The present invention generally relates to devices and methods for the repair of intervertebral discs. Specifically, the present invention relates to devices and methods for the treatment of spinal disorders associated with the annulus of an intervertebral disc.
Back pain is one of the most common and often debilitating conditions affecting millions of people in all walks of life. Today, it is estimated that over ten million people in the United States alone suffer from persistent back pain. Approximately half of those suffering from persistent back pain are afflicted with chronic disabling pain, which seriously compromises a person's quality of life and is the second most common cause of worker absenteeism. Further, the cost of treating chronic back pain is very high, even though the majority of sufferers do not receive treatment due to health risks, limited treatment options and inadequate therapeutic results. Thus, chronic back pain has a significantly adverse effect on a person's quality of life, on industrial productivity, and on heath care expenditures.
Some forms of back pain are muscular in nature and may be simply treated by rest, posture adjustments and painkillers. For example, some forms of lower back pain (LBP) are very common and may be caused by unusual exertion or injury. Unusual exertion such has heavy lifting or strenuous exercise may result in back strain such as a pulled muscle, sprained muscle, sprained ligament, muscle spasm, or a combination thereof. An injury caused by falling down or a blow to the back may cause bruising. These forms of back pain are typically non-chronic and may be self-treated and cured in a few days or weeks.
Other types of non-chronic back pain may be treated by improvements in physical condition, posture and/or work conditions. For example, being pregnant, obese or otherwise significantly overweight may cause LBP. A mattress that does not provide adequate support may cause back pain in the morning. Working in an environment lacking good ergonomic design may also cause back pain. In these instances, the back pain may be cured by eliminating the culprit cause. Whether it is excess body weight, a bad mattress, or a bad office chair, these forms of back pain are readily treated.
However, some forms of back pain are the result of disorders directly related to the spinal column, which are not readily treated. While some pain-causing spinal disorders may be due to facet joint degradation or degradation of individual vertebral masses, disorders associated with the intervertebral discs are predominantly affiliated with chronic back pain (referred to as disc related pain). The exact origin of disc related pain is often uncertain, and although some episodes of disc related pain may be eased with conservative treatments such as bed-rest and physical therapy, future episodes of disc related pain are likely to occur periodically.
There are a number of suspected causes of disc related pain, and in any given patient, one or more of these causes may be present. However, the ability to accurately diagnose a specific cause or locus of pain is currently difficult. Because of this uncertainty, many of the causes of disc related pain are often lumped together and referred to as degenerative disc disease (DDD).
A commonly suspected source of disc related pain is physical impingement of the nerve roots emanating from the spinal cord. Such nerve root impingement may have a number of different underlying causes, but nerve root impingement generally results from either a disc protrusion or a narrowing of the intervertebral foramina (which surround the nerve roots).
As a person ages, their intervertebral discs become progressively dehydrated and malnourished. Together with continued stressing, the disc begins to degenerate. With continued degeneration, or an excessive stressing event, the annulus fibrosus of the disc may tear, forming one or more fissures (also referred to as fractures). Such fissures may progress to larger tears which allow the gelatinous material of the nucleus pulposus to flow out of the nucleus and into the outer aspects of the annulus. The flow of the nucleus pulposus to the outer aspects of the annulus may cause a localized bulge.
When bulging of the annulus occurs in the posterior portions of the disc, the nerve roots may be directly and physically impinged by the bulge. In more extreme or progressed instances of annular tears, the nuclear material may escape, additionally causing chemical irritation of the nerve roots. Depending on the cause and nature of the disc protrusion, the condition may be referred to as a disc stenosis, a disc bulge, a herniated disc, a prolapsed disc, a ruptured disc, or, if the protrusion separates from the disc, a sequestered disc.
Dehydration and progressive degeneration of the disc also leads to thinning of the disc. As the height of the disc reduces, the intervertebral foraminae become narrow. Because the nerve roots pass through the intervertebral foraminae, such narrowing may mechanically entrap the nerve roots. This entrapment can cause direct mechanical compression, or may tether the roots, allowing them to be excessively tensioned during body movements.
Nerve root impingement most often occurs in the lumbar region of the spinal column since the lumbar discs bear significant vertical loads relative to discs in other regions of the spine. In addition, disc protrusions in the lumbar region typically occur posteriorly because the annulus fibrosus is radially thinner on the posterior side than on the anterior side and because normal posture places more compression on the posterior side. Posterior protrusions are particularly problematic since the nerve roots are posteriorly positioned relative to the intervertebral discs. Lower back pain due to nerve root irritation not only results in strong pain in the region of the back adjacent the disc, but may also cause sciatica, or pain radiating down one or both legs. Such pain may also be aggravated by such subtle movements as coughing, bending over, or remaining in a sitting position for an extended period of time.
Another suspected source of disc related back pain is damage and irritation to the small nerve endings which lie in close proximity to or just within the outer aspects of the annulus of the discs. Again, as the disc degenerates and is subjected to stressing events, the annulus fibrosus may be damaged forming fissures. While these fissures can lead to pain via the mechanisms described above, they may also lead to pain emanating from the small nerve endings in or near the annulus, due to mechanical or chemical irritation at the sites of the fissures. The fissures may continue to irritate the small nerve endings, as their presence cause the disc to become structurally weaker, allowing for more localized straining around the fissures. This results in more relative motion of edges of the fissures, increasing mechanical irritation. Because it is believed that these fissures have only limited healing ability once formed, such irritation may only become progressively worse.
A common treatment for a disc protrusion is discectomy, a procedure wherein the protruding portion of the disc is surgically removed. However, discectomy procedures have an inherent risk since the portion of the disc to be removed is immediately adjacent the nerve root and any damage to the nerve root is clearly undesirable. Furthermore, discectomy procedures are not always successful long term because scar tissue may form and/or additional disc material may subsequently protrude from the disc space as the disc deteriorates further. The recurrence of a disc protrusion may necessitate a repeat discectomy procedure, along with its inherent clinical risks and less than perfect long term success rate. Thus, a discectomy procedure, at least as a stand-alone procedure, is clearly not an optimal solution.
Discectomy is also not a viable solution for DDD when no disc protrusion is involved. As mentioned above, DDD causes the entire disc to degenerate, narrowing of the intervertebral space, and shifting of the load to the facet joints. If the facet joints carry a substantial load, the joints may degrade over time and be a different cause of back pain. Furthermore, the narrowed disc space can result in the intervertebral foramina surrounding the nerve roots to directly impinge on one or more nerve roots. Such nerve impingement is very painful and cannot be corrected by a discectomy procedure. Still furthermore, discectomy does not address pain caused by the fissures which may cause direct mechanical irritation to the small nerve endings near or just within the outer aspect of the annulus of a damaged disc.
As a result, spinal fusion, particularly with the assistance of interbody fusion cages, has become a preferred secondary procedure, and in some instances, a preferred primary procedure. Spinal fusion involves permanently fusing or fixing adjacent vertebrae. Hardware in the form of bars, plates, screws and cages may be utilized in combination with bone graft material to fuse adjacent vertebrae. Spinal fusion may be performed as a stand-alone procedure or may be performed in combination with a discectomy procedure. By placing the adjacent vertebrae in their nominal position and fixing them in place, relative movement therebetween may be significantly reduced and the disc space may be restored to its normal condition. Thus, theoretically, aggravation caused by relative movement between adjacent vertebrae may be reduced if not eliminated.
However, the success rate of spinal fusion procedures is certainly less than perfect for a number of different reasons, none of which are well understood. In addition, even if spinal fusion procedures are initially successful, they may cause accelerated degeneration of adjacent discs since the adjacent discs must accommodate a greater degree of motion. The degeneration of adjacent discs simply leads to the same problem at a different anatomical location, which is clearly not an optimal solution. Furthermore, spinal fusion procedures are invasive to the disc, risk nerve damage and, depending on the procedural approach, either technically complicated (endoscopic anterior approach), invasive to the bowel (surgical anterior approach), or invasive to the musculature of the back (surgical posterior approach).
Another procedure that has been less than clinically successful is total disc replacement with a prosthetic disc. This procedure is also very invasive to the disc and, depending on the procedural approach, either invasive to the bowel (surgical anterior approach) or invasive to the musculature of the back (surgical posterior approach). In addition, the procedure may actually complicate matters by creating instability in the spine, and the long term mechanical reliability of prosthetic discs has yet to be demonstrated.
Many other medical procedures have been proposed to solve the problems associated with disc protrusions. However, many of the proposed procedures have not been clinically proven and some of the allegedly beneficial procedures have controversial clinical data. From the foregoing, it should be apparent that there is a substantial need for improvements in the treatment of spinal disorders, particularly in the treatment of disc related pain associated with a damaged or otherwise unhealthy disc.
The present invention addresses this need by providing improved devices and methods for the treatment of spinal disorders. The improved devices and methods of the present invention specifically address disc related pain, particularly in the lumbar region, but may have other significant applications not specifically mentioned herein. For purposes of illustration only, and without limitation, the present invention is discussed in detail with reference to the treatment of damaged discs in the lumbar region of the adult human spinal column.
As will become apparent from the following detailed description, the improved devices and methods of the present invention may reduce if not eliminate back pain while maintaining near normal anatomical motion. Specifically, the present invention provides disc reinforcement devices to reinforce a damaged disc, while permitting relative movement of the vertebrae adjacent the damaged disc. The devices of the present invention are particularly well suited for minimally invasive methods of implantation.
The reinforcement devices of the present invention may provide three distinct functions. Firstly, the reinforcement devices may mechanically stabilize and strengthen the disc to minimize if not eliminate chronic irritation of nerve roots and nerves around the periphery of the disc annulus. Secondly, the reinforcement devices may radially and/or circumferentially compress the disc to close fissures, fractures and tears, thereby preventing the ingress of nerves as well as potentially facilitating healing. Thirdly, the reinforcement devices may be used to stabilize the posterior disc after a discectomy procedure in order to reduce the need for re-operation.
In an exemplary embodiment, the present invention provides disc reinforcement therapy (DRT) in which a reinforcement member is implanted in the annulus of an intervertebral disc. The implantation method may be performed by a percutaneous procedure or by a minimally invasive surgical procedure. The present invention provides a number or tools to facilitate percutaneous implantation. One or more reinforcement members may be implanted, for example, posteriorly, anteriorly, and/or laterally, and may be oriented circumferentially or radially. As such, the reinforcement members may be used to stabilize the annulus and/or compresses a portion of the annulus so as to reduce a bulge and/or close a fissure.
