One of the most well-known styles of running is to swing your arms and hands forwards and backwards to match the forwards and backwards motion of the opposite leg and foot (hereafter, the “swinging arms technique”). By way of example,
It has been proposed that running with hand-held, wrist or leg weights while using the swinging arm technique will help a person intensify the effort of running for the purposes of burning more calories and increasing one's endurance. However, at least some experts in the field of sprinting believe that training to run faster by carrying weights while using the swinging arm technique is counter-productive because carrying the weights interferes with the coordination and timing to maintain the necessary stride frequencies to sprint fastest when the weights are not carried. Regardless of whether training with weights results in positive or negative results, people tend to run slower when they hold weights in their hand or wear them on their wrist while performing the swinging arms technique.
It has been advertised that certain products can help a runner perform better if they use the product while running. For instance, at least some have asserted that a person can run faster and more efficiently if they wear certain types of athletic footwear than no footwear at all. By way of example, spiked track and field shoes typically have rigid foot beds and spikes to create better traction and rebound off the ground.
In one aspect, a method of using a first running device and a second running device is provided, wherein the first running device is gripped by or removably affixed to the left hand and the second running device is gripped by or removably affixed to the right hand. Each running device may include a closed inner chamber defined at least in part by a top inner surface and a bottom inner surface facing the chamber, the top inner surface and the bottom inner surface further defining a longitudinal axis extending from the top inner surface to the bottom inner surface. Each running device may also include a moveable material disposed within the closed inner chamber and configured to provide a gap between the moveable material and the top surface when the moveable material is in contact with the bottom surface and to provide a gap between the moveable material and the bottom surface when the moveable material is in contact with the top surface. Each running device may further include a housing containing the closed inner chamber and the moveable material, and configured to be gripped by or removably affixed to a hand. The method may include: as the left foot is launching, raising both running devices such that the moveable material in the first running device is pushed against the bottom surface of the inner chamber of the first running device and the moveable material in the second running device is pushed against the bottom surface of the inner chamber of the second first running device; when both feet are off the ground, lowering both running devices, such that the moveable material in the first running device changes from being pushed against the bottom surface to being pushed downward by the top surface of the first running device and the moveable material in the second running device changes from being pushed against the bottom surface to being pushed downward by the top surface of the second running device, (c) when the right foot is in contact with the ground, decelerating both running devices, such that the moveable material in the first running device collides with the bottom surface of the inner chamber of the first running device when the right foot is in contact with the ground and the moveable material in the second running device collides with the bottom surface of the inner chamber of the second running device when the right foot is in contact with the ground, and (d) as the right foot is leaving the ground, raising both running devices such that the moveable material in the first running device is pushed against the bottom surface of the inner chamber of the first running device and the moveable material in the second running device is pushed against the bottom surface of the inner chamber of the second first running device.
In another aspect, a method of using a first running device and a second running device is provided, wherein the first running device being gripped by the left hand and the second running device being gripped by the right hand. Each running device may include a housing having a generally cylindrical outer surface and generally cylindrical inner side surface, an inner top surface, an inner bottom surface, the housing, inner top surface and inner bottom surface defining an inner chamber, a protrusion extending from the inner side surface into the inner chamber, and loose material disposed within the inner chamber. The method may include: before the left foot launches from the ground, accelerating the upwards vertical velocity of each running device such that the loose material in each running device is pushed against the inner bottom surface of the inner chamber; after the left foot has left the ground and before the right foot makes initial contact, accelerating the downwards vertical velocity of each running device such that the loose material in each running device is pushed against the inner top surface of each running device; after the right foot makes initial contact with the ground, decelerating the downwards vertical velocity of each running device such that the loose material in each device collides with the inner bottom surface of the inner chamber; before the right foot launches from the ground and after decelerating the downwards vertical velocity of each running device, accelerating the upwards vertical velocity of each running device such that the loose material in each running device is pushed against the inner bottom surface of the inner chamber, and after the right foot has left the ground and before the left foot makes initial contact, accelerating the downwards vertical velocity of each running device such that the loose material in each running device is pushed against the inner top surface of each running device.
In yet another aspect, a method of using a left running device held in the left hand and right running device held in the right hand is provided, wherein each running device includes a housing having a generally cylindrical outer surface and generally cylindrical inner side surface, an inner top surface, an inner bottom surface, the housing, inner top surface and inner bottom surface defining an inner chamber, a plurality of protrusions extending from the inner side surface into the inner chamber, and pellets disposed within the chamber. The method may include: before the left foot launches from the ground, accelerating the upwards vertical velocity of each running device such that the pellets in each running device are pushed against the inner bottom surface of the inner chamber; after the left foot has left the ground and before the right foot makes initial contact, accelerating the downwards vertical velocity of each running device such that the pellets in each running device are pushed against the inner top surface of each running device; after the right foot makes initial contact with the ground, decelerating the downwards vertical velocity of each running device such that the pellets in each device collides with the inner bottom surface of the inner chamber; before the right foot launches from the ground and after decelerating the downwards vertical velocity of each running device, accelerating the upwards vertical velocity of each running device such that the pellets in each running device are pushed against the inner bottom surface of the inner chamber; and after the right foot has left the ground and before the left foot makes initial contact, accelerating the downwards vertical velocity of each running device such that the pellets in each running device are pushed against the inner top surface of each running device.
