The present invention is directed to a device, system and method for measuring the dilaton fundamental particle.
Several groups studying the phenomena of tunneling have shown that the group-velocity, of photons tunneling through a barrier, is “superluminal”. For example, “superluminal” group velocity can be measured as the time that photon energy is stored in a barrier that a photon tunnels through. To summarize, the classical electromagnetic superluminal energy pulse cannot get past its luminal wavefront and is superluminal only inside the wavepacket as described by Chiao (R. Y. Chiao, “Tunneling Times and Superluminality: a Tutorial”, arXiv:quant-ph/9811019, 7 Nov. 1998, the disclosure of which is incorporated herein by reference). As such, “superluminal” group velocities of light are one-way or sidereal group velocities, and do not exist near the wavefront as previously described in U.S. application Ser. No. 09/863,778, and as described by Will (C. Will, “Clock synchronization and isotropy of the one-way speed of light”, Phys. Rev. D 45, 403 (1992)), the disclosure of which is also incorporated herein by reference.
In a measurement of the one-way group velocity of light, the tunneling photon-wavepacket group-peak arrives at the input to the barrier at time t=0 ns and exits the barrier at time t=6.0 ns. But the barrier is 190 cm long, and traveling at the vacuum speed of light, the wavepacket group would take 6.3 ns to traverse a distance of 190 cm. However, the wavepacket has a length of 80 ns times the vacuum speed of light and wavepacket wavefronts always travel at the vacuum speed of light, even in materials. Therefore, one practiced in the art of “superluminal” tunneling would say that photon energy is stored in the barrier for 0.3 ns less than the time it takes light to travel across the barrier, or that the measured group-delay time is a negative 0.3 ns. A detailed discussion of these types of “superluminal” tunneling experiments are provided by R. Y. Chiao, “Tunneling Times and Superluminality: a Tutorial” (arXiv:quant-ph/9811019, 7 Nov. 1998).
Measurements of the Rembielinski one-way “superluminal” group velocity of light are valuable from a scientific perspective because such measurements open pathways for measuring a number of fundamental physical quantities. For a more detailed discussion of the Rembielinski one-way “superluminal” group velocity see, e.g., J. Rembielinski, “Superluminal Phenomena and the Quantum Preferred Frame” (quant-ph/0010026, 6 Oct. 2000). For example, measurement of the group velocity of light would allow one to probe astronomical values, such as the cosmic microwave background Doppler redshift direction and the amount of dark energy density required to cause the known acceleration in the expansion rate of the universe. A superluminal group-velocity detector would also allow for the measurement of values associated with particle physics, such as the inverse fine structure constant and the detection of the dilaton.
Despite this theoretical knowledge of wavefront and group velocities of light, and the significant interest in obtaining measurements of this value, previous attempts to measure these quantities by several groups have either failed or indicated that they are non-existent. For a more detailed discussion of previous attempts to measure the one-way wavefront velocity of light see, e.g., C. Will, “Clock synchronization and isotropy of the one-way speed of light” (Phys. Rev. D 45, 403 (1992)).
The reason for these previous failures lies in the high time sensitivity requirements and general state of the art in detector technology. For example, one theoretical “superluminal” velocity apparatus was designed at U.C. Berkeley (UCB) and requires a detector with a time sensitivity of 2.7 attoseconds to measure the Rembielinski one-way “superluminal” group velocity of light (β(CRF)×Δτ=2.7 attoseconds). Such a measurement is far beyond the time resolution of even the most sensitive precision instruments.
Accordingly, a need exists for an improved detector capable of determining the one-way group velocity of light and making related astronomical and physical measurements.
The present invention is directed to a device, system and method for measuring a sidereal or one-way “superluminal” photon group velocity. The sidereal photon phase velocity can then be used as an educational and research tool to measure other astronomical and physical constants, and to serve as a dilaton particle detector.
In one embodiment of the invention the sidereal photon phase velocity is used to track the RG (Renormalization Group) flow that is parameterized by the inverse fine structure constant. In such an embodiment the sidereal subluminal phase velocity parameterized by the bandlimit time is observed to flow with the RG to the inverse fine structure constant as the cosmic compass swings through the cosmic microwave background Doppler redshift direction.
In another embodiment, the invention is used as an indicator for the s-duality and dilaton physics. In such an embodiment, the cosmic compass technology is utilized to measure the inverse fine structure constant, which is the particle physics proof of the dilaton existence.
In still another embodiment, the invention may be used to detect dilaton microscopic “wormholes”. In such an embodiment, the invention may also be used to measure the dilaton negative energy density of the excited “phantom” dark energy that is required to support dilaton “wormholes.”
In yet another embodiment, the invention may be used to determine what causes of the accelerated expansion rate of the Universe.