In other embodiments, the implantable devices and associated delivery tools may incorporate heating capabilities to thermally treat the annular tissue. Alternatively or in combination, other devices may be specifically employed for such thermal treatment, and such thermal treatment may be applied by a device that is temporarily inserted into the annulus, or the thermal treatment may be applied by a chronically implanted device, either acutely or chronically.
The following detailed description should be read with reference to the drawings in which similar elements in different drawings are numbered the same. The drawings, which are not necessarily to scale, depict illustrative embodiments and are not intended to limit the scope of the invention.
With reference to
The vertebral column 10 includes an axis of curvature 60 which generally forms a double-S shape when viewed laterally. The vertebral column 10 also includes a median plane 70 which is a sagittal plane bisecting the vertebral column 10 into symmetrical left lateral and right lateral portions. In posterior views, the median plane 70 appears as a line.
The lumbar region 12 of the vertebral column 10 includes five (5) vertebrae 20 (labeled L1, L2, L3, L4 and L5) separated by intervertebral discs 50. The sacrum 14, which includes five (5) fused vertebrae 30 (superior vertebra 30 labeled S1), is separated by a single disc 50 from the coccyx 16, which includes four (4) fused vertebrae 40. Although not labeled, the intervertebral discs 50 may be referenced by their respective adjacent vertebrae. For example, the disc 50 between the L4 and L5 lumbar vertebrae 20 may be referred to as the L4L5 disc. Similarly, the disc 50 between the L5 lumbar vertebra 20 and the S1 sacral vertebra 30 may be referred to as the L5S1 disc.
Although each vertebra 20/30/40 is a unique and irregular bone structure, the vertebrae 20 of the lumbar region 12 (in addition to the thoracic and cervical regions) have common structures. Each vertebra 20 of the lumbar region 12 generally includes a body portion 21 and a vertebral arch portion 22/23 which encloses the vertebral foramen (not visible) in which the spinal cord is disposed. The vertebral arch 22/23 includes two pedicles 22 and two laminae 23. A spinous process 24 extends posteriorly from the juncture of the two laminae 23, and two transverse processes 25 extend laterally from each lamina 23. Four articular processes 26/27 extend inferiorly 26 and superiorly 27 from the laminae 23. The inferior articular process 26 rests in the superior articular process 27 of the adjacent vertebra to form a facet joint 28.
The five (5) vertebrae 30 of the sacrum 14 are fused together to form a single rigid structure. The sacrum 14 includes a median sacral crest 31 which roughly corresponds to the spinous processes of the vertebrae 30, and two intermediate sacral crests 32 which roughly correspond to the articular processes of the vertebrae 30. The sacral laminae 33 are disposed between the median 31 and intermediate 32 sacral crests. Two lateral sacral crests 34 are disposed on either side of the sacral foraminae 35. The sacrum 14 also includes a pair of sacral wings 36 which define auricular surfaces 39. The superior (S1) sacral vertebra 30 includes two superior articular processes 37 which engage the inferior articular processes 26 of the L5 lumber vertebra 20 to form a facet joint, and the base 38 of the superior sacral vertebra S1 is joined to the L5S1 disc 50.
With reference to
A common theory is that each intervertebral disc 50 forms one support point and the facet joints 28 form two support points of what may be characterized as a three point support structure between adjacent vertebrae 20. However, in the lumbar region 12, the facet joints 28 are substantially vertical, leaving the disc 50 to carry the vast majority of the load. As between the annulus fibrosus 52 and the nucleus pulposus 54 of the disc 50, it is commonly believed that the nucleus 54 bears the majority of the load. This belief is based on the theory that the disc 50 behaves much like a balloon or tire, wherein the annulus 22 merely serves to contain the pressurized nucleus 54, and the nucleus 54 bears all the load. However, this theory is questionable since the annulus fibrosus 52 comprises 60% of the total disc 50 cross-sectional area and is made of 40-60% organized collagen in the form of a laminated structure. By contrast, the nucleus pulposus 54 only comprises 40% of the total disc 50 cross-section and is made of 18-30% collagen in the form of a relatively homogenous gel. Thus, a more plausible theory is that the annulus fibrosus 52 is the primary load bearing portion of the disc 50.
With reference to
The reinforcement members 100/200/300/600 may be oriented generally parallel to the periphery of the annulus 52 (e.g., reinforcement members 100A, 100C, 200, 300, 600), generally radial to the annulus 52 (e.g., reinforcement member 100B), or any other orientation suitable for stabilizing and/or compressing the desired portion(s) of the annulus 52. Generally, the closer the reinforcement members 100/200/300/600 are to the periphery of the annulus 52, the greater the amount of support and stabilization provided to the disc 50. As such, the reinforcement members 100/200/300/600 preferably have a curvature conforming to the periphery of the annulus 52 such that they may be implanted as close to the periphery of the annulus 52 as possible. The reinforcement members 100/200/300/600 may have such a curvature in the relaxed (zero stress) state, or the curvature may be imparted by the insertion path or defined by the insertion tools used.
The reinforcement members 100/200/300/600 may extend across and close fissures 56/58 as shown, or any other portion of the annulus 52 to provide compression and stabilization of the disc 50. Although not shown, the reinforcement members 100/200/300/600 may extend across or into the nucleus 54. In such a case, it is preferred that the reinforcement members 100/200/300/600 do not extend outside the periphery of the annulus 52 in order to reduce the probability of nuclear material escaping from the outer aspects of the annulus 52.
The reinforcement members 100/200/300/600 are sized to fit within the annulus 52 of a human disc 50. Thus, the collective diameter and length of the reinforcement members 100/200/300/600 implanted preferably does not exceed the height and circumference/diameter, respectively, of the annulus 52, depending on the number and orientation of the reinforcement members 100/200/300/600 implanted. The reinforcement members 100/200/300/600 may be made of a biocompatible material or coated with a biocompatible material. Suitable structural materials for the reinforcement members 100/200/300/600 include stainless steel and super elastic alloys such as nickel titanium. All or a portion of the reinforcement members 100/200/300/600 may be made of biodegradable or bioabsorbable material such as resorbable collagen, LPLA (poly(l-lactide)), DLPLA (poly(dl-lactide)), LPLA-DLPLA, PGA (polyglycolide), PGA-LPLA or PGA-DLPLA. Other metals, alloys, polymers, and composites having suitable tensile, compression and fatigue strength and elasticity may also be used. The reinforcement members 100/200/300/600 may further include growth factors to facilitate healing, agents which render nuclear matter inert or otherwise reduce chemical irritation thereof, and/or anesthetic agents to reduce nerve signal transmission (i.e., pain).
Reinforcement member 600, as illustrated in
The reinforcement member 600 may comprise a monofilament or multifilament structure that resists elongation in tension, but is otherwise very flexible. For example, the reinforcement member 600 may comprise a polymeric or metallic fiber, cable, thread, suture, wire, ribbon, or the like. Suitable materials for the circumferential reinforcement member 600 include, but are not limited to, commercially available suture materials used in a variety of surgical procedures. Such exemplary suture materials include biodegradable suture made from polylactic acid and polyglycolic acid, and non-degradable materials such as monofilament and braided polypropylene and polyester (PET). Another suitable non-degradable suture material is made from expanded polytetrafluoroethylene (ePTFE). Other materials which are suitable for the circumferential reinforcement member 600 include braided ultra-high molecular weight fibers of polyethylene (UHMWPE), commercially available as Spectra™ or Dyneema™, as well as other high tensile strength materials such as Vectran™, Kevlar™, and natural or artificially produced silk.
As an alternative, the reinforcement member 100/200/300/600 may be designed for temporary heating (post-implantation) to cause thermal changes to the annulus. Because the annulus is comprised of overlapping bands of oriented collagen which tend to shrink in the direction of orientation when heated to temperatures of 50 to 90 degrees centigrade, temporarily heating the reinforcement member 100/200/300/600 causes thermal reformation of the annulus. In addition, annular defects such as fissures and tears can refuse, particularly if the edges are brought into apposition prior to or during the heating step. Such annular defects may be closed (i.e., edges brought into apposition) by compression imparted by the reinforcement member 100/200/300/600 during implantation or by collagen shrinkage imparted by heating the reinforcement member 100/200/300/600.
The reinforcement member 100/200/300/600 may be heated by inducing heat in the material of the reinforcement member 100/200/300/600 or by incorporating one or more heating elements into the reinforcement member 100/200/300/600. In both cases, a source of electric or magnetic power (e.g., electric power supply, magnetic field generator, RF transmitter, etc.) is used to provide energy to the reinforcement member 100/200/300/600 which converts the electric/magnetic energy to thermal energy. Such a power source may be directly or remotely connected to the reinforcement member 100/200/300/600.
For example, the reinforcement members 100/200/300/600 may include resistive heating elements directly connected to an internal (implanted) power supply or directly connected (transdermal) to an external electric power supply. Alternatively, the resistive heating elements may be connected to an implanted receiving antenna which receives a power signal from a remote external power signal transmitting antenna. As a further alternative, the reinforcement member 100/200/300/600 may be heated by remote inductive heating via an external alternating magnetic field generator. Because significant portions of the reinforcement member 100/200/300/600 may comprise a conductive metallic material, the presence of an alternating magnetic field will inductively heat the reinforcement member 100/200/300/600. Further aspects of these and other heated reinforcement member 100/200/300/600 embodiments are discussed in more detail with reference to
In all embodiments, various visualization techniques may be used to facilitate implantation of the reinforcement members 100/200/300/600. For example, real time CT scanning, real time MR imaging, or a combination of preoperative CT or MR images superimposed onto a real time device tracking images such as the system commercially available under the trade name STEALTH™ available from Sofamor Danek.
In
The anchor 120 may extend the full length of the body portion 110 as shown in
Preferably, the threads 122 have a variable pitch such that the annulus is compressed as the reinforcement member 100 is rotated and advanced into the annulus 52. Variable pitch threads 122, as shown in
Although compression of the annulus 52 is preferred, it is not necessary to have compression in order to provide some degree of mechanical stabilization. To the extent that compression is desired, the variable pitch threads 122 mentioned above are currently preferred. However, other compression techniques are equally useful. For example, standard constant pitch threads 122 and tapered rings 124 may achieve compression by utilizing a step-wise advancement and tension technique as will be described in more detail hereinafter.
