The field pertains to ion manipulation devices.
Ion manipulation technology has allowed the discovery of new applications related to material detection and analysis and composition formation, and has fostered the creation of increasingly useful tools and instruments related to, for example, mass spectrometry. However, problems associated with manipulating ions of the same or different polarities have remained.
According to one aspect of the disclosed technology, an apparatus includes a first pair of opposing electrode arrangements situated to confine ions between the first pair opposing electrode arrangements in a confinement volume portion of a confinement volume inwardly laterally in a first confinement direction with respect to a longitudinal ion propagation direction, each opposing electrode arrangement of the first pair including an arrangement of RF electrodes situated to receive an unbiased RF voltage having an alternate phase between adjacent RF electrodes of the arrangement of RF electrodes of the opposing electrode arrangement of the first pair so as to provide the confining of ions between the first pair of opposing electrode arrangements, and a second pair of opposing electrode arrangements separate from the first pair of opposing electrode arrangements and situated to confine the ions between the second pair of opposing electrode arrangements in the confinement volume inwardly laterally in a second confinement direction that complements the first confinement direction, each opposing electrode arrangement of the second pair including an arrangement of RF electrodes situated to receive an unbiased RF voltage having an alternate phase between adjacent RF electrodes of the arrangement of RF electrodes of the opposing electrode arrangement of the second pair.
In some representative embodiments of the disclosed technology, RF electrodes of each arrangement of RF electrodes of the second pair of opposing electrode arrangements are stacked laterally with respect to the second confinement direction and wherein the RF electrodes of the second pair of opposing electrode arrangements extend longitudinally along the confinement volume and provide confinement of the ions in the second confinement direction. In additional representative embodiments of the disclosed technology, each opposing electrode arrangement of the second pair includes a traveling wave electrode arrangement situated to confine the ions in the confinement volume in the second confinement direction.
According to another aspect of the disclosed technology, a method includes receiving ions in a confinement volume for movement along a longitudinal ion propagation direction, and with a first opposing arrangement of electrodes providing an unbiased RF field, confining the ions in the confinement volume in a first lateral inward direction between the first opposing arrangement of electrodes, and with a second opposing arrangement of electrodes that includes RF electrodes situated to provide an unbiased RF field, confining the ions in the confinement volume in a second lateral inward direction that complements the first inward direction.
In some representative method embodiments of the disclosed technology, the confining of the ions in the second inward direction includes providing an unbiased RF voltage to a pair of opposing arrangements of RF electrodes of the second opposing arrangement of electrodes so as to provide the unbiased RF field, each opposing arrangement forming a stack with adjacent RF electrodes of the stack having an alternate phase, each RF electrode extending longitudinally along the confinement volume so as to provide the confining of the ions in the second inward direction. In further representative method embodiments of the disclosed technology, the confining of the ions in the second inward direction includes providing an unbiased RF voltage to RF electrodes of a pair of opposing arrangements of electrodes of the second opposing arrangement of electrodes so as to provide the unbiased RF field and ion confinement in the first inward direction in an extended confinement region of the confinement volume and includes providing a variable DC voltage to traveling wave electrodes of the pair of opposing arrangements of electrodes that are alternately arranged between the RF electrodes of the pair of opposing arrangements of electrodes so as to produce a corresponding traveling wave to confine the ions in the extended confinement region in the second inward direction.