A system and method is provided for improving a runner's performance.
By way of example only, substantially identical devices may be held in each hand while running, wherein each device has an inner chamber that includes a moveable material and a delay component. While running, both devices (e.g., both the device in the left hand and the device in the right hand) may be thrust upwards as one foot is launching off of the ground and, before the next foot lands, both devices may be thrust downwards.
If the devices are so configured, this may cause the material to be thrust upwards as and after the runner's feet leave the ground and, while the runner is in midflight, cause the material to be thrust downwards before the runner's feet contact the ground.
Immediately after the left or right foot landing on the ground, the runner may bring both devices to an abrupt stop relative to the ground plane, which may have the effect of propelling the still-moving material inside the chamber towards the now stationary surface of the chamber. Rather than allowing the material to proceed to the bottom surface of the chamber unimpeded, the delay component within the chamber may delay the collision of the material with the bottom surface until a moment shortly before the left or right foot (as the case may be) reaches maximum impact with the ground. The delay component may also distribute the force of the collision over a greater period of time than may occur in the absence of the component.
While the invention is not limited to any theory of operation, it is believed that delaying and distributing the impact until and over a span of time shortly before the left or right foot reaches maximum ground impact causes the fascia (the interconnected sheaths of fibrous tissue enclosing muscles and other organs) to rapidly tense just prior to maximum ground impact. Since the fascia is tensed shortly before maximum ground impact, it is further believed the method increases the recoil effect of the fascia and reduces the load on the muscles relative to running without the use of the devices.
Regardless of the theory of operation, athletes have been observed in time trials to run faster holding the devices and running as described above than those same athletes normally run in the absence of the devices and/or running by swinging their left hand and right hand forwards and backwards in opposition to their right foot and left foot, respectively.
One example of such a device and a method of using it is illustrated in
As shown in
The running device may be sized and shaped to be comfortably and securely gripped by one hand. For instance, the outer surface of housing 160 of device 100 may be shaped so as to be longer along one axis of direction than the other axes, e.g., outer side surface 130 of housing 160 may be generally cylindrical relative to longitudinal axis 110. The outer surface of the housing 160 may include at either end an outer top surface 120 or an outer bottom surface 121, which are opposed to each other and generally perpendicular to longitudinal axis 110. During use, the runner may grip running device 100 so that the majority of the outer side surface 130 remains in contact with the runner's palm and fingers. Outer top surface 120 may also be configured and sized so the runner may comfortably rest his or her index finger relatively higher than the thumb and other fingers along or near the top of the device while running.
Although the running devices disclosed herein are not limited to specific sizes, certain absolute and relative sizes are believed to be and have been observed to increase a runner's performance. In that regard, the ratio of the height of the outer surface of the housing (e.g., the distance from outer top surface 120 to outer bottom surface 121 along longitudinal axis 110) relative to the widest portion of the outer side surface 130 may range from 3:1 to 1.65:1. The height and width of the outer surface of the housing for an adult-sized version of the device may range from 30 to 60 millimeters and from 30 to 60 millimeters wide. Other embodiments of the device may have different shapes.
The outer surface of the device may also be contoured to help a user maintain a firm grip on the device while running By way of example, outer side surface 130 of housing 160 may contain two indentations 140 and 141 such that the outer width of the device is smaller at the indentations than other portions of the outer surface. In that regard, the width of outer side surface 130 at indentations 140 and 141 may be smaller than the maximum width of the outer side surface between outer top surface 120 and indentation 140, smaller than the maximum width of outer side surface 130 between indentation 140 and indentation 141, and the maximum width of the portion between indentation 141 and outer bottom surface 121. Outer top surface 120 may also include a groove for the runner's index finger (not shown). Other aspects of the device may include a greater or lesser number of indentations.
When device 100 is sized in the ranges described above, the ratio of the width of outer side surface 130 at indentations 140 and 141 relative to the maximum width of the outer surface of the housing between indentation 140 and indentation 141 may range from 1.1:1 to 1.35:1. As discussed in more detail below, indentations 140 and 141 may be further shaped to correspond with a delay component, in which case the shape and size of indentations 140 and 141 may be selected to promote not only good comfort and grip for a person, but also their properties as a delay component.
As noted above, device 100 includes a chamber 200 defined by housing 160. For instance, chamber 200 is defined by inner side surface 230, inner top surface 220, and inner bottom surface 221 of housing 160. Inner side surface 230, inner top surface 220 and inner bottom surface 221 oppose outer side surface 130, outer top surface 120 and outer bottom surface 121, respectively.