These and other features and advantages of the present invention will be better understood by reference to the following detailed description when considered in conjunction with the accompanying drawings wherein:
The present invention is directed to a device, system and method for measuring a sidereal or one-way “superluminal” photon group velocity, referred to herein as a “cosmic compass.” The sidereal photon phase velocity can then be used as an educational and research tool to measure other astronomical and physical constants, such as for measuring excited dark energy and therefore causing the experimental discovery of the dilaton fundamental particle.
The apparatus of the current invention differs from previous “superluminal” tunneling apparatus in that it was designed specifically to measure the one-way group velocity of light. The one-way photon wavefront velocity of light has been measured by several groups and found to be non-existent. The reason for these previous failures lies in the nature of the measurement. For example, the Cosmic Rest Frame (CRF) has a velocity, averaged over a year, relative to the Earth, that is β(CRF)=0.001237±0.000002, and is a vector that points in the direction with a right ascension of 23.20 h and a declination of 7.22°, i.e., the cosmic microwave background Doppler redshift direction. The CRF is the inertial reference frame in which the cosmic microwave background temperature is isotropic. (For a more detailed discussion of the cosmic microwave background temperature see, K. Hagiwara et. al., Phys Rev D 66, 010001 (2002); and D. Fixsen et. al., Astrophys. J. 473, 576 (1996).) Accordingly, for any apparatus to detect and measure the one-way “superluminal” group velocity of light the apparatus must be rotated through this direction. The time that energy is stored in the tunneling barrier, or tunnel time, times β(CRF), equals the expected required time sensitivity of the analyzer for measuring the Rembielinski one-way “superluminal” group velocity of light. The current invention recognizes that for an apparatus to have sufficient sensitivity to measure the one-way “superluminal” group velocity of light, i.e., the time that energy is stored in the tunneling barrier, it must use photons having wavelengths much longer than those contemplated by previous devices.
For example, Table 1, below, compares the cosmic compass apparatus of the current invention to the Berkeley (UCB) “superluminal” apparatus, previously discussed.
aindicates 2002 data
bindicates 2003 data.
In summary, for the prior art UCB apparatus, β(CRF)×Δτ=2.7 attoseconds. A time sensitivity of 2.7 attoseconds, required for the UCB analyzer to measure the Rembielinski one-way “superluminal” group velocity of light, is far beyond current analyzer technology. In contrast the cosmic compass analyzer only requires a 7.38 ps resolution. The measured one-way “superluminal” group velocity is much larger than the Rembielinski theoretical value of ±7.38 ps over a length of 190 cm. The measured sidereal oscillation time in the cosmic compass is 0.3 ns or 0.2 ns, depending on whether 2002 or 2003 data is used, and these times are equal to the measured bandlimit time of 0.3 ns or 0.2 ns, respectively. Assuming that the UCB apparatus sidereal oscillation time would also equal its bandlimit time of 0.02 fs, then the UCB analyzer precision required to measure the sidereal oscillation is 0.02 fs, about one order of magnitude smaller than their measured analyzer precision of 0.21 fs. Therefore the UCB apparatus is not able to measure its sidereal oscillation time of 0.02 fs because it is hidden in a noise of 0.21 fs. The UCB apparatus would also have to be rotated into and out of the cosmic microwave background Doppler redshift direction to detect the sidereal oscillation time.
Therefore, it has been surprisingly found that an apparatus capable of measuring the one-way “superluminal” group velocity of light must use long wavelength photons. The analyzer used in the cosmic compass apparatus has a measured precision of ±7 ps in photon energy time (shown in
The above discussion has focussed on the measurement of the Rembielinski (±7.38 ps) and bandlimit (±33 ps and ±28 ps) one-way “superluminal” group velocities of light, that are maximum when tunneling is into the cosmic microwave background Doppler redshift direction, using the cosmic compass of the current invention. But the cosmic compass also allows for the measurement of other numbers, one provided by astronomy and one provided by particle physics. The astronomical number is a positive energy density of 6.7E-10 J/m3, i.e., the amount of dark energy density, distributed homogeneously throughout all of space, required to cause the known acceleration in the expansion rate of the universe. The particle physics number is the inverse fine structure constant, 137.036=hc/e2.
