before application, such that the practicality of the invention is thereby without doubt and the merits regulated in the patent law are indeed fulfilled, so the application of this novel patent is thus proposed and, please your esteemed members of reviewing committee take time to review this application in a favorable way and grant it as a normal patent as soon as possible.



Claims
  • 1. A device of a volute channel of a pump, which contained in a circular casing and cooperating with a rotational impeller of a concentric device to pump and deliver fluid, the impeller having an impeller inlet side and an impeller exit side, an inlet and an exit for fluid on the casing, the device comprising:a volute channel structure being a spiral volute channel and surrounding the impeller exit side, depending on a direction of pumping fluid, a leading edge of the spiral volute channel having a water-cut angle, the volute channel being wider and deeper from the water-cut angle to gradually have an enlarged sectional area of the volute channel, an outer diameter of the volute channel being about concentric state with an inner diameter of the circular casing; and a throat partition connecting to a rear edge of the volute channel and extending toward the exit of the casing for that the throat partition being at least part of extension of the volute channel, the extension of the volute channel overlapping the leading edge of the volute channel to have a total length of the volute channel, the total length being able to surround the impeller exit side over 360 degrees.
  • 2. The device of the volute channel of the pump as cited in claim 1, wherein a position of the throat partition corresponds to the exit of the casing, and it is to limit fluid around the throat partition and the leading edge of the volute channel, and thus the fluid is guided to the exit of the casing.
  • 3. The device of the volute channel of the pump as cited in claim 2, wherein the throat partition is an arc fillister structure, and it comprises at least: a bottom partition, an outer partition, and an inner partition, according to the direction of pumping fluid, a leading edge of the bottom partition combines with the rear edge of the volute channel of the volute channel structure, the outer partition is to join with the casing, the inner partition becomes a member of the volute channel structure; further, the rear edge of the bottom partition, the outer partition and the inner partition is just corresponding to the exit, and the exit is contained among the rear edge of the bottom partition, the outer partition and the inner partition and the leading edge of the volute channel.
  • 4. The device of the volute channel of the pump as cited in claim 3, wherein the throat partition has an upper edge extended from a top of the inner partition.
  • 5. The device of the volute channel of the pump as cited in claim 1, wherein the volute channel structure at least comprises:a channel bottom plate, whose leading edge has the water-cut angle, the channel bottom plate surrounds the impeller exit side and is gradually wider and deeper to be a spiral structure; an outer rim of the channel bottom plate is about the same concentric state as the inner diameter of the circular casing; an outer edge wall, which surrounds the outer rim of the channel bottom plate and is on an inner sidewall of the circular casing; a channel inner plate, which is on an inner rim of the channel bottom plate and protruded toward the impeller; a hollow top plate, which is on a top of the channel inner plate, and a center of the top plate has a hole to contain the impeller inlet side; hence impeller exit side and impeller inlet side can be partitioned by the top plate, channel inner plate and channel bottom plate, a surface of the top plate is perpendicular to a rotational axis direction of the impeller, the inner rim of the top plate has a same center with the outer rim of channel bottom plate, and the inner rim is smaller than the outer rim, the outer rim of the top plate is formed as a spiral surrounding structure; due to the increasing width of the channel bottom plate, the surface width of the top plate may be narrower with the direction of pumping fluid.
  • 6. The device of the volute channel of the pump as cited in claim 5, wherein the water-cut angle of the leading edge of the channel bottom plate protrudes out of the surface of the top plate and is closer to the impeller exit side.
  • 7. The device of the volute channel of the pump as cited in claim 6, wherein the water-cut angle of the leading edge of the channel bottom plate protruding out of the surface of the top plate is not only that a length of the water-cut angle is longer, but also a height is higher.
  • 8. The device of the volute channel of the pump as cited in claim 5, wherein at least one penetrating nozzle is set on the channel bottom plate toward the impeller inlet side.
  • 9. The device of the volute channel of the pump as cited in claim 5, wherein at least one penetrating nozzle is set on the channel inner plate toward the impeller inlet side.
  • 10. The device of the volute channel of the pump as cited in claim 1, wherein the throat partition is constructed with the volute channel structure in one body via stamping.
