Blood returning to the heart from the peripheral circulation and the lungs generally flows into the atrial chambers of the heart and then to the ventricular chambers, which pump the blood back out of the heart. During ventricular contraction, the atrio-ventricular valves between the atria and ventricles, i.e. the tricuspid and mitral valves, close to prevent backflow or regurgitation of blood from the ventricles back to the atria. The closure of these valves, along with the aortic and pulmonary valves, maintains the uni-directional flow of blood through the cardiovascular system. Disease of the valvular apparatus can result in valve dysfunction, where some fraction of the ventricular blood regurgitates back into the atrial chambers.
Traditional treatment of heart valve stenosis or regurgitation, such as mitral or tricuspid regurgitation, involves an open-heart surgical procedure to replace or repair the valve. Current accepted treatments of the mitral and tricuspid valves include: valvuloplasty, in which the affected leaflets are remodeled to perform normally; repair of the chordae tendineae and/or papillary muscle attachments; and surgical insertion of an “annuloplasty” ring, which requires suturing a flexible support ring over the annulus to constrict the radial dimension. Other surgical techniques to treat heart valve dysfunction involve fastening (or stapling) the valve leaflets to each other or to other regions of the valve annulus to improve valve function.
Described herein are devices and methods that involve attachment sites, including implants with multiple coupled anchors. The anchors may be secured to tissue using a multi-opening guide tunnel that is configured to releasably retain one or more portions of the implant located between two anchors, such as a tether component that attaches the anchors. The releasable retention of one or more interconnecting portions of the implant provides additional stabilization for the delivery tool until the implant is secured to the tissue. The multi-opening guide tunnel permits securement of the multiple anchors without requiring repositioning of the guide tunnel for each anchor. In some embodiments, the multi-opening guide tunnel comprises disengageable wall segments between the openings of the guide tunnel, which provide structural support and column strength in a region of the guide tunnel that would buckle or collapse due to the number of openings and their configuration.
In some embodiments, a system for use in a patient is provided, comprising an outer catheter, which comprises a passageway with a proximal end, a distal end, a longitudinal axis and two or more outer openings, and at least one releasable retaining structure located between the two or more outer openings. At least one releasable retaining structure may be adapted to open a release channel between two or more outer openings. In some instances, at least two of the two or more outer openings are two adjacent outer openings with a separation distance less than a maximum dimension of one of the two adjacent outer openings, and at least one releasable retaining structure is located between the two adjacent outer openings. In some variations, two or more outer openings are longitudinally spaced along a longitudinal length of the outer catheter, and may be configured for passage of a tissue anchor. At least one releasable retaining structure may be configured to retain a tether attached to the tissue anchor, and is optionally an outer wall structure of the outer catheter. The outer catheter may comprise at least three outer openings, and optionally at least two releasable retaining structures. The system may further comprise an inner catheter slidably located in the passageway of the outer catheter, and sometimes may further comprise an alignment interface between the outer catheter and the inner catheter. The alignment interface may comprise a rail, which may be a metallic material and/or may be secured to the outer catheter at two or more securing sites. The outer catheter may also further comprise a curved configuration having a lesser curvature and a greater curvature, and in some embodiments, two or more openings may be generally located along the greater curvature of the outer catheter. The outer catheter may also comprise an atraumatic tip. The catheter may further comprise at least one radio-opaque structure located between the two or more outer openings. The inner catheter may comprise an inner opening and wherein the inner guide and outer guide are configured to permit positioning of the inner opening at two or more outer openings. In some embodiments, at least one releasable retaining structure comprises a locking passage. The at least one locking element may be configured for removable positioning in the locking passage of at least one releasable retaining structure, and at least two releasable retaining structures with locking passages are both optionally configured for removable positioning by one of the at least one locking elements.