In turn each of these measurements in conjunction build a physical picture of the dilaton. For example, the first astronomical proof of the dilaton's existence is the measurement of luminal energy flow through microscopic “wormholes” into the Doppler redshift direction that would otherwise appear “superluminal”. The microscopic “wormholes” exist only into the Doppler redshift direction because the measured “superluminal” group velocity is a one-way “superluminal” group velocity. Accordingly, by having the capability to determine the Doppler redshift direction, and to make measurements of the luminal energy flow in this direction, the cosmic compass is able to determine the existence of these “wormholes.” Likewise, the second astronomical proof of the dilaton's existence is the measurement of dilaton “wormhole” negative excited “phantom” dark energy density, which is directly measurable by the cosmic compass, and is distributed non-homogeneously inside the cosmic compass space of the current invention. Finally, the inverse fine structure constant number is also the dimensionless magnetic monopole charge that is associated with the concept of s-duality wherein said s-duality contains the modern string physics concept of the dilaton fundamental particle. In short, the particle physics proof of the dilaton existence is the measurement of the inverse fine structure constant.
In summary, the cosmic compass measures the inverse fine structure constant of (137±4=137.036), shown in
The dilaton was theoretically discovered by Theodore Kaluza in 1919 while obtaining electromagnetic fields from Einstein's equations in 5-dimensions. The dilaton appears experimentally in the cosmic compass apparatus as sidereal electromagnetic energy storage time in tunneling barriers. Measured energy storage times are minimum for energy propagation into the cosmic microwave background Doppler redshift direction. Short energy storage time is not superluminal energy flow that would violate the conservation of photon energy as described by Rembielinski, because dilaton “wormholes” transport photon energy at the vacuum speed of light, through the tunneling barrier. The measured dilaton “wormhole” consumes a Nyquist sample spacing of space in the tunneling barrier and inside the “wormhole”. For a more detailed introduction to modern dilaton physics see, e.g., M. Duff, “A Layman's Guide to M-Theory”, arXiv:hep-th/9805177 v3 2 Jul. 1998, the disclosure of which is incorporated herein by reference.
The dilaton fundamental particle measured herein is negative energy excitations of the positive “phantom” dark energy field. The measured dilaton negative energy density per photon saturates the Ford-Roman Quantum Inequalitie (QI). Accordingly, when the cosmic compass apparatus saturates the QI by completely exciting the positive “phantom” dark energy inside the cosmic compass apparatus into a negative energy density state, then the dilaton negative energy density produced by each tunneling electromagnetic pulse is equal and opposite to the positive dark energy density with negative pressure required throughout space to cause the known accelerated expansion rate of the Universe. For a more detailed introduction into dark-energy accelerated expansion physics and QI physics see, e.g., J. Cramer, ““Outlawing” Wormholes and Warp Drives”, Analog, Science Fiction and Science Fact, May 2005 and T. Roman, “Some Thoughts on Energy Conditions and Wormholes”, gr-qc/0409090 v1, 23 Sep. 2004, the disclosures of which are incorporated herein by reference.
Turning now to the design of the cosmic compass, in one embodiment, as shown in
A transmission wavepacket 20 is introduced into the quantum tunnel 14 from the transmission source 12 such that the transmission wavepacket 20 is conducted through the space between the transmission source 12 and the receiver 16 to the monitor 18. The quantum tunnel 14 is placed in proximate relation to the transmission source 12 such that the transmission wavepacket 20 passes through the quantum tunnel 14 and the wavepacket 20 is transmitted into the receiver 16 creating a signal. A receiver or series of receivers 16, are adapted to receive the signal and transmit the signal to a monitor 18 in signal communication therewith. Any device having the ability to detect changes in amplitude, frequency, phase or wavelength of the transmission wavepacket 20 can be used as a receiver 16 and monitor 18, such as, for example, a radio amplifier in signal communication with an oscilloscope or a Time to Digital Converter (TDC). Additionally, any suitable transmission source 12 may be used in the subject invention, such as, for example, a microwave generator or a radio transmitter so long as detectable levels of electromagnetic radiation are transmitted to the receiver 16 in the form of a transmission wavepacket 20.
In general terms, the quantum tunnel 14 comprises a quantum air-gap barrier 22, such as a Bragg mirror constructed with two water tanks separated by an air-gap. The air-gap length is adjusted to the minimum Poynting vector, defining a Bragg mirror, which is in signal communication with the transmission source 12. The quantum air-gap barrier 22 comprises a proximal 24 and distal 26 barrier wall and an air-gap 28 having a tunneling, or air-gap, length 30 disposed therebetween. The proximal barrier wall 24 is in signal communication with the transmission source 12 and the distal barrier wall 26 of the air-gap barrier 22 is in signal communication with the receiver 16. The transmission wavepacket 20 from the transmission source 12 interacts with the air-gap barrier 22 which transmits the transmission wavepacket 20 across the air-gap 28 to the receiver 16 at subluminal phase velocities. The air-gap barrier 22 generates “superluminal” transmission group velocities in the wavepacket group component of the transmission wavepacket 20 across the air-gap 28. In one preferred embodiment, a radio transmission source 12, a radio receiver 16 and an air-gap barrier 22 comprising a proximal tank 24 and a distal tank 26 aligned parallel to each other across an air-gap 28 are utilized to generate the “superluminal” group velocity transmissions. The proximal tank 24 is placed in signal communication with the transmission source 12 and the distal tank 26 is placed in signal communication with the receiver 16. The tanks 24 and 26 are arranged such that an air-gap 28 is created between having an air-gap length 30. In this embodiment, the tanks 24 and 26 may have any index of refraction suitable to act as a quantum barrier such as, for example, a Plexiglas™ tank filled with water.