In order to provide the ability to temporarily heat the reinforcement member 100 as discussed previously, various modifications to the design of the reinforcement member 100 may be made as described with reference to
Resistance wire 140 is conductive, but offers a high enough resistance to heat during the application of electrical current. The wire may be made of a variety of conductive metals, including copper, tungsten, platinum, or gold, and may be covered/coated with a biocompatible material. Preferably, the resistance wire 140 is formed of a biocompatible metal, but this is not essential as long as direct tissue exposure is avoided such as when a biocompatible covering/coating is used or when the wire 140 is embedded in the wall of body 110. Since the wire will be heated to a relatively high temperature (e.g., 50 to 90 degrees centigrade), the body 110 or covering is preferably made of a material which can withstand elevated temperatures, preferably of a high temperature polymer such as Polyimide, PTFE, Kynar, or PEEK.
Electrification of resistance wire 140 may be accomplished by initially incorporating a pair of releasable low resistance lead wires 142 to the ends of the resistance wire 140, as shown in
Alternatively, the leads 142 are not removable, but stay attached to the resistive wires 140 and reinforcement member 100, as illustrated in
One advantage of this resistive heating method is that the heating procedure can be repeated multiple times, without the need for reoperation or any other invasive procedure. For example, the patient may have the implanted reinforcement member(s) 100 heated upon initial implantation, and have them re-heated at any such time as back pain may recur. One of the mechanisms by which heat is believed to minimize back pain is by the destruction of nerve endings at the periphery of the annulus. However, new nerve endings may permeate the annulus, necessitating a subsequent heating to return the patient to a pain-free state.
As an alternative to the antennas 144/148, a transdermal plug 149 may be used to establish direct connection between the leads 142 and the power source 146. The plug 129 includes an internal implantable portion and an external portion. To facilitate immediate heating of the reinforcement member 100, the internal and external portions of the plug 129 may be connected just after implantation of the reinforcement member 100, but prior to closing the access site. The internal portion of the plug 129 is then positioned just below the skin and the access site is closed. To facilitate post-operative heating, a small incision may be made in the skin to connect the internal and external portions of the plug 129.
An alternate method of heating reinforcement member 100 and surrounding annular tissue is the use of inductive heating. Inductive heating is used in many industrial and some medical applications. Essentially, a high frequency alternating magnetic field is oriented on the object to be heated. The alternating magnetic field causes eddy currents in the object to be heated. These eddy currents then cause ohmic heating. As long as the object to be heated is conductive, usually metallic, it may be inductively heated.
To facilitate inductive heating, all or a significant portion of reinforcement member 100 is fabricated of a conductive metal, such as stainless steel, carbon steel, MP35N, nickel titanium alloy, or tungsten. The choice of material will influence the parameters needed for the inducting power source. Preferably, the entire body 110 is fabricated of the conductive metal.
With reference to
While the reinforcement member 100 is preferably a permanently implanted device, the incorporation of temporary heating immediately or shortly after implantation allows for the possibility of temporary implantation. In this usage of reinforcement member 100, it is implanted using the methods and tools described in further detail below. But, once fully implanted, a transient heating step is performed. Because the reinforcement member causes the annular tissue to compress circumferentially and/or radially, the heating is particularly effective at remodeling the annular tissue to a more normal, pre-degenerated condition. Therefore, it may not be necessary to keep the reinforcement member implanted. The reinforcement member 100 can be removed by essentially reversing the implantation steps. In order to facilitate removal following heating, it is desirable to provide a lubricious coating such as a hydropholic polymer or PTFE coating on the surface of the reinforcement member 100, including the body 110 and anchor 120.
The circumferential reinforcement member 200 may have a geometry (e.g., circle, ellipse, oval, etc.) corresponding to the geometry of the outer aspects of a healthy annulus 52, or the member 200 may be naturally straight, taking on a curved shape during implantation. Because the circumferential reinforcement member 200 is implanted in the annulus 52 around the entire periphery thereof, the reinforcement member maximizes anchoring strength and provides superior stabilization around the entire disc 50. Thus, it is preferable that the reinforcement member 200 define a closed geometry once implanted, or even have overlapping ends, but an open geometry (e.g., semi-ellipse or semi-circle) may also be employed. The size and shape of the reinforcement member 200 may be pre-selected to accommodate anatomical variations of the annulus 52 between patients. The reinforcement member may have a relaxed size that is smaller than the implanted size such that additional radial and circumferential compression is achieved.
Circumferential reinforcement member 200 may further incorporate design features which allow for temporary heating. As described in connection with reinforcement 100 above, similar features which allow for resistive heating or inductive heating may be incorporated.
The screws 320 include a shaft 322, a head 324, threads 328 and a sharpened tip 323 as seen in
The connection rings 330 each have first and second rings 331/333 defining first and second holes 332/334 as shown in
As described above in connection with reinforcement members 100 and 200, reinforcement member 300 can also incorporated features to provide for temporary heating. For example, tubular pins 310 can incorporate resistive wire, or can be fabricated of a conductive metallic material, in a manner similar to that described for reinforcement members 100 or 200 above.
Referring now to
With specific reference to
With specific reference to
With specific reference to
With specific reference to
With general reference to
The method illustrated in
Initially, as shown in
The curved portion 426 of the semi-rigid needle 420 is straightened for insertion into the trocar 410 as shown in
The sharpened stylet 430 is then positioned for insertion into the semi-rigid needle 420 as shown in
The semi-rigid curved needle 420 is removed from the stylet 430 and trocar 410, and the reinforcement member 100 is positioned for advancement over the stylet 430 as shown in
If a solid cross-section reinforcement member 100 is utilized, it is not necessary to utilize the stylet 430. In this situation, the curved semi-rigid needle 420 is left in place as shown in
The variable pitch threads on the reinforcement member 100 compress the disc 50 and cause the fissures 56 to close as discussed previously. If variable pitch threads are not utilized on the reinforcement member 100, other techniques may be used to compress the disc 50 and close the radial fissures 56. An example of an alternative disc 50 compression technique is a step-wise advancement and tension method. In this alternative method, the distal tip 433 of the stylet 430 is incorporated with an anchor 435 such as threads. After the distal tip 433 of the stylet 430 has been advanced by rotation to extend across the fissures 56, and before the reinforcement member 100 has been advanced into the annulus 52, the stylet is pulled in the proximal direction to apply tension thereto. Because the threaded anchor at the distal end 433 of the stylet 430 grips the annulus 52, tension applied to the stylet 430 compresses a portion of the disc 50 and closes the fissures 56. Once compression of the disc 50 and closure of the fissures 56 are established, the reinforcement member 100 may be advanced into the annulus 52 to maintain disc 50 compression and hold the fissures 56 closed. This method of step-wise advancement and tension may be repeated until the reinforcement member 100 is fully implanted in the desired position within the annulus 52.
After the reinforcement member 100 is positioned across the radial fissures 56 as shown in
With general reference to
As seen in
As can be seen from a comparison of
As seen in
With specific reference to
With specific reference to
With general reference to
Initially, as shown in
After the distal tip 453 of the stylet 450 is positioned roughly halfway between the posterior and anterior portions of the annulus 52 as seen in
An appropriately stiff mandrel 460 is then advanced or inserted into the hollow stylet 450 to define a curvature 454 that approximates the curvature of the posterior portion of the annulus 52. The stylet is then advanced across the posterior portion of the annulus 52. The stiffening mandrel 460 is then retracted or removed from the stylet 450 to define a smaller curvature 454 that approximates the curvature of the posterior lateral portion of the annulus 52. The stylet 450 is then advanced until the distal tip 453 thereof is positioned adjacent the distal tip 413 of the trocar 410 as shown in
The trocar 410 is then removed from the patient leaving the stylet 450 in the annulus 52 to define the insertion path for the reinforcement member 200 as shown in
With general reference to
Initially, as shown in
The trocars 410 are then removed from the patient leaving the stylet 430 in place as shown in
Also as shown in
With general reference to
With specific reference to
For example, in
The shaft 711 of the stylet 710 preferably has a flexible but pushable construction incorporating a rigid metal mandrel such as stainless steel, or a super-elastic alloy such as nickel-titanium. Highly elastic or super-elastic materials incorporated into the elongate shaft 711 resist permanent deformation during insertion and navigation through the annulus 52. The shaft 711 of the stylet 710 may have a diameter ranging from 0.010 to 0.025 inches, which may vary depending on the tortuosity of the annular path and the characteristics (toughness, friction) of the annular material 52. The shaft 711 may be coated with a lubricious material such as PTFE and a hydrophilic polymer.
It has been found that if the tip 714 is sufficiently sharp to easily penetrate annular tissue 52, the path through the annular tissue 52 taken by the stylet 710 will substantially conform to the geometry of the distal portion 712 of the stylet 710. In particular, if the distal portion 712 is substantially straight, the stylet 710 will define a linear path through the annular tissue 52. Alternatively, if the distal portion 712 has a curve or other nonlinear geometry (in a relaxed state), the stylet 710 will define a path through the annular tissue 52 corresponding to the shape of the distal portion 712. To this end, it is desirable to provide a tip 714 having sufficient sharpness to readily penetrate annular tissue 52, which tends to be relatively fibrous and tough. The distal tip 714 may have a symmetrical geometry 714A as illustrated in
With specific reference to
With specific reference to
With specific reference to
With specific reference to
Key 820 includes a thumb button 822 which may incorporate a plurality of grip members 828. A metallic plate 824 extends downwardly from the body portion 822 and has a geometry which substantially conforms to keyway 816. The bottom of the plate 824 incorporates one or more protrusions 826. Protrusions 826 engage and mate with recesses 715 formed in the proximal end of the stylet 710. Protrusions 826 and recesses 715 may be replaced by a wide variety of mating geometries to facilitate engagement between the key 820 and the proximal end of the stylet 710.
Upon depression of the thumb button 822 relative to the handle 812, the plate 824 travels in a downward direction to force the protrusions 826 into the recesses 715. The thumb button 822 may then be advanced in the distal direction, while maintaining downward pressure, to advance the stylet 710 in the distal direction relative to the shaft 810 into annular tissue 52. Although the stylet 710 may encounter substantial resistance during advancement through annular tissue 52, and despite the relative flexibility of the stylet 710, the shaft 810 of the advancement device 800 provides sufficient column strength to the stylet 710 to resist buckling during advancement.