In other embodiments, an implant delivery system is provided, comprising a catheter body which comprises a proximal end, a distal end, a longitudinal lumen therebetween, a lumenal surface, an ablumenal surface, and at least one implant delivery opening in communication with the longitudinal lumen and located between the luminal surface and the ablumenal surface, and at least two longitudinally-spaced retention members located distal to the proximal end of the catheter body. In some instances, at least two longitudinally-spaced retention members are located within the longitudinal lumen, or within the at least one implant delivery opening. At least two longitudinally-spaced retention members may have a transverse orientation with respect to the longitudinal lumen. In some embodiments, at least two longitudinally-spaced retention members are movable retention members, which may be rotatable or flexible retention members. The movable retention members may each comprise a through lumen. The implant delivery system may further comprise a first anchor coupled to a tether, and in some instances at least two longitudinally-spaced retention members are configured to retain the tether.
In one embodiment, an implant may comprise an anchor for securing a tether to human tissue. The anchor may comprise a shape memory wire body having an unconstrained curved elongate form with a single loop, the elongate form generally following a curved arcuate path in a single turning direction. The anchor may have two legs arranged to diverge away from each other. The legs have a generally non-constant radius of curvature, and a straight distal tip.
Some embodiments of an implant delivery system may comprise a multi-window catheter for the deployment of tissue anchors into human tissue. The improved multi-window catheter has an outer shaft with a multiple windows, an inner shaft for regulating the use of the windows and a lumen therethrough for slidably receiving an anchor deployment catheter. The multi-window catheter may comprise two or more adjacent releasable flaps on a distal section of the outer shaft. The adjacent releasable flaps may be configured to allow the deployment of two anchors in close proximity to each other.
The structure and method of using the invention will be better understood with the following detailed description of embodiments of the invention, along with the accompanying illustrations, in which:
Although a number of surgically implanted ventricular devices and procedures, such as the implantation of an annuloplasty ring or edge-to-edge leaflet repair, are available for treating valvular dysfunction, each procedure presents its own set of risks to the patient or technical challenges to the physician. For example, the ability to accurately and reliably position a cardiac implant during a beating heart procedure, whether by open chest or minimally invasive access, remains elusive to the average practitioner. In particular, the percutaneous or transvascular implantation of a ventricular device described herein poses a significant challenge due to the instability from the wall motion of a beating heart.
Devices, systems and methods of the instant invention are generally used to reshape atrio-ventricular valves or myocardium to improve hemodynamic performance. The implantation procedures are preferably transvascular, minimally invasive or other “less invasive” surgical procedures, but can also be performed with open or limited access surgical procedures. When used for treatment of a cardiac valve dysfunction, the methods generally involve positioning one or more anchor delivery devices at a target site using a guide tunnel, delivering a plurality of slidably coupled anchors from the delivery device(s), and drawing the anchors together to tighten the annulus. The devices include an elongate catheter with a housing at or near the distal end for releasably housing one or more anchors, as well as guide devices for facilitating advancement and/or positioning of an anchor delivery device. The devices may be positioned such that the housing abuts or is close to valve annular tissue, such as the region within the upper left ventricle bound by the left ventricular wall, a mitral valve leaflet and chordae tendineae. Self-securing anchors having any of a number of different configurations may be used in some embodiments.
“Anchors,” as described herein refer to tissue anchors made of a shape memory material. The anchors may comprise C-shaped or semicircular hooks, curved hooks of other shapes, straight hooks or barbed hooks. In an embodiment, anchors may comprise two tips that curve in opposite directions upon deployment, forming two intersecting semi-circles, circles, ovals, helices or the like. In some embodiments, the tips may be sharpened or beveled. In some embodiments, the anchors are self-deforming. By “self-deforming” it is meant that the anchors are biased to change from a constrained shape to a unconstrained shape upon release of the anchors from a restraint. Such self-deforming anchors may change shape as they are released from a housing or deployed from a lumen or opening to enter annular tissue, and secure themselves to the tissue. Self-deforming anchors may be made of any suitable material such as spring stainless steel, or super-elastic or shape-memory material like nickel-titanium alloy (e.g., Nitinol).
In some embodiments, anchors may comprise one or more bioactive agents, including biodegradable metals and, polymers. In another aspect, the anchors may comprise electrode components. Such electrodes, for example, may sense various parameters including but not limited to impedance, temperature and electrical signals. In other aspect, such electrodes may be used to supply energy to tissue at ablation or sub-ablation amounts.