To transmit the transmission wavepacket 20 to and from the quantum tunnel 14, the transmission source 12 and receiver 16 must be positioned relative to quantum tunnel 14 such that the transmission wavepacket 20 passes through the quantum tunnel 14. In the embodiment shown in the attached figures, a radio transmission source 12 and a radio receiver 16 utilize antennas 32 directed at the quantum tunnel 14. However, any bandlimiting, and therefore wavepacket producing, antenna 32 design can be used such that the transmission is a wavepacket 20.
A prototype of the superluminal transmission device 10 described above was constructed. A NIM-logic pulser 34 (Phillips Scientific model 417 Nuclear Instrumentation Standard Pocket Pulser) in signal communication with an amplifier 36 (RadioShack catalog # 15-1113C) is used in the transmission source 12 and is placed in signal communication with a bandlimiting five-element folded-dipole Yagi antenna 32a designed for two-meter wavelength radio waves. A second amplifier 38 (RadioShack catalog # 15-1113C) in signal communication with a second five-element folded-dipole Yagi antenna 32b is used as the receiver 16. Both antennas 32a and 32b comprise 1/8 inch diameter aluminum ground wire reflectors and directors, and a #10 copper wire folded dipoles. 75 ohm to 300 ohm transformers, (RadioShack catalog # 15-1140), are connected to 75 ohm cables at the antennas 32a and 32b. Each antenna 32a and 32b is also surrounded by an aluminum screen (not shown), with a 114 cm wide opening along the folded-dipole direction to bandlimit the transmission wavepacket 20. The signal from the receiver amplifier 38 is fed into an oscilloscope monitor 18 (Tektronix TDS220) and a TDC monitor 18 (ORTEC 9308 Picosecond Time Analyzer preceded by a 9307 pico-Timing Discriminator). The transmission source 12 signal is also monitored by the oscilloscope and TDC monitor 18 via a signal splitter 40 which is placed in signal communication with the NIM standard logic pulser 34.
The quantum tunnel 14 comprises an air-gap barrier 22 having proximal 24 and distal 26 barrier walls arranged such that an air-gap 28 lies therebetween. The proximal 24 and distal 26 barrier walls consist of two 4 ft wide and 2 ft high distilled water tanks. The distilled water layer thickness in each tank is 12.7 mm or 0.5 inch and the index of refraction is n=9 and k=0.002. The water tanks are constructed with quarter inch thick Plexiglass having an index of refraction of n=1.6 and k=0.0.
During operation of the apparatus a pulser signal is split into two cables. The one leading directly to the Time to Digital Converter (TDC) is used to start the TDC. The other cable leads, through an amplifier, to the transmitting antenna. The transmitting and receiving antennas are identical five-element folded-dipole Yagi antennas designed for two-meter wavelength radio waves. Each antenna is surrounded by aluminum screen except for openings at the antenna ends that are 114 cm wide (along the folded dipole direction), bandlimiting the wavepacket. This opening is slightly smaller than the 122 cm or 4 feet wide water tanks. The transmitter and receiver folded-dipoles are held fixed at 4.9 meters apart.
The TDC is a 9308 Picosecond Time Analyzer preceded by a 9307 pico-Timing Discriminator (before the stop TDC input) from ORTEC™. The pulser is a battery powered Phillips Scientific™ Model 417 NIM Pocket Pulser. The transmitting and receiving amplifiers are from RadioShack™ catalog number 15-1113C. The pulser is connected through a signal splitter, catalog number 15-1234, to the input of the transmitting amplifier. 300-ohm to 75-ohm transformers, catalog number 15-1140, connect to 75-ohm cables at the antennas. The cable lengths are adjusted so that the pulser TDC start pulse arrives at the TDC just prior to the wavepacket wavefronts.