According to a further aspect of the disclosed technology, an apparatus includes a first pair of opposing electrode arrangements situated to confine ions between the first pair opposing electrode arrangements in a confinement volume portion of a confinement volume inwardly in a first confinement direction that is perpendicular to an ion propagation direction, each opposing electrode arrangement of the first pair including an arrangement of RF electrodes situated to receive an unbiased RF voltage having an alternate phase between adjacent RF electrodes of the arrangement of RF electrodes of the opposing electrode arrangement of the first pair so as to provide the confining of ions between first pair of opposing electrode arrangements, a second pair of opposing electrode arrangements separate from the first pair of opposing electrode arrangements and situated to confine the ions between the second pair of opposing electrode arrangements in the confinement volume inwardly in a second confinement direction that is mutually perpendicular to the first confinement direction and the ion propagation direction, each opposing electrode arrangement of the second pair including an arrangement of RF electrodes situated to receive an unbiased RF voltage having an alternate phase between adjacent RF electrodes of the arrangement of RF electrodes of the opposing electrode arrangement of the second pair, and a traveling wave electrode arrangement situated between adjacent RF electrodes of the first pair of opposing electrode arrangements and that includes a plurality of traveling wave electrodes extending in a sequence parallel to the ion propagation direction so as to receive a variable DC voltage and to produce a corresponding traveling wave to move the ions along the ion propagation direction, wherein the first and second pairs of opposing electrode arrangements are situated so as to confine ions of opposite polarities.
The foregoing and other objects, features, and advantages of the disclosed technology will become more apparent from the following detailed description, which proceeds with reference to the accompanying figures.
As used in this application and in the claims, the singular forms “a,” “an,” and “the” include the plural forms unless the context clearly dictates otherwise. Additionally, the term “includes” means “comprises.” Further, the term “coupled” does not exclude the presence of intermediate elements between the coupled items.
The systems, apparatus, and methods described herein should not be construed as limiting in any way. Instead, the present disclosure is directed toward all novel and non-obvious features and aspects of the various disclosed embodiments, alone and in various combinations and sub-combinations with one another. The disclosed systems, methods, and apparatus are not limited to any specific aspect or feature or combinations thereof, nor do the disclosed systems, methods, and apparatus require that any one or more specific advantages be present or problems be solved. Any theories of operation are to facilitate explanation, but the disclosed systems, methods, and apparatus are not limited to such theories of operation.
Although the operations of some of the disclosed methods are described in a particular, sequential order for convenient presentation, it should be understood that this manner of description encompasses rearrangement, unless a particular ordering is required by specific language set forth below. For example, operations described sequentially may in some cases be rearranged or performed concurrently. Moreover, for the sake of simplicity, the attached figures may not show the various ways in which the disclosed systems, methods, and apparatus can be used in conjunction with other systems, methods, and apparatus. Additionally, the description sometimes uses terms like “produce” and “provide” to describe the disclosed methods. These terms are high-level abstractions of the actual operations that are performed. The actual operations that correspond to these terms will vary depending on the particular implementation and are readily discernible by one of ordinary skill in the art. In some examples, values, procedures, or apparatus' are referred to as “lowest”, “best”, “minimum,” or the like. It will be appreciated that such descriptions are intended to indicate that a selection among many used functional alternatives can be made, and such selections need not be better, smaller, or otherwise preferable to other selections.
Some examples are described in relation to one more longitudinal and lateral directions generalized to correspond to ion movement or confinement. Directions typically apply to ion movement, trapping, and confinement and are provided by electric fields produced by one or more electrodes that are arranged to define one or more volumes of various shapes, sizes, and configurations. A direction can correspond to a single path, multiple paths, bi-directional movement, inward movement, outward movement, or a range of movements. Actual ion movement paths vary and can depend on the various characteristics of the electrode arrangements and electric fields produced by the corresponding electrodes and the positional, polarity, kinetic, or other characteristics of the ions received in a confinement volume. Directions referred to herein are generalized and actual specific particle movements typically correspond to electric fields produced and the electrical mobilities of the ions propagating in relation to the electric fields.