Running device 100 may include protrusions 240 and 241 that extend into chamber 200 from inner side surface 230 and form part of a delay component. Although the running device is not limited to specific sizes, the ratio of the distance 255 that protrusions 240 and 241 extend into chamber 200 relative to maximum width 250 of chamber 200 may range from 1.1:1 to 1.35:1. The maximum width 250 of chamber 200 in an adult-sized version of the device may range from 90 to 150 millimeters. In addition to different sizes, other aspects of the device may include a greater or lesser number of protrusions.
The chamber of the running device may include a material that is capable of movement within the chamber. Although the moveable material is shown in
The moveable material may be configured to make contact with one of the surface of the chamber. In that regard, in order to provide material 280 with room to move into and out of contact with the inner bottom surface 221, device 100 may provide for a gap 286 between material 280 and inner top surface 220 when material 280 is at rest and in contact with bottom surface 221. The ratio of the height of gap 286 relative to the height 287 of material 280 may range from 3.1 to 0.67:1.
The running devices disclosed herein may permit a user to access the device's chamber and moveable material. By way of example, running device 100 may include a cap 190 that can be attached and detached from housing 160. When detached, a user may inspect, add, or remove all or portions of material 280.
Although running device 100 is described and shown as having symmetrical “top” and “bottom” outer and inner surfaces, a runner may decide which portion of the device to use as the “top” (e.g., by changing the orientation of the device relative to the direction of gravity). For instance, the width of inner top surface 220 may be narrower or wider than the width of inner bottom surface 221 and some users may prefer to point the inner top surface 220 towards the ground during use. Yet further, rather than being generally cylindrical, the housing may be rectangular, triangular, spherical, semicircular (e.g., a semicircular top and bottom with generally straight side), or football shaped, or other shapes.
An example of a method of using a running device as disclosed herein will now be described. As shown in
For the purposes of this disclosure, a single running cycle is considered a sequence of movements that a person repeats while running Those movements may be grouped into a sequence of four phases.
As noted above, the phases are described as starting and ending at certain moments for ease of illustrating a method of using the invention. In practice, a person may start the process of using their muscles to launch off of their left foot before or after the instant their left foot exerts maximum force on the ground. Moreover, it is possible that a person's fascia may start providing a launching force before the person consciously begins using their muscles to do so.
Unless the context indicates to the contrary, references to directions herein are relative to a person's body regardless of how fast the person may be moving. For example, if this application refers to a runner moving an object that is currently in front of them “backwards”, this refers to the runner moving the object towards their back even if the net speed of the object relative to the ground is forwards. Similarly, references to an object moving an object “upwards” or “downwards” refers to whether the object is moving with or against the direction of gravity. The forward, backward, left and right directions are considered “horizontal” directions and the up and down directions are considered “vertical” directions. A reference to an object moving perpendicular to one reference plane does not preclude the possibility of the object also moving parallel with the reference plane. For example, if an object is described as having a downward velocity, a component of the object's velocity may also be in a horizontal direction. However, references to an object moving “primarily” (or the like) in one direction means the object is moving faster in that direction relative to other directions. For example, if this application refers to hand moving “primarily backwards”, it means that the hand is moving faster backwards than up, down, left or right.
References to the orientation of a running device refer to the orientation of its longitudinal axis. For example, references to device 100 being held primarily upright means the longitudinal axis is within a 0 to 90 angle to parallel than perpendicular to the direction of gravity.
In accordance with the example method, the runner quickly thrusts both devices primarily downwards as the runner descends towards landing on his or her right foot. As shown in
As soon as the runner's right foot makes initial contact with the ground, the runner may bring the downward velocity of both devices to a stop as rapidly as he or she safely can.
Since the material in the device is capable of movement within the chamber, the material may continue traveling downward notwithstanding the housing coming to a stop. By way of example and as shown in
In accordance with the example method, the downward inertia of the material will cause the material to collide with the inner bottom surface of the chamber. For example, as shown in
A running device in accordance with the system and method disclosed herein may include one or more components that delay and/or extend the duration of the downward force exerted by the moveable material on the housing of a running device after the user stops the downward velocity of the housing. While the following paragraphs 0056-0071 reflect one possible theory of operation, the invention is not limited to any specific theory; additional or alternative theories may account for the increased performance benefits observed from runners' use of the device and method.
The force exerted by the material against the housing of the running devices will be transmitted to the structural tissues in the runner's hand and wrist, including muscles and the fascia surrounding those muscles.
Fascia is typically loose and malleable. However, when force (e.g., pressure) is applied to fascia, it may become rapidly tense and transfer at least some of the force to the surrounding neighboring muscle or other organs, including the fascia network proximal up the arms toward the torso. Fascia may be likened to a large interconnected network that surrounds the muscles and structurally integrates them with the tendons and other connective tissues, and is capable of directly or indirectly translating a force experienced at one part of the body to other parts of the body. If the maximum force imparted by the housing of the device to the runner's hands in the downwards direction (“peak device force”) is large enough, at least some—if not most—of that downward force will be transmitted through the runner's arms, torso and legs to the foot in contact with the ground.