In the current invention, the one-way “superluminal” group velocity, and the average speed of energy flow of photon wavepackets is measured for two-meter wavelength photons tunneling through a water mirror. The advantage of using long wavelength photons, as opposed to the optical or short wavelength photons used in the prior art, as discussed previously, is that one is able to measure the small sidereal effects that are the one-way “superluminal” group and subluminal phase velocities of light that scale with photon wavelength. The sidereal, or one-way, “superluminal” group velocity was first predicted by Reichenbach as the relativity of simultaneity for superluminal energy flow. See, e.g., H. Reichenbach, The Direction of time, M. Reichenbach Editor, Dover Publications, Mineola N.Y. 1999, the disclosure of which is incorporated herein by reference. Changing Shannon entropy with Renormalization Group (RG) flow as described by Fujikawa (K. Fujikawa, “Remarks an Shannon's Statistical Inference and the Second Law in Quantum Statistical Mechanics”, arXiv:cond-mat/0005496 v4, 1 Apr. 2002, the disclosure of which is incorporated herein by reference), in turn causes the subluminal phase velocity to be sidereal, which in turn leads to the fine structure constant at the end of the RG flow. Because we measure the inverse fine structure constant, it in turn indicates s-duality and dilaton physics turning on.
The classical “superluminal” electromagnetic group velocity theory that is experimentally demonstrated here, and the history of superluminal group velocity measurements are described by Peatross, Glasgow, and War (full citation provided below). In this theory, the classical “superluminal” electromagnetic pulse energy arrival time only involves the Poynting vector, and is given by the time expectation integral over the incoming Poynting flux. The energy arrival time used for describing the classical electromagnetic pulses used in this experiment is defined by the time-center-of-mass as described by Peatross et. al. As such, the complex part of the index of refraction is small and the measured group delay involves only the real part of the index of refraction as described, for example, by Peatross, Glasgow, S. A. Glasgow, and M. Ware, “Average Energy Flow of Optical Pulses in Dispersive Media”, Phys. Rev. Lett. 84, 2370 (2000), the disclosure of which is incorporated herein by reference.
Accordingly, the average classical energy arrival time or time-center-of-mass of (n) voltage peaks in each wavepacket is given by,
where (τp) is the energy peaking time (Sk) is the Poynting vector of voltage peak (k), (sk) is the Poynting vector formal (std) standard deviation, and (tk) is the voltage peak's centroid computed using a Gaussian fit to a single peak (k) in the spectrum. It will be observed that the classical energy peaking time (τp) defines the photon group velocity. The classical energy peaking time (τp) is also given by a Gaussian fit to all of the (n) peaks in a spectrum (as described in the cosmic compass application).
In the experiments conducted, the arrival time difference between the tunneled wavepacket and the pulser is histogrammed by the TDC. Arrival time histograms measuring the voltage peak centroid times (tk) and the number of counts under each peak (Sk) are collected in 1.6 minutes as shown in
For example, a measured tunneling time of 5.97 ns is shown in
The cosmic rest frame (Cosmic Rest Frame=CRF) velocity vector is in the direction opposite the Earth's motion that causes the cosmic-microwave-background Doppler redshift. The CRF velocity is β(CRF)=0.001237±0.000002 and is a vector that points in the direction of right ascension of 23.20 h and declination of 7.22°, the cosmic microwave background Doppler redshift direction as described by Hagiwara and Fixsen.
As shown in
For the measured tunneling time of Δτ=5.97 ns, shown in
Photon energy, defined by the average centroid time difference (tE=(tn−t1)/(n−1)) for (n) peaks in the TDC spectrum, is not sidereal. This time defines the average time between voltage peaks in the tunneled wavepacket and is plotted in
The photon group velocity, defined using the peaking time given by Equation (1), is sidereal. Specifically, the peak Poynting vectors, defined as the number of counts under each peak, are sidereal. When the tunneling-photon propagation direction is into the cosmic-microwave-background Doppler redshift direction, there are the most counts under the first peak in the TDC spectrum and the least counts under the last peak. The first peak is shown in
For the 2002 data with three peaks in each TDC spectrum, the measured unequal spacing between the peaks is the bandlimit time (ΔΔτ=2[(t2−t1)−(t3−t2)]). The second and third peaks have the smallest separation between their centroid times because this experiment was engineered so that the highest energy wavepacket component would be near the wavepacket tail. The 2002 experiment was engineered to have the highest energy wavepacket component near the wavepacket tail in order to prove Peatross et. al. theory, which states that it does not mater if the highest energy component is near the wavefront or near the wavepacket tail. The 2002 experiment was operated with a minimum gain setting on both Amplifiers (catalog # 15-1113C shown in
As discussed above, the tunneling time, shown in
Sidereal peaking time 2002 minimums are shown in
The difference in the counts under the first and third peaks is shown in
As discussed, the current invention is also directed to an apparatus and method for measuring the inverse fine structure constant and discovering the dilaton fundamental particle. In such an embodiment the apparatus is utilized to measure the tunneling photon phase velocity, which can then be used to determine the inverse fine structure constant. As the Earth's daily spin rotates the tunneling photon propagation direction into the cosmic microwave background Doppler redshift direction, and the group velocity approaches its maximum value, the photon bandlimit time (phase velocity) flows with the RG flow to a bulk spacetime caustic. That in turn measures the inverse fine structure constant, that in turn reveals the dilaton fundamental particle.
