Devices and methods for cardiac annulus stabilization and treatment

Information

  • Patent Grant
  • 7922762
  • Patent Number
    7,922,762
  • Date Filed
    Tuesday, June 3, 2008
    16 years ago
  • Date Issued
    Tuesday, April 12, 2011
    13 years ago
Abstract
Devices and methods generally provide enhanced stabilization, exposure and/or treatment of a cardiac valve annulus. Methods generally involve introducing a stabilizing member beneath one or more leaflets of a heart valve to engage the annulus at an intersection between the leaflets and the interior ventricular wall of the heart. Force is then applied to the stabilizing member to stabilize and/or expose the valve annulus. In some embodiments, the stabilizing member may include a series of hydraulically driven tethered anchors, such as hooks or clips, for engaging and cinching valve annulus tissue to decrease the diameter of a regurgitant valve. Alternatively, other treatments may be delivered by a stabilizing member, such as radiofrequency energy, drugs, bulking agents or shape memory stents. A second stabilizing member may also be introduced above the leaflets for further stabilization.
Description
BACKGROUND OF THE INVENTION

1. Field of the Invention


The present invention relates generally to medical devices and methods. More particularly, the invention relates to devices and methods for enhancing cardiovascular valve repair, especially the repair of heart valves such as the mitral and tricuspid valves.


In recent years, many advances have been made to reduce the invasiveness of cardiac surgery. In an attempt to avoid open, stopped-heart procedures, which may be accompanied by high patient morbidity and mortality, many devices and methods have been developed for operating on a heart through smaller incisions, operating on a beating heart, and even performing cardiac procedures via transvascular access. Different types of cardiac procedures, such as cardiac ablation techniques for treating atrial fibrillation, stenting procedures for atherosclerosis, and valve repair procedures for treating conditions such as mitral valve regurgitation have experienced significant technological advances. In implementing many minimally invasive cardiac surgery techniques, especially beating-heart techniques, one of the most significant challenges is exposing and stabilizing a portion of cardiac tissue to be operated upon. Another challenge, once exposure and stability are achieved, is to effectively deploy a given treatment into or on the target cardiac tissue using minimally invasive devices.


One type of cardiac surgery which may benefit from less invasive techniques is heart valve repair. Traditional treatment of heart valve stenosis or regurgitation, such as mitral or tricuspid regurgitation, typically involves an open-heart surgical procedure to replace or repair the valve. Valve repair procedures typically involve annuloplasty, a set of techniques designed to restore the valve annulus shape and strengthen the annulus. Conventional annuloplasty surgery generally requires a large incision into the thorax of the patient (a thoracotomy), and sometimes a median sternotomy (cutting through the middle of the sternum). These open heart, open chest procedures routinely involve placing the patient on a cardiopulmonary bypass machine for sustained periods so that the patient's heart and lungs can be artificially stopped during the procedure. Finally, valve repair and replacement procedures are typically technically challenging and require a relatively large incision through the wall of the heart to access the valve.


Due to the highly invasive nature of open heart valve repair or replacement, many patients, such as elderly patients, patients having recently undergone other surgical procedures, patients with comorbid medical conditions, children, late-stage heart failure patients, and the like, are often considered too high-risk to undergo heart valve surgery and are relegated to progressive deterioration and cardiac enlargement. Often, such patients have no feasible alternative treatments for their heart valve conditions.


To obviate this situation, a number of devices and methods for repairing cardiac valves in a less invasive manner have been described. Some devices provide for heart valve repair through minimally invasive incisions or intravascularly, while others improve upon open heart surgical procedures on beating hearts, stopped hearts or both. For example, several improved devices and methods for heart valve repair are described in one or more patent applications filed by the inventors of the present invention and assigned to the assignee of the present invention. For further description of such devices and methods, reference may be made to U.S. patent application Ser. No. 10/461043, filed on Jun. 13, 2003, previously incorporated by reference.


As mentioned above, some of the difficulties in performing minimally invasive intracardiac surgery include exposing and stabilizing an area of cardiac tissue to be operated upon and effectively operating on that tissue using minimally invasive instruments. Sufficient exposure is essential for allowing the physician to locate and perform a procedure on the targeted cardiac tissue. Stabilization further facilitates an intracardiac procedure, especially in a beating heart. In minimally invasive, beating heart surgery on a cardiac valve annulus, exposure and stabilization are especially challenging, due to rapid movement of the annulus and the heart, the small size of the annulus, and the blood-filled surgical field. While a cardiac valve may be visualized via transesophageal echocardiogram (TEE), it is much more difficult to locate the annulus itself, as it is basically a small band of fibrous tissue. Exposure of the annulus is essential, however, since annular tissue is far stronger than surrounding valve leaflet and heart wall tissue, and repair procedures performed on a valve annulus will be much more effective than those performed on other tissue adjacent the annulus. Even after a valve annulus is exposed and stabilized, it may still be challenging to effectively and efficiently operate on the annulus to repair the valve, using minimally invasive devices.


