1. Field of the Invention
The invention generally relates to devices and related methods for treating intracardiac defects. More particularly, the invention provides an intracardiac occluder with a biological tissue scaffold, and related methods, for the percutaneous closure of intracardiac defects.
2. Background Information
The human heart is divided into four compartments or chambers. The left and right atria are located in the upper portion of the heart and the left and right ventricles are located in the lower portion of the heart. The left and right atria are separated from each other by a muscular wall, the intraatrial septum, while the ventricles are separated by the intraventricular septum.
Either congenitally or by acquisition, abnormal openings, holes, or shunts can occur between the chambers of the heart or the great vessels, causing blood to flow therethrough. Such deformities are usually congenital and originate during fetal life when the heart forms from a folded tube into a four chambered, two unit system. The deformities result from the incomplete formation of the septum, or muscular wall, between the chambers of the heart and can cause significant problems. Ultimately, the deformities add strain on the heart, which may result in heart failure if they are not corrected.
One such deformity or defect, a patent foramen ovale, is a persistent, one-way, usually flap-like opening in the wall between the right atrium and left atrium of the heart. Since left atrial pressure is normally higher than right atrial pressure, the flap typically stays closed. Under certain conditions, however, right atrial pressure exceeds left atrial pressure, creating the possibility for right to left shunting that can allow blood clots to enter the systemic circulation. This is particularly worrisome to patients who are prone to forming venous thrombus, such as those with deep vein thrombosis or clotting abnormalities.
Nonsurgical (i.e., percutaneous) closure of patent foramen ovales, as well as similar intracardiac defects such as atrial septal defects, ventricular septal defects, and left atrial appendages, is possible using a variety of mechanical closure devices. These devices, which allow patients to avoid the potential side effects often associated with standard anticoagulation therapies, typically consist of a metallic structural framework that is combined with a synthetic scaffold material. The synthetic scaffold material encourages ingrowth and encapsulation of the device. Current devices typically utilize a polyester fabric, expanded polytetrafluoroethylene (ePTFE), Ivalon®, or a metal mesh as the synthetic scaffold material. Such devices suffer, however, from several disadvantages, including thrombus formation, chronic inflammation, and residual leaks.
The present invention provides a device for occluding intracardiac defects. The device includes a biological tissue scaffold, as opposed to a synthetic scaffold (e.g., a polyester fabric, ePTFE, Ivalon®, or a metal mesh) as presently used by devices known in the art. In a preferred embodiment, the biological tissue scaffold is fabricated from collagen. In one embodiment, a specific type of biological tissue, derived from the tunica submucosa layer of the porcine small intestine, forms the tissue scaffold. As a result of this structure, the aforementioned disadvantages associated with the devices known in the art are minimized or eliminated.
In one aspect, the invention provides an intracardiac occluder for percutaneous transluminal treatment of an intracardiac defect. The intracardiac occluder includes a proximal support structure supporting a proximal occlusion shell and a distal support structure supporting a distal occlusion shell. The distal support structure is coupled to the proximal support structure and at least one of the occlusion shells includes a biological tissue scaffold.
Various embodiments of this aspect of the invention include the following features. The biological tissue scaffold may be a purified bioengineered type 1 collagen that may be derived from a tunica submucosa layer of a porcine small intestine. Further, in one embodiment, at least one of the support structures includes a corrosion resistant metal. Alternatively, at least one of the support structures includes a bioresorbable polymer or a biodegradable polymer. In yet another embodiment, the proximal support structure includes a plurality of outwardly extending proximal arms and the distal support structure includes a plurality of outwardly extending distal arms.
In another aspect, the invention provides a method for percutaneous transluminal treatment of an intracardiac defect in a patient. The method includes providing an intracardiac occluder as described above, positioning the intracardiac occluder proximate the intracardiac defect, and engaging the intracardiac defect with the intracardiac occluder to substantially occlude the intracardiac defect.
In one embodiment of this aspect of the invention, the intracardiac defect is engaged by positioning the proximal occlusion shell and the distal occlusion shell on different sides of the intracardiac defect. The intracardiac defect may be, for example, a patent foramen ovale, an atrial septal defect, a ventricular septal defect, or a left atrial appendage.
