The invention relates to a device having a controller module and pump module for providing negative pressure to a wound site.
Negative pressure wound therapy is one method that is used to treat certain wounds or sores on people. In general, a bandage is placed over a wound site, and connected to a pump. The pump provides suction, creating a negative pressure under the bandage at the wound site. Exudates and other materials are removed from the wound site, and the wound healing progresses.
Some negative pressure wound therapy systems utilize large pumps because they require a canister, or other structure for storing exudates and other liquids removed from the wound site. Such systems can inhibit or interfere with a patient's movement during treatment and are generally large and cumbersome. Moreover, a patient can feel uncomfortable moving around with such a large pump and/or device being associated with his/her body.
On the other hand, there are certain negative pressure wound therapy systems that do not require such canisters as the exudates and other materials are stored within the disposable bandage. One such system/bandage is made available by Kalypto Medical, LLC. of Mendota Heights, Minn.
Since the device/system does not require a canister, a handheld pump (or other generally smaller pump) may be used in association with these types of bandages. For example, U.S. Pat. Pub. No. 2009/0299306 (assigned to the present applicant and the entirety of which is incorporated herein by reference) discloses a small pump that is used in association with such a bandage (that collects and stores liquids/exudates within the bandage). The pump disclosed therein utilities a controller module and a small pump in a pump module.
However, while such a device is beneficial and has significant advantages over the prior art systems and devices, it would be beneficial to minimize the components of the pump module, as it is believed that the pump is the structure most likely to fail in the device and require replacing and/or become contaminated requiring disposal of same.
Furthermore, it would be beneficial to minimize the time associated with switching out the pump module should a failure occur.
Finally, it would also be beneficial to minimize the amount of time needed for a clinician or practitioner to check on the status of the device.
The present invention is directed to resolving these and other matters.
In one embodiment of the invention, the invention is directed towards a device for use with a negative pressure wound therapy bandage, the device having a controller module which includes a housing, a circuit board having a CPU and support electronics, a check valve, and, a pressure sensor. The device also includes a pump module including a pump and a power source. The pump module is preferably removably contained in the housing.
As used herein, “module” refers to a selection of components contained within, for example, a housing and configured to be connected with one or more other modules to create a fully functioning device. Moreover, as described herein, when the pump module is described as containing the pump (preferably, for example in a second housing), it is meant that the entire pump is contained within the pump module (or housing). This is in contrast to those prior art systems wherein a pump head is separated from the pump driving element, and each are contained within separate modules (or housings).
A device according to this and other embodiments of the invention is believed to provide numerous benefits.
First, such a device minimizes the amount of materials and components within the pump module. As previously stated, it is believed that the pump is the most likely structure to fail and/or become contaminated. Thus, such a device will allow for a new pump module to be inserted into the device when necessary, without having to dispose of the entire device.
Further, the disclosed pump module minimizes the amount of waste, particularly e-waste, by removing most of the electronics and other components from the pump module and disposing them in the controller module which can be reused while the pump module can be disposed.
Moreover, such a device provides substantial financial benefits as a company (e.g, a hospital, care center, nursing home, medical supplier, etc.) can maintain a large supply of pump modules compared with a small supply of controller modules. The pump modules can be disposed of easily, while the controller module is reused with a different patient, or for a different negative pressure wound therapy treatment. Thus, each failure and/or contamination of a pump does not require disposal of the entire device, and the loss of the investment associated with same.
Furthermore, in devices where the pump is separated into a pump head and pump driving elements, a satisfactory seal is required between the two pieces of the pump. A device such as described herein, does not require this additional type of seal to be formed in the pump each time the modules are connected. This eliminates the chances of this seal failing, becoming comprised, or otherwise requiring a user to confirm that a full seal has been made each time the pump head is replaced.
In another embodiment of the invention, the invention is directed to a device for use with a negative pressure wound therapy bandage, the device having a controller module, a pump module, and, a connector for connecting the controller module to the pump module, wherein the connector provides a physical connection and a pneumatic connection. It is preferred that the connector is a push button/quick release connector that is easily accessible in the controller module (i.e., partially exposed).
In this embodiment, the controller module and pump module may have the same configurations as discussed above. Alternatively, they may have different configurations.
A device according to this and other embodiments of the invention is also believed to provide numerous other benefits.
Such a device would minimize the amount of time and effort needed to change out the pump module from the controller module. Rather than taking apart the controller module, or removing screws, one need simply depress the connector (in the case of a push button/quick release type connector) to remove the pump module.
The quicker and easier removal of the pump module minimizes the amount of time needed to switch the pump module, and, thus, minimizes the amount of time that changing the module can interfere with the negative pressure wound therapy treatment.
In still another embodiment of the invention, the invention is directed to a device for use with a negative pressure wound therapy bandage, the device having a controller module including a housing and a visual indicator and a pump module. The visual indicator provides an indication of a status of the device at a distance greater than 5 feet, preferably 10-15 feet.
In this embodiment of the invention, the controller module and the pump module may include the configurations discussed above. Further, this embodiment may also include the connection discussed above.
A device according to this and other embodiments of the invention is also believed to provide numerous benefits.
Specifically, allowing for the visual indicator to indicate status to a person at least five feet away would save time and energy for an observer, such as a nurse in a nursing home or hospital, where the observer must check multiple devices in multiple rooms. Such a device will allow the observer to simply look in to each patient's room to determine the status of the device therein. Over many rooms with many patients, the time savings can add up to a substantial savings for the observer. Further, while an audible alarm could perform the same task, it is not desired to use such an indicator in an environment where noises can be distracting and interfere with patients and/or other people (for example, where patients are sleeping, have roommates, or where the noise would other wise disrupt and become a distraction).
One or more embodiments of the device may be disposed in a carrying case including a strap. The carrying case may be disposable to promote cleanliness. Moreover, the strap will allow the case, and thus the device, to be mounted, for example, on a bed, a wheelchair, or an IV stand. It is contemplated that the strap is adjustable so that the case may also be mounted on a patient's body (for example the belt) to allow the patient freedom to move around, and minimize the visual appearance of the device (which can create uncomfortable feelings for the patient).
A further embodiment of the present invention is directed towards a kit containing a device according to the present invention and a negative pressure wound therapy bandage. The kit may also include tubing to connect the device to the bandage. The bandage may, but is not necessarily required to, collect and store exudates within the bandage.
It is to be understood that the aspects and objects of the present invention described above may be combinable and that other advantages and aspects of the present invention will become apparent upon reading the following description of the drawings and detailed description of the invention.
The present invention will become more fully apparent from the following description and appended claims, taken in conjunction with the accompanying drawings. Understanding that the accompanying drawings depict only typical embodiments, and are, therefore, not to be considered to be limiting of the scope of the present disclosure, the embodiments will be described and explained with specificity and detail in reference to the accompanying drawings as provided below.
a is a case for use with a device according to the present invention with a strap in a first configuration.
b is a case for use with a device according to the present invention with a strap in a second configuration.
c is a case for use with a device according to the present invention.