Many minimally invasive or “less invasive” surgical procedures other than heart valve repair would also benefit from improved exposure and/or stabilization. For example, improved exposure and stabilization could facilitate other cardiac procedures, such as accessing the coronary sinus for placement of an implantable device or for performing a procedure, placing pacemaker leads in one or more areas of the heart, ablation procedures such as ablation around the pulmonary veins to treat atrial fibrillation, atrial-septal defect repair procedures, and the like. Improved stabilization and exposure could also be used to enhance non-cardiac procedures such cinching or otherwise treating a bladder, stomach, gastroesophageal junction, vascular structure, gall bladder or the like.


Therefore, it would be beneficial to have devices and methods for enhancing exposure and/or stabilization in transvascular, minimally invasive and other “less invasive” surgical procedures, such as heart valve repair and other cardiac procedures. Ideally, for example, such devices and method could be used for exposing and stabilizing a cardiac valve annulus for performing a valve repair procedure. Ideally, such devices and methods could be used in minimally invasive or “less invasive” beating heart procedures performed via a variety of access routes, such as transvascular or transthoracic. Also ideally, some devices might be used for exposing a valve annulus, others might expose and stabilize an annulus, and still others might expose, stabilize and administer a therapy to an annulus, thus providing a physician with numerous procedural options. At least some of these objectives will be met by the present invention.


2. Description of the Background Art


Published U.S. Application 2002/0156526 describes a catheter-based method for performing annuloplasty. Published U.S. Application 2002/0042621 describes a heart valve annuloplasty system with constrictable plication bands which are optionally attached to a linkage strip. Published U.S. Application 2002/0087169 describes a remote controlled catheter system which can be used to deliver anchors and a tether for performing an annuloplasty procedure. Other patent publications of interest include WO01/26586; US2001/0005787; US2001/0014800; US2002/0013621; US2002/0029080; US2002/0035361; US2002/0042621; US2002/0095167; and US2003/0074012. U.S. patents of interest include U.S. Pat. Nos. 4,014,492; 4,042,979; 4,043,504; 4,055,861; 4,700,250; 5,366,479; 5,450,860; 5,571,215; 5,674,279; 5,709,695; 5,752,518; 5,848,969;5,860,992; 5,904,651; 5,961,539; 5,972,004; 6,165,183; 6,197,017; 6,250,308; 6,260,552; 6,283,993; 6,269,819; 6,312,447; 6,332,893; and 6,524,338. Publications of interest include De Simone et al. (1993) Am. J. Cardiol. 73:721-722, and Downing et al. (2001) Heart Surgery Forum, Abstract 7025.


BRIEF SUMMARY OF THE INVENTION

Devices and methods of the present invention are generally used to facilitate transvascular, minimally invasive and other “less invasive” surgical procedures, by enhancing exposure, stabilization and/or the like of a tissue or structure upon which a procedure is to be performed. “Less invasive,” for the purposes of this application, means any procedure that is less invasive than traditional, large-incision open surgical procedures. Thus, a less invasive procedure may be an open surgical procedure involving one or more relatively small incisions, a transvascular percutaneous procedure, a transvascular procedure via cut-down, a laparoscopic or other endoscopic procedure, or the like. Generally, any procedure in which a goal is to minimize or reduce invasiveness to the patient may be considered less invasive. Furthermore, although the terms “less invasive” and “minimally invasive” may sometimes be used interchangeably in this application, neither these nor terms used to describe a particular subset of surgical or other procedures should be interpreted to limit the scope of the invention. Generally, stabilization/exposure devices and methods of the invention may be used in performing or enhancing any suitable procedure.


As mentioned above, the present application typically describes devices and methods for stabilization and/or exposure in the context of heart valve repair, and more specifically mitral valve repair to treat mitral regurgitation. It should be emphasized, however, that devices and methods of the invention may be used in any suitable procedure, both cardiac and non-cardiac. For example, they may be used in procedures to repair any heart valve, to repair an atrial-septal defect, to access and possibly perform a procedure from (or through) the coronary sinus, to place one or more pacemaker leads, to perform a cardiac ablation procedure such as ablating around pulmonary veins to treat atrial fibrillation, and/or the like. In other embodiments, the devices and methods may be used to enhance a laparoscopic or other endoscopic procedure on any part of the body, such as the bladder, stomach, gastroesophageal junction, vasculature, gall bladder, or the like. Therefore, although the following description typically focuses on mitral valve and other heart valve repair, such description should not be interpreted to limit the scope of the invention as defined by the claims.