In an embodiment, an anchor may be a flexible anchor having two curved legs that cross in a single turning direction to form a loop, wherein the legs are adapted to penetrate tissue.
The single turning direction describes the curvature of the legs and loop region of the anchor, including the transitions between the legs and loop region. For example, in
Anchors having a single turning direction may bend or flex more than anchors having more than one turning direction. For example, anchors having more than one turning direction typically have one or more surfaces (e.g., abutment surfaces) that inhibit the collapse and/or expansion of the anchors, as described further below.
The anchor shown in
The anchors described herein may have a deployed configuration and a delivery configuration. The deployed configuration is the configuration that the anchor assumes when it has been deployed into the tissue. The anchor may be relaxed in the deployed configuration. The delivery configuration is any configuration in which the anchor is prepared for delivery. In some variations, the arms are compressed in the delivery configuration, so that the anchor has a smaller or narrower profile. The narrower profile may allow the anchors to be delivered by a small bore catheter. For example, anchors in a delivery configuration may fit into a catheter having an I.D. of about 0.5 mm to about 3.0 mm. In some variations, the anchor may be used with a delivery device having an I.D. of about 1 mm.
The ends of the legs 612, 614 are configured to penetrate tissue, so that the legs of the anchor may pass into the tissue when the anchor is deployed, as described more fully below. In some variations, the leg ends are blunt, or rounded. Blunt or rounded ends may still penetrate tissue. In some variations, the tips of the leg ends are sharp, or pointed, as shown in
The loop region 605 may also be referred to as an eye, eyelet or eye region. In the exemplary anchor shown in
The loop region may be of any appropriate size, and may change size based on the configuration of the anchor. For example, when the anchor is in a deployed configuration, the loop region may be larger (e.g., wider) than when the anchor is in a delivery configuration. In some variations, the loop region is smaller when the anchor is in a collapsed configuration, thus, the loop region may be of any appropriate shape, and may also change shape based on the configuration of the anchor. For example, the loop region may be more elliptical (e.g., narrower) in a delivery configuration, or more rounded. The central portion of the anchor loop may define the width of the anchor when constrained.
The position of the legs may be changed depending on the configuration of the anchor. For example, the legs may be expanded or collapsed. The expansion of the legs may increase the width and/or length of the anchor, for example, such that the width and/or length of the anchor is substantially larger than the dimensions of the loop. The legs 601, 602 may contact each other by meeting at a point of contact 630. In some variations, the legs 601, 602 cross each other without contacting. In some variations, the legs contact each other, so that the loop 605 is a closed region. In some variations, the legs are attached to each other at the point of contact 630. In some variations, one of the legs may pass through a passage (e.g., a hole) in the other leg.
The anchor may also have a thickness. For example, the anchor shown in
In
An anchor may be made of a single material, or it may be formed of many materials. In one variation, the anchor is made of a single piece of material. For example, the anchor may be formed from a linear material (e.g., a wire) that is formed into the desired shape (e.g., the deployed configuration). In some variations, the anchor is cut or etched from a sheet of material, (e.g., Nitinol). In some variations, the anchor includes different regions that are connected or joined together. These different regions may be made of the same material, or they may be made of different materials. The different regions may include regions having different physical or material properties, such as material strength, flexibility, ductability, elasticity, and the like. For example, the loop region of the anchor may comprise a material having a different (e.g., a decreased or increased) stiffness compared to the leg regions. In
An anchor may be made of (or may contain a region or coating of) a biodegradable or bioabsorbable material. Biodegradable portions of the anchor may allow time-controlled changes in the mechanical or biochemical properties of the anchor and in the interaction of the anchor with the tissue. For example, an outer layer of the anchor may dissolve over time, rendering the anchor thinner and more flexible. Thus, an anchor may be initially quite thick (e.g., providing an initial strength or stiffness), but after insertion into the tissue, the outer layer may dissolve or be removed, leaving the anchor more flexible, so that it can better match the tissue compliance.
In some variations, a region having an enhanced flexibility creates a spring or hinge region that can enhance or limit the overall flexibility of the anchor or a region of the anchor. This can, in turn, affect the ability of the anchor to change configurations between a deployed and a delivery configuration. As described further below, a hinge or spring region may be used to enhance the effectiveness of the anchor during cyclic (e.g., repetitive) loading of a tissue into which an anchor has been inserted.