While this invention is susceptible of embodiment in many different forms, there is shown in the drawings and will herein be described in detail one or more embodiments with the understanding that the present disclosure is to be considered as an exemplification of the principles of the invention and is not intended to limit the invention to the embodiments illustrated.
Reference throughout this description to features, advantages, objects or similar language does not imply that all of the features and advantages that may be realized with the present invention should be or are in any single embodiment of the invention. Rather, language referring to the features and advantages is understood to mean that a specific feature, advantage, or characteristic described in connection with an embodiment is included in at least one embodiment of the present invention. Thus, discussion of the features and advantages, and similar language, throughout this specification may, but do not necessarily, refer to the same embodiment.
As shown in the attached drawings, the present invention is directed towards a device 10 having a controller module 12 and a pump module 14.
The pump module 14 is preferably removably contained within the controller module 12 and more specifically within a housing 16 of the controller module 12, and most preferably slidably received in the housing 16.
In certain embodiments of the present invention, the device 10 includes a connector 18 which provides both a physical connection and a pneumatic connection. The physical connection functions to hold the pump module 14 in place. The pneumatic connection functions to allow for the communication of negative pressure from the device 10 to a negative pressure wound therapy bandage 100.
The connector 18 may include an interference fit, a snap fit, a friction fit, and any other connecting mechanism and structure so long as the connector 18 provide the necessary physical and pneumatic connection, while at the same time allowing for a relatively quick disconnection.
It is preferred that the connector 18 is partially exposed in the housing 16 so that it may be easily accessible. In a most preferred embodiment, the connector 18 is a quick release connector—wherein the connector 18 includes a button 20 disposed inside of the housing 16 of the controller module 12 that may be only partially exposed through an aperture 22 in the housing 16 of the controller module 12.
The controller module 12 may also include a circuit board 24 with a CPU and other support electronics, a check valve 26 and a pressure sensor 28—preferably all contained within the housing 16. The check valve 26 aides in maintaining pressure at the wound site. The pressure sensor 28 determines the negative pressure begin communicated to the wound site.
The controller module 12 may also include buttons 30 for allowing interaction and control of the device 10. For example the device 10 may be provided with three buttons 26: one for power; one to select and adjust settings; and, one to lock the device 10.
Further, in some embodiments of the present invention, the controller module 12 may also include one or more visual indicators 32, such as LEDs, through holes LEDs with a lens, other lighted icons/backlit LEDS, or other lights to indicate the status of the device 10. Preferably the visual indicator(s) 28 provide the status at a distance greater than 5 feet, preferably between 10-15 feet. This would allow the device 10 to provide indications to a clinician or other practitioner, for example, without requiring same to walk up to the device 10. The indicated status may include “off,” “on,” “pump mode on,” “leak detection,” “low battery detection,” “unknown error detection,” or any other status that may be considered relevant to provide relative to the use of the device 10 in providing negative pressure wound therapy.
Finally, the controller module 12 may also preferably contain tubes 34, pipes and joints 36 for communicating negative pressure from the device 10 to the appropriate structures (check valve 26, pressure sensor 28) of the controller module 12 and ultimately to a negative pressure wound therapy bandage 100.
Turning to the pump module 14, the pump module 14 may contain the pump 38 and a power source 40. The pump 38 provides the negative pressure used in the negative pressure wound therapy treatment. It is preferred that the device 10 is portable and does not require power from an outlet, and thus, the power source 40 may be batteries, for example, 3 AA batteries.
These structures of the pump module 14, as well as others, may be contained in a housing 42 of the pump module 14. The housing 42 is preferably received by the housing 16 of the controller module 12. Moreover, as mentioned, the pump module 14/housing 42 may be retained in the housing 16 of the controller module 12 with a connector 18.
One or more springs 44 may be positioned within the controller module 12 to aid in the removal of the pump module 14. As shown, the springs 44 may be configured such that they provide a force to move the pump module 14 out of the housing 16 of the controller module 12 such that if the connector 18 is disengaged, the pump module 14 is pushed out of the housing 16 of the controller module 12.
Further, both the pump module 14 and the controller module 12 may have complementary configured electrical connectors 46 for transmitting power from the power source 40 to the controller module 12, as well as to allow for communication between the pump 38 and CPU/electronics 24 in the controller module 12. For example, a 12 pin PCB connector may be utilized.
In this manner, negative pressure is created by the pump 38 and communicated through the connector 18 to the controller module 12. In the controller module 12, the negative pressure is communicated through a check valve 26 and a pressure sensor 28, via the pipes and joints 36. Finally, the negative pressure is communicated out of the controller module 12 (and device 10), for example, through a port 48, to a negative pressure wound therapy bandage 100.
It is contemplated that the device 10 is placed in case 200. See,
Finally, it is further contemplated that the device 10 is provided in a kit 300 containing a negative pressure wound therapy bandage 100. Preferably the kit 300 includes tubing 102 to connect the device 10 (preferably through port 48) to, for example, a second port 104 on the bandage 100.
While various embodiments of the present invention have been described as used in association with a negative pressure wound therapy bandage that collects and stores exudates within the bandage, it will be appreciated by one of ordinary skill in the art that the embodiments of the present invention, if desired, can be used with an external collection device and a bandage that does not collect and store exudates in the bandage by utilizing a collection device (canister, flask, etc.) and additional tubing with connectors.
As discussed above, a device according to one or more embodiments of the present invention is believed to provide a number of advantageous and benefits in the field of providing negative pressure wound therapy.
It is to be understood that additional embodiments of the present invention described herein may be contemplated by one of ordinary skill in the art and that the scope of the present invention is not limited to the embodiments disclosed. While specific embodiments of the present invention have been illustrated and described, numerous modifications come to mind without significantly departing from the spirit of the invention, and the scope of protection is only limited by the scope of the accompanying claims.
This application claims priority to U.S. Provisional Application No. 61/489,299 filed on May 24, 2011, the entirety of which is incorporated herein.