Fascia provides other functions that may be relevant to the running devices and method of use disclosed herein. First, fascia provides an elastic-like recoil effect that returns at least some of the force that it receives. In this way, fascia is similar to a spring; the greater the force with which a runner's foot strikes the ground, the greater the speed and power the runner will get off of the ground because of the energy stored and returned by fascia and its structural continuity with the muscles, tendons, ligaments and bones. Second, fascia decreases the amount of energy and mechanical work that a muscle needs to expend. Without the fascia, muscles would have to do more work and spend more energy pushing a runner back up off of the ground after they land.
Fascia is believed to be capable of transmitting at least some of the force exerted by the device on the runner's hand to the foot's area of contact with the ground very quickly. While the amount of time it may take for the force from the device to be translated to the foot may be very short, the total amount of time that the runner's foot spends on the ground between landing and liftoff (ti to tl) may be very short as well, e.g., 0.1 seconds. Therefore, even if it only took two hundredths of a second to transmit the force from the device to the ground, that span of time may be relatively significant compared to the amount of time that the runner's foot is in contact with the ground.
The delay between the device's delivery of force to the hand and the transmission of that force to the foot is illustrated in
It is believed the force transmitted by the running devices may increase the force a runner exerts on the ground between each landing and launch. As shown by curve 1650 (“Ground force w/device”), if the time at which the peak device force is received at the foot coincides with the peak strike force, the overall force with which the runner hits the ground may be significantly increased.
All other factors being equal, and provided the various forces are within safe limits, the harder a runner hits the ground, the better the runner will typically perform. It is believed that the harder a runner lands on the ground, the greater the proportion of work done and managed by the fascia and other connective tissues such as the tendons versus the muscle fibers themselves. The harder landing increases the recoil effect from fascia and decreases the eccentric elongation of the muscle fibers, which propels the runner forward at a faster speed with less energy cost. Moreover, because the rebound is more powerful, hitting the ground harder results in less ground contact time, which may reduce soreness and repetitive stress. Therefore, use of the running devices disclosed herein in accordance with the method described in connection with
It is believed that if the running devices lacked a delay component, at least some of the benefits provided by using the running devices with the disclosed method would be decreased. For example, if the force is too concentrated (e.g., not distributed over time as shown in
Yet further, as noted above, a runner using a running device with a delay component may synchronize when they start to decelerate the downward motion of the devices with an easily perceivable event: the moment of initial ground contact. In the absence of a delay component, a runner would need to start the process of stopping the device in the middle of the landing phase at a time that coincides with the length of time it takes for the device force to the transmitted to the ground plane. It is believed that most runners would find it difficult to know exactly when to start decelerating the devices if it has to occur at a specific time between initial contact and peak strike force.
Regardless of the theory of operation, athletes have been observed in time trials to run faster holding a device similar to running device 100 in each hand (or holding only one device) and running as described above than the same athletes normally run in the absence of the devices. Yet further, some people have been observed to run faster using aspects of the disclosed method (thrusting one's hands downward while in midflight and then bringing them to a stop after landing) even without the devices. In that regard, the disclosed running devices may be used to train athletes in the disclosed running technique and run with greater speed and less energy without devices than using the swinging arms technique.
The magnitude and timing of the peak device force depends at least in part on how quickly the runner thrusted the devices downward prior to initial contact (e.g., the peak downward velocity of the material prior to initial contact is a function of the rate at which the runner accelerated the housing downward during the second half of the midflight phase) and how quickly the runner brought the devices to a vertical stop (e.g., the rate of deceleration of the housing of the devices upon or after initial contact). In order to increase the peak device force, some runners may intentionally continue to accelerate the running devices downwards for a short time after initial contact (in order to increase the velocity of the moveable material), or may begin accelerating the devices upwards prior to impact (in order to increase the velocity of the moveable material relative to the inner bottom surface)).
However, even if a runner reaches a plateau with respect to how quickly he or she is able to accelerate and decelerate the devices, the runner may still be able to increase their performance by changing one or more characteristics of the running device. For example, as noted above, device 100 may include a removable cap for adding, removing or changing the material 280 in the device. If the runner is able to move a heavier device just as quickly, increasing the mass of the moveable material may increase the peak strike force. In order to obtain the greatest improvement in running speed, it is believed the runner should adjust the mass of the moveable material to safely and consistently deliver the greatest peak device force with the appropriate delay component to transmit the peak device force though the body to the foot to coincide with the moment the runner's foot is exerting its greatest force against the ground. If the runner's peak device force continuously arrives too late or early relative to peak strike force, the runner may decrease or increase the size of the pellets to hasten or further delay the arrival of peak device force after initial contact.