The disclosed technology is directed to devices, apparatus, and methods of manipulating ions, including the use of electric fields to create field-defined pathways, traps, conduits, and switches to manipulate ions with minimal or no losses. In some embodiments, complex sequences of ion separations, transfers, path switching, and trapping can occur in the volume provided between electrode arrays situated on one or more surfaces positioned apart from each other. In some examples, ion confining fields are provided by unbiased radio frequency (RF) electric fields. In additional examples, ion confining fields provided by unbiased RF fields and traveling wave electric fields. In representative examples, ions of opposite polarity are moved, trapped, or manipulated using RF electric fields or RF and traveling wave electric fields. RF electric fields are typically applied so that RF fields generated by adjacent RF electrodes are out of phase, typically by approximately 180°, to form an alternating RF field arrangement that inhibits the ions from approaching the electrodes and that provides confinement. Confinement can be provided over a range of pressures (e.g., less than approximately 0.001 torr to approximately 1000 torr), and over a useful, broad, and adjustable mass to charge (m/z) range associated with the ions. In some examples ions are manipulated for analysis through mass spectrometry or with a mass spectrometer, and where pressures of less than approximately 0.1 torr to approximately 50 torr can be used to readily manipulate ions over a useful m/z range, e.g., m/z 20 to greater than approximately 5,000. In some examples, ion confinement volumes includes gases or reactants. Arrangements of RF electrodes and traveling wave electrodes receive corresponding potentials that allow creation of ion traps and/or conduits in the volume or gap between the electrode arrangements so that lossless or substantially lossless storage and/or movement of ions of the same or different polarities can be achieved, including without the application of static or superimposed DC potentials. For example, lossless manipulation can include losses of less than 0.1%, 1%, or 5% of ions injected into a corresponding ion confinement volume.
Traveling waves are typically created by dynamically applying DC potentials to a plurality of electrodes arranged in one or more sequences. Traveling wave electrode sets can be formed by one or more sequences of traveling wave electrodes situated in series. As the DC potentials are varied between adjacent electrodes of a traveling wave electrode sequence, a traveling wave can be formed with a speed based on the time dependent variation of the DC potentials. Varying traveling wave characteristics can affect and manipulate various movements of ions having different ion mobilities, including producing ion confinement, lossless transport, and ion separation. In some examples, in conjunction with traveling waves, ions can be losslessly confined in an ion confinement volume for extended durations, such as multiple hours. One such characteristic is the traveling wave speed, with ions that have higher mobility moving or surfing with the traveling wave and ions that have lower mobility rolling over and lagging behind the traveling wave to allow ion separation. Another such characteristic is traveling wave amplitude, which can transport ions with lower ion mobilities with a corresponding increase in traveling wave amplitude. Traveling wave amplitudes are typically selected based on ion mobility characteristics and the desired ion manipulation to be in the range of greater than 0 V up to 30 V, 50 V, 80 V, 100 V, or greater. Traveling wave speeds are typically selected based on ion mobility characteristics and the desired ion manipulation to be in the range of less than 5 m/s, 20 m/s 50 m/s, 100 m/s, 200 m/s, or 500 m/s. Traveling wave frequencies are typically selected between 10 kHz and 200 kHz.
In representative examples, each of the opposing electrode arrangements 108a, 108b includes an arrangement of electrodes 114 that extend along the length of the ion confinement volume 106 and that are situated to receive one or more RF voltages, typically in the frequency range of 100 kHz to 100 MHz, which are not biased with a DC voltage, so as to provide confinement of ions with the same or different polarities. The electrodes 114 are arranged so as to receive RF voltages alternately so that the RF voltages received by adjacent electrodes of the electrodes 114 are approximately 180° out of phase from each other. With the applied RF voltages, the electrodes 114 move and confine the ions 102 in the ion confinement volume 106 laterally in an inward direction 115 between the opposing electrode arrangements 108a, 108b, which is generally perpendicular or normal to the ion propagation axis 112 or longitudinal path through the ion confinement volume 106 in the parallel configuration of opposed electrode arrangements 108 shown. The RF voltages received by the electrodes 114 can vary, e.g., with respect to frequency and amplitude, over time or between adjacent electrodes 114.