Number | Name | Date | Kind |
---|---|---|---|
695270 | Beringer | Mar 1902 | A |
1480562 | Mock | Jan 1924 | A |
2280915 | Johnson | Apr 1942 | A |
2367690 | Purdy | Jan 1945 | A |
2568933 | Robbins | Sep 1951 | A |
2632443 | Lesher | Mar 1953 | A |
2682873 | Evans et al. | Jul 1954 | A |
3367332 | Groves | Feb 1968 | A |
3486504 | Austin et al. | Dec 1969 | A |
3572340 | Lloyd et al. | Mar 1971 | A |
3610238 | Rich et al. | Oct 1971 | A |
3874387 | Barbieri | Apr 1975 | A |
3993080 | Loseff | Nov 1976 | A |
RE29319 | Nordby et al. | Jul 1977 | E |
4102342 | Akiyama et al. | Jul 1978 | A |
4112947 | Nehring | Sep 1978 | A |
4136696 | Nehring | Jan 1979 | A |
4184510 | Murry et al. | Jan 1980 | A |
4217894 | Franetzki | Aug 1980 | A |
4219019 | Coates | Aug 1980 | A |
4224945 | Cohen | Sep 1980 | A |
4250882 | Adair | Feb 1981 | A |
4316466 | Babb | Feb 1982 | A |
4382441 | Svedman | May 1983 | A |
4465485 | Kashmer et al. | Aug 1984 | A |
4468227 | Jensen | Aug 1984 | A |
4525166 | Leclerc | Jun 1985 | A |
4534356 | Papadakis | Aug 1985 | A |
4551141 | McNeil | Nov 1985 | A |
4573965 | Russo | Mar 1986 | A |
4608041 | Nielsen | Aug 1986 | A |
4655766 | Theeuwes et al. | Apr 1987 | A |
4681562 | Beck et al. | Jul 1987 | A |
4710165 | McNeil et al. | Dec 1987 | A |
4778446 | Jensen | Oct 1988 | A |
4778456 | Lokken | Oct 1988 | A |
4792328 | Beck et al. | Dec 1988 | A |
4795435 | Steer | Jan 1989 | A |
4820284 | Hauri | Apr 1989 | A |
4921488 | Maitz et al. | May 1990 | A |
4936834 | Beck et al. | Jun 1990 | A |
4950483 | Ksander et al. | Aug 1990 | A |
4969880 | Zamierowski | Nov 1990 | A |
4972829 | Knerr | Nov 1990 | A |
4979944 | Luzsicza | Dec 1990 | A |
4994022 | Steffler et al. | Feb 1991 | A |
5055198 | Shettigar | Oct 1991 | A |
5056510 | Gilman | Oct 1991 | A |
5073172 | Fell | Dec 1991 | A |
5100396 | Zamierowski | Mar 1992 | A |
5149331 | Ferdman et al. | Sep 1992 | A |
5152757 | Eriksson | Oct 1992 | A |
5167613 | Karami et al. | Dec 1992 | A |
5176663 | Svedman et al. | Jan 1993 | A |
5215519 | Shettigar | Jun 1993 | A |
5261893 | Zamierowski | Nov 1993 | A |
5266928 | Johnson | Nov 1993 | A |
5279608 | Cherif Cheikh | Jan 1994 | A |
5328614 | Matsumura | Jul 1994 | A |
5358494 | Svedman | Oct 1994 | A |
5380280 | Peterson | Jan 1995 | A |
5437651 | Todd et al. | Aug 1995 | A |
5445604 | Lang | Aug 1995 | A |
5489280 | Russell | Feb 1996 | A |
5498338 | Kruger et al. | Mar 1996 | A |
5527293 | Zamierowski | Jun 1996 | A |
5549584 | Gross | Aug 1996 | A |
5636643 | Argenta et al. | Jun 1997 | A |
5643189 | Masini | Jul 1997 | A |
5645081 | Argenta et al. | Jul 1997 | A |
5678564 | Lawrence et al. | Oct 1997 | A |
5733337 | Carr et al. | Mar 1998 | A |
5759570 | Arnold | Jun 1998 | A |
5785688 | Joshi et al. | Jul 1998 | A |
5830496 | Freeman | Nov 1998 | A |
5833646 | Masini | Nov 1998 | A |
5843011 | Lucas | Dec 1998 | A |
5857502 | Buchalter | Jan 1999 | A |
5868933 | Patrick et al. | Feb 1999 | A |
5876611 | Shettigar | Mar 1999 | A |
5964723 | Augustine | Oct 1999 | A |
6071267 | Zamierowski | Jun 2000 | A |
6103951 | Freeman | Aug 2000 | A |
6110197 | Augustine et al. | Aug 2000 | A |
6135116 | Vogel et al. | Oct 2000 | A |
D434150 | Tumey et al. | Nov 2000 | S |
6142982 | Hunt et al. | Nov 2000 | A |
6168800 | Dobos et al. | Jan 2001 | B1 |
6176307 | Danos et al. | Jan 2001 | B1 |
6225523 | Masini | May 2001 | B1 |
6254567 | Treu et al. | Jul 2001 | B1 |
6255552 | Cummings et al. | Jul 2001 | B1 |
6261283 | Morgan et al. | Jul 2001 | B1 |
6287521 | Quay et al. | Sep 2001 | B1 |
6345623 | Heaton et al. | Feb 2002 | B1 |
6398767 | Fleischmann | Jun 2002 | B1 |
6402724 | Smith et al. | Jun 2002 | B1 |
6450773 | Upton | Sep 2002 | B1 |
6458109 | Henley et al. | Oct 2002 | B1 |
6465708 | Augustine | Oct 2002 | B1 |
6471685 | Johnson | Oct 2002 | B1 |
6471982 | Lydon et al. | Oct 2002 | B1 |
6482491 | Samuelsen et al. | Nov 2002 | B1 |
6491684 | Joshi et al. | Dec 2002 | B1 |
6553998 | Heaton et al. | Apr 2003 | B2 |
6599262 | Masini | Jul 2003 | B1 |
6648862 | Watson | Nov 2003 | B2 |
6673028 | Argenta et al. | Jan 2004 | B1 |
6676610 | Morton et al. | Jan 2004 | B2 |
6685681 | Lockwood et al. | Feb 2004 | B2 |
6695823 | Lina et al. | Feb 2004 | B1 |
6695824 | Howard et al. | Feb 2004 | B2 |
6752794 | Lockwood et al. | Jun 2004 | B2 |
6755807 | Risk, Jr. et al. | Jun 2004 | B2 |
6764462 | Risk, Jr. et al. | Jul 2004 | B2 |
6767334 | Randolph | Jul 2004 | B1 |
6814079 | Heaton et al. | Nov 2004 | B2 |
6824533 | Risk, Jr. et al. | Nov 2004 | B2 |
6855135 | Lockwood et al. | Feb 2005 | B2 |
6856821 | Johnson | Feb 2005 | B2 |
6936037 | Bubb | Aug 2005 | B2 |
6951553 | Bubb et al. | Oct 2005 | B2 |
6977323 | Swenson | Dec 2005 | B1 |
6979324 | Bybordi et al. | Dec 2005 | B2 |
6994702 | Johnson | Feb 2006 | B1 |
7004915 | Boynton et al. | Feb 2006 | B2 |
7022113 | Lockwood et al. | Apr 2006 | B2 |
7067709 | Murata et al. | Jun 2006 | B2 |