The material from which the housing is composed may also affect peak device force. By way of example, housing 160 may be composed of polyvinyl chloride (PVC) with variable durometers (hardnesses). The harder the PVC, the greater the impact force. The arrival and magnitude of the peak device force may be further delayed or decreased, respectively, by coating the inner surface of the chamber with a material (e.g., rubber) having a relatively high coefficient of friction with respect to the moveable material (e.g., steel pellets). A softer housing or moveable material may not only be relatively quiet, but it may also be easier for people that are not strong as a typical user or those who intend to use the running device for longer distances.
In accordance with the example method, after the runner brings the downward velocity of the running devices to a vertical stop, the runner may begin raising both devices primarily upwards. For instance, during the right launch phase shown in
Before the runner's hands reach their maximum height during the midflight phase, the runner may begin bringing the upwards velocity of running device to a stop in preparation for thrusting the devices back down. Since the material in each device is capable of movement within the chamber, the material may continue traveling upwards notwithstanding the housing coming to a stop. By way of example and as shown in
The upward force of the material impacting the top surface of housing may be transmitted to the runner's body in a manner similar to the downward force impacting the bottom surface of the material. However, rather than the force being translated to the ground, the upward force may cause the fascia to tense and raise the person's center of mass higher than it would have risen in the absence the devices. The additional height may help runners hit the ground harder and may also help runners that could benefit from more time aloft.
The method of using the devices during the left landing and launch phases, and the halves of the midflight phases that precede and follow them, respectively, is similar to the method described in connection with
When using running devices as described herein, a runner may increase their performance by shifting their head towards the side of the body that corresponds with the foot that is currently in contact with the ground. For example, as shown in
When stopping the downward velocity of the running devices, a runner may further increase performance by keeping his or her left and right wrists at the positions shown in
The running devices may provide audio feedback to assist the runner with timing their motions. For instance, the housing may be structured to project the sound of the impact of material 280 with the inner top surface 220 and inner bottom surface 221 out of the device. By way of example, the housing between outer top surface 120 and inner top surface 220, and outer bottom surface 121 and inner bottom surface 221, may be composed of PVC with a relatively high durometer, which may make the collision of material 280 with the top and bottom surfaces not only audible but relatively loud. Materials such as polypropylene, polyethylene, nylon and other plastics that provide a light weight and substantially rigid housing may provide an audible feedback that can be heard by the user. The repetitive sound of the contact may help the runner coordinate their deceleration of the devices with the rhythm of their running. Moreover, since the volume of the collision is dependent on the magnitude of the force that the moveable material exerts on the housing, and since that force is dependent on how quickly the runner is able to accelerate and decelerate the device, the relative volume projected from the device may help the runner and the people training the runner determine whether the runner is moving and stopping the device quickly enough to optimize its benefits.
The difference between the swinging arm technique and the method of using the running devices as disclosed herein may be seen in a comparison of the side view of the swinging arm technique in
As shown in
The cartridge may be removably attached to the wearable portion. By way of example, left-handed glove 3010L (shown without a cartridge 3001), may include hook-and-loop fastening strips 3020 that are capable of securely attaching cartridge 3001 to the glove. A portion of the outer surface of the cartridge 3001 may include corresponding hook-and-loop fastening strips 3220 (
The cartridge may include an inner chamber that includes a moveable material. During operation, a runner will orient his or her hands so the back of hand faces outward and to the side (e.g., as compared to upwards), in which case left longitudinal end 3002 of cartridge 3001 attached to right-hand glove 3010R will point upwards and right longitudinal end 3003 will point downwards relative to the cartridge's center of mass. In that regard, housing 3360 of cartridge 3001 defines an inner chamber 3200 having a inner top surface 3320, inner bottom surface 3321, inner left side surface 3335 and inner right side surface 3330 relative to longitudinal axis 3110. Moveable material 3280 may be similar to moveable material 280, e.g., steel pellets. The cartridge may provide users with access to the chamber. For example, hole 3395 may permit users to add or remove material from the chamber.
The inner side surfaces of the chamber may be concave or convex. For instance, inner right side surface 3330 arcs inward for a distance 3225 (relative to the maximum width of the inner chamber 3200), and inner left side surface 3335 arcs outwards. The bottom portion 3350 of chamber 3200 tapers inwards.
Running device 3000 may be operated similar to the method of using running device 100 described above. For instance, a running device 3000 with a left-handed glove portion may be worn on the left hand and a running device 3000 with a right-handed glove portion may be worn on the right hand. A runner may thrust their hands and running devices quickly downwards prior to landing, and bring housing 3360 to a vertical stop after landing. Moveable material 3280 may continue moving towards inner bottom surface 3321 notwithstanding housing 3360 coming to a vertical stop. However, a portion 3350 of the inner right side surface 3330, in combination with the nature of moveable material 3280 (e.g., pellets), may provide a delay component that delays the arrival of the peak device force.