After the key 820 has been advanced to the distal end of the handle 812, the downward force applied to the thumb button 822 may be removed to disengage the protrusions 826 from the recesses 715 in the stylet 710. To facilitate disengagement of the teeth 826 from the recesses 715, a pair of leaf springs 825 may be provided on either side of the plate 824 to urge the key 820 in the upward direction relative to the handle 812. In the disengaged position, the key 820 may be moved to the proximal end of the handle 812, and a downward force may be reapplied to the thumb button 822 to cause engagement of the protrusions 826 with the recesses 715. The thumb button 822 may then be advanced again in the distal direction relative to the handle 812 to advance the stylet 710 further into the annular tissue 52.
This procedure may be repeated until the stylet 710 is advanced the desired distance. In addition, with the key 820 in the disengaged position, the stylet 710 may be removed for a different stylet 710 having a different distal curvature, for example. To exchange the stylet 710, downward pressure against the thumb button 822 is removed to allow the key 820 to be urged in the upward direction by springs 825, to thereby disengage the protrusions 826 from the recesses 715. In the disengaged position, the stylet 710 may be removed from the device 800 by pulling the stylet 710 in the proximal direction. A second stylet 710 may be inserted into the device 800 by inserting the distal end of the stylet 710 into the proximal end of the lumen of the shaft 810 located at the proximal end of the handle assembly 812. The stylet may then be advanced until the distal end thereof exits the distal end of the shaft 810.
With specific reference to
The tubular shaft 910 includes a helical slot 916 which passes through the wall thereof and extends from a point adjacent the handle 912 to a mid portion of the shaft 910. A proximal nut 920 and a distal nut 930 are disposed about the shaft 910 and cooperate with the helical slot 916 such that they may be independently longitudinally advanced and retracted by rotation thereof relative to the shaft 910.
As best seen in
As seen in
As seen in
With this arrangement, the stylet 710 may be advanced independently of the sheath 730, and visa-versa. In addition, with this arrangement, both the tubular sheath 730 and the stylet 710 have column support proximal of the path being navigated through the annulus 52.
With general reference to
Initially, as shown in
The stylet 710C may then be removed from the sheath 730, and another stylet 710B, having a curved distal portion 712B, may be advanced through the sheath 730 as shown in
Once the distal end of the stylet 710A and the distal end of the tubular sheath 730 are disposed adjacent the opening to the distal end of the trocar 410, the straight stylet 710A may be exchanged for double curve stylet 710E as shown in
At this point, the trocar 410 may also be removed, but may optionally be left in place, depending on the means employed to connect the ends of the reinforcement member 600. As illustrated in
The distal end of the stylet 710 may then be pulled while applying a push force to the push rod 740 to pull the reinforcement member along the path defined the stylet 710 through the annulus 52, after which the reinforcement member 600 may be disconnected from the stylet as shown in
Alternatively, as shown in
The path navigated through the annulus 52 by the foregoing method may be a function of the individual anatomical geometry of the patient and/or the particular portion of the annulus 52 requiring compression. Accordingly, as shown in
Although it is preferable to define a path 620 substantially confined to the annulus 52, the path 620 may also extend through a portion of the nucleus 54 as illustrated in
While a single path 620 followed by a single reinforcement member 600 is illustrated, it is also contemplated that multiple reinforcement members 600 may be implanted. For example, one reinforcement member 600 could be implanted proximate the lower (inferior) portion of the annulus 52 and one reinforcement member 600 could be implanted in the upper (superior) portion of the annulus 52. Any number of reinforcement members 600 could be implanted in a single disc, either through a single trocar 410 placement, or multiple trocar placements.
With general reference to
The reinforcing members 510/520/530 may be used singularly or in groups, depending on the increase in disc 50 height desired and/or the amount of reinforcement of the annulus 52 desired. For example, the reinforcing members 510/520/530 may be stacked or inserted side-by-side. In addition, the reinforcing members 510/520/530 may be located in virtually any portion of the annulus 52. Preferably, the reinforcing members 510/520/530 are substantially symmetrically disposed about the median plane 70 to avoid causing curvature of the spine 10. Although the reinforcing members 510/520/530 may be inserted, in part or in whole, into the nucleus 54, it is preferable to insert them into the annulus 52 for purposes of stability and load carrying. Specifically, to provide stability, it is desirable to symmetrically locate the reinforcing members 510/520/530 as far as reasonably possible from the median plane 70, or to span as great a distance as possible across the median plane 70. In addition, because the annulus 52 of the disc 50 is believed to carry the majority of the load, particularly in the lumbar region 12, the reinforcing members 510/520/530 are preferably placed in the annulus 52 to assume the load normally carried thereby, and reinforce the load bearing capacity of the annulus 52, without hindering the normal mobility function of the disc 50.
The reinforcing members 510/520/530 may comprise expandable members such as self-expanding members 510 or inflatable members 520. Alternatively, the reinforcing members 510/520/530 may comprise unexpandable members such as reinforcement bars 530. When implanting each type of reinforcement member 510/520/530, it is preferable to maintain the integrity of the annulus 52. Accordingly, space in the annulus 52 for the reinforcing members 510/520/530 is preferably established by dilation or the like, although some amount of tissue removal may be used.
The expandable reinforcement members 510/520 are useful because they may be delivered in a low profile, unexpanded condition making it easier to traverse the very tough and fibrous collagen tissue of the annulus 52. For similar reasons, the reinforcement bars 530 are useful because they may have a small diameter and a sharpened tip. Although it is possible to insert the expandable reinforcing members 510/520 into the annulus 52 in their final expanded state, it is desirable to deliver the expandable reinforcing members 510/520 into the annulus 52 in an unexpanded state and subsequently expand them in order to minimize invasiveness and resistance to insertion.
The self-expanding reinforcing member 510 may comprise a solid or semi-solid member that self-expands (e.g., by hydration) after insertion into the annulus. Examples of suitable materials for such solid or semi-solid members include solid fibrous collagen or other suitable hard hydrophilic biocompatible material. If the selected material is degradable, the material may induce the formation of fibrous scar tissue which is favorable. If non-degradable material is selected, the material must be rigid and bio-inert. The self-expanding reinforcing member 510 preferably has an initial diameter that is minimized, but may be in the range of 25% to 75% of the final expanded diameter, which may be in the range of 0.3 to 0.75 cm, or 10% to 75% of the nominal disc height. The length of the self-expanding member 510 may be in the range of 1.0 to 6.0 cm, and preferably in the range of 2.0 to 4.0 cm.
The inflatable reinforcing member 520 may comprise an expandable hollow membrane capable of inflation after insertion into the annulus. An example of a suitable inflatable structure is detachable balloon membrane filled with a curable material. The membrane may consist of a biocompatible and bio-inert polymer material, such as polyurethane, silicone, or polycarbonate-polyurethane (e.g., Corethane). The curable filler material may consist of a curable silicone or polyurethane. The filler material may be curable by chemical reaction (e.g., moisture), photo-activation (e.g., UV light) or the like. The cure time is preferably sufficiently long to enable activation just prior to insertion (i.e., outside the body) and permit sufficient time for navigation and positioning of the member 520 in the disc. However, activation may also take place inside the body after implantation. The inflatable reinforcing member 520 preferably has an initial deflated diameter that is minimized, but may be in the range of 25% to 75% of the final inflated diameter, which may be in the range of 0.3 to 0.75 cm, or 10% to 75% of the nominal disc height. The length of the inflatable member 520 may be in the range of 1.0 to 6.0 cm, and preferably in the range of 2.0 to 4.0 cm.
The reinforcement bars 530 may comprise a rigid, solid or hollow bar having a sharpened tip. The reinforcement bars 530 may comprises stainless steel mandrels, for example, having a diameter in the range of 0.005 to 0.100 inches, preferably in the range of 0.010 to 0.050 inches, and most preferably in the range of 0.020 to 0.040 inches, and a length in the range of 1.0 to 6.0 cm, and preferably in the range of 2.0 to 4.0 cm. The reinforcement bars 530 may be straight for linear insertion, or curved to gently wrap with the curvature of the annulus during insertion. In addition, the outer surface of the reinforcement bars 530 may have circular ridges or the like that the permit easy insertion into the annulus 52 but resist withdrawal and motion in the annulus following implantation. Other suitable materials for reinforcement bars 530 include titanium alloy 6-4, MP35N alloy, or super-elastic nickel-titanium alloy.
With general reference to
Initially, the sharpened stylet 430, semi-rigid needle 420 and rigid trocar 410 are assembled. As shown in
A flexible dilator 470 is advanced over the stylet 430 to dilate the annulus 52, as seen in
After the member 510 is in the desired position, the flexible dilator 470 is retracted from the push bar 480 while maintaining position of the member 510 with the push bar. The push bar 480 is then removed leaving the member 510 in place. If necessary, the procedure may be repeated for additional member implants 510. The member 510 is then allowed to expand over time, perhaps augmented by placing the spine 10 in traction. Alternatively, the spine 10 may be placed in traction prior to beginning the procedure.
With reference to
With the member 520 in the desired position, which may be confirmed using radiographic visualization as described above, the proximal inflation port 494 is connected to a syringe (not shown) or other suitable inflation apparatus for injection of the curable filler material. The filler material is then activated and the desired volume is injected into the catheter 490 via the inflation port 494, as seen if
With reference to
Delivery of a single reinforcement bar 530 into the posterior annulus 52 is illustrated. Specifically, the distal portion of the assembly 410/420/480 is inserted into the disc 50 as in a conventional discogram procedure. The assembly 410/420/480 is advanced until the distal tip 413 of the rigid trocar 410 just penetrates the posterior side of the annulus 52, as seen in
Using the push bar 480, the reinforcement bar 530 with its sharpened tip is pushed into the annulus 52 as seen in
With reference to
With reference now to
As shown in
A similar arrangement is shown in
Refer now to
Following a discectomy, a portion of the annulus 52 is typically removed as shown in
Refer now to
With reference to
If the tip 773 is sufficiently sharp to easily penetrate annular tissue 52, the path through the annular tissue 52 taken by the stylet 770 will substantially conform to the geometry of the distal curved portion 774 of the stylet 770. In particular, if the distal portion 774 has a curve with a diameter substantially equal to the distance between the centerlines of the tubes 762 of the trocar 760, the stylet 770 will exit the distal end of one tube 762 and naturally define a path through the annular tissue 52 to reenter the distal end of the other tube 762. To this end, it is desirable to provide a tip 773 having sufficient sharpness to readily penetrate annular tissue 52, which tends to be relatively fibrous and tough. By providing a sufficiently sharp tip 773, the stylet 770 will naturally navigate through the annulus 52 from the end of one tube 762 into the end of the other tube 762, without requiring visualization or steering of the stylet 770.
