The invention relates generally to metamaterials. In particular, the invention relates generally to metamaterials having a negative index of refraction and capable of receiving incident waves having any polarization.
Currently, metamaterials can be formed with repeating and periodic structures. Metamaterials can be materially engineered to have desired properties (e.g., a desired index of refraction). Metamaterials can have properties that depend on physical placement of the elements in the metamaterial. There are currently many types of metamaterials, including electric metamaterials and magnetic materials.
Current metamaterials can have a negative index of refraction at its resonant frequency. These current metamaterials can be limiting in that in order for incident electromagnetic waves to propagate in the metamaterial, the incident electromagnetic wave typically has to impinge upon the metamaterial with a particular polarization. For example, an electric field component and a magnetic field component of the incident electromagnetic wave may be required to align with certain components in the metamaterial in a particular direction in order for the incident wave to propagate through the metamaterial with a negative index of refraction.
Therefore, it can be desirable to have a metamaterial with a negative index of refraction that can propagate an incident electromagnetic wave having any polarization direction.
One advantage of the invention is that it can allow propagation of incident electromagnetic waves having any polarization.
In one aspect, the invention includes a metamaterial. The metamaterial includes a first s-shaped split ring resonator element. The metamaterial also includes a second s-shaped split ring resonator element intersecting and positioned orthogonal to the first s-shaped resonator element, such that an electromagnetic wave having any orientation can resonate within the metamaterial.
In some embodiments, the first s-shaped split ring resonator element and the second intersecting split ring resonator element are manufactured by 3-D printing. In some embodiments, the first s-shaped split ring resonator element and the second s-shaped split ring resonator element are substantially equal in size, and wherein the size depends on a desired resonant frequency of the metamaterial. In some embodiments, the first s-shaped split ring resonator and the second s-shaped split ring resonator are a first unit cell.
In some embodiments, the metamaterial includes a second unit cell. The second unit cell can be positioned adjacent to the first unit cell. The second unit cell can include a third s-shaped split ring resonator element, and a fourth s-shaped split ring resonator element, the fourth s-shaped split ring resonator positioned orthogonal to the third s-shaped resonator element.
In some embodiments, the first s-shaped split ring resonator and the second s-shaped split ring resonator are a conductive material within a range of 1*106-60*106 S/m. In some embodiments, the first s-shaped split ring resonator and the second s-shaped split ring resonator are metal or conductive epoxy.
In another aspect, the invention involves a method for receiving an electromagnetic wave having any polarization. The method involves positioning a plurality of unit cells in an adjacent configuration to create a metamaterial, each unit cell comprising a first s-shaped split ring resonator element orthogonal to a second s-shaped split ring resonator element, such that the metamaterial has a negative index of refraction.
In some embodiments, the plurality of unit cells are positioned in an adjacent configuration via 3-D printing. In some embodiments, the metamaterial has a resonant frequency that depends on the length, width and height of a unit cell.
The foregoing and other objects, features, and advantages of the present invention, as well as the invention itself, will be more fully understood from the following description of various embodiments, when read together with the accompanying drawings.
The unit cell 100 includes a first S-shaped split ring resonator 110 and a second S-shaped split ring resonator 120. The first S-shaped split ring resonator 110 has a length (L) and a height (H). The second S-shaped split ring resonator 120 has a width (W) and the height (H). The width (W) and the length (L) are equal (or substantially equal). The unit cell 100 has a length, width, and height that are the length (L), width (W) and height (H) of the first S-shaped split ring resonator 110 and the second S-shaped split ring resonator 120, respectively.
The width (W) can depend on an expected frequency of incident waves (e.g., an operation frequency). In some embodiments, the width (W) is approximately 6.75 mm to exhibit a negative index of refraction at approximately 10 GHz. In various embodiments, the width (W) is scalable to operate at various frequencies. For example, the width (W) is decreased proportional to an increase in operation frequency. In another example, the width (W) is increased proportional to a decrease in operation frequency.
The length (L) can depend on an expected frequency of incident waves (e.g., an operation frequency). In some embodiments, the length (L) is approximately 6.75 mm to exhibit a negative index of refraction at approximately 10 GHz. In various embodiments, the length (L) is scalable to operate at various frequencies. For example, the length (L) is decreased proportional to an increase in operation frequency. In another example, the length (L) is increased proportional to a decrease in operation frequency.