As noted above, the timing and magnitude of the device may depend on various characteristics. With running device 3000, a user may select a cartridge that most closely matches their preferences. For instance, given the choice between two cartridges that are identical but for the hardness of the housing, an experienced runner may select the cartridge with the greater hardness.
Processor 2070 executes instructions 2072 and processes data 2073 stored in electronic memory 2071. Processor 2070, memory 2071, and electromagnets 2010 and 2011 are powered by power source 2085 (e.g., a battery). Processor 2070 is further capable of changing the amount of power directed towards each electromagnet to propel magnet 2080 towards, and potentially into contact with, the top or bottom surface of inner chamber 2050 in accordance with instructions 2072.
Running device 2000 may include user input and output components. For example, user input component 2015 may include a touchscreen or buttons. User output component 2081 may include an electronic display 2082 (e.g., a touchscreen or individual LED lights), speaker 2083 and haptic feedback 2084. The running device may also include a network interface 2091 (e.g., USB, Wi-Fi, Bluetooth or cellular) to provide and receive information via network 2090 from another running device (e.g., a similar running device in the person's other hand) or a computing device (e.g., personal computer, smart phone, tablet or web server).
Running device 2000 further includes a geographic sensor component 2040, which senses one or more of the position, velocity and acceleration of housing 2060 in one or more geographic directions. The geographic direction(s) may be relative to the starting position of housing 2060, the earth or some other reference system. For example, accelerometer 2041 may detect changes in the pitch, yaw and roll of the housing relative to longitudinal axis 2095. Compass 2042 may determine geographic direction in which the housing is pointed (e.g., the compass direction in which longitudinal axis 2095 or the portion of the housing containing user output component 2081 is pointed). GPS receiver 2043 may determine the GPS position of the housing (e.g., its current latitude, longitude and height coordinate).
In operation, a runner may operate running device 2000 similar to the method of operation described in connection with
Whereas the delay component in running device 100 was based on the shape of the chamber's inner side surface and a pellet material, the delay component in running device 2000 may be based on the electromagnets at the top and bottom surfaces and magnetic nature of the moveable material. For example, when executing instructions 2072, processor 2070 may determine whether the signal from geographic sensor component 2040 indicates housing 2060 has started decelerate its downwards velocity. If so, processor 2070 may increase the power to electromagnetic 2011 to delay the collision of magnet 2080 with the bottom surface of chamber 2050. Processor 2070 may also store in memory 2071 a history of when the magnet 2080 contacts the inner top and bottom surfaces, or reversed direction due to magnetic repulsion, relative to the vertical velocity of the device. If it appears the magnet is stopping too early or too late (e.g., housing 2060 continues moving downward after the magnet 2080 hits the bottom surface or reverses direction), processor 2070 may automatically and accordingly adjust when and how much power the processor applies to the electromagnets. The processor may also make a micro-adjustment to the operation of the delay component, determine how fast the runner ran after the adjustment (e.g., based on information provided by the GPS receiver and electronic clock (not shown)), and maintain or revert the adjustment based on whether the runner's speed increased or decreased, respectively.
The runner may also use user input component 2015 to change the operation of the delay component, and processor 2070 may store the preference as data 2073. Running device 2000 may also store different preferences for different users of the device.
Running device 2000 may also permit a runner to select a profile and adjust the operation of the delay component based on the profile. For example, if the runner selects a profile that indicates they are experienced and stronger than average, processor 2070 may automatically increase the speed of the magnet as it is moving upward or downward to increase the force of the impact of the magnet against the top and bottom surface of the chamber, or the force resulting from reversing the direction of the magnet due to magnetic force.
Running device 2000 may provide additional assistance to the runner. For instance, speaker 2083 may emit a tone, haptic feedback 2084 may vibrate and display 2082 may flash to indicate when the runner should stop moving the device downward. The device may also automatically increase the speed of the magnet upward or downward to increase the force of the impact of the magnet against the top and bottom surface of the chamber.
The running device may also upload or download information relating to the runner to and from a network such as the Internet. For example, a user may opt to download profiles from the Internet or upload a history of their performance (e.g., how far and fast they ran, and a history of how the timing of the peak device force corresponded with the downward velocity or height of the housing). Additionally, running device 2000 may also set variable cadences that enable a runner to attune their stride frequency with preset or variable frequencies to vary the tempo at which they run with the aid of the device.
A non-electronic version of running device 2000 may include permanent magnets instead of electromagnets 2010 and 2011, wherein their polarity is arranged to repel magnet 2080.
As these and other variations and combinations of the features discussed above can be utilized without departing from the claimed subject matter, the foregoing description of the embodiments should be taken by way of illustration rather than by way of limitation. The provision of examples (as well as clauses phrased as “such as,” “e.g.”, “including” and the like) should not be interpreted as limiting the claims to the specific examples; rather, the examples are intended to illustrate only some of many possible aspects. Similarly, references to “based on” and the like means “based at least in part on”.