The anchors described herein are generally flexible anchors, and may transition between a deployed configuration and one or more compressed or expanded configurations. The deployed configuration may also be referred to as a relaxed configuration. As mentioned above, the delivery configuration may be a compressed configuration (as shown in
At least a portion of the anchor comprises an elastic or super-elastic material, such as a metal, alloy, polymer (e.g., rubber, poly-ether ether ketone (PEEK), polyester, nylon, etc.) or some combination thereof that is capable of elastic or super-elastic recovery from deformation. For example, the anchor may comprise a Nickel-Titanium Alloy (e.g., Nitinol), or a region that is a rubber or polymeric material. In some variations, the anchor may comprise a material having a shape memory. In some variations, the anchor may comprise a bioabsorbable and/or biodegradable material (e.g., polymers such as polylactic acid (polylactide), poly-lactic-co-glycolic acid (poly-lactido-co-glycolide), polycaprolactone, and shape memory polymers such as oligo(ε-caprolactone)diol and crystallisable oligo(ρ-dioxanone)diol, etc.).
When force is applied to the anchor, or to a tissue into which the anchor is embedded, the anchor may flex or bend and thereby absorb some of the energy applied, and change the configuration of the anchor. For example, the anchor may be compressed or expanded from a resting position. In particular, the anchor may be compressed from a deployed configuration such as the one shown in
In
In some variations, the anchor has a delivery configuration in which the arms of the anchor may be radially expanded from their position in the deployed configuration.
The anchor 600 may be compressed from the deployed configuration into a delivery configuration by any appropriate method. For example, the legs of the flexible anchor 601, 602 may be drawn back into the delivery configuration as shown in
In
As described above, the material moduli, shapes and sizes of different regions of the anchor may be selected so that the compressed and/or expanded shape of the anchor may be controlled. For example, in
As briefly described above, the anchor may be of any appropriate size or dimension. The anchor may have a width 617, length 618 and a thickness. For example, the length of the anchor may be measured as the span of the legs 618 as shown in
Anchors may be fabricated by any appropriate method. For example, an anchor may be made by working or shape-forming a material (e.g., an alloy or metal). In some variations, the anchor may be fabricated from a wire or wires. The examples of anchors shown in
Furthermore, an anchor may be treated or coated in any appropriate manner. In some variations, the anchor is sterilized. For example, an anchor may be irradiated, heated, or otherwise treated to sterilize the anchor. Sterilized anchors may be packaged to preserve sterility. In some variations, an anchor may be treated with a therapeutic material (e.g., a medicinal material such as an anti-inflammatory, an anticoagulant, an antiproliferative, a pro-proliferative, a thromboresistant material, a growth hormone, etc.) to promote healing. For example, the anchor may be coated with Vascular Endothelial Growth Factor (VegF), Fibroblast Growth Factor (FGF), Platelet-Derived Growth Factor (PDGF), Transforming Growth Factor Beta (TGFbeta, or analogs), insulin, insulin-like growth factors, estrogens, heparin, and/or Granulocyte Colony-Stimulating Factor (G-CSF). In some variations, the anchor may comprise pockets of material for release (e.g., medicinal materials). In some variations, the anchors may be coated with a material to promote adhesion (e.g., tissue cements, etc.) In some variations, the anchors may comprise a material to assist in visualizing the anchor. For example, the anchor may comprise a radiopaque material, or other contrast-enhancing agents (e.g., these agents may depend upon the material from which the anchor is made, and the imaging modality used). For example, the anchor may be coated with a metal, such as gold, aluminum, etc. The anchor may also comprise surface treatments, including texturing (e.g., by ion beam etching, photoetching, etc.), tempering (e.g., thermal or photo tempering), or the like. Additional examples of appropriate surface treatments may include electropolishing, chemical etching, grit or bead blasting, and tumbling in abrasive or polishing media. Polymer coatings may include Teflon or polyester (e.g., PET). In some embodiments the anchors may be electro-polished.