In principle the cosmic compass operates to reveal the dilaton fundamental particle because of the fundamental nature of photon interaction with the apparatus. Generally, photons do not self interact, and require optical coatings (the water mirror in the cosmic compass apparatus) to form quasi-photons that are bound states of photons and optical coatings. The quasi-photon energy bound to the water tanks is equal to the bandlimit energy (ΔE(B)=hωmax−hωmin). The quasi-photon bound to the water tanks has less energy than a photon that is free to move on the “brane” that is the non-local electromagnetic 3-dimensional “brane” shown within one Planck length of the boundary in
Lim(L→0)[E−ΔE(N)]=finite (2)
Because the coupling constant we measure is the magnetic monopole charge 137±4, that is the inverse fine structure constant 137.036 shown in
ΔE(N)=/ΔΔτ (7)
where (ΔΔτ) is the measured band limit time shown in
ΔΔτ=2(|t21−t32|)=4π[(1/ωmin)−(1/ωmax)]) (8)
where (t21=t2−t1), (t32=t3−t2), and tn (n=1, 2, 3) are the centroids of Gaussian peaks in a 3-peak TDC analyzer spectrum like the spectrum drawing shown in
Modern dilaton physics, as introduced by Duff supports description by the spacetime metric given by Equation (9), where the fifth dimension is the radial coordinate (r) into the (Anti de Sitter) AdS5 bulk spacetime, the AdS5 spacetime is the open ball AdS4 space with radial coordinate (r<1) and Euclidean time (−∞<t<+∞), and the boundary CFT4 is at (r=1−(Planck length)) and boundary distances are dimensionless. Under these conditions, the metric is given by the equation:
dS2=R2[grr(dr2+r2dΩ32)−gttc2dt2+dΩ52] (9)
where R=1 on the boundary and in the U(R)=U(1) gauge (gtt=(1+r2)/(1−r2)=137.036) is the magnetic monopole charge and the inverse fine structure constant, (grr=4(1−r2)−2) is the negative curvature and negative energy hyperbolic radial metric tensor that supports the dilaton microscopic “wormholes”, (dΩ32) is the metric on the 3-dimensional unit sphere (S3), and (dΩ52) is the metric on the 5-dimensional unit sphere (S5). Our Equation (9) is also given by Bousso's Equation (9.1) and by Susskind's Equation (2.1). See, e.g., R. Bousso, “The Holographic Principle”, Rev. Mod. Phys. 74 825 (2002); arXiv:hep-th/0203101 v2 29 Jun. 2002; and L. Susskind and E. Witten, “The Holographic Bound in Anti-deSitter Space”, arXiv:hep-th/9805114, 19 May 1998, the disclosures of which are incorporated herein by reference.
Changing Shannon entropy with RG flow in the ultraviolet limit is the von Neumann entropy corresponding to the bare coupling constant. In the infrared limit the measurable quantity at the maximum Shannon entropy is the fine structure constant (α=1/137.036). Fujikawa's Equation (4.5) is our bandlimit energy Equation (6), as described in Fujikawa, where 1/(|(1/t21)−(1/t32)|)=Δtc in Fujikawa's notation. (K. Fujikawa, “Remarks an Shannon's Statistical Inference and the Second Law in Quantum Statistical Mechanics”, arXiv:cond-mat/0005496 v4 1 Apr. 2002, the disclosure of which is incorporated herein by reference.) Because our measurable quantity is the inverse fine structure constant, as opposed to the fine structure constant, the cosmic compass is capable of measuring the s-dual and magnetic monopole central charge. The presence of the s-duality turns on dilaton physics.
The cosmic compass apparatus measures three values of the time metric tensor and all three values equal 137.036, within their standard deviations, at the bulk caustic, as defined by:
gtt(1)=(1/E)(8πΔE(N)) (10)
gtt(2)=(E)(2/ΔE(B)) (11)
gtt(3)=(16πΔE(N)/ΔE(B))1/2 (12)
Solving each measured gtt value in terms of the others leads to the same Equation (13),
E2=4πΔE(B)ΔE(N) (13)
In the s-dual picture, as the bandlimit energy goes to zero, the Nyquist energy goes to infinity as shown by Equation (13). The energies in Equation (13) as measured by the cosmic compass apparatus are listed in the following Table 2, below.