7070584 | Johnson et al. | Jul 2006 | B2 |
7077832 | Fleischmann | Jul 2006 | B2 |
7087806 | Scheinberg et al. | Aug 2006 | B2 |
7108683 | Zamierowski | Sep 2006 | B2 |
7118545 | Boyde | Oct 2006 | B2 |
7128735 | Weston | Oct 2006 | B2 |
7195624 | Lockwood | Mar 2007 | B2 |
7214202 | Vogel et al. | May 2007 | B1 |
7216651 | Argenta et al. | May 2007 | B2 |
7361184 | Joshi | Apr 2008 | B2 |
7381859 | Hunt et al. | Jun 2008 | B2 |
7438705 | Karpowicz et al. | Oct 2008 | B2 |
7494482 | Orgill et al. | Feb 2009 | B2 |
7503910 | Adahan | Mar 2009 | B2 |
7524315 | Blott et al. | Apr 2009 | B2 |
7534240 | Johnson | May 2009 | B1 |
7534927 | Lockwood | May 2009 | B2 |
7569742 | Haggstrom et al. | Aug 2009 | B2 |
7611500 | Lina et al. | Nov 2009 | B1 |
7612247 | Oyaski | Nov 2009 | B2 |
7615036 | Joshi et al. | Nov 2009 | B2 |
7645253 | Gura et al. | Jan 2010 | B2 |
7645269 | Zamierowski | Jan 2010 | B2 |
7678090 | Risk, Jr. | Mar 2010 | B2 |
7699823 | Haggstrom et al. | Apr 2010 | B2 |
7699830 | Martin | Apr 2010 | B2 |
7708724 | Weston | May 2010 | B2 |
7717313 | Criscuolo et al. | May 2010 | B2 |
7753894 | Blott et al. | Jul 2010 | B2 |
7759537 | Bishop et al. | Jul 2010 | B2 |
7759538 | Fleischmann | Jul 2010 | B2 |
7759539 | Shaw et al. | Jul 2010 | B2 |
7763000 | Risk, Jr. | Jul 2010 | B2 |
7775998 | Riesinger | Aug 2010 | B2 |
7776028 | Miller et al. | Aug 2010 | B2 |
7779625 | Joshi et al. | Aug 2010 | B2 |
7790945 | Watson, Jr. | Sep 2010 | B1 |
7790946 | Mulligan | Sep 2010 | B2 |
7794438 | Henley et al. | Sep 2010 | B2 |
7794450 | Blott et al. | Sep 2010 | B2 |
7811269 | Boynton | Oct 2010 | B2 |
7815616 | Boehringer et al. | Oct 2010 | B2 |
7825289 | Vess | Nov 2010 | B2 |
7828782 | Suzuki | Nov 2010 | B2 |
7838717 | Haggstrom et al. | Nov 2010 | B2 |
7846141 | Weston | Dec 2010 | B2 |
7862339 | Mulligan | Jan 2011 | B2 |
7883494 | Martin | Feb 2011 | B2 |
7909805 | Weston | Mar 2011 | B2 |
7959624 | Riesinger | Jun 2011 | B2 |
7964766 | Blott et al. | Jun 2011 | B2 |
7976519 | Bubb et al. | Jul 2011 | B2 |
7998125 | Weston | Aug 2011 | B2 |
8062272 | Weston | Nov 2011 | B2 |
8062273 | Weston | Nov 2011 | B2 |
8080702 | Blott et al. | Dec 2011 | B2 |
8100887 | Weston | Jan 2012 | B2 |
8105295 | Blott et al. | Jan 2012 | B2 |
8118794 | Weston | Feb 2012 | B2 |
8128615 | Blott | Mar 2012 | B2 |
8152785 | Vitaris | Apr 2012 | B2 |
8162907 | Heagle | Apr 2012 | B2 |
8162909 | Blott et al. | Apr 2012 | B2 |
8167869 | Wudyka | May 2012 | B2 |
8235955 | Blott et al. | Aug 2012 | B2 |
8282611 | Weston | Oct 2012 | B2 |
8294586 | Pidgeon et al. | Oct 2012 | B2 |
8308714 | Weston et al. | Nov 2012 | B2 |
8323264 | Weston et al. | Dec 2012 | B2 |
8353857 | Rosenberg | Jan 2013 | B2 |
8366692 | Weston | Feb 2013 | B2 |
8377016 | Argenta et al. | Feb 2013 | B2 |
8444392 | Turner et al. | May 2013 | B2 |
8494349 | Gordon | Jul 2013 | B2 |
8617129 | Hartwell | Dec 2013 | B2 |
8663198 | Buan et al. | Mar 2014 | B2 |
8663200 | Weston et al. | Mar 2014 | B2 |
20010016205 | Shimizu | Aug 2001 | A1 |
20010029956 | Argenta | Oct 2001 | A1 |
20010034499 | Sessions et al. | Oct 2001 | A1 |
20020065494 | Lockwood et al. | May 2002 | A1 |
20020068913 | Fleischmann | Jun 2002 | A1 |
20020115952 | Tumey | Aug 2002 | A1 |
20020120185 | Johnson | Aug 2002 | A1 |
20020143286 | Tumey | Oct 2002 | A1 |
20020150720 | Howard et al. | Oct 2002 | A1 |
20020161346 | Lockwood et al. | Oct 2002 | A1 |
20020183702 | Henley et al. | Dec 2002 | A1 |
20020198503 | Risk et al. | Dec 2002 | A1 |
20020198504 | Risk et al. | Dec 2002 | A1 |
20030014022 | Lockwood et al. | Jan 2003 | A1 |
20030014025 | Allen et al. | Jan 2003 | A1 |
20030021775 | Freeman | Jan 2003 | A1 |
20030040687 | Boynton et al. | Feb 2003 | A1 |
20030050594 | Zamierowski | Mar 2003 | A1 |
20030088202 | Gilman | May 2003 | A1 |
20030097086 | Gura | May 2003 | A1 |
20030108587 | Orgill et al. | Jun 2003 | A1 |
20030125649 | McIntosh et al. | Jul 2003 | A1 |
20030144619 | Augustine | Jul 2003 | A1 |
20030171675 | Rosenberg | Sep 2003 | A1 |
20030175798 | Raees et al. | Sep 2003 | A1 |
20030208149 | Coffey | Nov 2003 | A1 |
20030212357 | Pace | Nov 2003 | A1 |
20030212431 | Brady et al. | Nov 2003 | A1 |
20030225347 | Argenta et al. | Dec 2003 | A1 |
20040019342 | Nagasuna et al. | Jan 2004 | A1 |
20040030304 | Hunt et al. | Feb 2004 | A1 |
20040039391 | Argenta et al. | Feb 2004 | A1 |
20040039415 | Zamierowski | Feb 2004 | A1 |
20040054338 | Bybordi et al. | Mar 2004 | A1 |
20040064132 | Boehringer et al. | Apr 2004 | A1 |
20040122434 | Argenta et al. | Jun 2004 | A1 |
20040127834 | Sigurjonsson et al. | Jul 2004 | A1 |
20040127862 | Bubb et al. | Jul 2004 | A1 |
20040127863 | Bubb et al. | Jul 2004 | A1 |
20040167482 | Watson | Aug 2004 | A1 |
20040225208 | Johnson | Nov 2004 | A1 |
20040241214 | Kirkwood et al. | Dec 2004 | A1 |
20040249353 | Risk, Jr. et al. | Dec 2004 | A1 |
20050004534 | Lockwood et al. | Jan 2005 | A1 |