In yet another aspect, the invention provides a method for making an intracardiac occluder for the percutaneous transluminal treatment of an intracardiac defect. The method includes providing an overall support structure and first and second biological tissue scaffolds. The overall support structure includes a proximal support structure and a distal support structure. The method further includes coupling the first biological tissue scaffold to the proximal support structure and coupling the second biological tissue scaffold to the distal support structure. In various embodiments of this aspect of the invention, the biological tissue scaffolds are sewn, laminated, or glued to the support structures.
The foregoing and other objects, aspects, features, and advantages of the invention will become more apparent from the following description and from the claims.
In the drawings, like reference characters generally refer to the same parts throughout the different views. Also, the drawings are not necessarily to scale, emphasis instead generally being placed upon illustrating the principles of the invention.
The present invention provides an intracardiac occluder for the repair of intracardiac defects, such as, for example, a patent foramen ovale, an atrial septal defect, a ventricular septal defect, and left atrial appendages. The intracardiac occluder includes a structural framework and a biological tissue scaffold adhered thereto.
An intracardiac occluder 10″ according to yet another illustrative embodiment of the invention is illustrated in
Alternatively, the overall support structure 16 may assume any shape or configuration to form the proximal support structure 24 and the distal support structure 34.
In one embodiment, the overall support structure 16 is fabricated from a corrosion resistant metal, such as, for example, stainless steel, nitinol, or a nickel-cobalt-chromium-molybdenum alloy (e.g., MP35N). Alternatively, in other embodiments, the overall support structure 16 is fabricated from bioresorbable or biodegradeable polymers.
In accordance with the present invention, the occlusion shells 18, 20, which are attached, as described below, to the proximal support structure 24 and the distal support structure 34, respectively, are made from a biological tissue scaffold. In a preferred embodiment, the tissue scaffold is fabricated from collagen. In one embodiment, a purified (acellular) bioengineered type 1 collagen derived from the tunica submucosa layer of the porcine small intestine forms the tissue scaffold. More specifically, the tunica submucosa layer, referred to hereinafter as the Intestinal Collagen Layer (“ICL”), is separated or delaminated from the other layers of the porcine small intestine (i.e., the tunica muscularis and the tunica mucosa) by any method known in the art. For example, a Bitterling sausage casing machine is used to perform the separation. Once mechanically separated from the other layers, the ICL is, in one embodiment, chemically cleaned to remove debris and other substances, other than collagen. For example, the ICL is soaked in a buffer solution at 4 degrees Celsius without the use of any detergents, or, alternatively, in a second embodiment, it is soaked with NaOH or trypsin. Other cleaning techniques known to those skilled in the art may also be used. After cleaning, the ICL is decontaminated. Any sterilization system for use with collagen, as known in the art, may be used. For example, a dilute peracetic acid solution, gamma sterilization, or electron-beam sterilization is used to decontaminate the ICL.
Alternatively, collagenous tissue from the fascia lata, pericardium, or dura matter of pigs or other mammalian sources, such as, for example, cows or sheep, may form the tissue scaffold. Additionally, in making the occlusion shells 18, 20, two or more collagen layers may be bonded together and then cross-linked to produce a biocompatible material capable of being remodeled by the host cells.
In one embodiment, the biological tissue scaffold is non-porous and prevents the passage of fluids that are intended to be retained by the implantation of the intracardiac occluder 10. In another embodiment, heparin is ionically or covalently bonded to the biological tissue scaffold to render it non-thrombogenic. In yet other embodiments, proteins or cells are applied to the biological tissue scaffold to render it non-thrombogenic and/or accelerate the healing process. Growth factors may also be applied to the biological tissue scaffold to accelerate the healing process.
Referring again to
As shown, the biological tissue scaffold of the intracardiac occluder 10 of the present invention increases the rate of tissue ingrowth and, consequently, decreases the time needed to completely close the intracardiac defect. Specifically, referring now to
As also shown, the intracardiac occluder 10 of the present invention naturally adheres to, and seals completely along, the edge of the intracardiac defect in a manner that is much improved from the exemplary intracardiac occluder known in the art. Additionally, in one embodiment, the biological tissue scaffold of the intracardiac occluder 10 of the present invention is non-porous. As a result, the intracardiac occluder 10 decreases the likelihood of fluid (e.g., blood) leakage through the opening.