That being said, the present invention generally provides devices and methods for enhanced stabilization, exposure and/or treatment of a cardiac valve annulus. Methods generally involve introducing a stabilizing member beneath one or more leaflets of a heart valve to engage the ventricular side of the annulus at an intersection between the leaflets and the interior ventricular wall of the heart. The stabilizing member will usually be curved or C-shaped to conform to at least a portion of the ventricular side of the annulus, and force is applied to the stabilizing member to engage and stabilize the valve annulus. By “stabilize,” it is meant that the annulus will be at least partially immobilized relative to the cardiac tissue surrounding the annulus, at least partially delineated or exposed relative to cardiac tissue surrounding the annulus, or both. For example, in some instances “stabilization” may not involve immobilizing annular tissue but may instead involve moving or positioning annular tissue in such a way to allow enhanced visualization of that tissue relative to surrounding tissues.


As just mentioned, in addition to stabilizing, methods and apparatus of the present invention may also help expose, position, or delineate the valve annulus, to enhance the physician's ability to view and operate on the annular tissue. Some embodiments also include a second stabilizing member, to be introduced above the leaflets, allowing a physician to grasp or clamp annular tissue between the upper and lower stabilizing members for further stabilization. Various embodiments further provide for treatment of a valve annulus. For example, either the upper or lower stabilizing member may include actuators or effectors for performing any one or more of a variety of interventions. For example, either or both stabilizing members may be adapted to deliver devices for constricting or reshaping the valve annulus to treat regurgitation or other conditions. The devices may comprise anchors, tethered anchors, rings, or the like for reinforcing or cinching the annulus. In a specific example, the stabilizing member may be configured to hydraulically or otherwise deliver a series of tethered hooks, tethered clips or other tethered anchors or fasteners for engaging and cinching valve annulus tissue to decrease the diameter of a regurgitant valve. The stabilizer(s) will also be adaptable for delivering other therapies, including applying radiofrequency energy (or other heat sources) to shrink the collagen tissue in the annulus, delivering bulking agents, delivering drugs and biological agents such as growth factors, delivering agents for providing cell dedifferentiation, and/or the like.


In most cases, the methods of the present invention will be performed on a beating heart. Access to the beating heart may be accomplished by any available technique, including intravascular, transthoracic, and the like. In addition to beating heart access, the methods of the present invention may be used for intravascular stopped heart access as well as stopped heart open chest procedures.


In one aspect of the invention, a method for stabilizing a valve annulus of a heart for performing a procedure on the valve annulus involves first introducing at least a first stabilizing member beneath one or more leaflets of a valve of the heart to engage an intersection between at least one leaflet and the interior ventricular wall of the heart. Force is then applied to the first stabilizing member to stabilize the valve annulus. Usually, the stabilizing member engages the ventricular annulus (in the case of a mitral valve), and applying force comprises drawing the stabilizing member upwardly against the annulus to immobilize the annular tissue relative to the surrounding tissue. When a second stabilizing member is employed, applying force comprises applying opposed forces with the “upper and lower” stabilizing members to further stabilize the annular tissue. Such methods may be used on any of a number of cardiac or circulatory valves or other body structures such as valves in body lumens, but in one embodiment, for example, the first stabilizing member is passed beneath the posterior leaflet of the mitral valve. In addition to stabilizing the annular tissue, applying pressure with the stabilization device may also expose the valve annulus from surrounding tissue of the heart, for improved visualization and access by the physician.


In some embodiments, introducing the device comprises advancing a flexible, elongate catheter through vasculature of a patient to the heart, with at least a first stabilizing member comprising a shape-changing member at a distal end of the flexible elongate catheter. The catheter may be introduced through the vasculature with the shape-changing stabilizing member in a generally straight, flexible configuration. Once it is in place beneath the leaflet at the intersection between the leaflet and the interior ventricular wall, the shape of the stabilizing member is changed to conform to the annulus and usually the shape is “locked” to provide sufficient stiffness or rigidity to permit the application of force from the stabilizing member to the annulus. Shaping and optionally locking the stabilizing member may be accomplished in any of a number of ways, such as applying tension to tensioning cord(s), as described in detail below.