Refer now to
Because the curved portion 774 will align itself with any curvature provided in the lumen of the tubes 762, the distal end of one or both of the tubes 762 may be provided with a gentle curvature 765 as seen in
Refer now to
Initially, as shown in
The stylet 770 is advanced until the distal tip 773 exits the proximal end of the second tube 762 as shown in
Although not shown, immediately before or immediately after the reinforcement member 600 is attached to the proximal end of the stylet 770, the pledget push rod 740 may be used to push the pledget 750 over the opposite ends of the reinforcement member 600 until the pledget 750 is positioned immediately adjacent the entry and exit points in the annulus 52. A connection (e.g., knot) 610 may be made in the reinforcement member 600 and advanced to the entry points of in the annulus 52 utilizing a conventional knot pusher (not shown) as shown in
Refer now to
With reference to
The shaft 792 of the hollow stylet 790 preferably has a flexible but pushable construction incorporating a rigid metal tube such as stainless steel hypotubing, or a super-elastic alloy tube such as nickel-titanium. Highly elastic or super-elastic materials incorporated into the elongate shaft 792 resist permanent deformation during insertion and navigation through the annulus 52. The shaft 792 of the stylet 790 may have a diameter ranging from 0.010 to 0.025 inches and is sized to fit within the lumens 787/789 of the shaft 792 of the trocar 790. The shaft 792 may be coated with a lubricious material such as PTFE and a hydrophilic polymer.
The stylet or needle 790 has a curved portion 794 and a separable curved tip 796. The separable curved tip 796 is connected to the reinforcement member 600 as shown in
The tip 793 of the hollow stylet 790 is sufficiently sharp to easily penetrate annular tissue 52, such that the path through the annular tissue 52 taken by the hollow stylet 790 will substantially conform to the geometry of the distal curved portion 794 and the curved separable tip 796. In particular, if the distal curved portion 794 and the curved separable tip 796 have a curve with at least 360 degrees of curvature or more, the hollow stylet 790 will exit the lumen 787 at the distal end of the inner tube 786 and naturally define a path through the annular tissue 52 to reenter the trocar 780 through opening 785 and into the lumen 789 of the outer tube 788. To this end, it is desirable to provide a tip 793 having sufficient sharpness to readily penetrate annular tissue 52, which tends to be relatively fibrous and tough. By providing a sufficiently sharp tip 793 with the appropriate geometry described above, the stylet 790 will naturally navigate through the annulus 52 and renter the trocar 780 without requiring visualization or steering of the stylet 790.
Push rod 840 may comprise a rigid mandrel having a length sufficient to extend through the shaft 782 of the trocar 780 and a diameter sufficient to permit passage through lumen 789. The distal end of the push rod 840 is adapted to engage the separable tip 796 as it renters the trocar 780 through opening 785, and lock the tip 796 relative to shaft 782 by mechanical compression, for example.
Refer now to
Initially, as shown in
The proximal portion of the shaft 792 of the hollow stylet 790 is then withdrawn leaving separable tip 796 and reinforcement member 600 in place as shown in
Although not shown, the pledget push rod 740 may be used to push the pledget 750 over the opposite ends of the reinforcement member 600 until the pledget 750 is positioned immediately adjacent the entry and exit points in the annulus 52. A connection (e.g., knot) 610 may be made in the reinforcement member 600 and advanced to the entry points of in the annulus 52 utilizing a conventional knot pusher (not shown). While the knot 610 is being tightened, the reinforcement member 600 applies compressive forces about the annulus 52 thereby closing fractures and fissures 56 and reducing bulge 60. Once the knot 610 has been tightened, the reinforcement member 600 may be cut immediately proximal of the knot 610 (or proximal of pledget 750 if used) as shown in
While a single path followed by a single reinforcement member 600 is illustrated in
The path navigated through the annulus 52 by the foregoing method may be a function of the individual anatomical geometry of the patient and/or the particular portion of the annulus 52 requiring compression. Accordingly, the path defined by the stylet 790 and reinforcement member 600 through the annulus 52 may vary as shown in
From the foregoing, those skilled in the art will appreciate that the present invention provides reinforcement devices 100, 200, 300, 600, 510, 520, 530, 540, 570 and 580, which may be used to reinforce a damaged disc, while permitting relative movement of the adjacent vertebrae. The present invention also provides minimally invasive methods of implanting such devices as described above.
All of the implantable devices and delivery tools therefor described above may incorporate heating mechanisms (e.g., resistive wire coils) to allow for heating the surrounding tissue, such as temporarily and directly heating annular tissue. In addition or in the alternative, a separate device may be provided specifically for heating annular tissue, which may be used to accomplish results similar to those described with reference to
The heating element may comprise, for example, a coil or braid of resistive metallic wire. As seen in
An alternative probe 1040 is illustrated in
The thermal probe 1010/1040 may be positioned directly within the annulus, in the same manner as described in connection with the positioning of the implant 100 shown in
The thermal probe 1010/1040 may also incorporate an anchoring mechanism to facilitate compression of the annular tissue prior to heating. For example, the probe 1010/1040 could include progressive external threads such as described in connection with the implant of
Those skilled in the art will recognize that the present invention may be manifested in a variety of forms other than the specific embodiments described and contemplated herein. Accordingly, departures in form and detail may be made without departing from the scope and spirit of the present invention as described in the appended claims.
The present application is a continuation of U.S. application Ser. No. 10/943,525 filed Sep. 17, 2004; which is a continuation of U.S. application Ser. No. 10/390,970, filed Mar. 18, 2003, now U.S. Pat. No. 6,805,695; and is a continuation-in-part of Ser. No. 10/055,780, filed Jan. 22, 2002, now U.S. Pat. No. 6,689,125; and is a continuation-in-part of Ser. No. 09/685,401, filed Oct. 10, 2000, now U.S. Pat. No. 6,579,291; and is a is a continuation-in-part of Ser. No. 10/093,990, filed Mar. 7, 2002, now U.S. Pat. No. 6,835,205; which is a continuation of Ser. No. 09/542,972, filed Apr. 4, 2002, now U.S. Pat. No. 6,402,750; and claims the benefit of U.S. Provisional Application No. 60/263,343, filed Jan. 22, 2001; and claims the benefit of U.S. Provisional Application No. 60/368,108 filed Mar. 26, 2002 entitled DEVICES AND METHODS FOR THE TREATMENT OF SPINAL DISORDERS, the entire disclosure of which is incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
3867728 | Stubstad et al. | Feb 1975 | A |
3875595 | Froning | Apr 1975 | A |
3895753 | Bone | Jul 1975 | A |
3990619 | Russell | Nov 1976 | A |
4006747 | Kronenthal et al. | Feb 1977 | A |
4013078 | Feild | Mar 1977 | A |
4059115 | Jumashev et al. | Nov 1977 | A |
4349921 | Kuntz | Sep 1982 | A |
4369788 | Goald | Jan 1983 | A |
4413359 | Akiyama et al. | Nov 1983 | A |
4494261 | Morrow | Jan 1985 | A |
4502161 | Wall | Mar 1985 | A |