Further advantages to the intracardiac occluder 10 of the present invention, in comparison to known intracardiac occluders, include decreased thrombogenicity, quicker endothelialization, superior biocompatibility, minimal foreign body reaction, decreased inmmunological and inflammatory responses, and no fibrosis.
Variations, modifications, and other implementations of what is described herein will occur to those of ordinary skill in the art without departing from the spirit and the scope of the invention as claimed. Accordingly, the invention is to be defined not by the preceding illustrative description but instead by the spirit and scope of the following claims.
This application is a divisional application of U.S. application Ser. No. 11/705,380 filed Feb. 12, 2007, now pending; which is a continuation application of U.S. application Ser. No. 10/453,709 filed Jun. 3, 2003, now abandoned; which claims the benefit under 35 USC §119(e) to U.S. Application Ser. No. 60/385,274 filed Jun. 3, 2002. The disclosure of each of the prior applications is considered part of and is incorporated by reference in the disclosure of this application.
Number | Name | Date | Kind |
---|---|---|---|
2127903 | Bowen | Aug 1938 | A |
3562820 | Braun | Feb 1971 | A |
3874388 | King et al. | Apr 1975 | A |
3875648 | Bone | Apr 1975 | A |
3924631 | Mancusi | Dec 1975 | A |
4006747 | Kronenthal et al. | Feb 1977 | A |
4007743 | Blake | Feb 1977 | A |
4425908 | Simon | Jan 1984 | A |
4696300 | Anderson | Sep 1987 | A |
4710192 | Liotta et al. | Dec 1987 | A |
4836204 | Landymore et al. | Jun 1989 | A |
4902508 | Badylak et al. | Feb 1990 | A |
4915107 | Rebuffat et al. | Apr 1990 | A |
4956178 | Badylak et al. | Sep 1990 | A |
5021059 | Kensey et al. | Jun 1991 | A |
5037433 | Wilk et al. | Aug 1991 | A |
5041129 | Hayhurst et al. | Aug 1991 | A |
5108420 | Marks | Apr 1992 | A |
5171259 | Inoue | Dec 1992 | A |
5192301 | Kamiya et al. | Mar 1993 | A |
5222974 | Kensey et al. | Jun 1993 | A |
5236440 | Hlavacek | Aug 1993 | A |
5257637 | El Gazayerli | Nov 1993 | A |
5275826 | Badylak et al. | Jan 1994 | A |
5282827 | Kensey et al. | Feb 1994 | A |
5284488 | Sideris | Feb 1994 | A |
5304184 | Hathaway et al. | Apr 1994 | A |
5312341 | Turi | May 1994 | A |
5312435 | Nash et al. | May 1994 | A |
5334217 | Das | Aug 1994 | A |
5354308 | Simon et al. | Oct 1994 | A |
5411481 | Allen et al. | May 1995 | A |
5413584 | Schulze | May 1995 | A |
5417699 | Klein et al. | May 1995 | A |
5425744 | Fagan et al. | Jun 1995 | A |
5433727 | Sideris | Jul 1995 | A |
5451235 | Lock et al. | Sep 1995 | A |
5460962 | Kemp | Oct 1995 | A |
5478353 | Yoon | Dec 1995 | A |
5480424 | Cox | Jan 1996 | A |
5486193 | Bourne et al. | Jan 1996 | A |
5507811 | Koike et al. | Apr 1996 | A |
5540712 | Kleshinski et al. | Jul 1996 | A |
5573784 | Badylak et al. | Nov 1996 | A |
5601571 | Moss | Feb 1997 | A |
5618311 | Gryskiewicz | Apr 1997 | A |
5620461 | Muijs Van De Moer et al. | Apr 1997 | A |
5626599 | Bourne et al. | May 1997 | A |
5634936 | Linden et al. | Jun 1997 | A |
5649950 | Bourne et al. | Jul 1997 | A |
5683411 | Kavteladze et al. | Nov 1997 | A |
5693085 | Buirge et al. | Dec 1997 | A |