  • 11. A device of a volute channel of a pump, which contained in a circular casing and cooperating with a rotational impeller of a concentric device to pump and deliver fluid, the impeller having an impeller inlet side and an impeller exit side, an inlet and an exit for fluid on the casing, the device comprising:a volute channel structure at least having: a channel bottom plate having a water-cut angle according to a direction of pumping fluid, the water-cut angle being on a leading edge of the channel bottom plate, the channel bottom plate surrounding an impeller exit side and being wider and deeper to form a spiral structure with different heights and widths; further, an outer rim of the channel bottom plate being about same concentric state with an inner diameter of the circular casing; an outer edge wall surrounding the outer rim of the channel bottom plate and being on an inner sidewall of the circular casing; a channel inner plate being on an inner rim of the channel bottom plate and protruding toward the impeller; a hollow top plate being on a top of the channel inner plate, and a center of the top plate having a hole to contain the impeller inlet side; hence impeller exit side and impeller inlet side being partitioned by the top plate, channel inner plate and channel bottom plate, a surface of the top plate being perpendicular to a rotational axis direction of the impeller, the inner rim of the top plate having a same center with the outer rim of channel bottom plate, and the inner rim being smaller than the outer rim, the outer rim of the top plate being formed as a spiral surrounding structure; due to the increasing width of the channel bottom plate, the surface width of the top plate being narrower with the direction of pumping fluid; and a throat partition being an arc fillister structure and comprising at least: a bottom partition, an outer partition, and an inner partition, according to the direction of pumping fluid, a leading edge of the bottom partition combining with the rear edge of the channel bottom plate, the outer partition joining with an inner side wall of the casing, the inner partition becoming a member of the channel inner plate; further, the rear edge of the bottom partition, the outer partition and the inner partition just corresponding to the exit, and the exit contained among the rear edge of the bottom partition, the outer partition and the inner partition and the leading edge of the channel bottom plate.
  • 12. The device of the volute channel of the pump as cited in claim 11, wherein a space constructed by the channel bottom plate, the channel inner plate and the inner sidewall of the casing is a spiral volute channel with a gradually wider and deeper sectional area.
  • 13. The device of the volute channel of the pump as cited in claim 12, wherein the bottom partition of the throat partition connects to the rear edge of the channel bottom plate for a total degree of the bottom partition and the channel bottom surrounding the impeller exit side being over 360 degrees.
  • 14. The device of the volute channel of the pump as cited in claim 12, wherein the water-cut angle of the leading edge of the channel bottom plate protrudes a top of the top plate and is closer to the impeller exit side.
  • 15. The device of the volute channel of the pump as cited in claim, wherein the water-cut angle of the leading edge of the channel bottom plate protruding out of the surface of the top plate is not only that a length of the water-cut angle is longer, but also a height is higher.
  • 16. The device of the volute channel of the pump as cited in claim 11, wherein a further extension of the throat partition from a top of the inner partition is an upper edge.
  • 17. The device of the volute channel of the pump as cited in claim 11, wherein at least one penetrating nozzle is set on the channel bottom plate toward the impeller inlet side.
  • 18. The device of the volute channel of the pump as cited in claim 11 wherein at least one penetrating nozzle is set on the channel inner plate toward the impeller inlet side.
  • 19. The device of the volute channel of the pump as cited in claim 11, wherein the throat partition is constructed with the volute channel structure in one body via stamping.
  • 20. A casing set with a spiral volute channel comprising:a circular casing having a space and an inner sidewall, an inlet and an exit for fluid being on the casing; an impeller being contained in the space of the casing and defined a direction of a rotational axis, the impeller being driven for pumping and delivering fluid and have an impeller inlet side and an impeller exit side; a volute channel device being mounted and position in the space of the casing, the device having a spiral volute channel surrounding the impeller exit side, according a direction of pumping fluid, a leading edge of the spiral volute channel having a gradually wider and deeper sectional area of the volute channel; an outer diameter of the volute channel being about same concentric state with an inner diameter of the casing; a total length of the volute channel being able to surround the impeller exit side bovver 360 degrees.
  • 21. The casing set with the spiral volute channel as cited in claim 20, wherein the volute channel device further comprises a volute channel structure and a throat structure, the volute channel structure is a major part of constructing the spiral volute channel, according to the direction of pumping fluid, the throat partition connects to a rear edge of the volute channel and extends toward the exit so as to that the throat partition is at least and mainly an extension of the volute channel; the extension of the volute channel overlaps the leading edge of the volute channel to have the total length of the volute channel, the total length is able to surround the impeller exit side over 360 degrees.
  • 22. The casing set with the spiral volute channel as cited in claim 20, wherein a plurality of penetrating nozzles are on the volute channel device toward the impeller inlet side.
US Referenced Citations (6)
Number Name Date Kind
5040947 Kajiwara et al. Aug 1991 A
5069599 Carretta Dec 1991 A
5127800 Hyll et al. Jul 1992 A
5235744 Arakawa et al. Aug 1993 A
5385444 Kobayashi et al. Jan 1995 A
6200090 Chien et al. Mar 2001 B1