Each of the opposing electrode arrangements 108a, 108b also includes one or more traveling wave electrode arrangements 116 situated between adjacent electrodes 114. In some examples, traveling wave electrode arrangements 116 are alternately situated between adjacent electrodes 114. In further examples, two or more traveling wave electrode arrangements 116 are situated between adjacent electrodes 114, and in additional examples, two or more electrodes 114 are situated between adjacent traveling wave electrode arrangements 116. The traveling wave electrode arrangements 116 can each include a sequence of electrodes 117 such as a plurality of electrode segments extending along the length or a portion of the length of the ion confinement volume 106 and that are situated to receive separate time-varying DC voltages. The DC voltages vary with time so as to produce a traveling wave along the selected traveling wave electrode arrangement 116. The traveling wave produces a movement, net movement, separation, or trapping of the ions 102 in the ion confinement volume 106 associated with the direction of the traveling wave, such as in the direction of the ion propagation axis 112 or longitudinal extent of the ion confinement volume 106. In some examples, traveling wave characteristics such as wave speed or amplitude are varied between different traveling wave electrode arrangements 116.
In representative examples, each of the opposing electrode arrangements 110a, 110b includes a plurality of electrodes 118 each extending parallel to each other along the length of the ion confinement volume 106 and spaced apart from each other in a direction parallel to the inward direction 115 so as to form an electrode stack. Each plurality of electrodes 118 is situated to receive RF voltages, such as in the range of 100 kHz to 100 MHz, which are not biased with a DC voltage, so as to provide confinement of ions with the same or different polarities. Each plurality of electrodes 118 receives RF voltages alternately so that the RF voltages received by adjacent electrodes of the plurality of electrodes 118 are approximately 180° out of phase with each other. The RF voltages received by the electrodes 118 need not be identical, and in many examples are not identical, to those received by the electrodes 114 and can also vary, e.g., with respect to frequency and amplitude, over time or between adjacent electrodes 118. With the applied RF voltages, the electrodes 118 move and confine the ions 102 in the ion confinement volume 106 laterally in an inward direction 119 that complements or supports the inward direction 115. In representative examples, the inward direction 119 is generally perpendicular to the ion propagation axis 112 and the inward direction 115. The electrodes 118 can have a width that extends laterally (e.g., parallel to the inward direction 119) so that the electrodes 118 are substantially planar. In some embodiments, the ion propagation axis 112 is curved or bent. In further examples, the lateral inward directions 115, 119 are not perpendicular to each other or to the ion propagation axis 112. RF fields generated with the electrodes 118 have sufficient field penetration so as to provide suitable ion confinement.
The confinement volume 206 is further defined between a second pair of opposing electrode arrangements 216a, 216b. The opposing electrode arrangements 216a, 216b form respective electrode stacks having a plurality of RF electrodes 218 spaced apart from each other in a first direction that extends vertically as depicted in
An asymmetric traveling wave voltage between 0 V and 20 V is applied to the traveling wave electrode sets 212 that corresponds to an amplitude of the traveling wave. A traveling wave speed of 100 m/s is produced by varying the traveling wave voltage between adjacent traveling wave electrodes 213 in the traveling wave electrode sets 212. The duration of the traveling wave can vary so that one or more adjacent traveling wave electrodes 213 can have the same or different voltage. The ion sets 204a-204c each have an m/z of 622 though the ions 202 of the ion sets 204a, 204c have a positive polarity and the ions 202 of the ion set 204b have a negative polarity. An RF voltage of 150 V is applied to the RF electrodes 210, 218 so as to confine the ions 202 of the ion sets 204a-204c within the confinement volume 206. The negatively charged ions 204b are generally confined to a center region of the confinement volume 206 and the positively charged ions 204a, 204c are generally confined to side regions adjacent to the center region. In some examples, the side regions can overlap the center region so that ions of different polarities can become separated and remain overlapping within the confinement volume 206 and in other examples the side regions can be separate from center region so that ions of different polarities are separated and non-overlapping within the confinement volume 206.