In transthoracic and other embodiments, the stabilizing member may be pre-shaped, and the method may simply involve introducing the stabilizing member(s) under and/or over the valve leaflets. The pre-shaped stabilizing member(s) may be rigid or formed from a shape memory material such as nitinol, spring stainless steel, or the like.


Force applied to the first stabilizing member is often upwardly directed, though lateral forces are also possible. In addition to stabilizing with force from below the annulus, stabilizing may optionally include introducing a second stabilizing member over the valve leaflets. By moving the second stabilizing member toward the first stabilizing member, a physician may grip or clamp all or a portion of the valve annulus.


In another aspect, a method for performing a procedure on a stabilized valve annulus includes advancing a flexible, elongate stabilizing catheter through vasculature of a patient to the heart. Next, a shape-changing stabilizing member on the catheter is positioned beneath one or more leaflets of a valve of the heart to engage the lower or ventricular annulus at an intersection between at least one leaflet and an interior ventricular wall of the heart. The shape of the stabilizing member is then changed and optionally locked to conform to the annulus, and an upward and/or other force is applied to the stabilizing member to stabilize the valve annulus.


In still another aspect of the present invention, a method for constricting a valve annulus in a beating heart comprises introducing at least a first stabilizing member beneath one or more leaflets of a valve of the heart to engage the annulus at an intersection between at least one leaflet and an interior ventricular wall of the heart. Force is then applied to the first stabilizing member to stabilize the valve annulus. A plurality of individual anchors, such as hooks, clips, barbs, T-tags, rings, anchors made of resorbable polymers such as polylactic acid or polyglycolic acid, or the like, may then be placed at circumferentially spaced-apart locations about at least a portion of the valve annulus while the valve annulus remains stabilized. The anchors may then be cinched via a tether to circumferentially tighten the annulus. Optionally, the method may further include introducing at least a second stabilizing member over the valve leaflets and moving the second stabilizing member toward the first stabilizing member to further stabilize the annulus. In some embodiments, securing the anchors comprises driving the anchors from one of the first and second stabilizing members. Driving the anchors, in turn, may involve inflating an expandable balloon in one of the members to force the anchors at least partially out of the member into tissue of the valve annulus. Optionally, securing the anchors may also involve driving the anchors through tissue of the valve annulus into a anchor receiving piece coupled with the other stabilizing member.


Throughout the present application, the term “anchor” is frequently used to a device for coupling with a valve annulus or other bodily structure. For the purposes of this application, “anchor” means any fastener or other attachment device. Thus, an anchor may be a hook, such as a curved hook or a straight, barbed hook, a clip, a T-tag, a ring, an adhesive strip, a shape-memory fastening device or any other fastener. Furthermore, anchors may be made of any suitable material. For example, an anchor may be made of a metal, such as stainless steel, or may alternatively be made of a bioresorbable material such as polylactate or polyglycolate, such that over time, after a body structure has repaired, the anchors may be resorbed. Therefore, although various examples of anchors are described below and various terms such as “hooks” may be used to describe fastening devices of the invention, these terms should not be interpreted to limit the scope of the invention as defined by the claims.


In yet another aspect of the invention, a device for enhancing a surgical procedure on a valve annulus of a heart includes an elongate body having a proximal end and a distal end and at least a first stabilizing member at the distal end of the shaft. Generally, the first stabilizing member is passable under one or more leaflets of a valve of the heart to engage an intersection between at least one leaflet and an interior ventricular wall of the heart. In some embodiments, the elongate body comprises a rigid shaft. In alternative embodiments, the elongate body comprises a flexible catheter, so that the first stabilizing member may be passed into the heart and under the one or more leaflets via a transvascular approach.


The first stabilizing member may comprise a shape-changing portion. By “shape-changing,” it is meant that at least a segment of the stabilizing member may be transitioned between (a) a straight or flexible configuration (to facilitate introduction) and (b) a fixed-shape configuration, generally a curved or C-shaped segment which conforms to the shape of the valve annulus. Such shape-changing may be accomplished by a variety of mechanical approaches. In some embodiments, for example, the first stabilizing member may include a slotted, segmented or sectioned tube coupled with one or more pull cords. Tension may be applied to one pull cord to bend the segmented tube into a C-shape, while tension may be applied to the other cord to bend the tube up, or proximally. Generally, a segmented tube and two pull cords can be used to shape a stabilizing member around two bends having any desired configuration. In another embodiment, a shape-memory material may be included in the first stabilizing member, and introducing fluid into the member may cause it to change from a straight configuration to a C-shape. In some embodiments, the shape-changing portion may be locked in position to enhance stabilization of the annulus.