4512338 | Balko et al. | Apr 1985 | A |
4532926 | O'Holla | Aug 1985 | A |
4545374 | Jacobson | Oct 1985 | A |
4669473 | Richards et al. | Jun 1987 | A |
4678459 | Onik et al. | Jul 1987 | A |
4736746 | Anderson | Apr 1988 | A |
4741330 | Hayhurst | May 1988 | A |
4743260 | Burton | May 1988 | A |
4744364 | Kensey | May 1988 | A |
4772287 | Ray | Sep 1988 | A |
4781190 | Lee | Nov 1988 | A |
4834757 | Brantigan | May 1989 | A |
4837285 | Berg et al. | Jun 1989 | A |
4852568 | Kensey | Aug 1989 | A |
4863477 | Monson | Sep 1989 | A |
4873976 | Schreiber | Oct 1989 | A |
4890612 | Kensey | Jan 1990 | A |
4904260 | Ray | Feb 1990 | A |
4911718 | Lee et al. | Mar 1990 | A |
4917704 | Frey et al. | Apr 1990 | A |
4919667 | Richmond | Apr 1990 | A |
4932969 | Frey et al. | Jun 1990 | A |
4946378 | Hirayama et al. | Aug 1990 | A |
4955908 | Frey et al. | Sep 1990 | A |
4961740 | Ray | Oct 1990 | A |
5002576 | Fuhrmann et al. | Mar 1991 | A |
5015255 | Kuslich | May 1991 | A |
5021059 | Kensey et al. | Jun 1991 | A |
5035716 | Downey | Jul 1991 | A |
5047055 | Bao et al. | Sep 1991 | A |
5053046 | Janese | Oct 1991 | A |
5055104 | Ray | Oct 1991 | A |
5059193 | Kuslich | Oct 1991 | A |
5059206 | Winters | Oct 1991 | A |
5061274 | Kensey | Oct 1991 | A |
5092866 | Breard et al. | Mar 1992 | A |
5100422 | Berguer et al. | Mar 1992 | A |
5108438 | Stone | Apr 1992 | A |
5116357 | Eberbach | May 1992 | A |
5122155 | Eberbach | Jun 1992 | A |
5123926 | Pisharodi | Jun 1992 | A |
5141515 | Eberbach | Aug 1992 | A |
5147374 | Fernandez | Sep 1992 | A |
5171259 | Inoue | Dec 1992 | A |
5171278 | Pisharodi | Dec 1992 | A |
5171280 | Baumgartner | Dec 1992 | A |
5171281 | Parsons et al. | Dec 1992 | A |
5176692 | Wilk et al. | Jan 1993 | A |
5180393 | Commarmond | Jan 1993 | A |
5192326 | Bao et al. | Mar 1993 | A |
5195541 | Obenchain | Mar 1993 | A |
5201729 | Hertzmann et al. | Apr 1993 | A |
5222962 | Burkhart | Jun 1993 | A |
5222974 | Kensey et al. | Jun 1993 | A |
5242439 | Larsen et al. | Sep 1993 | A |
5254133 | Seid | Oct 1993 | A |
5258000 | Gianturco | Nov 1993 | A |
5258043 | Stone | Nov 1993 | A |
5269783 | Sander | Dec 1993 | A |
5282827 | Kensey et al. | Feb 1994 | A |
5282863 | Burton | Feb 1994 | A |
5304194 | Chee et al. | Apr 1994 | A |
5306310 | Siebels | Apr 1994 | A |
5306311 | Stone et al. | Apr 1994 | A |
5312435 | Nash et al. | May 1994 | A |
5313962 | Obenchain | May 1994 | A |
5320633 | Allen et al. | Jun 1994 | A |
5320644 | Baumgartner | Jun 1994 | A |
5342393 | Stack | Aug 1994 | A |
5342394 | Matsuno et al. | Aug 1994 | A |
5354736 | Bhatnagar | Oct 1994 | A |
5356432 | Rutkow et al. | Oct 1994 | A |
5366460 | Eberbach | Nov 1994 | A |
5368602 | de la Toree | Nov 1994 | A |
5370660 | Weinstein et al. | Dec 1994 | A |
5370697 | Baumgartner | Dec 1994 | A |
5374268 | Sander | Dec 1994 | A |
5375823 | Navas | Dec 1994 | A |
5383477 | DeMatteis | Jan 1995 | A |
5383905 | Golds et al. | Jan 1995 | A |
5390683 | Pisharodi | Feb 1995 | A |
5397331 | Himpens et al. | Mar 1995 | A |
5397332 | Kamerer et al. | Mar 1995 | A |
5398861 | Green | Mar 1995 | A |
5405360 | Tovey | Apr 1995 | A |
5415661 | Holmes | May 1995 | A |
5417699 | Klein et al. | May 1995 | A |
5425772 | Brantigan | Jun 1995 | A |
5425773 | Boyd et al. | Jun 1995 | A |
5429598 | Waxman et al. | Jul 1995 | A |
5433739 | Sluijter et al. | Jul 1995 | A |
5437631 | Janzen | Aug 1995 | A |
5439464 | Shapiro | Aug 1995 | A |
5456720 | Schultz et al. | Oct 1995 | A |
5464407 | McGuire | Nov 1995 | A |
5470337 | Moss | Nov 1995 | A |
5480401 | Navas | Jan 1996 | A |
5489307 | Kuslich et al. | Feb 1996 | A |
5492697 | Boyan et al. | Feb 1996 | A |
5496318 | Howland | Mar 1996 | A |
5500000 | Feagin et al. | Mar 1996 | A |
5507754 | Green et al. | Apr 1996 | A |
5507755 | Gresl et al. | Apr 1996 | A |
5514130 | Baker | May 1996 | A |
5514180 | Heggeness et al. | May 1996 | A |
5520700 | Beyar et al. | May 1996 | A |
5531759 | Kensey et al. | Jul 1996 | A |
5534028 | Bao et al. | Jul 1996 | A |
5534030 | Navarro et al. | Jul 1996 | A |
5540715 | Katsaros et al. | Jul 1996 | A |
5545178 | Kensey et al. | Aug 1996 | A |
5545229 | Parsons et al. | Aug 1996 | A |
5549617 | Green et al. | Aug 1996 | A |
5549679 | Kuslich | Aug 1996 | A |
5556428 | Shah | Sep 1996 | A |
5562689 | Green et al. | Oct 1996 | A |
5562736 | Ray et al. | Oct 1996 | A |
5562737 | Graf | Oct 1996 | A |
5562738 | Boyd et al. | Oct 1996 | A |
5569242 | Lax et al. | Oct 1996 | A |
5569252 | Justin et al. | Oct 1996 | A |
5571189 | Kuslich | Nov 1996 | A |
5582616 | Bolduc et al. | Dec 1996 | A |
5584862 | Bonutti | Dec 1996 | A |
5591223 | Lock et al. | Jan 1997 | A |
5599279 | Slotman et al. | Feb 1997 | A |
5613974 | Andreas et al. | Mar 1997 | A |
5620012 | Benderev et al. | Apr 1997 | A |
5624463 | Stone et al. | Apr 1997 | A |
5626613 | Schmieding | May 1997 | A |
5626614 | Hart | May 1997 | A |
5634931 | Kugel | Jun 1997 | A |
5634944 | Magram | Jun 1997 | A |
5643319 | Green et al. | Jul 1997 | A |
5645084 | McKay | Jul 1997 | A |
5645597 | Krapiva | Jul 1997 | A |
5645599 | Samani | Jul 1997 | A |
5649945 | Ray et al. | Jul 1997 | A |
5658343 | Hauselmann et al. | Aug 1997 | A |
5662681 | Nash et al. | Sep 1997 | A |
5662683 | Kay | Sep 1997 | A |
5669935 | Rosenman et al. | Sep 1997 | A |
5672175 | Martin | Sep 1997 | A |
5674294 | Bainville et al. | Oct 1997 | A |
5674295 | Ray | Oct 1997 | A |
5674296 | Bryan et al. | Oct 1997 | A |
5676698 | Janzen et al. | Oct 1997 | A |
5676701 | Yuan et al. | Oct 1997 | A |
5681310 | Yuan et al. | Oct 1997 | A |
5681351 | Jamiolkowski et al. | Oct 1997 | A |
5683465 | Shinn et al. | Nov 1997 | A |
5695525 | Mulhauser et al. | Dec 1997 | A |
5697950 | Fucci et al. | Dec 1997 | A |
5702449 | McKay | Dec 1997 | A |
5702450 | Bisserie | Dec 1997 | A |
5702451 | Biedermann et al. | Dec 1997 | A |
5702454 | Baumgartner | Dec 1997 | A |
5702462 | Oberlander | Dec 1997 | A |
5716408 | Eldridge et al. | Feb 1998 | A |
5716409 | Debbas | Feb 1998 | A |
5716413 | Walter et al. | Feb 1998 | A |
5716416 | Lin | Feb 1998 | A |
5725552 | Kotula et al. | Mar 1998 | A |
5725577 | Saxon | Mar 1998 | A |
5728097 | Mathews | Mar 1998 | A |
5728150 | McDonald et al. | Mar 1998 | A |
5730744 | Justin et al. | Mar 1998 | A |
5733337 | Carr, Jr. et al. | Mar 1998 | A |
5743917 | Saxon | Apr 1998 | A |
5746755 | Wood et al. | May 1998 | A |
5755797 | Baumgartner | May 1998 | A |
5766246 | Mulhauser et al. | Jun 1998 | A |
5769864 | Kugel | Jun 1998 | A |
5772661 | Michelson | Jun 1998 | A |
5776183 | Kanesaka et al. | Jul 1998 | A |
5782844 | Yoon et al. | Jul 1998 | A |
5782860 | Epstein et al. | Jul 1998 | A |
5785705 | Baker | Jul 1998 | A |
5788625 | Plouhar et al. | Aug 1998 | A |
5792152 | Klein et al. | Aug 1998 | A |
5800549 | Bao et al. | Sep 1998 | A |
5800550 | Sertich | Sep 1998 | A |
5810851 | Yoon | Sep 1998 | A |
5823994 | Sharkey et al. | Oct 1998 | A |
5824008 | Bolduc et al. | Oct 1998 | A |
5824082 | Brown | Oct 1998 | A |
5824093 | Ray et al. | Oct 1998 | A |
5824094 | Serhan et al. | Oct 1998 | A |
5827298 | Hart et al. | Oct 1998 | A |
5827328 | Buttermann | Oct 1998 | A |
5836315 | Benderev et al. | Nov 1998 | A |
5842477 | Naughton et al. | Dec 1998 | A |
5843084 | Hart et al. | Dec 1998 | A |
5846261 | Kotula et al. | Dec 1998 | A |
5860425 | Benderev et al. | Jan 1999 | A |
5860977 | Zucherman et al. | Jan 1999 | A |
5865845 | Thalgott | Feb 1999 | A |
5865846 | Bryan et al. | Feb 1999 | A |
5876404 | Zucherman | Mar 1999 | A |
5879366 | Shaw et al. | Mar 1999 | A |
5888220 | Felt et al. | Mar 1999 | A |
5888226 | Rogozinski | Mar 1999 | A |
5893889 | Harrington | Apr 1999 | A |