Coatings may be used to elute one or more drugs, as described above. For example, an outer layer may comprise a drug (or other dissolvable or removable layer) that exposes another layer (e.g., another drug layer) after it dissolves or is removed. Thus, the anchor may controllably deliver more than one drug in a controlled fashion. The release of a drug (or drug coating) may be affected by the geometry of the anchor, or the way in which the drug is arranged on or within the anchor. As described above, the anchor may comprise a hollow region or other regions from which a drug could be eluted. Thus, the anchor may include pits, slots, bumps, holes, etc. for elution of drugs, or to allow tissue ingrowth.
Different regions of the anchor may comprise different coatings. For example, the loop (or a portion of the loop) may include a lubricious coating, particularly in the region where the legs cross each other to form the loop. A lubricious coating (e.g., polytetrafluoroethylene (Teflon), silicones, hydrophilic lubricious coatings, etc.) in this region may help minimize friction when deploying the anchor and may give the anchor greater momentum during deployment.
Anchors may also include one or more sensors and/or telemetry for communicating with other devices. For example, an anchor may include sensors for sensing electrical potential, current, stress, strain, ion concentration, or for the detection of other compounds (e.g., glucose, urea, toxins, etc.). Thus, an anchor may include circuitry (e.g., microcircuitry) that may be powered by an on-board power source (e.g., battery) or by externally applied power (e.g., electromagnetic induction, etc.). Circuitry may also be used to analyze data. In some variations, the anchor may comprise telemetry (e.g., wireless telemetry) for sending or receiving data or instructions from a source external to the anchor. For example, the anchor may send data from a sensor to a receiver that is external to the subject. In some variations, the anchor may be used to controllably release material (e.g., drugs) into the tissue.
The anchor may also include one or more electrodes. Electrodes (e.g., microelectrodes) may be used to stimulate, or record from the tissue into which the anchor has been inserted. Thus, the anchor may be used to record electrical activity (e.g., cardiac electrical activity, muscle electrical activity, neuronal electrical activity, etc.). In some variations, the anchor can apply electrical stimulation to the tissue through the electrode. Stimulation or recording electrical activity may also be controlled either remotely (e.g., through telemetry) or by logic (e.g., control logic) on the anchor.
For example, the anchor may be deployed in nerves or other electrically active tissue so that electromagnetic or electrophysiological signals can be received or transmitted. In one variation, electrical signals are transmitted to a subject from (or through) an anchor for pain management or control. In one variation, the anchors may transmit signals to help control limp muscles (e.g., in stroke patients). Thus, an anchor may itself be an electrode. In one variation, an anchor is deployed into a tumor and energy (e.g., electrical energy) is applied through the anchor to ablate the tumor.
The anchors described herein may also include additional tissue-engaging features to help secure the anchors within the tissue, implant or graft. The anchors may include features to increase friction on the surface of the anchors, to capture tissue, or to restrict movement of the anchor and prevent pullout of the anchor.
For example, as described above, the ends of the anchor may comprise one or more barbs or hooks. In some variations, regions other than the ends of the legs (e.g., the body of the legs or loop region) may also include barbs or hooks for gripping. In one variation, a single curve having a tight radius may be present at the end of one or more of the anchor legs. The bend may hook into the tissue at the end of the leg like a long narrow fishhook.
Thus, the anchor may include regions of increased friction. In addition to the barbs described above, the anchor may also include tines, pores, holes, cut outs, or kinks. These features may increase friction and resistance to pullout, and (as described above) may also allow ingrowth of tissue that inhibits withdrawal of the anchor. The surface of the anchor may also be coated or textured to reduce friction or to increase interaction between the anchor and the tissue, implant, or other material.