As previously, discussed, the quasi-photon bound to the water tanks has bandlimited energy (ΔE(B)), and this is less energy than (E) of a photon that is free to move in the laboratory on the “brane” and the “brane” bound photon with energy (E) has less energy than (ΔE(N)) of a “bulk” photon that is free to move in the “bulk” at the Nyquist energy scale. The minimum value of the time metric tensor (gtt) is the inverse fine structure constant (137.036). The Nyquist sample spacing, Δx(N), equals the amount of space consumed by the microscopic “wormholes”. The Nyquist energy in geometric units, (G/c4)(ΔE(N)), times the Nyquist sample spacing, (Δx(N)), equals the Planck length squared. This measurement of the Planck length squared indicates that the dilaton is an internal component of the spacetime metric as introduced by Duff. The microscopic “wormhole” physics is described in further detail by C. Callan and J. Maldacena, “Brane Dynamics from the Born-Infeld Action”, Nuc. Phys. B 513 (1998) 198, the disclosure of which is incorporated herein by reference.
The RG flow is from an extended 3-dimensional “brane” (the electromagnetic field) within a Planck length of the boundary CFT4 (4-dimensional Conformal Field Theory) to a local caustic in the bulk AdS5 (5-dimensional Anti deSitter) spacetime as shown in
In turn, the measured RG parameter equals the time metric tensor (gtt). The measured metric tensor is equal to inverse fine structure constant and to the s-dual magnetic monopole charge at the end of the RG flow to the local electromagnetic caustic in the bulk AdS4 space,
gtt=(1+r2)/(1−r2)=137.036=c/e2 (14)
where (r2=ωmin/ωmax) and (e) is the electric charge on the electron. The measured AdS4 space radial coordinate is r=0.99274 at the bulk caustic at the end of the RG flow.
Very near the boundary CFT4 the measured bandlimit time almost vanishes and the boundary UV Nyquist energy is equal to the Planck energy. The Nyquist energy (ΔE(N)=/ΔΔτ) measures the energy scale of the RG flow. The energy scale decreases, from the Planck energy, almost on the UV boundary, to the Nyquist energy scale at the bulk IR caustic. At the bulk IR caustic at 2:4:18 (D:H:M) in May 2003, at the end of the RG flow, ΔE(N)=(5.1±0.1)E-18 ergs, the Nyquist sample spacing is (Δx(N)=cΔΔτ=6.2±0.2 cm), and the measured bandlimit time is (ΔΔτ=0.205±0.006 ns). The Nyquist energy scale in geometric units is (ΔE(N) [cm]=(G/c4)(ΔE(N))=4.21E-67 cm). Because (Δx=6.2 cm), we discover the following equation by inspection,
where (lP={square root}(G/c3)=1.616E-33 cm) is the Planck length.
As the measured bandlimit time (ΔΔτ) flows with the RG from 0.0 to 0.2 ns, the measured RG parameter (gtt=(1+r2)/(1−r2)) flows from almost infinity on the boundary CFT4 at (r=1−lP), down to the inverse fine structure constant 137.036 at r=0.99274 shown in
Accordingly, the apparatus and method in accordance with the current invention, and as shown in
Where the bulk anti deSitter space connects to the compact 5-dimensional unit-sphere space, on the boundary CFT4, is a Planck throat where the “brane” lives that acts like a wormhole throat for superluminal energy flow. Superluminal energy flow through the wormhole is only luminal inside the wormhole. The wormhole throat radius is the Planck length on the boundary electromagnetic “brane”. Understanding how these higher dimensional effects appear from the point of view of the laboratory requires decomposing the boundary space, into the disjoint union of two Planck scale spheres (S2∪S2) separated by the Nyquist sample spacing (S1). The circle (S1) connects the disjoint spheres in the higher dimensional Einstein space and through the Nyquist spacing in the boundary space. There are two paths between the two spheres (S2∪S2), one path through the boundary space and one path into one sphere (S2) and out the other sphere (S2). When the circle (S1) is lined up along the cosmic microwave background Doppler redshift direction, the electromagnetic energy as defined above, falls into one sphere and comes out the other sphere, 6 cm or 9 cm, ahead of the path through the boundary space. The disjoint sphere (S2∪S2) is the same wormhole mouth (and throat). Luminal energy flow through the wormhole only appears superluminal in the laboratory, and therefore preserves the dominant energy condition for one-way “superluminal” electromagnetic energy flow. The measured photon energy, defined using the photon energy equation, is constant because photon energy always moves at the vacuum speed of light through the background dilaton “wormhole” spacetime. For a tunneling photon propagating into the cosmic microwave background Doppler redshift direction, the background spacetime contains a microscopic “wormhole” that consumes a Nyquist sample spacing length of space. The microscopic “wormhole” is a dilaton scalar particle.