The height (H) can depend on an expected frequency of incident waves (e.g., an operation frequency). In some embodiments, the height (H) is approximately 6.3 mm to exhibit a negative index of refraction at approximately 10 GHz. In various embodiments, the height (H) is scalable to operate at various frequencies. For example, the height (H) is decreased proportional to an increase in operation frequency. In another example, the 1 height (H) is increased proportional to a decrease in operation frequency.
The first S-shaped split ring resonator 110 and a second S-shaped split ring resonator 120 each have a first end 112a, and 111a, respectively, and a second end 112b and 111b, respectively. The first S-shaped split ring resonator 110 and a second S-shaped split ring resonator 120 are positioned in an orthogonal configuration. The first S-shaped split ring resonator 110 can be positioned orthogonal to the second S-shaped split ring resonator 120 at a distance d1 from the first end 111a of the second S-shaped split ring resonator. The second S-shaped split ring resonator 120 can be positioned orthogonal to the first S-shaped split ring resonator 110 at a distance d2 from the first end 112a of the first S-shaped split ring resonator 110.
In some embodiments, the distance d1 is 3.375 mm to exhibit a negative index of refraction at approximately 10 GHz. In some embodiments, the distance d2 is 3.375 mm to exhibit a negative index of refraction at approximately 10 GHz.
The first S-shaped split ring resonator 110 and the second S-shaped split ring resonator 120 can be positioned such that they are intersecting at a connection point. The intersection can be achieved via 3D printing. For example, the 3D printing can be performed with a Developer's Kit as produced by Voxel8. As is apparent to one of ordinary skill in the art, the 3D printing can be performed by any 3D printer as is known in the art. In this manner, when the first S-shaped split ring resonator 110 and the second S-shaped split ring resonator 120 are 3D printed into their respective positions, for example as described above, losses can be minimized at the connection point.
The first S-shaped split ring resonator 110 includes two resonator elements 110a and 110b. The second S-shaped split ring resonator 120 includes two resonator elements 120a and 120b. In various embodiments, the first S-shaped split ring resonator elements 110a and 110b and/or the second S-shaped split ring resonator elements 120a and 120b are a highly conductive material. In various embodiments, the first S-shaped split ring resonator elements 110a and 110b and/or the second S-shaped split ring resonator elements 120a and 120b conductive material within a range of 1*106-60*106 S/m.
In various embodiments, the first S-shaped split ring resonator elements 110a and 110b and/or the second S-shaped split ring resonator elements 120a and 120b are 3D printed conductive silver ink or paste. In various embodiments, the first S-shaped split ring resonator elements 110a and 110b and/or the second S-shaped split ring resonator elements 120a and 120b are positioned within a dielectric material.
During operation, the metamaterial 300 has electromagnetic waves impinged upon its surface. When the electromagnetic waves are at the resonant frequency of the metamaterial (or substantially having the resonant frequency) impinge upon the surface of the metamaterial 300, at least a portion of the electromagnetic waves is refracted into the metamaterial 300, irrespective of the polarization of the impinging electromagnetic waves. Therefore, regardless of the polarization of the impinging electromagnetic waves, the electromagnetic waves can propagate within the metamaterial 300. The portion of the electromagnetic waves that propagates into the metamaterial 300 is refracted with a negative index of refraction.
In some embodiments, the metamaterial 300 is a highly conductive metal. In some embodiments, the metamaterial is 3D printed conductive silver ink or paste. In some embodiments, the metamaterial 300 is 3D printed.
Comprise, include, and/or plural forms of each are open ended and include the listed parts and can include additional parts that are not listed. And/or is open ended and includes one or more of the listed parts and combinations of the listed parts.
One skilled in the art will realize the invention may be embodied in other specific forms without departing from the spirit or essential characteristics thereof. The foregoing embodiments are therefore to be considered in all respects illustrative rather than limiting of the invention described herein. Scope of the invention is thus indicated by the appended claims, rather than by the foregoing description, and all changes that come within the meaning and range of equivalency of the claims are therefore intended to be embraced therein.