Movement of the anchor may also be restricted (or guided) to enhance attachment with tissue or other materials. For example, although the anchor typically curves in a single turning direction, the radius of the single turning direction may vary over the length of the anchor. In general, the tighter the bend radius of a region of the anchor, the greater the resistance to unbending. For example, the anchor may incorporate one or more bends that have a smaller radius of curvature (e.g., is a tighter bend) than other regions of the anchor. In one variation, the anchor may comprise a plurality of relatively straight segments with intermediate, tight radius bends. An example of such a tight radius bend is depicted in
As described previously, a loop region of an anchor may be of any appropriate size or geometry, which may change elastically or plastically during use from forces acting on the anchor, e.g. contraction and relaxation of the myocardium. In one variation, in the expanded deployed configuration, at least a length of the loop region may be formed from anchor segments that are substantially curved. In other variations, one or more segments of the loop region may be substantially straight. For example, the loop region 605 of the anchor 600 depicted in
Another variation of an anchor with a loop region formed by straight segments and curved segments in the deployed configuration is depicted in
While the loop region 402 of the anchor 400 comprises two straight segments and two curved segments, other variations may have three or more straight and curved segments. For example, a loop region may be formed from a first straight segment extending from a first end of a curved loop central region, a first curved segment extending from the first straight segment, a second straight segment extending from the first curved segment on one side, and a third straight segment extending from a second end of the curved loop central region, a second curved segment extending from the third straight segment, and a fourth straight segment extending from the second curved segment. The crossover point may be formed by the crossing over of any combination of straight or curved segments.
The anchor 400 may have any suitable geometry, dimensions, or proportions as desired.
In some variations, different anchors may have expanded and/or deployed configurations such that height H1 and height H2 may vary with respect to each other. While height H1 of the anchor 400 is less than height H2, other anchors may have an expanded or deployed configuration where height H1 is equal to or greater than height H2. That is, in the deployed configuration, the anchor leg ends may curve back towards the loop region such that the leg ends are substantially co-linear with the apex of the loop region, or may extend past the apex of the loop region. For example, the leg ends in the deployed configuration of the anchor 650 in
The height H3 of the loop region 402 is from the apex 423 to the crossover point 414, and may be from about 0.07 in to about 0.2 in, e.g., about 0.173 in. In some variations, the height H3 may be adjusted to help the anchor distribute forces that may be exerted on it, e.g., cyclic and/or dynamic loading forces from the tissue into which the anchor is inserted, stresses from the tissue, tensional forces that may result from cinching a tether inserted through the eyelet or loop region, etc. The height H3 of the loop region 4020 may also be adjusted ensure that when the anchor 400 is deployed and/or attached to tissue, a portion of the loop region 402 remains above the surface of the tissue. This may help ease the process of cinching a tether that may be threaded through the eyelets of multiple anchors, e.g., by reducing the frictional forces that oppose the cinching motion of the tether.
The catheters described herein, including tunnel catheter 148, may be formed of any of a number of different materials. Examples of suitable materials include polymers, such as polyether-block co-polyamide polymers, copolyester elastomers, thermoset polymers, polyolefins (e.g., polypropylene or polyethylene, including high-density polyethylene and low-density polyethylene), polytetrafluoroethylene, ethylene vinyl acetate, polyamides, polyimides, polyurethanes, polyvinyl chloride (PVC, fluoropolymers (e.g., fluorinated ethylene propylene, perfluoroalkoxy (PFA) polymer, polyvinylidenefluoride, etc.), polyetheretherketones (PEEKs), and silicones. Examples of polyamides include Nylon 6 (e.g., Zytel® HTN high performance polyamides from DuPont™), Nylon 11 (e.g., Rilsan® B polyamides from Arkema Inc.), and Nylon 12 (e.g., Grilamid® polyamides from EMS-Grivory, Rilsan® A polyamides from Arkema Inc., and Vestamid® polyamides from Degussa Corp.). In some variations, tunnel catheter 148 may be formed of multiple