This application is a continuation of U.S. application Ser. No. 16/829,462, filed on Mar. 25, 2020, now U.S. Pat. No. 11,673,015, which is a continuation of U.S. application Ser. No. 15/998,709, filed on Aug. 16, 2018, now U.S. Pat. No. 10,639,514, which claims the benefit of the filing date of U.S. Provisional Patent Application Nos. 62/569,702 and 62/639,059 filed Oct. 9, 2017 and Mar. 6, 2018, the disclosures of which are hereby incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
2509810 | Core, Jr. | May 1950 | A |
3334899 | Bosko et al. | Aug 1967 | A |
4218057 | Wilson | Aug 1980 | A |
4278248 | Kifferstein | Jul 1981 | A |
4366956 | Kifferstein | Jan 1983 | A |
4480828 | Kifferstein | Nov 1984 | A |
D286063 | Valentine | Oct 1986 | S |
4623146 | Jackson | Nov 1986 | A |
4801137 | Douglass | Jan 1989 | A |
4923418 | Hoffman | May 1990 | A |
5046727 | Wilkinson | Sep 1991 | A |
5263908 | Chen | Nov 1993 | A |
5312314 | Stephan et al. | May 1994 | A |
5316531 | Spence | May 1994 | A |
5979015 | Tamaribuchi | Nov 1999 | A |
6493652 | Ohlenbusch | Dec 2002 | B1 |
7841972 | Huang | Nov 2010 | B1 |
8038585 | Brown, Jr. | Oct 2011 | B1 |
8460001 | Chuang | Jun 2013 | B1 |
8506461 | Huang | Aug 2013 | B2 |
8573982 | Chuang | Nov 2013 | B1 |
8814765 | Bernstein | Aug 2014 | B2 |
9687695 | Lee | Jun 2017 | B2 |
9692286 | Endo | Jun 2017 | B2 |
10049595 | Chuang | Aug 2018 | B1 |
10504381 | Sato | Dec 2019 | B2 |
10596413 | Zerbo | Mar 2020 | B2 |
20040152571 | Udwin | Aug 2004 | A1 |
20040209680 | Oyamada | Oct 2004 | A1 |
20120214650 | Jahns | Aug 2012 | A1 |
20130190657 | Flaction | Jul 2013 | A1 |
20160151657 | Kugielsky | Jun 2016 | A1 |
20180250555 | Dean | Sep 2018 | A1 |
Entry |
---|
“xco animation” [online] (selected frames). Jul. 27, 2015. Retrieved from the internet: <https://www.youtube.com/watch?v=fdYk0KvD1U8>, 97 pages. |
“XCO Walking & Running . . . much more than just walking with weights (USA)” [online]. Retrieved Oct. 5, 2018. Retrieved from the internet: <https://xco-trainer.com/us/en/xco-walking-running-2>, 2 pages. |
“XCO—The Training Tool” [online]. Dec. 3, 2017. Retrieved from the internet: <https://web.archive.org/web/20171203154512/xco-trainer.com/us/en/the-training-tool>, 1 page. |
International Search Report & Written Opinion dates Nov. 14, 2018 for PCT/US18/00177, pp. 1-9. |
Randy Moss, Vikings, running video (selected frames). 60 pages. |
“Togu Hand Trainer Brasil—Europe's No. 1 for Home Fitness” [online]. Retrieved Oct. 12, 2018. Retrieved from the internet: <https://www.sport-tiedje.at/en/togu-hand-trainer-brasil-togu-470636>, 4 pages. |
Military Quantitative Physiology: Problems and Concepts in Military Operational Medicine: Problems and Concepts in Military Operational Medicine (Government Printing Office, Jul. 26, 2017) [online] (selected pages). Retrieved from the internet: <https://books.google.com/books?id=h0ouDwAAQBAJ&pg=PT586&lpg=PT586> 4 pages. |
Claire Maldarelli, “Nike puts its energy-returning foam into a shoe you can train in” [online]. Popular Science, Jul. 12, 2018. Retrieved from the internet: <https://www.popsci.com/nike-pegasus-turbo-review-faster-training-runs>, 3 pages. |
“XCO Studies and Expert Reports” [online]. Mar. 5, 2017. Retrieved from the internet: <http://web.archive.org/20170305103734/http://xco-trainer.com/us/en/studies-expert-reports>, 2 pages. |
“Ancient Olympics” [online]. Copyright 2012. Retrieved from the internet: <http://ancientolympics.arts.kuleuven.be/eng/TC003EN.html>, 1 page. |
“Deion Sanders—Atlanta Braves Highlights (pt 2)” [online] (selected frames from 1:44 to 1:48). Dec. 22, 2016. Retrieved from internet: <https://youtu.be_esk5HPQMJzE>, 59 pages. |
XCO Latin Workout Shop [online]. Mar. 7, 2018. Retrieved from the Internet <http://web.archive.org/ web/20180307131141/http://xcolatinworkout.com:80/Shop.html>, 3 pages. |
David Weck, “Proper Running Techniques: Head-Over-Foot” [online]. Dec. 12, 2016. Retrieved from the internet: <https://www.weckmethod.com/articles/proper-running-techniques-head-over-foot>, 3 pages. |