In
A second pair of opposing electrode sets 616a, 616b is arranged to provide confinement of the ions in the confinement volume 602 between two opposing boundaries 617a, 617b in a second lateral confinement direction that complements the first lateral confinement direction. In some examples, the second confinement direction can be mutually perpendicular to the first confinement and ion movement directions. In further examples, additional lateral confinement directions complement the first and second lateral confinement directions. The electrode set 616a includes a pair of opposing electrode arrangements 618a, 618b spaced apart across a confinement volume portion 620 adjacent to a center confinement volume portion 622. Each of the opposing electrode arrangements 618a, 618b includes a plurality of RF electrodes 624 and a plurality of traveling wave electrodes 626 extending between the opposing ends 610, 612. The RF electrodes 624 move ions in the confinement volume portion 620 away from the opposing electrode arrangements 618 and the traveling wave electrodes 626 are situated to move or confine the ions in the second lateral ion confinement direction away from the confinement volume boundary 617a and towards the center confinement volume portion 622.
The electrode set 616b includes a similar pair of opposing electrode arrangements 628a, 628b spaced apart across a confinement volume portion 630 adjacent to the center confinement volume portion 622, with each including a plurality of RF electrodes 632 and a plurality of traveling wave electrodes 634. The RF electrodes 632 move ions in the confinement volume portion 622 away from the opposing electrode arrangements 628 and the traveling wave electrodes 634 are situated to move the ions in the second lateral ion confinement direction, away from the confinement volume boundary 617b and towards the center confinement volume portion 622. In representative examples, the opposing electrode arrangements 616a, 616b extend adjacently from the opposing electrode arrangements 604a, 604b so that the electrodes of the electrode arrangements 604a, 618a, 628a can be associated with a first common surface and the electrodes of the electrode arrangements 604b, 618b, 628b can be associated with a second common surface spaced apart from the first common surface. For example, the first and second common surfaces can be printed circuit boards with electrode arrangements formed on the respective surfaces. In some examples, the traveling wave characteristics, including peak-to-peak voltage, wave speed, duration, etc., are the same for the traveling wave electrodes 626 and the traveling wave electrode sets 606. In additional examples, the traveling wave characteristics can be different, including between the traveling wave electrodes 626, 634. The RF field characteristics associated with the electrodes 608 can be same or different from the RF field characteristics produced by the RF electrodes 624, 632.
The first set of electrodes 706 includes a plurality of traveling wave electrode sets 708 each including a plurality of traveling wave electrodes 710 extending in a sequence. The traveling wave electrodes 710 are situated to receive separate variable DC voltages corresponding to a traveling wave electric field that travels along the sequence of traveling wave electrodes 710 with predetermined traveling wave characteristics, such as traveling wave speed, amplitude, frequency, crest duration, etc. The traveling wave characteristics associated with the traveling wave electrode sets 708 typically correspond with separation, trapping, or movement of the first and second sets of ions 702, 703 along the direction of the sequences of traveling wave electrodes 710. A plurality of RF electrodes 712 are interposed between the traveling wave electrode sets 708 and inhibit the first and second sets of ions 702, 703 from impinging on the first set of electrodes 706 or otherwise escaping the confinement volume 704 (e.g., between the RF electrodes 712 and traveling wave electrodes 710).
The first set of electrodes 706 further includes a pair of opposing traveling wave electrode sets 714a, 714b, each including a plurality of traveling wave electrodes 716 that extend along the ion manipulation apparatus 700 similar to the traveling wave electrode sets 708 and RF electrodes 712. The opposing traveling wave electrode sets 714a, 714b are situated to receive separate variable DC voltages that correspond to a traveling wave electric field that travels in a different direction with respect to the general movement direction of the first and second sets of ions 702, 703 being directed along the length of the traveling wave electrode sets 708, such as perpendicularly. The first set of electrodes 706 further includes a plurality of RF electrodes 716 that inhibit propagation of the first and second sets of ions 702, 703 to the RF electrodes 716 and the opposing traveling wave electrode sets 714a, 714b. The characteristics of the traveling waves formed by the traveling wave electrode sets 714a, 714b are selected so as to provide lateral confinement, or guarding, of the first and second sets of ions 702, 703 inside the confinement volume 704 that complements the confinement provided by the RF electrodes 712.