polymers. For example, a catheter may be formed of a blend of different polymers, such as a blend of high-density polyethylene and low-density polyethylene. While the wall of a catheter may be formed of a single layer, some variations of catheters may include walls having multiple layers (e.g., two layers, three layers). Furthermore, some variations of catheters may include at least two sections that are formed of different materials and/or that include different numbers of layers. Additionally, certain variations of catheters may include multiple (e.g., two, three) lumens. The lumens or walls may, for example, be lined and/or reinforced (e.g., with braiding or winding). The reinforcing structures, if any, may be metallic or comprise a non-metal or polymer having a higher durometer. In an embodiment, shown in
Retracting contacting member 530 to push anchors 526 out of apertures 528 may help cause anchors 526 to secure themselves to the tissue adjacent the apertures 528. Using anchors 526 that are relatively straighter/flatter configuration when undeployed may allow anchors 526 with relatively large deployed sizes to be disposed in (and delivered from) a relatively small housing 522. In one embodiment, for example, anchors 526 that deploy into a shape approximating two intersecting semi-circles, circles, ovals, helices, or the like, and that have a radius of one of the semi-circles of about 3 mm may be disposed within a housing 522 having a diameter of about 6 French (2.00 mm) and more preferably about 5 French (1.67 mm) or even smaller. Such anchors 526 may measure about 6 mm or more in their widest dimension. In some embodiments, housing 522 may have a diametrical dimension (“d”) and anchor 526 may have a diametrical dimension (“D”) in the deployed state, and the ratio of D to d may be at least about 3.5. In other embodiments, the ratio of D to d may be at least about 4.4, and more preferably at least about 7, and even more preferably at least about 8.8. These are only examples, however, and other larger or smaller anchors 526 may be disposed within a larger or smaller housing 522. The dimensions of an anchor may vary depending on the particular usage. For example, anchors used for ventriculoplasty may permit the use of larger anchors than those used for annuloplasty due to fewer space constraints in the main compartment of the ventricles than in the subvalvular spaces. Furthermore, any convenient number of anchors 526 may be disposed within housing 522. In one variation, for example, housing 522 may hold about 1 to about 20 anchors 526, and more preferably about 3 to about 10 anchors 526. Other variations may hold more anchors 526.
Anchor contacting member 530 and pull cord 532 may have any suitable configuration and may be manufactured from any material or combination of materials. In alternative embodiments of the invention, contacting member 530 may be pushed by a pusher member to contact and deploy anchors 526. Alternatively, any of the anchor deployment devices and methods previously described may be used.
Tether 534, as shown in
As shown in
Delivery catheter 1200 may optionally comprise a retrieval member, such as a retrieval line or filament 1222 that is looped around eyelet 1226 of anchor 1216 and threaded proximally back through delivery catheter 1200. Retrieval filament 1222 is pulled of delivery catheter 1200 by eyelet 1226 when anchor 1216 is deployed. Retrieval filament 1222 may be used to pull back anchor 1216 into delivery catheter 1200 should anchor 1216 misfire and fail to engage body tissue. If anchor 1216 is successfully deployed, one end of retrieval filament 1222 may be pulled out from eyelet 1226 to release anchor 1216 from retrieval filament 1222.
Referring now to
In some embodiments, the openings 704 are arranged in a linear configuration along a longitudinal length of guide tunnel 700. Although openings 704 are depicted in
In one embodiment of the invention, the retaining structures between anchor openings 704 may be configured to releasably retain the tether or coupling elements between the anchors. In a further embodiment, depicted in greater detail in
Referring to
In some embodiments, locking element 722 may have an elongate configuration and comprise a wire thread, or ribbon formed from metal, polymer, or combination thereof. Referring back to the embodiment depicted in
In some embodiments, latch 712 may not maintain the alignment of lumen 718 with its complementary lumens 720 once locking element 722 is removed. In these embodiments, reinsertion or rethreading of locking element 722 back into lumen 718 may not work in situ. In other embodiments, however, guide tunnel 700 may be constructed such that latch 712 is biased to an alignment position and locking element 722 may be reengaged to one or more lumens 718, 720.