20050010153 | Lockwood et al. | Jan 2005 | A1 |
20050020955 | Sanders et al. | Jan 2005 | A1 |
20050028828 | Heaton et al. | Feb 2005 | A1 |
20050033214 | Cantor | Feb 2005 | A1 |
20050058694 | Nielsen | Mar 2005 | A1 |
20050070835 | Joshi | Mar 2005 | A1 |
20050080372 | Nielsen et al. | Apr 2005 | A1 |
20050090787 | Risk, Jr. et al. | Apr 2005 | A1 |
20050148913 | Weston | Jul 2005 | A1 |
20050222527 | Miller et al. | Oct 2005 | A1 |
20050261643 | Bybordi et al. | Nov 2005 | A1 |
20060015087 | Risk, Jr. et al. | Jan 2006 | A1 |
20060025727 | Boehringer et al. | Feb 2006 | A1 |
20060029650 | Coffey | Feb 2006 | A1 |
20060041247 | Petrosenko et al. | Feb 2006 | A1 |
20060069365 | Sperl et al. | Mar 2006 | A1 |
20060079852 | Bubb et al. | Apr 2006 | A1 |
20060100586 | Karpowicz et al. | May 2006 | A1 |
20060100594 | Adams et al. | May 2006 | A1 |
20060116620 | Oyaski | Jun 2006 | A1 |
20060129137 | Lockwood | Jun 2006 | A1 |
20060149170 | Boynton et al. | Jul 2006 | A1 |
20070005028 | Risk, Jr. | Jan 2007 | A1 |
20070010797 | Nishtala et al. | Jan 2007 | A1 |
20070038172 | Zamierowski | Feb 2007 | A1 |
20070055209 | Patel et al. | Mar 2007 | A1 |
20070118096 | Smith et al. | May 2007 | A1 |
20070141128 | Blott et al. | Jun 2007 | A1 |
20070167884 | Mangrum et al. | Jul 2007 | A1 |
20070179460 | Adahan | Aug 2007 | A1 |
20070185426 | Ambrosio et al. | Aug 2007 | A1 |
20070185463 | Mulligan | Aug 2007 | A1 |
20070219532 | Karpowicz et al. | Sep 2007 | A1 |
20070239139 | Weston | Oct 2007 | A1 |
20070265585 | Joshi et al. | Nov 2007 | A1 |
20070265586 | Joshi et al. | Nov 2007 | A1 |
20080004549 | Anderson et al. | Jan 2008 | A1 |
20080004559 | Riesinger | Jan 2008 | A1 |
20080039759 | Holm et al. | Feb 2008 | A1 |
20080077091 | Mulligan | Mar 2008 | A1 |
20080082059 | Fink et al. | Apr 2008 | A1 |
20080108977 | Heaton et al. | May 2008 | A1 |
20080119802 | Riesinger | May 2008 | A1 |
20080167593 | Fleischmann | Jul 2008 | A1 |
20080183119 | Joshi | Jul 2008 | A1 |
20080188820 | Joshi | Aug 2008 | A1 |
20080208147 | Argenta et al. | Aug 2008 | A1 |
20080223378 | Henderson et al. | Sep 2008 | A1 |
20080306407 | Taylor | Dec 2008 | A1 |
20080306456 | Riesinger | Dec 2008 | A1 |
20090005746 | Nielsen et al. | Jan 2009 | A1 |
20090036873 | Nielsen et al. | Feb 2009 | A1 |
20090054855 | Blott et al. | Feb 2009 | A1 |
20090054856 | Mormino et al. | Feb 2009 | A1 |
20090069759 | Blott et al. | Mar 2009 | A1 |
20090105670 | Bentley et al. | Apr 2009 | A1 |
20090125004 | Shen et al. | May 2009 | A1 |
20090131888 | Joshi | May 2009 | A1 |
20090177135 | Rogers et al. | Jul 2009 | A1 |
20090192499 | Weston et al. | Jul 2009 | A1 |
20090198201 | Adahan | Aug 2009 | A1 |
20090216170 | Robinson et al. | Aug 2009 | A1 |
20090221977 | Blott et al. | Sep 2009 | A1 |
20090227968 | Vess | Sep 2009 | A1 |
20090227969 | Jaeb et al. | Sep 2009 | A1 |
20090234306 | Vitaris | Sep 2009 | A1 |
20090234307 | Vitaris | Sep 2009 | A1 |
20090234309 | Vitaris et al. | Sep 2009 | A1 |
20090240185 | Jaeb et al. | Sep 2009 | A1 |
20090240218 | Braga et al. | Sep 2009 | A1 |
20090254053 | Svensby et al. | Oct 2009 | A1 |
20090254054 | Blott et al. | Oct 2009 | A1 |
20090264837 | Adahan | Oct 2009 | A1 |
20090270820 | Johnson et al. | Oct 2009 | A1 |
20090299251 | Buan | Dec 2009 | A1 |
20090299255 | Kazala, Jr. et al. | Dec 2009 | A1 |
20090299256 | Barta et al. | Dec 2009 | A1 |
20090299257 | Long et al. | Dec 2009 | A1 |
20090299306 | Buan | Dec 2009 | A1 |
20090299307 | Barta et al. | Dec 2009 | A1 |
20090299341 | Kazala, Jr. et al. | Dec 2009 | A1 |
20090299342 | Cavanaugh, II et al. | Dec 2009 | A1 |
20090306580 | Blott et al. | Dec 2009 | A1 |
20090312723 | Blott et al. | Dec 2009 | A1 |
20090312728 | Randolph et al. | Dec 2009 | A1 |
20090326487 | Vitaris | Dec 2009 | A1 |
20100010477 | Augustine et al. | Jan 2010 | A1 |
20100036334 | Heagle et al. | Feb 2010 | A1 |
20100036367 | Krohn | Feb 2010 | A1 |
20100042074 | Weston et al. | Feb 2010 | A1 |
20100063483 | Adahan | Mar 2010 | A1 |
20100063484 | Heagle | Mar 2010 | A1 |
20100069858 | Olson | Mar 2010 | A1 |
20100069863 | Olson | Mar 2010 | A1 |
20100087767 | McNeil | Apr 2010 | A1 |
20100100063 | Joshi et al. | Apr 2010 | A1 |
20100100075 | Weston et al. | Apr 2010 | A1 |
20100106114 | Weston et al. | Apr 2010 | A1 |
20100121286 | Locke et al. | May 2010 | A1 |
20100122417 | Vrzalik et al. | May 2010 | A1 |
20100125258 | Coulthard et al. | May 2010 | A1 |
20100150991 | Bernstein | Jun 2010 | A1 |
20100160879 | Weston | Jun 2010 | A1 |
20100185163 | Heagle | Jul 2010 | A1 |
20100185165 | Middleton | Jul 2010 | A1 |
20100207768 | Pidgeon et al. | Aug 2010 | A1 |
20100249733 | Blott et al. | Sep 2010 | A9 |
20100262094 | Walton | Oct 2010 | A1 |
20100268198 | Buan et al. | Oct 2010 | A1 |
20100274207 | Weston | Oct 2010 | A1 |
20100278518 | Gordon | Nov 2010 | A1 |
20100280468 | Haggstrom et al. | Nov 2010 | A1 |
20100286489 | Hartwell | Nov 2010 | A1 |