5702421 | Schneidt | Dec 1997 | A |
5709707 | Lock et al. | Jan 1998 | A |
5711969 | Patel et al. | Jan 1998 | A |
5720754 | Middleman et al. | Feb 1998 | A |
5725552 | Kotula et al. | Mar 1998 | A |
5733294 | Forber et al. | Mar 1998 | A |
5733337 | Carr, Jr. et al. | Mar 1998 | A |
5741297 | Simon | Apr 1998 | A |
5776162 | Kleshinski | Jul 1998 | A |
5800516 | Fine et al. | Sep 1998 | A |
5810884 | Kim | Sep 1998 | A |
5853422 | Huebsch et al. | Dec 1998 | A |
5855614 | Stevens et al. | Jan 1999 | A |
5861003 | Latson et al. | Jan 1999 | A |
5879366 | Shaw et al. | Mar 1999 | A |
5885619 | Patel et al. | Mar 1999 | A |
5893856 | Jacob et al. | Apr 1999 | A |
5902319 | Daley | May 1999 | A |
5904703 | Gilson | May 1999 | A |
5919200 | Stambaugh et al. | Jul 1999 | A |
5924424 | Stevens et al. | Jul 1999 | A |
5928250 | Koike et al. | Jul 1999 | A |
5944738 | Amplatz et al. | Aug 1999 | A |
5955110 | Patel et al. | Sep 1999 | A |
5976174 | Ruiz | Nov 1999 | A |
5989268 | Pugsley, Jr. et al. | Nov 1999 | A |
5993475 | Lin et al. | Nov 1999 | A |
5993844 | Abraham et al. | Nov 1999 | A |
5997575 | Whitson et al. | Dec 1999 | A |
6010517 | Baccaro | Jan 2000 | A |
6024756 | Huebsch et al. | Feb 2000 | A |
6056760 | Koike et al. | May 2000 | A |
6077291 | Das | Jun 2000 | A |
6079414 | Roth | Jun 2000 | A |
6080182 | Shaw et al. | Jun 2000 | A |
6096347 | Geddes et al. | Aug 2000 | A |
6113609 | Adams | Sep 2000 | A |
6117159 | Huebsch et al. | Sep 2000 | A |
6126686 | Badylak et al. | Oct 2000 | A |
6132438 | Fleischman et al. | Oct 2000 | A |
6143037 | Goldstein et al. | Nov 2000 | A |
6165183 | Kuehn et al. | Dec 2000 | A |
6165204 | Levinson et al. | Dec 2000 | A |
6171329 | Shaw et al. | Jan 2001 | B1 |
6174322 | Schneidt | Jan 2001 | B1 |
6187039 | Hiles et al. | Feb 2001 | B1 |
6190353 | Makower et al. | Feb 2001 | B1 |
6206895 | Levinson | Mar 2001 | B1 |
6206907 | Marino et al. | Mar 2001 | B1 |
6206931 | Cook et al. | Mar 2001 | B1 |
6214029 | Thill et al. | Apr 2001 | B1 |
6217590 | Levinson | Apr 2001 | B1 |
6221092 | Koike et al. | Apr 2001 | B1 |
6228097 | Levinson et al. | May 2001 | B1 |
6245080 | Levinson | Jun 2001 | B1 |
6270515 | Linden et al. | Aug 2001 | B1 |
6277138 | Levinson et al. | Aug 2001 | B1 |
6287317 | Makower et al. | Sep 2001 | B1 |
6290674 | Roue et al. | Sep 2001 | B1 |
6299635 | Frantzen | Oct 2001 | B1 |
6306150 | Levinson | Oct 2001 | B1 |
6312446 | Huebsch et al. | Nov 2001 | B1 |
6315791 | Gingras et al. | Nov 2001 | B1 |
6319263 | Levinson | Nov 2001 | B1 |
6322548 | Payne et al. | Nov 2001 | B1 |
6334872 | Termin et al. | Jan 2002 | B1 |
6342064 | Koike et al. | Jan 2002 | B1 |
6344049 | Levinson et al. | Feb 2002 | B1 |
6346074 | Roth | Feb 2002 | B1 |
6348041 | Klint | Feb 2002 | B1 |
6352552 | Levinson et al. | Mar 2002 | B1 |
6355052 | Neuss et al. | Mar 2002 | B1 |
6364853 | French et al. | Apr 2002 | B1 |
6375625 | French et al. | Apr 2002 | B1 |
6375671 | Kobayashi et al. | Apr 2002 | B1 |
6379342 | Levinson | Apr 2002 | B1 |
6379368 | Corcoran et al. | Apr 2002 | B1 |
6387104 | Pugsley, Jr. et al. | May 2002 | B1 |
6398796 | Levinson | Jun 2002 | B2 |
6402772 | Amplatz et al. | Jun 2002 | B1 |