In some embodiments, a single locking element 722 is provided and is insertable through all lumens 718 of latch 712 and complementary lumens 720 of tubular body 702, and the aggregate lumen path from lumens 718 and complementary lumens 720 is substantially linear or curvilinear. With these particular embodiments, release of latches 712 start with the distalmost latch and finish with the most proximal latch. Although
Referring again to
Referring back to
In another embodiment, guide tunnel 700 further comprises an inner guide tunnel 750 that is reversibly insertable into passageway 703 of guide tunnel 700. In these and other embodiments comprising inner guide tunnel 750, port 728 that is configured to receive the delivery catheter will be located on the inner guide tunnel 750 while guide tunnel 700 will have a port 752 configured to receive the inner guide tunnel 750. Inner guide tunnel 750 further comprises an inner tubular body 754 with one or more openings 756 located at the distal end 758 of the inner tubular body 754. Opening 756 may be configured with flanking or other configuration of radio-opaque markers that can be used to align opening 756 of inner guide tunnel 750 with the corresponding radio-opaque markers of latches 712. Opening 756 may comprise the same material as inner tubular body 754. In other embodiments, opening 756 is reinforced with a frame 806. In some embodiments, frame 806 may comprise a polymer of higher durometer than material comprising inner tubular body 754. In other embodiments, frame 806 may comprise a metal such as stainless steel, cobalt chromium, platinum-iridium, or Nitinol. In further embodiments, frame 806 may be plated with an additional metal, including but not limited to gold. In some embodiments, frame 806 is plated with additional material to alter its radio-opacity. Inner guide tunnel 750 may also be configured with one or other proximal ports 734 previously mentioned.
In some embodiments of the invention, guide tunnel 700, inner guide tunnel 750 or the delivery catheter may include a position sensor system to detect the relative position of inner guide tunnel 750 and/or the delivery catheter. In one embodiment, the position sensor system comprises a series of electrical contact points along passageway 703 of guide tunnel 700 that can form an electrical circuit with one or more electrical contact points located on inner tubular body 754. Similarly, electrical contact points in the lumen of inner guide tunnel 750 can be used to detect the position of delivery catheters inserted therein. The position sensor system may be used as a substitute or in conjunction with radio-opaque markers to facilitate alignment of various components. Other types of position sensor system are also contemplated, including but not limited to optical and magnetic detection mechanisms.
In some embodiments of the invention, guide tunnel 700 with inner guide tunnel 750 may be used with delivery catheters comprising a single anchor, or delivery catheters with multiple anchors. In these embodiments, inner guide tunnel 750 may be used to simplify positioning of delivery catheters with respect to openings 704 on guide catheter 700. Inner guide tunnel 750 may also be provided with one or more visual markings, detents, servo motor controlled positioning or other mechanisms to facilitate anchor delivery through openings 704. In some embodiments, inner guide tunnel 750 may be configured, for example, to reorient end-firing anchor delivery catheters to deploy anchors through the side openings 705 of guide tunnel 700.
In some embodiments, guide tunnel 700 and inner guide tunnel 750 may be configured to restrict or limit any rotational movement between the two components. Such a feature may be useful when positioning in more difficult target locations in the body that require considerable length, angulation and torque to reach that may result in rotation and/or length misalignment. In one embodiment of the invention, depicted in
In the embodiments of the cinchable implants described above, several embodiments of guide tunnel 700 or tunnel catheter 148 depict a single, longitudinal arrangement of alternating identical sized openings 154 and identical retaining elements or latches 712, but alternate configurations are also contemplated.
In some other embodiments, as depicted in
The opening of the inner guide tunnel window 1017 may be further shaped by a contrast director 1018. The contrast director may be made of a flexible, pliable material and may have a slot 1020 that is shaped to direct the infusion of contrast agent to a desired region. The shape of the slot 1020 may also be configured to receive and to conform to the shape of any catheter or other instrument inserted through slot 1020, e.g. an anchor delivery catheter. Thus the contrast director may facilitate fluoroscopic or ultrasound viewing of the surrounding anatomy during anchor delivery, or to infuse one or more treatment agents to the region. For example, as shown in
In some variations, the distal-most window on a distal curve 1008 may be configured to help precisely position and deploy a pair of anchors, e.g., the two distal-most anchors of an anchor assembly. For example, as illustrated in
While this invention has been particularly shown and described with references to embodiments thereof, it will be understood by those skilled in the art that various changes in form and details may be made therein without departing from the scope of the invention. For all of the embodiments described above, the steps of the methods need not be performed sequentially.
This application claims the benefit of U.S. Provisional Application No. 61/380,182, filed Sep. 3, 2010, the disclosure of which is hereby incorporated by reference in its entirety.
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/US2011/050331 | 9/2/2011 | WO | 00 | 10/18/2013 |
Number | Date | Country | |
---|---|---|---|
61380182 | Sep 2010 | US |