5895426 | Scarborough et al. | Apr 1999 | A |
5904703 | Gilson | May 1999 | A |
5916225 | Kugel et al. | Jun 1999 | A |
5919235 | Husson et al. | Jul 1999 | A |
5922026 | Chin | Jul 1999 | A |
5922028 | Plouhar et al. | Jul 1999 | A |
5928284 | Mehdizadeh | Jul 1999 | A |
5935147 | Kensey et al. | Aug 1999 | A |
5944738 | Amplatz et al. | Aug 1999 | A |
5948001 | Larsen | Sep 1999 | A |
5948002 | Bonutti | Sep 1999 | A |
5951555 | Rehak et al. | Sep 1999 | A |
5954716 | Sharkey et al. | Sep 1999 | A |
5954767 | Pajotin et al. | Sep 1999 | A |
5957939 | Heaven et al. | Sep 1999 | A |
5972007 | Sheffield et al. | Oct 1999 | A |
5972022 | Huxel | Oct 1999 | A |
5976174 | Ruiz | Nov 1999 | A |
5976186 | Bao et al. | Nov 1999 | A |
5980504 | Sharkey et al. | Nov 1999 | A |
5984925 | Apgar | Nov 1999 | A |
5984948 | Hasson | Nov 1999 | A |
5989291 | Ralph et al. | Nov 1999 | A |
6001130 | Bryan et al. | Dec 1999 | A |
6004320 | Casscells et al. | Dec 1999 | A |
6007533 | Casscells et al. | Dec 1999 | A |
6007570 | Sharkey et al. | Dec 1999 | A |
6007575 | Samuels | Dec 1999 | A |
6019792 | Cauthen | Feb 2000 | A |
6019793 | Perren et al. | Feb 2000 | A |
6022376 | Assell et al. | Feb 2000 | A |
6036699 | Andreas et al. | Mar 2000 | A |
6039761 | Li et al. | Mar 2000 | A |
6039762 | McKay | Mar 2000 | A |
6053909 | Shadduck | Apr 2000 | A |
6063378 | Nohara et al. | May 2000 | A |
6066146 | Carroll et al. | May 2000 | A |
6066776 | Goodwin et al. | May 2000 | A |
6068628 | Fanton et al. | May 2000 | A |
6073051 | Sharkey et al. | Jun 2000 | A |
6093205 | McLeod et al. | Jul 2000 | A |
6095149 | Sharkey et al. | Aug 2000 | A |
6099514 | Sharkey et al. | Aug 2000 | A |
6110210 | Norton et al. | Aug 2000 | A |
6113623 | Sgro | Sep 2000 | A |
6113639 | Ray et al. | Sep 2000 | A |
6122549 | Sharkey et al. | Sep 2000 | A |
6126682 | Sharkey et al. | Oct 2000 | A |
6132465 | Ray et al. | Oct 2000 | A |
6135999 | Fanton et al. | Oct 2000 | A |
6140452 | Felt et al. | Oct 2000 | A |
6146380 | Racz et al. | Nov 2000 | A |
6146422 | Lawson | Nov 2000 | A |
6162217 | Kannenberg et al. | Dec 2000 | A |
6171317 | Jackson et al. | Jan 2001 | B1 |
6171318 | Kugel et al. | Jan 2001 | B1 |
6171329 | Shaw et al. | Jan 2001 | B1 |
6179874 | Cauthen | Jan 2001 | B1 |
6183518 | Ross et al. | Feb 2001 | B1 |
6187043 | Ledergerber | Feb 2001 | B1 |
6187048 | Milner et al. | Feb 2001 | B1 |
6190401 | Green et al. | Feb 2001 | B1 |
6206895 | Levinson | Mar 2001 | B1 |
6206921 | Guagliano et al. | Mar 2001 | B1 |
6221109 | Geistlich et al. | Apr 2001 | B1 |
6224630 | Bao et al. | May 2001 | B1 |
6231615 | Preissman | May 2001 | B1 |
6245080 | Levinson | Jun 2001 | B1 |
6245107 | Ferree | Jun 2001 | B1 |
6248106 | Ferree | Jun 2001 | B1 |
6248131 | Felt et al. | Jun 2001 | B1 |
6264650 | Hovda et al. | Jul 2001 | B1 |
6264695 | Stoy | Jul 2001 | B1 |
6277112 | Underwood et al. | Aug 2001 | B1 |
6280475 | Bao et al. | Aug 2001 | B1 |
6306177 | Felt et al. | Oct 2001 | B1 |
6312448 | Bonutti | Nov 2001 | B1 |
6319263 | Levinson | Nov 2001 | B1 |
6332894 | Scalup et al. | Dec 2001 | B1 |
6336930 | Scalup et al. | Jan 2002 | B1 |
6340369 | Ferree | Jan 2002 | B1 |
6344058 | Ferree | Feb 2002 | B1 |
6352557 | Ferree | Mar 2002 | B1 |
6371984 | Van Dyke et al. | Apr 2002 | B1 |
6371990 | Ferree | Apr 2002 | B1 |
6391060 | Ory et al. | May 2002 | B1 |
6402750 | Atkinson et al. | Jun 2002 | B1 |
6402784 | Wardlaw | Jun 2002 | B1 |
6402785 | Zdeblick | Jun 2002 | B1 |
6409739 | Novles et al. | Jun 2002 | B1 |
6419676 | Zucherman et al. | Jul 2002 | B1 |
6419702 | Ferree | Jul 2002 | B1 |
6419703 | Fallin et al. | Jul 2002 | B1 |
6419704 | Ferree | Jul 2002 | B1 |
6419706 | Graf | Jul 2002 | B1 |
6423065 | Ferree | Jul 2002 | B2 |
6425919 | Lambrecht | Jul 2002 | B1 |
6425924 | Rousseau | Jul 2002 | B1 |
6428576 | Haldimann | Aug 2002 | B1 |
6432107 | Ferree | Aug 2002 | B1 |
6436098 | Michelson | Aug 2002 | B1 |
6436143 | Ross et al. | Aug 2002 | B1 |
6447531 | Amplatz | Sep 2002 | B1 |
6454804 | Ferree | Sep 2002 | B1 |
6482235 | Lambrecht et al. | Nov 2002 | B1 |
6491724 | Ferree | Dec 2002 | B1 |
6494883 | Ferree | Dec 2002 | B1 |
6500184 | Chan et al. | Dec 2002 | B1 |
6508828 | Akerfeldt et al. | Jan 2003 | B1 |
6508839 | Lambrecht et al. | Jan 2003 | B1 |
6511488 | Marshall et al. | Jan 2003 | B1 |
6511958 | Atkinson et al. | Jan 2003 | B1 |
6514255 | Ferree | Feb 2003 | B1 |
6514514 | Atkinson et al. | Feb 2003 | B1 |
6530933 | Yeung et al. | Mar 2003 | B1 |
6533799 | Bouchier | Mar 2003 | B1 |
6540741 | Underwood et al. | Apr 2003 | B1 |
6558390 | Cragg | May 2003 | B2 |
6562052 | Nobles et al. | May 2003 | B2 |
6569187 | Bonutti et al. | May 2003 | B1 |
6569442 | Gan et al. | May 2003 | B2 |
6572635 | Bonutti | Jun 2003 | B1 |
6572653 | Simonson | Jun 2003 | B1 |
6575979 | Cragg | Jun 2003 | B1 |
6576017 | Foley et al. | Jun 2003 | B2 |
6579291 | Keith et al. | Jun 2003 | B1 |
6592608 | Fisher et al. | Jul 2003 | B2 |
6592625 | Cauthen | Jul 2003 | B2 |
6602291 | Ray et al. | Aug 2003 | B1 |
6605096 | Ritchart | Aug 2003 | B1 |
6610006 | Amid et al. | Aug 2003 | B1 |
6610079 | Li et al. | Aug 2003 | B1 |
6620196 | Trieu | Sep 2003 | B1 |
6623492 | Berube et al. | Sep 2003 | B1 |
6623508 | Shaw et al. | Sep 2003 | B2 |
6626916 | Yeung et al. | Sep 2003 | B1 |
6645247 | Ferree | Nov 2003 | B2 |
6648918 | Ferree | Nov 2003 | B2 |
6648919 | Ferree | Nov 2003 | B2 |
6648920 | Ferree | Nov 2003 | B2 |
6669687 | Saadat | Dec 2003 | B1 |
6669707 | Swanstrom et al. | Dec 2003 | B1 |
6684886 | Alleyne | Feb 2004 | B1 |
6685695 | Ferree | Feb 2004 | B2 |
6689125 | Keith et al. | Feb 2004 | B1 |
6695858 | Dubrul et al. | Feb 2004 | B1 |
6706068 | Ferree | Mar 2004 | B2 |
6712836 | Berg et al. | Mar 2004 | B1 |
6712853 | Kuslich | Mar 2004 | B2 |
6719797 | Ferree | Apr 2004 | B1 |
6723097 | Fraser et al. | Apr 2004 | B2 |
6723107 | Skiba et al. | Apr 2004 | B1 |
6723133 | Pajotin | Apr 2004 | B1 |
6723335 | Moehlenbruck | Apr 2004 | B1 |
6726721 | Stoy et al. | Apr 2004 | B2 |
6733531 | Trieu | May 2004 | B1 |
6733533 | Lozier | May 2004 | B1 |
6733534 | Sherman | May 2004 | B2 |
6736815 | Ginn | May 2004 | B2 |
6743255 | Ferree | Jun 2004 | B2 |
6752831 | Sybert et al. | Jun 2004 | B2 |
6755863 | Ferree | Jun 2004 | B2 |
6758863 | Estes | Jul 2004 | B2 |
6761720 | Senegas | Jul 2004 | B1 |
6773699 | Soltz et al. | Aug 2004 | B1 |
6783546 | Zucherman et al. | Aug 2004 | B2 |
6793677 | Ferree | Sep 2004 | B2 |
6821276 | Lambrecht et al. | Nov 2004 | B2 |
6827716 | Ryan et al. | Dec 2004 | B2 |
6835205 | Atkinson et al. | Dec 2004 | B2 |
6841150 | Yuan-Di et al. | Jan 2005 | B2 |
20010021855 | Levinson | Sep 2001 | A1 |
20010044638 | Levinson et al. | Nov 2001 | A1 |
20020016583 | Cragg | Feb 2002 | A1 |
20020019649 | Sikora et al. | Feb 2002 | A1 |
20020026244 | Trieu | Feb 2002 | A1 |
20020029083 | Zucherman et al. | Mar 2002 | A1 |
20020032155 | Ferree | Mar 2002 | A1 |
20020038150 | Urry | Mar 2002 | A1 |
20020045942 | Ham | Apr 2002 | A1 |
20020049498 | Yuksel et al. | Apr 2002 | A1 |
20020077632 | Tsou | Jun 2002 | A1 |
20020077701 | Kuslich | Jun 2002 | A1 |
20020082698 | Parenteau et al. | Jun 2002 | A1 |
20020091387 | Hoogland | Jul 2002 | A1 |
20020095154 | Atkinson et al. | Jul 2002 | A1 |
20020099378 | Michelson | Jul 2002 | A1 |
20020103494 | Pacey | Aug 2002 | A1 |
20020107524 | Magana | Aug 2002 | A1 |
20020107573 | Steinberg | Aug 2002 | A1 |
20020111688 | Cauthen | Aug 2002 | A1 |
20020116069 | Urry | Aug 2002 | A1 |
20020120269 | Lange | Aug 2002 | A1 |
20020120270 | Trieu | Aug 2002 | A1 |
20020120337 | Cauthen | Aug 2002 | A1 |
20020123807 | Cauthen | Sep 2002 | A1 |
20020143399 | Sutcliffe | Oct 2002 | A1 |
20020147461 | Aldrich et al. | Oct 2002 | A1 |