20100286635 | Watson, Jr. | Nov 2010 | A1 |
20100286638 | Malhi | Nov 2010 | A1 |
20100298866 | Fischvogt | Nov 2010 | A1 |
20100305490 | Coulthard et al. | Dec 2010 | A1 |
20100305524 | Vess et al. | Dec 2010 | A1 |
20100318043 | Malhi et al. | Dec 2010 | A1 |
20100324510 | Andresen et al. | Dec 2010 | A1 |
20100324516 | Braga et al. | Dec 2010 | A1 |
20100331797 | Patel et al. | Dec 2010 | A1 |
20110004171 | Blott et al. | Jan 2011 | A1 |
20110004172 | Eckstein et al. | Jan 2011 | A1 |
20110009835 | Blott | Jan 2011 | A1 |
20110015593 | Svedman et al. | Jan 2011 | A1 |
20110028918 | Hartwell | Feb 2011 | A1 |
20110028921 | Hartwell et al. | Feb 2011 | A1 |
20110034892 | Buan | Feb 2011 | A1 |
20110046584 | Haggstrom et al. | Feb 2011 | A1 |
20110054421 | Hartwell | Mar 2011 | A1 |
20110054422 | Locke et al. | Mar 2011 | A1 |
20110054423 | Blott et al. | Mar 2011 | A1 |
20110071483 | Gordon et al. | Mar 2011 | A1 |
20110087176 | Blott | Apr 2011 | A2 |
20110087178 | Weston | Apr 2011 | A2 |
20110087180 | Weston | Apr 2011 | A2 |
20110092927 | Wilkes et al. | Apr 2011 | A1 |
20110092958 | Jacobs | Apr 2011 | A1 |
20110105963 | Hu et al. | May 2011 | A1 |
20110106030 | Scholz | May 2011 | A1 |
20110112492 | Bharti et al. | May 2011 | A1 |
20110118683 | Weston | May 2011 | A1 |
20110130712 | Topaz | Jun 2011 | A1 |
20110171543 | Hartwell | Jul 2011 | A1 |
20110172615 | Greener et al. | Jul 2011 | A2 |
20110230849 | Coulthard et al. | Sep 2011 | A1 |
20110251567 | Blott et al. | Oct 2011 | A1 |
20110275964 | Greener | Nov 2011 | A1 |
20110282309 | Adie et al. | Nov 2011 | A1 |
20120001762 | Turner et al. | Jan 2012 | A1 |
20120053538 | Blott et al. | Mar 2012 | A1 |
20120078539 | Vernon-Harcourt et al. | Mar 2012 | A1 |
20120109084 | Blott et al. | May 2012 | A1 |
20120130325 | Blott et al. | May 2012 | A1 |
20120136325 | Allen | May 2012 | A1 |
20120157942 | Weston | Jun 2012 | A1 |
20120165764 | Allen et al. | Jun 2012 | A1 |
20120302977 | Buan et al. | Nov 2012 | A1 |
20120302978 | Buan et al. | Nov 2012 | A1 |
20130018338 | Weston et al. | Jan 2013 | A1 |
20130110058 | Adie et al. | May 2013 | A1 |
20130150813 | Gordon | Jun 2013 | A1 |
20130267920 | Nicolini | Oct 2013 | A1 |
20130296816 | Greener | Nov 2013 | A1 |
20130331823 | Askem et al. | Dec 2013 | A1 |
20140088528 | Hartwell | Mar 2014 | A1 |
20140107599 | Fink et al. | Apr 2014 | A1 |
Number | Date | Country |
---|---|---|
2198243 | Feb 1996 | CA |
2367460 | Oct 2000 | CA |
2390513 | May 2001 | CA |
2121688 | Jul 2001 | CA |
2408305 | Nov 2001 | CA |
2458285 | Mar 2003 | CA |
2157772 | Sep 2003 | CA |
2809828 | Sep 1978 | DE |
3 935 818 | May 1991 | DE |
4 012 232 | Oct 1991 | DE |
198 44 355 | Apr 2000 | DE |
0 020 662 | Jul 1984 | EP |
0 355 186 | Feb 1990 | EP |
0 777 504 | Oct 1998 | EP |
0 782 421 | Jul 1999 | EP |
1 897 569 | Aug 2002 | EP |
0 708 620 | May 2003 | EP |
1 088 569 | Aug 2003 | EP |
1 440 667 | Mar 2006 | EP |
1 284 777 | Apr 2006 | EP |
1 171 065 | Mar 2007 | EP |
1 476 217 | Mar 2008 | EP |
1 121 163 | Nov 2008 | EP |
2098257 | Sep 2009 | EP |
1163907 | Oct 1958 | FR |
114754 | Apr 1918 | GB |
641061 | Aug 1950 | GB |
1224009 | Mar 1971 | GB |
1549756 | Aug 1979 | GB |
2195255 | Apr 1988 | GB |
2378392 | Feb 2003 | GB |
2415908 | Jan 2006 | GB |
2003-165843 | Jun 2003 | JP |
1251912 | Apr 1983 | SU |
WO 8401904 | May 1984 | WO |
WO 9011795 | Oct 1990 | WO |
WO 9100718 | Jan 1991 | WO |
WO 9220299 | Nov 1992 | WO |
WO 9605873 | Feb 1996 | WO |
WO 9901173 | Jan 1999 | WO |
WO 0007653 | Feb 2000 | WO |
WO 0050143 | Aug 2000 | WO |
WO 0059424 | Oct 2000 | WO |
WO 0119430 | Mar 2001 | WO |
WO 0134223 | May 2001 | WO |
WO 0137922 | May 2001 | WO |
WO 0185248 | Nov 2001 | WO |
WO 0193793 | Dec 2001 | WO |
WO 02083046 | Oct 2002 | WO |
WO 02092783 | Nov 2002 | WO |
WO 03045492 | Jun 2003 | WO |
WO 03057307 | Jul 2003 | WO |
WO 03092620 | Nov 2003 | WO |
WO 2004024300 | Mar 2004 | WO |
WO 2004037334 | May 2004 | WO |
WO 2005025666 | Mar 2005 | WO |
WO 2005051461 | Jun 2005 | WO |
WO 2005070480 | Aug 2005 | WO |
WO 2005082435 | Sep 2005 | WO |
WO 2007024230 | Mar 2007 | WO |
WO 2007030601 | Mar 2007 | WO |
WO2007024230 | Mar 2007 | WO |
WO 2009066105 | May 2009 | WO |
WO 2009066106 | May 2009 | WO |
WO 2012022484 | Feb 2012 | WO |
WO 2013140255 | Sep 2013 | WO |
Entry |
---|
US 6,306,115, 10/2001, Kelly et al. (withdrawn) |
U.S. Appl. No. 60/559,727, filed Apr. 5, 2004, Richard Scott Weston. |
U.S. Appl. No. 60/573,655, filed May 21, 2004, Richard Scott Weston. |
U.S. Appl. No. 10/599,720, filed Oct. 6, 2006, Blott et al. |
U.S. Appl. No. 12/192,000, filed Aug. 14, 2008, Hartwell et al. |
U.S. Appl. No. 13/287,897, filed Nov. 2, 2011, Adie et al. |
U.S. Appl. No. 13/287,959, filed Nov. 2, 2011, Adie et al. |
Achterberg, V., Ph.D., Hydroactive dressings and serum proteins: an in vitro study, Journal of Wound Care, February, vol. 5, No. 2, 1996 (pp. 79-82). |