6440152 | Gainor et al. | Aug 2002 | B1 |
6443972 | Bosma et al. | Sep 2002 | B1 |
6460749 | Levinson et al. | Oct 2002 | B1 |
6482224 | Michler et al. | Nov 2002 | B1 |
6488706 | Solymar | Dec 2002 | B1 |
6494888 | Laufer et al. | Dec 2002 | B1 |
6551344 | Thill | Apr 2003 | B2 |
6596013 | Yang et al. | Jul 2003 | B2 |
6623508 | Shaw et al. | Sep 2003 | B2 |
6623518 | Thompson et al. | Sep 2003 | B2 |
6712836 | Berg et al. | Mar 2004 | B1 |
6726696 | Houser et al. | Apr 2004 | B1 |
8915958 | Braido | Dec 2014 | B2 |
9005242 | Cahill | Apr 2015 | B2 |
9017377 | Steiner et al. | Apr 2015 | B2 |
20010034537 | Shaw et al. | Oct 2001 | A1 |
20010037129 | Thill | Nov 2001 | A1 |
20010044639 | Levinson | Nov 2001 | A1 |
20010049492 | Frazier et al. | Dec 2001 | A1 |
20020010481 | Jayaraman | Jan 2002 | A1 |
20020019648 | Akerfeldt et al. | Feb 2002 | A1 |
20020026208 | Roe et al. | Feb 2002 | A1 |
20020029048 | Miller | Mar 2002 | A1 |
20020032462 | Houser et al. | Mar 2002 | A1 |
20020043307 | Ishida et al. | Apr 2002 | A1 |
20020052572 | Franco et al. | May 2002 | A1 |
20020077555 | Schwartz | Jun 2002 | A1 |
20020096183 | Stevens et al. | Jul 2002 | A1 |
20020099389 | Michler et al. | Jul 2002 | A1 |
20020107531 | Schreck et al. | Aug 2002 | A1 |
20020111647 | Khairkhahan et al. | Aug 2002 | A1 |
20020120323 | Thompson et al. | Aug 2002 | A1 |
20020129819 | Feldman et al. | Sep 2002 | A1 |
20020169377 | Khairkhahan et al. | Nov 2002 | A1 |
20020183786 | Girton | Dec 2002 | A1 |
20020183787 | Wahr et al. | Dec 2002 | A1 |
20030028213 | Thill et al. | Feb 2003 | A1 |
20030045893 | Ginn | Mar 2003 | A1 |
20030050665 | Ginn | Mar 2003 | A1 |
20030059640 | Marton et al. | Mar 2003 | A1 |
20030065379 | Babbs et al. | Apr 2003 | A1 |
20030100920 | Akin et al. | May 2003 | A1 |
20030139819 | DeBeer et al. | Jul 2003 | A1 |
20030191495 | Ryan et al. | Oct 2003 | A1 |
20030195530 | Thill | Oct 2003 | A1 |
20040143291 | Corcoran et al. | Jul 2004 | A1 |
20040210301 | Obermiller | Oct 2004 | A1 |
20050043759 | Chanduszko | Feb 2005 | A1 |
Number | Date | Country |
---|---|---|
1013227 | Dec 1999 | EP |
1046375 | Oct 2000 | EP |
1222897 | Jul 2002 | EP |
WO-9522301 | Aug 1995 | WO |
WO 9625179 | Aug 1996 | WO |
WO 9631157 | Oct 1996 | WO |
WO 9728744 | Aug 1997 | WO |
WO9807375 | Feb 1998 | WO |
WO9918862 | Apr 1999 | WO |
WO9918864 | Apr 1999 | WO |
WO9918870 | Apr 1999 | WO |
WO9918871 | Apr 1999 | WO |
WO0027292 | May 2000 | WO |
WO0108600 | Feb 2001 | WO |
WO0149185 | Jul 2001 | WO |
WO0178596 | Oct 2001 | WO |
WO0193783 | Dec 2001 | WO |
WO03061481 | Jul 2003 | WO |
WO03073944 | Sep 2003 | WO |
Entry |
---|
Ruiz et al. “The Puncture Technique: A New Method for Transcatheter Closure of Patent Foramen Ovale.” Catheterization and Cardiovascular Interventions 53, Wiley-Liss, Inc., 2001, pp. 369-372. |
International Search Report, International Application No. PCT/US03/17390, mailed on Oct. 6, 2003, 4 pgs. |
SMST-2000, “Proceedings of the International Conference on Shape Memory and Superelastic Technologies,” Apr. 30 to May 4, 2000, Asilomar Conference Center. |
National Aeronautics and Space Administration, “55-Nitinol—The Alloy With a Memory: Its Physical Metallurgy, Properties, and Applications,” NASA-SP 5110, pp. 24-25. |