20020147479 | Aldrich | Oct 2002 | A1 |
20020147496 | Belef et al. | Oct 2002 | A1 |
20020147497 | Belef et al. | Oct 2002 | A1 |
20020151979 | Lambrecht et al. | Oct 2002 | A1 |
20020151980 | Cauthen | Oct 2002 | A1 |
20020151981 | Ferree | Oct 2002 | A1 |
20020156528 | Gau | Oct 2002 | A1 |
20020156532 | Ferree | Oct 2002 | A1 |
20020156533 | Ferree | Oct 2002 | A1 |
20020165542 | Ferree | Nov 2002 | A1 |
20020173796 | Cragg | Nov 2002 | A1 |
20020173851 | McKay | Nov 2002 | A1 |
20020188291 | Uchida et al. | Dec 2002 | A1 |
20020189622 | Cauthen et al. | Dec 2002 | A1 |
20020198599 | Haldimann | Dec 2002 | A1 |
20030004574 | Ferree | Jan 2003 | A1 |
20030014118 | Lambrecht et al. | Jan 2003 | A1 |
20030023311 | Trieu | Jan 2003 | A1 |
20030026788 | Ferree | Feb 2003 | A1 |
20030032960 | Dudasik | Feb 2003 | A1 |
20030040796 | Ferree | Feb 2003 | A1 |
20030045935 | Angelucci et al. | Mar 2003 | A1 |
20030045937 | Ginn | Mar 2003 | A1 |
20030069639 | Sander et al. | Apr 2003 | A1 |
20030069641 | Reuter et al. | Apr 2003 | A1 |
20030074075 | Thomas et al. | Apr 2003 | A1 |
20030074076 | Ferree et al. | Apr 2003 | A1 |
20030078579 | Ferree | Apr 2003 | A1 |
20030083642 | Boyd et al. | May 2003 | A1 |
20030093155 | Lambrecht et al. | May 2003 | A1 |
20030100920 | Akin et al. | May 2003 | A1 |
20030125807 | Lambrecht et al. | Jul 2003 | A1 |
20030153976 | Cauthen et al. | Aug 2003 | A1 |
20030158604 | Cauthen et al. | Aug 2003 | A1 |
20030176814 | Li | Sep 2003 | A1 |
20030187445 | Keith et al. | Oct 2003 | A1 |
20030191536 | Ferree | Oct 2003 | A1 |
20030195514 | Trieu et al. | Oct 2003 | A1 |
20030208274 | Davis | Nov 2003 | A1 |
20040002629 | Branch et al. | Jan 2004 | A1 |
20040002763 | Phillips et al. | Jan 2004 | A1 |
20040002764 | Gainor et al. | Jan 2004 | A1 |
20040010251 | Pitaru et al. | Jan 2004 | A1 |
20040010263 | Boucher et al. | Jan 2004 | A1 |
20040010315 | Song | Jan 2004 | A1 |
20040010317 | Lambrecht et al. | Jan 2004 | A1 |
20040015215 | Fredricks et al. | Jan 2004 | A1 |
20040019356 | Fraser et al. | Jan 2004 | A1 |
20040019381 | Pflueger | Jan 2004 | A1 |
20040024459 | Ferree | Feb 2004 | A1 |
20040024463 | Thomas et al. | Feb 2004 | A1 |
20040024465 | Lambrecht et al. | Feb 2004 | A1 |
20040030392 | Lambrecht et al. | Feb 2004 | A1 |
20040034427 | Goel et al. | Feb 2004 | A1 |
20040034429 | Lambrecht et al. | Feb 2004 | A1 |
20040039392 | Trieu | Feb 2004 | A1 |
20040044412 | Lambrecht et al. | Mar 2004 | A1 |
20040049282 | Gjunter | Mar 2004 | A1 |
20040049283 | Patel | Mar 2004 | A1 |
20040054413 | Higham et al. | Mar 2004 | A1 |
20040054414 | Trieu et al. | Mar 2004 | A1 |
20040059333 | Allen et al. | Mar 2004 | A1 |
20040059417 | Smith et al. | Mar 2004 | A1 |
20040059418 | Mckay et al. | Mar 2004 | A1 |
20040064023 | Ryan et al. | Apr 2004 | A1 |
20040068268 | Boyd et al. | Apr 2004 | A1 |
20040068322 | Ferree | Apr 2004 | A1 |
20040073213 | Serhan et al. | Apr 2004 | A1 |
20040073311 | Ferree | Apr 2004 | A1 |
20040078079 | Foley | Apr 2004 | A1 |
20040078081 | Ferree | Apr 2004 | A1 |
20040078082 | Lange | Apr 2004 | A1 |
20040083001 | Kandel | Apr 2004 | A1 |
20040083002 | Belef et al. | Apr 2004 | A1 |
20040088053 | Serhan et al. | May 2004 | A1 |
20040091540 | Desrosiers et al. | May 2004 | A1 |
20040092933 | Shaolian et al. | May 2004 | A1 |
20040092945 | Ferree | May 2004 | A1 |
20040093087 | Ferree et al. | May 2004 | A1 |
20040097924 | Lambrecht et al. | May 2004 | A1 |
20040097927 | Yeung et al. | May 2004 | A1 |
20040097931 | Mitchell | May 2004 | A1 |
20040097980 | Ferree | May 2004 | A1 |
20040098043 | Trout | May 2004 | A1 |
20040098131 | Bryan et al. | May 2004 | A1 |
20040102774 | Trieu | May 2004 | A1 |
20040106940 | Shaolian et al. | Jun 2004 | A1 |
20040106998 | Ferree | Jun 2004 | A1 |
20040111155 | Ferree | Jun 2004 | A1 |
20040111161 | Trieu | Jun 2004 | A1 |
20040116949 | Ewers et al. | Jun 2004 | A1 |
20040117019 | Trieu et al. | Jun 2004 | A1 |
20040127991 | Ferree | Jul 2004 | A1 |
20040127992 | Serhan et al. | Jul 2004 | A1 |
20040133229 | Lambrecht et al. | Jul 2004 | A1 |
20040133280 | Trieu | Jul 2004 | A1 |
20040138673 | Lambrecht et al. | Jul 2004 | A1 |
20040138703 | Alleyne | Jul 2004 | A1 |
20040143165 | Alleyne | Jul 2004 | A1 |
20040143334 | Ferree | Jul 2004 | A1 |
20040172019 | Ferree | Sep 2004 | A1 |
20040186573 | Ferree | Sep 2004 | A1 |
20040249461 | Ferree | Dec 2004 | A1 |
20040260300 | Gorensek et al. | Dec 2004 | A1 |
20040260305 | Gorensek et al. | Dec 2004 | A1 |
20040260397 | Lambrecht et al. | Dec 2004 | A1 |
20050004578 | Lambrecht et al. | Jan 2005 | A1 |
20050033440 | Lambrecht et al. | Feb 2005 | A1 |
20050033441 | Lambrecht et al. | Feb 2005 | A1 |
20050038519 | Lambrecht et al. | Feb 2005 | A1 |
20050060038 | Lambrecht et al. | Mar 2005 | A1 |
Number | Date | Country |
---|---|---|
1384455 | Jan 2004 | EP |
1407730 | Apr 2004 | EP |
WO 9100713 | Jan 1991 | WO |
WO 9116867 | Nov 1991 | WO |
WO 9203125 | Mar 1992 | WO |
WO 9423671 | Oct 1994 | WO |
WO 9507668 | Mar 1995 | WO |
WO 9522285 | Aug 1995 | WO |
WO 9530374 | Nov 1995 | WO |
WO 9530388 | Nov 1995 | WO |
WO 9531946 | Nov 1995 | WO |
WO 9531948 | Nov 1995 | WO |
WO 9627339 | Sep 1996 | WO |
WO 9720874 | Jun 1997 | WO |
WO 9726847 | Jul 1997 | WO |
WO 9801091 | Jan 1998 | WO |
WO 9805274 | Feb 1998 | WO |
WO 9817190 | Apr 1998 | WO |
WO 9822050 | May 1998 | WO |
WO 9834552 | Aug 1998 | WO |
WO 9900074 | Jan 1999 | WO |
WO 9902108 | Jan 1999 | WO |
WO 9902214 | Jan 1999 | WO |
WO 9903422 | Jan 1999 | WO |
WO 9904720 | Feb 1999 | WO |
WO 9961084 | Feb 1999 | WO |
WO 9930651 | Jun 1999 | WO |
WO 9947058 | Sep 1999 | WO |
WO 9962439 | Dec 1999 | WO |
WO 0020021 | Apr 2000 | WO |
WO 0025706 | May 2000 | WO |
WO 0040159 | Jul 2000 | WO |
WO 0042953 | Jul 2000 | WO |
WO 0049950 | Aug 2000 | WO |
WO 0049978 | Aug 2000 | WO |
WO 0061012 | Oct 2000 | WO |
WO 0061037 | Oct 2000 | WO |
WO 0062832 | Oct 2000 | WO |
WO 0076409 | Dec 2000 | WO |
WO 0110316 | Feb 2001 | WO |
WO 0112107 | Feb 2001 | WO |
WO 0121246 | Mar 2001 | WO |
WO 0122902 | Apr 2001 | WO |
WO 0126570 | Apr 2001 | WO |
WO 0128464 | Apr 2001 | WO |
WO 0139671 | Jun 2001 | WO |
WO 0145577 | Jun 2001 | WO |
WO 0193784 | Dec 2001 | WO |
WO 0195818 | Dec 2001 | WO |
WO 0213700 | Feb 2002 | WO |
WO 0217825 | Mar 2002 | WO |
WO 0230336 | Apr 2002 | WO |
WO 0232349 | Apr 2002 | WO |
WO 0234169 | May 2002 | WO |
WO 0234310 | May 2002 | WO |
WO 0236020 | May 2002 | WO |
WO 0240070 | May 2002 | WO |
WO 02056802 | Jul 2002 | WO |
WO 02058599 | Aug 2002 | WO |
WO 02062274 | Aug 2002 | WO |
WO 02064044 | Aug 2002 | WO |
WO 02067792 | Sep 2002 | WO |
WO 02067793 | Sep 2002 | WO |
WO 02067824 | Sep 2002 | WO |
WO 02080821 | Oct 2002 | WO |
WO 02085263 | Oct 2002 | WO |
WO 03002021 | Jan 2003 | WO |
WO 03007854 | Jan 2003 | WO |
WO 03020169 | Mar 2003 | WO |
WO 03024368 | Mar 2003 | WO |
WO 03037165 | May 2003 | WO |
WO 03045274 | Jun 2003 | WO |
WO 03049669 | Jun 2003 | WO |
WO 03095026 | Nov 2003 | WO |
WO 2004016205 | Feb 2004 | WO |
WO 2004026189 | Apr 2004 | WO |
WO 2004060202 | Jul 2004 | WO |
Number | Date | Country | |
---|---|---|---|
20070239280 A1 | Oct 2007 | US |
Number | Date | Country | |
---|---|---|---|
60263343 | Jan 2001 | US | |
60368108 | Mar 2002 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 10943525 | Sep 2004 | US |
Child | 11753682 | US | |
Parent | 10390970 | Mar 2003 | US |
Child | 10943525 | US | |
Parent | 09542972 | Apr 2000 | US |
Child | 10093990 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 09685401 | Oct 2000 | US |
Child | 10390970 | US | |
Parent | 10055780 | Jan 2002 | US |
Child | 09685401 | US | |
Parent | 10093990 | Mar 2002 | US |
Child | 10055780 | US |