In the example shown, the first and second sets of ions 702, 703 extend into lateral regions 716a, 716b of the confinement volume 704. The RF electrodes 716 inhibit ion travel to the RF electrodes 716 and traveling wave electrodes sets 714a, 714b in the corresponding lateral regions 716a, 716b. The traveling wave characteristics corresponding to the traveling wave electrode sets 708 that move the first and second sets of ions 702, 703 along an ion propagation path include a traveling wave speed of 100 m/s and a symmetric amplitude of ±15 V. The traveling wave characteristics corresponding to the opposing traveling wave electrode sets 714a, 714b that provide a confinement of the first and second sets of ions 702, 703 within the confinement volume 704 include a traveling wave speed of 30 m/s and a symmetric amplitude of ±20 V.
In
Each of the opposing curved electrode arrangements 1102, 1104 includes an opposing pair of electrode arrangements 1112, 1114 situated adjacent to the traveling wave electrode sets 1108 and RF electrodes 1110. In some embodiments, the opposing pair of electrode arrangements 1112, 1114 includes a pair of opposing traveling wave electrode sets 1116 situated to direct ions inward into the confinement volume 1106 between the traveling wave electrode sets 1108, so as to complement the confinement provided by the RF electrodes 1110. The opposing pair of electrode arrangements 1112, 1114 also includes a plurality of RF electrodes 1118, which can be similar or the same as the RF electrodes 1110, alternately situated between the traveling wave electrodes of the opposing traveling wave electrode sets 1116. In additional embodiments, the opposing pair of electrode arrangements 1112, 1114 includes a plurality of RF electrodes 1118 in the place of the traveling wave electrodes of the traveling wave electrode sets 1116. In further embodiments, end stacks 1120 of RF electrodes can be situated to further inhibit ions from escaping the confinement volume 1106. In typical examples, adjacent RF electrodes are 180° out of phase.
In
In
In representative examples, the confining of ions in the second inward direction includes providing an unbiased RF voltage to a pair of opposing arrangements of RF electrodes of the second opposing arrangement of electrodes so as to provide the unbiased RF field, each opposing arrangement forming a stack with adjacent RF electrodes of the stack having an alternate phase, each RF electrode extending along the ion propagation direction so as to provide the confining of the ions in the second inward direction. In other representative examples, the confining of the ions in the second inward direction includes providing an unbiased RF voltage to RF electrodes of a pair of opposing arrangements of electrodes of the second opposing arrangement of electrodes so as to provide the unbiased RF field and ion confinement in the first inward direction in an extended confinement region of the confinement volume and includes providing a variable DC voltage to traveling wave electrodes of the pair of opposing arrangements of electrodes that are alternately arranged between the RF electrodes of the pair of opposing arrangements of electrodes so as to produce a corresponding traveling wave to move the ions in the extended confinement region in the second inward direction.
In view of the many possible embodiments to which the principles of the disclosed technology may be applied, it should be recognized that the illustrated embodiments are only representative examples and should not be taken as limiting the scope of the disclosure. Alternatives specifically addressed in these sections are merely exemplary and do not constitute all possible alternatives to the embodiments described herein. For instance, various components of systems described herein may be combined in function and use. We therefore claim all that comes within the scope and spirit of the appended claims.
This application is a continuation of U.S. patent application Ser. No. 15/260,046, filed Sep. 8, 2016, which is incorporated by reference herein in its entirety.
This invention was made with government support under grant DE-AC05-76RL01830 awarded by the United States Department of Energy and GM103493 awarded by the National Institutes of Health. The government has certain rights in the invention.