“XCO (USA)—It's what's inside that counts!” [online]. Sep. 9, 2017. Retrieved from the internet: <http:/web.archive.org/web/20170909235854/http://www.xco-trainer.com:80/us/en/home>, 4 pages. |
David Weck, “Double Down Pulse To Improve Running Technique” [online]. Jun. 8, 2017. Retrieved from the internet: <https://www.weckmethod.com/articles/double-down-pulse-to-improve-running-technique>, 3 pages. |
“XCO-Trainer—Endurance (USA)” [online]. Dec. 3, 2017. Retrieved from the internet: <http:/web.archive.org/web/20171203154204/http://xco-trainer.com:80/us/en/endurance>, 2 pages. |
“Trekking pole” [online]. Jun. 11, 2018. Retrieved from the internet: <https://en.wikipedia.org/wiki/Trekking_pole>, 3 pages. |
“XCO-Trainer—The XCO Effect (USA)” [online]. Dec. 3, 2017. Retrieved from the internet: <http://web.archive.org/web/20171203154217/http://xco-trainer.com:80/us/en/xco-effect>, 2 pages. |
Mark Remy, “Track Stars and Floppy Necklaces: What's the Deal?” [online]. Runner's World, Feb. 22, 2011. Retrieved from the internet: <https://www.runnersworld.com/runners-stories/a20792447/track-stars-and-floppy-necklaces-whats-the-deal/>, 14 pages. |
“Running Technique: 3 Hand Positions for Better Running” [online]. Aug. 28, 2015. Retrieved from the internet: <https://www.weckmethod.com/articles/running-technique-3-hand-positions-for-better-running>, 9 pages. |
Serge Gracovetsky, The Spinal Engine, Oct. 2008. 4 pages. |
“RMT Club Speed Training Technique: The Double Down Pulse”, [online]. Retrieved Mar. 22, 2019, “created at” “Wed, Mar. 18, 2015 19:07:45 +0000”. Retrieved from the internet: <https://www.pinterest.com.pin/392587292493006415/>, 26 pages. |
“XCO-Trainer—Coordination (USA)” [online]. Dec. 3, 2017. Retrieved from the internet: <http://web.archive.org/web/20171203154507/http://xco-trainer.com:80/us/en/coordination>, 1 page. |
“Get The RMT Club”, [online]. Oct. 1, 2017. Retrieved from the internet: <https://web.archive.org/web/20171001231937/https://www.weckmethod.com/products/rmt-club-functional-training-equipment-full-body-workout-hiit>, 3 pages. |
“Get The RMT Club”, [online]. Nov. 9, 2016. Retrieved from the internet: <https://web.archive.org/web/20161109020756/https://www.weckmethod.com/products/rmt-club-functional-training-equipment-full-body-workout-hiit>, 2 pages. |
Little Kids 2013 Catalog, cover page, p. 20 and last page. |
WeckMethod, Proper Running Techniques [online]. Retrieved Oct. 5, 2018: <https.www.weckmethod.com/categories/running-techniques>, Retrieved 14 pages. |
“XCO-Trainer—The XCO Effect (USA)” [online]. Retrieved Aug. 13, 2018. Retrieved from the internet: <https://xco-rainer.com/us/en/xco-effect>, 2 pages. |
“XCO (USA)—It's what's inside that counts!” [online]. Retrieved Aug. 13, 2018. Retrieved from the internet: < https://xco-trainer.com/us/en/home>, 4 pages. |
“XCO Walking & Running . . . much more than just walking with weights!” [online]. Mar. 5, 2017. Retrieved from the internet: <http://web.archive.org/web/20170305094918/http://xco-trainer.com/us/en/xco-walking-running-2>, 1 page. |
“Shape your Body—Functional Training with TOGU Brasil—YouTube” [online] (selected frames). Mar. 18, 2013. Retrieved from the internet: <<https://www.youtube.com/watch?v=IsAYaVf5ak8>>, 34 pages. |
“Pure fresh fresh mint—15pc pocket bottle” [online]. Sep. 2, 2017. Retrieved from internet: <http://us.mentos:80/pure-fresh-fresh-mint-15pc-pocket-bottle>, 2 pages. |
Extended European Search Report including Writte Opinion for EP188661.0 issued Jun. 9, 2021; 8 pages. |
Number | Date | Country | |
---|---|---|---|
20240149098 A1 | May 2024 | US |
Number | Date | Country | |
---|---|---|---|
62639059 | Mar 2018 | US | |
62569702 | Oct 2017 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 16829462 | Mar 2020 | US |
Child | 18204123 | US | |
Parent | 15998709 | Aug 2018 | US |
Child | 16829462 | US |