Argenta, Louis C., et al., “Vacuum-Assisted Closure: A New Method for Wound Control and Treatment; Clinical Experience”, Ann Plas Surg 1997;38:563-577 (Dec. 10, 1996). |
Aubrey, D.A., et al., Treatment of the Perineal Wound after Proctectomy by Intermittent Irrigation, Arch. Surg., Oct. 1984, 119, 1141-1144. |
Bagautdinov, N.A., “Variant of External Vacuum Aspiration in the Treatment of Purulent Diseases of Soft Tissues,” in current Problems in Modern Clinical Surgery: Interdepartmental Collection, edited by V. Ye. Volkov et al. (Chuvashia State University, Cheboksary, USSR 1986) pp. 94-96 (with English translation). |
Biblehimer, Helen L., “Dealing With a Wound that Drains 1.5 Liters a Day,” RN, Aug. 1986, pp. 21-23, USA. |
Bier, A., Hyperemia as a Therapeutic Agent, Ed. Dr. Gustavus M. Blech, A. Robertson & Co., Chicago 1905, pp. 74-85. |
Brubacher, “To Heal a Draining Wound”, RN Mar. 1982, 7 pages. |
Bucalo et al. “Inhibition of Cell Proliferation by Chronic Wound Fluid.” Wound Repair and Regeneration, Miami, 1993, pp. 181-186. |
Canadian Office Action for Canadian Application No. 2739605 dated Aug. 22, 2011 in 2 pages. |
Chariker, M.E., et al, “Effective Management of Incisional and Cutaneous Fistulae with Closed Suction Wound Drainage,” Contemporary Surgery. Jun. 1989, pp. 59-63, vol. 34 USA. |
Chinese Office Action dated Aug. 29, 2008 for Patent Application No. 200480032101.1. |
Chintamani, et al., “Half versus full vacuum suction drainage after modified radical mastectomy for breast cancer—a prospective randomized clinical trial”, Research Article (Jan. 27, 2005), 1-5. |
Costunchenok, BM, Effect of Vacuum on Surgical Purulent Wounds, Vestnik Chirurgia, 1986, 6 pages. |
Davydov et al. “Pathogenic Mechanisms of the Effect of Vacuum Therapy on the Course of the Wound Process” pp. 43-46 (Dec. 1990). |
Davydov, Yu A., et al., “Concepts for Clinical Biological Management of the Wound Process in the Treatment of Purulent Wounds Using Vacuum Therapy”, The Kremlin Papers: Perspectives in Wound Care, Russian Journal: Vestnik Khirurgii, BlueSky Publishing, La Costa, California (2004), 15-17. |
Davydov, Yu A., et al., “The Bacteriological and Cytological Assessment of Vacuum Therapy of Purulent Wounds”, The Kremlin Papers: Perspectives in Wound Care, Russian Journal: Vestnik Khirurgii, BlueSky Publishing, La Costa, California (2004), 11-14. |
Davydov, Yu A., et al., “Vacuum Therapy in the Treatment of Purulent Lactation Mastitis”, The Kremlin Papers: Perspectives in Wound Care, Russian Journal: Vestnik Khirurgii, BlueSky Publishing, La Costa, California (2004), 5-7. |
De Lange, M.Y., et al., “Vacuum-Assisted Closure: Indications and Clinical Experience”, Eur J Plast Surg (2000) 2;178-182 (Feb. 9, 2000). |
Dilmaghani et al., “A Method for Closed Irrigation and Suction Therapy in Deep Wound Infections,” Journal of Bone and Joint Surgery, 1969, vol. 51-A, No. 2, pp. 323-342. |
EPO, Office Action for EP App. No. 04 791 592.1 dated Jun. 12, 2008. |
EPO, Second European Office Action for EP App. No. 04 791 592.1 dated Feb. 10, 2011. |
Fleischmann, Vacuum sealing: indication, technique, and results, European Journal of Orthopaedic Surgery & Traumatology (1995), pp. 37-40. |
Fleischmann, W. Wund Forum Spezial. IHW '94. “Vakuumversiegelung zur Behandlung von Problemwuden” (with English translation: Vacuum Sealing for Treatment of Problematical Wounds). |
Garcia-Rinaldi, R., et al., Improving the Efficiency of Wound Drainage Catheters, Amer. Journ. of Surg., Sep. 1975, pp. 130, 372-373. |
Hartz, R.S., et al., Healing of the Perineal Wound, Arch. Surg., Apr. 1980, 115, 471-474. |
Health Technology, Literature R., “Vacuum Assisted Closure Therapy for Wound Care”, Health Technology Literature Review (Dec. 2004), 3-59. |
International Preliminary Report for International Application No. PCT/GB/2004/004549, dated Dec. 20, 2005. |
International Search Report for International Application No. PCT/GB/2004/004549, dated Feb. 21, 2005. |
Japanese Office Action dated Aug. 25, 2009 for Patent Application No. 2006-537411. |
Japanese Office Action dated Dec. 15, 2009 for Patent Application No. 2006-537411. |
Japanese Office Action dated Jun. 22, 2010 for Patent Application No. 2006-537411. |
Japanese Office Action dated Jan. 17, 2012 for Patent Application No. 2010-59188. |
Jeter, K.F., et al, “Managing Draining Wounds and Fistulae: New and Established Methods”, Chronic Wound Care, pp. 240-246. |
Johnson, F.E., An Improved Technique for Skin Graft Placement using a Suction Drain, Surgery, Gynecology and Obstetrics, Dec. 1984, 3 pages. |
KCI Inc., If Its Not VAC Therapy, It's Not Negative Pressure Wound Therapy, Jan. 2005. |
Khirugii, Vestnik, “A Collection of Published Studies Complementing the Research and Innovation of Wound Care”, The Kremlin Papers, Perspectives in Wound Care, Russian Medical Journal, Vestnik Khirugii, Blue Sky Publishing (2004), 2-17. |