Number | Name | Date | Kind |
---|---|---|---|
5572035 | Franzen | Nov 1996 | A |
6107328 | Parsons | Aug 2000 | A |
6369383 | Cornish et al. | Apr 2002 | B1 |
6960760 | Bateman et al. | Nov 2005 | B2 |
7365317 | Whitehouse et al. | Apr 2008 | B2 |
7391021 | Stoermer et al. | Jul 2008 | B2 |
7786435 | Whitehouse et al. | Aug 2010 | B2 |
7838826 | Park | Nov 2010 | B1 |
7888635 | Belov et al. | Feb 2011 | B2 |
8049169 | Satake et al. | Nov 2011 | B2 |
8067747 | Wollnik | Nov 2011 | B2 |
8222597 | Kim et al. | Jul 2012 | B2 |
8637817 | Krutchinsky | Jan 2014 | B1 |
8835839 | Anderson et al. | Sep 2014 | B1 |
8969800 | Tolmachev et al. | Mar 2015 | B1 |
9184040 | Park | Nov 2015 | B2 |
9324548 | Benter et al. | Apr 2016 | B1 |
9704701 | Ibrahim | Jul 2017 | B2 |
10224194 | Ibrahim | Mar 2019 | B2 |
10460920 | Smith | Oct 2019 | B1 |
20010035498 | Li | Nov 2001 | A1 |
20040026611 | Bateman et al. | Feb 2004 | A1 |
20070138384 | Keiser | Jun 2007 | A1 |
20090026361 | Syms | Jan 2009 | A1 |
20090134321 | Hoyes | May 2009 | A1 |
20090173880 | Bateman | Jul 2009 | A1 |
20090206250 | Wollnik | Aug 2009 | A1 |
20110024618 | Brown | Feb 2011 | A1 |
20110049346 | Wells | Mar 2011 | A1 |
20110049357 | Giles | Mar 2011 | A1 |
20110192969 | Verentchikov | Aug 2011 | A1 |
20120261570 | Shvartsburg et al. | Oct 2012 | A1 |
20120305758 | Park | Dec 2012 | A1 |
20130175440 | Perelman | Jul 2013 | A1 |
20130187044 | Ding | Jul 2013 | A1 |
20130306858 | Giles | Nov 2013 | A1 |
20140061457 | Berdnikov | Mar 2014 | A1 |
20150076343 | Tolmachev | Mar 2015 | A1 |
20150348769 | Park | Dec 2015 | A1 |
20150364309 | Welkie | Dec 2015 | A1 |
20160071715 | Anderson | Mar 2016 | A1 |
20160225598 | Ristroph | Aug 2016 | A1 |
20160322209 | Wouters et al. | Nov 2016 | A1 |
20170069477 | Green | Mar 2017 | A1 |
20170076931 | Ibrahim | Mar 2017 | A1 |
20170200595 | Giles | Jul 2017 | A1 |
20170236698 | Zhang | Aug 2017 | A1 |
Number | Date | Country |
---|---|---|
1 566 828 | Aug 2005 | EP |
1 825 495 | Nov 2011 | EP |
3038134 | Jun 2016 | EP |
3252460 | Dec 2017 | EP |
2499587 | Aug 2013 | GB |
WO 2016034125 | Mar 2016 | WO |
WO 2018048494 | Mar 2018 | WO |
Entry |
---|
Ibrahim et al., “New frontiers for mass spectrometry based upon structures for lossless ion manipulations,” The Analyst, 142(7):1010-1021 (Mar. 3, 2017). |
International Search Report and Written Opinion for related International Application No. PCT/US2018/065380, dated Mar. 29, 2019, 12 pages. |
Garimella et al., “Simulation of Electric Potentials and Ion Motion in Planar Electrode Structures for Lossless Ion Manipulations (SLIM),” J. Am. Soc. Mass Spectrom. 25(11):1890-1896 (Nov. 2014). |
Giles et al., “A method for direct measurement of ion mobilities using a travelling wave ion guide,” International Journal of Mass Spectrometry, 298(1):10-16 (Dec. 2010). |
Giles et al., “Applications of a travelling wave-based radio-frequency-only stacked ring ion guide,” Rapid Commun. Mass Spectrom., 18(20):2401-2414 (Oct. 30, 2004). |
Giles et al., “Enhancements in travelling wave ion mobility resolution,” Rapid Commun. Mass Spectrom., 25(11):1559-1566 (Jun. 15, 2011). |