Kimura, et al., “Effects of Neutron Irradiation on the Transformation Behavior in Ti—Ni Alloys,” Proceedings of the International Conference on Martensitic Transformations, 1992, pp. 935-940. |
Ramanathan, et al., “Experimental and Computational Methods for Shape Memory Alloys,” 15th ASCE Engineering Mechanics Conference, Jun. 2-5, 2002. |
Shabalovskaya, “Surface, Corrosion and Biocompatibility Aspects of Nitinol as an Implant Material,” Bio-Medical Materials and Engineering 12, 2002, pp. 69-109. |
Uchil, “Shape Memory Alloys—Characterization Techniques,” PRAMANA—Journal of Physics, vol. 58, Nos. 5 & 6, May & Jun. 2002, pp. 1131-1139. |
Abraham et al. “Evaluation of the Porcine Intestinal Collagen Layer as Biomaterial” Journal of Biomed. Mater. Res., 51: 442-452 (2000). |
Bailey, “The Fate of Collagen Implants in Tissue Defects,” Wound Rep. Reg., 8:5-12 (2000). |
Billiar et al., “Effects of Carbodiimide Crosslinking Conditions on the Physical Properties of Laminated Intestinal Submucosa,” J. Biomed. Mater. Res., 56:101-108 (2001). |
Edelman “Laparoscopic Herniorrhaphy with Porcine Small Intestinal Submucosa: A Preliminary Study” JSLS, 6: 203-205 (2002). |
Golomb et al., “The Role of Glutaraldehydo-Induced Cross-Links in Calcification of Bovine Pericardium Used in Cardiac Valve Bioprostheses,” Am. J. Pathol., 127:122-130 (1987). |
Jorge-Herrero et al., “Calcification of Soft Study of Different Chemical Treatments,” Tissue Employed in the Construction of Heart Valve Prostheses: Biomaterials, 12:249-252 (1991). |
Huynh et al. “Remodeling of an Acellular Collagen Graft into a Physiologically Responsive Neovessel,” Nature Biotechnology, 17:1083-1086 (1999). |
Jux, Christian et al. “Interventional Atrial Septal Defect Closure Using a Totally Bioresorbable Occluder Matrix” Journal of the American College of Cardiology, vol. 48, No. 1, 2006: 161169. |
Jux, Christian et al. “A New Biological Matrix for Septal Occlusion” Jounal of Interventional Cadiology, vol. 16, No. 2, 2003:149-152. |
Mullen et al., “A Prospective, Multicenter, Phase I Clinical Trial to Evaluate the Feasibility, Efficacy, and Safety of the BioSTAR Bioabsorbable Septal Repair Implant for the Closure of Atrial-Level Shunts,” Circulation, 114:1962-1967 (2006). |
Ramshaw et al. “Collagen-based Biomaterials” Biotechnology and Genetic Engineering Reviews, 13:335-382 (1995). |
Supplemental Partial European Search Report for EP 03 75 6366 dated Jul. 23, 2008, 3 pages. |
“Intestinal Collagen” Presented in Pediatric Interventional Cardiac Symposium—PICS 2007, Structural Heart Disease Symposium. Jul. 22-25, 2007, Las Vegas, Nevada. (1 page). |
Schoen et al. “Long-term failure rate and morphologic correlations in porcine bioprosthetic heart valves” Am J Cardiol. Mar. 15, 1983;51(6):957-64. |
Number | Date | Country | |
---|---|---|---|
20130253538 A1 | Sep 2013 | US |
Number | Date | Country | |
---|---|---|---|
60385274 | Jun 2002 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 11705380 | Feb 2007 | US |
Child | 13893270 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 10453709 | Jun 2003 | US |
Child | 11705380 | US |