Cosmic compass technology adds quasi-photon experiments to glueball experiments, so that now all of the standard-model massless bosons have a geometric experimental description. Glueballs are the large N limit as described in further detail by Maldacena (J. Maldacena, “The Large N Limit of Superconformal field theories and supergravity”, Adv. Theor. Math. Phys. 2 (1998) 231), the disclosure of which is incorporated herein by reference. Quasi photons are at (N=1) as measured above and are further described by C. Callan and J. Maldacena, “Brane Dynamics from the Born-Infeld Action”, Nuc. Phys. B 513 (1998) 198; the disclosure of which is incorporated herein by reference.
Accordingly, based on these theories it is possible to use the cosmic compass device described herein to measure the dilaton scalar particle. Including demonstrating that the negative energy density that is required to support the dilaton wormholes, E(dilaton)/m3, is equivalent to the positive “phantom” dark energy density, E(dark)/m3, required to produce the acceleration in the expansion rate of the universe, E(dark)/m3=6.7E-10 joules/m3 [8]. Negative dilaton energy density, E(dilaton)/m3, saturates the QI in the U(1) electromagnetic field and is developed in the reference to T. Roman, the disclosure of which is incorporated herein by reference. (T. Roman, “Some Thoughts on Energy Conditions and Wormholes”, gr-qc/0409090 v1 23 Sep. 2004, Eq. 6.) Roman's Equation (6) becomes our Equation (16).
E(dilaton)/unit volume=−(3N/32π2)ΔE(N)/(Δx(N))3 (16)
where N=1 in the small N limit and (N)=(Nyquist). The dilaton fundamental particle measured herein is negative energy excitations of the positive “phantom” dark energy field as described in S. Carroll, M. Hoffman, and M. Trodden, “Can the dark energy equation-of-state parameter w be less than −1?”, arXiv:astro-ph/0301273 v2 4 Feb. 2003, the disclosure of which is incorporated herein by reference. Saturation of the Ford-Roman QI by each tunneling photon is nature's cutoff that stabilizes “phantom” dark energy and stabilizes the negative energy and negative spacetime curvature of the dilaton fundamental particle. For the 2003 data set at 2:4:18 (D:H:M) on May 2003, ΔE(N)=5.1E-18 ergs and Δx(N)=6.2 cm and therefore E(dilaton)/cm3=(−2.0E-22 ergs/cm3)=(−2.0E-23 J/m3). Therefore, if each tunneling pulse contained 3.35E13 photons, then −E(dilaton)/m3=E(dark)/m3=(6.7E-10 J/m3). The required number of photons (3.35E13) times the photon energy (9.422E-19 ergs) equals 3.15E-5 ergs/pulse=3.15E-12 joules/pulse and because each pulse is 80 ns long, the average tunneled power per pulse is 39.4 micro-Watts/pulse. If this is made equal to the tunneled pulse power by increasing the transmitter amplifier gain, than the cosmic compass apparatus would be borrowing all of the available “phantom” dark energy. Said “phantom” energy being equal to 6.7E-10 joules/m3, the “phantom” dark energy required to cause the known accelerated expansion rate of the universe.
A tunneled power of 39.4 micro-Watts/pulse is within the amplifier gain and calorimetry capability of the cosmic compass apparatus. The apparatus captures all of the transmitted pulse energy in the receiving antenna cavity and measures the transmitted pulse energy and power with the receiving antenna. The cosmic compass apparatus can then be used to show that the measured pulse energy and power inside the receiving cavity contains the correct number of photons. The correct number of photons would produce the correct dilaton negative energy density inside each tunneled pulse. The correct pulse-excited “phantom” negative energy density within the quantum tunnel would be equal to the positive “phantom” dark energy density with the negative pressure required in all of space to cause the known accelerating expansion rate of the Universe.
As described above, “phantom” positive dark energy density is homogeneously distributed throughout space but the dilaton negative energy density inside the cosmic compass apparatus is the maximum non-homogenous distribution of the same dark energy field, the dilaton.
Although specific embodiments are disclosed herein, it is expected that persons skilled in the art can and will design alternative light velocity vector measurement systems that are within the scope of the following claims either literally or under the Doctrine of Equivalents.
This application is a continuation of U.S. patent application Ser. No. 10/682,634, filed, Oct. 8, 2003, which is a continuation-in-part of U.S. patent application Ser. No. 09/863,778, filed May 23, 2001, the contents of which are incorporated herein by reference.
Number | Date | Country | |
---|---|---|---|
Parent | 10682634 | Oct 2003 | US |
Child | 11125544 | May 2005 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 09863778 | May 2001 | US |
Child | 10682634 | Oct 2003 | US |