Glaskin et al., “Ion Trapping for Ion Mobility Spectrometry Measurements in a Cyclical Drift Tube,” Anal. Chem., 85(15):7003-7008 (Jul. 2013). |
Hamid et al., “Characterization of Traveling Wave Ion Mobility Separations in Structures for Lossless Ion Manipulations,” Anal. Chem., 87:11301-11308 (Oct. 28, 2015). |
Ibrahim et al., “Development of a new ion mobility (quadrupole) time-of-flight mass spectrometer,” International Journal of Mass Spectrometry, 377:655-662 (Feb. 1, 2015). |
International Search Report/Written Opinion for International Application No. PCT/US14/11291, International Filing Date Jan. 13, 2014, dated Jun. 6, 2014. |
International Search Report and Written Opinion for related International Application No. PCT/US2017/039770, dated Dec. 15, 2017. |
Merenbloom et al., “Effects of Select Anions from the Hofmeister Series on the Gas-Phase Conformations of Protein Ions Measured with Traveling-Wave Ion Mobility Spectrometry/Mass Spectrometry,” J. Am. Soc. Mass Spectrom. 22:1978-1990 (Nov. 22, 2011). |
PCT Recordation of Search History for International Application No. PCT/US14/11291, International Filing Date Jan. 13, 2014, Date during which the search was conducted May 15, 2014, Date of Completion of Recordation of Search History Form May 22, 2014. |
Pringle et al., “An investigation of the mobility separation of some peptide and protein ions using a new hybrid quadrupole/travelling wave IMS/oa-ToF instrument,” International Journal of Mass Spectrometry, 261(1):1-12 (Mar. 1, 2007). |
Shvartsburg et al., “Fundamentals of Traveling Wave Ion Mobility Spectrometry,” Anal. Chem., 80(24):9689-9699 (Dec. 15, 2008). |
Smith et al., “Deciphering drift time measurements from travelling wave ion mobility spectrometry-mass spectrometry studies,” European Journal of Mass Spectrometry, 15(2):113-130 (Jan. 2009). |
Sobott et al., “A Tandem Mass Spectrometer for Improved Transmission and Analysis of Large Macromolecular Assemblies,” Anal. Chem., 74(6):1402-1407 (Apr. 2002). |
Tolmachev et al., “Characterization of Ion Dynamics in Structures for Lossless Ion Manipulations,” Anal. Chem., 86(18):9162-9168 (Sep. 16, 2014). |
Webb et al., “Experimental Evaluation and Optimization of Structures for Lossless Ion Manipulations for Ion Mobility Spectrometry with Time-of-Flight Mass Spectometry,” Anal. Chem., 86(18):9169-9176 (Sep. 5, 2014). |
Webb et al., “Mobility-Resolved Ion Selection in Uniform Drift Field Ion Mobility Spectrometry/Mass Spectrometry: Dynamic Switching in Structures for Lossless Ion Manipulations,” Anal. Chem., 86(19):9632-9637 (Oct. 7, 2014). |
Zhang et al., “Ion Trapping, Storage, and Ejection in Structures for Lossless Ion Manipulations,” Anal. Chem., 87(12):6010-6016 (May 2015). |
Zhong et al., “Characterizing the resolution and accuracy of a second-generation traveling-wave ion mobility separator for biomolecular ions,” The Royal Society of Chemistry, 136(17):3534-3541 (Mar. 2011). |
International Search Report and Written Opinion for related International Application No. PCT/US2019/039302, dated Sep. 20, 2019, 11 pages. |
Number | Date | Country | |
---|---|---|---|
20190198305 A1 | Jun 2019 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 15260046 | Sep 2016 | US |
Child | 16289216 | US |