Kostiuchenok, B. M., et al., “The Vacuum Effect in the Surgical Treatment of Purulent Wounds”, The Kremlin Papers: Perspectives in Wound Care, Russian Journal: Vestnik Khirurgii, BlueSky Publishing, La Costa, California (2004), 3-4. |
Landes, R.R. and I. Melnick, An Improved Suction Device for Draining Wounds, Arch. Surg., May 1972, 104, p. 707. |
Linden, Willem van der, et al, “Randomized Trial of Drainage After Cholecystectomy: Suction Versus Static Drainage Through a Main Wound Versus a Stab Incision”, American Journal of Surgery, Feb. 1981, vol. 141, pp. 289-294. |
Mcfarlane, R.M., The Use of Continuous Suction under Skin Flaps, Br. Journ. Plast. Surg., pp. 77-86. |
Mclaughlan, J, et al, “Sterile Microenvironment for Postoperative Wound Care”, The Lancet, Sep. 2, 1978, pp. 503-504. |
Meyer, W. and V. Schmeiden, Bier's Hyperemic Treatment, Published 1908 W. B. Saunders Company, pp. 44-65. |
Morykwas, Michael J., et al., “Vacuum-Assisted Closure: A New Method for Wound Control and Treatment: Animal Studies and Basic Foundation”, Ann Plast Surg 1997;38:553-562 (Dec. 10, 1996). |
Nakayama, Y, et al, “A New Method for the Dressing of Free Skin Grafts”, Plastic and Reconstructive Surgery, Dec. 1990 pp. 1216-1219, UK. |
NURSING75, Wound Suction: Better Drainage with Fewer Problems, Nursing, vol. 5, No. 10, Oct. 1975, pp. 52-55. |
Office Action (Final) for U.S. Appl. No. 10/575,875, published as 2007/129,707, dated Jun. 17, 2009 in 19 pages. |
Ramirez, O.M., et al., Optimal Wound Healing under Op-Site Dressing, Ideas and Innovations, 73(3), pp. 474-475. |
Ranson, J. H. C., et al, “Safer Intraperitoneal Sump Drainage”, Surgery, Gynecology & Obstetrics, Nov. 1973, vol. 137, pp. 841-842. |
Sames, C.P., Sealing of Wounds with Vacuum Drainage, Br. Med. Journ., Nov. 5, 1977, p. 1223, Correspondence. |
Solovev, V. A., et al., “The Method of Treatment of Immature External Fistulas in the Upper Gastrointestinal Tract—Guidelines” USSR Ministry of Health, S. M. Kirov Gorky State Medical Institute, 1987 (with English translation). |
Solovev, V.A. “Treatment and Prevention of Suture Failures after Gastric Resection” (Dissertation Abstract) (S.M. Kirov Gorky State Medical Institute, Gorky USSR 1988). |
Stewart, Joanne, Ph.D., World Wide Wounds—Next generation of products for wound management—2002 (13 pages). |
Svedman, P., “Irrigation Treatment in Split-Thickness Skin Grafting of Intractable Leg Ulcers,” Scand J. Plast. Reconst. Surg., 19:211-213, 1985. |
Svedman, P., “Irrigation Treatment of Leg Ulcers,” The Lancet, Sep. 1983, 532-34. |
Svedman, P., A Dressing Allowing Continuous Treatment of a Biosurface, IRCS Med. Science: Biomed. Tech.; Clinic. Med.; Surg. and Transplantation, 1979, 7, p. 221. |
Svedman, P., et al., “A Dressing System Providing Fluid Supply and Suction Drainage Used for Continuous or Intermittent irrigation,” Annals of Plastic Surgery, vol. 17, No. 2, Aug. 1986, pp. 125-133. |
Swift, et al, “Quorum Sensing in Aeromonas hydrophila and Aeromonas salmoncida: Identification of LuxRl Homologs AhyRl and AsaRl and Their Cognate N-Acylhomoserine Lactone Signal Molecules,” J. Bacteriol., 179(17):5271-5281 (1997). |
Teder and Svedman et al., “Continuous Wound Irrigation in the Pig,” Journal of Investigative Surgery, 1990, vol. 3, pp. 399-407. |
Tribble, David E. M.D., An Improved Sump Drain-Irrigation Device of Simple Construction, Archives of Surgery New York, pp. 511-513, 1972 vol. 105. |
Usupov, Y. N., et al., “Active Wound Drainage”, The Kremlin Papers: Perspectives in Wound Care, Russian Journal: Vestnik Khirurgii, BlueSky Publishing, La Costa, California (2004), 8-10. |
Venturi, Mark L., “Mechanisms and Clinical Applications of the Vacuum-Assisted Closure (VAC) Device”, Am J Clin Dermatol (2005) 693, 185-194; Review Article (2005), 185-194. |
Vijanto, J. and J. Raekallio, Local Hyperalimentation of Open Wounds, Br. J. surg., 1976, 63, 427-430. |
Wackenfors, A., et al., Effects of Vacuum-Assisted Closure Therapy on Inguinal Wound Edge Microvascular Blood Flow, Wound Rep. Reg, 2004, 12, 600-606. |
Webb, New Techniques in Wound Management: Vacuum-Assisted Wound Closure, Journal of the American Academy of Orthopaedic Surgeons, v. 10, No. 5, pp. 303-311, Sep. 2002. |
Webster's Revised Unabridged Dictionary, published 1913 by C. & G. Merriam Co., definition of Flapper Valve, downloaded from Free Online Dictionary. |
Wooding-Scott, Margaret, et al., “No Wound is Too Big for Resourceful Nurses,” RN Dec. 1988, pp. 22-25 USA. |
Wound Suction, Nursing, Oct. 1975, USA pp. 52-53. |
Wu, W.S., et al. Vacuum therapy as an intermediate phase in would closure: a clinical experience, Eur J Plast Surg (2000) 23: pp. 174-177. |
Search Report Dated Jan. 20, 2012 for PCT Appl. No. PCT/US2011/053707. |
Westaby, S., et al., “A Wound Irrigation Device”, The Lancet, Sep. 2, 1978, pp. 503-504. |
Number | Date | Country | |
---|---|---|---|
20120302975 A1 | Nov 2012 | US |
Number | Date | Country | |
---|---|---|---|
61489299 | May 2011 | US |