In some embodiments, the first stabilizing member includes a semicircular housing, a plurality of tethered anchors disposed within the housing, and at least one expandable balloon for driving the plurality of anchors into tissue of the valve annulus. In some embodiments, the device may include an inflation actuator for inflating the expandable balloon, a release actuator for releasing the anchors from the housing, and a cinching actuator for cinching a tether coupled with the tethered anchors to reduce a diameter of the valve annulus. The first stabilizing member may be configured to allowing driving of the plurality of anchors in any suitable direction or configuration. For example, in some embodiments the first stabilizing member will be configured for positioning under a heart valve annulus and for driving anchors upwards (or superiorly) into or through the annulus. In another embodiment, a stabilizing member may be configured for positioning above an annulus and for driving anchors downwards. Alternatively, a stabilizing member may be positioned outside a heart wall or other structure, with anchors driven inwardly. And as discussed above, these devices may be used to perform other cardiac and non-cardiac procedures, such as anchoring and cinching a gastroesophageal junction, bladder outlet or other structure.


As mentioned above, some embodiments also include at least a second stabilizing member movably coupled with the elongate shaft, wherein the second stabilizing member may be moved toward the first stabilizing member to grip and stabilize the valve annulus. Optionally, such embodiments may also include one or more anchor receiving pieces coupled with the second stabilizing member for receiving distal ends of the plurality of anchors driven through the tissue of the valve annulus. In some embodiments, each of the first and second stabilizing members comprises a flexible rigidifying portion. Alternatively, each of the first and second stabilizing members may comprise a rigid member. Some embodiments may also include a handle near the proximal end of the shaft for moving the second stabilizing member toward the first stabilizing member to grip the valve annulus.


In alternative embodiments, either the first stabilizing member, the second stabilizing member or both may include any of a number of annulus treatment devices. For example, in one embodiment a stabilizing member may include an energy deliver device, such as a radiofrequency delivery device, for transmitting energy to a valve annulus to constrict the annular tissue. In another embodiment, a stabilizing member may include a mechanical support member or other deployable device that is couplable with a valve annulus. For example, a shape memory stent may be coupled with a stabilizing member such that when the stent is coupled with annular tissue and deployed, it shrinks longitudinally to reduce the diameter of the annulus. In other embodiments, multiple such stents may be used. These and other embodiments are described more fully below with reference to the drawing figures.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is a cross-sectional view of a heart with a flexible stabilization device being positioned for stabilizing a valve annulus, according to one embodiment of the present invention;



FIGS. 1A and 1B are cross-sectional views of a valve leaflet, valve annulus, atrial wall and ventricular wall, with a stabilization device in place for stabilizing and exposing the annulus, according to one embodiment of the present invention;



FIG. 2 is a perspective view of a stabilization device having two stabilization members, according to one embodiment of the present invention;



FIG. 3 is a cross-sectional view of a valve leaflet, valve annulus, atrial wall and ventricular wall, with a stabilization device in place having upper and lower stabilization members, according to one embodiment of the present invention;



FIG. 4 shows a stabilization device as in FIG. 3 with a tethered clip placed in the valve annulus, according to one embodiment of the present invention;



FIG. 5 shows a stabilization device having a balloon-driven clip applier as its upper stabilizing member, according to one embodiment of the present invention;



FIGS. 5A and 5B show a stabilization device having a balloon-driven hook applier as its upper stabilizing member, and a method for using same, according to one embodiment of the present invention;



FIGS. 5C and 5D show a stabilization device having a balloon-driven hook applier as its upper stabilizing member, a lower stabilizing member carrying a hook receiver, and a method for using same, according to one embodiment of the present invention;



FIG. 6 is a perspective view of a balloon-driven hook applier for applying hooks to a cardiac valve annulus, according to one embodiment of the present invention;



FIG. 7 is a close-up view of the device in FIG. 6; and



FIG. 8 is a perspective view of a balloon-driven hook applier as in FIGS. 6 and 7, with the balloon expanded and the hooks deployed, according to one embodiment of the present invention.





DETAILED DESCRIPTION OF THE INVENTION

Devices and methods of the present invention are generally used to facilitate transvascular, minimally invasive and other “less invasive” surgical procedures, by enhancing exposure, stabilization and/or the like of a tissue or structure upon which a procedure is to be performed. As discussed more fully above, “less invasive,” for the purposes of this application, means any procedure that is less invasive than traditional, large-incision open surgical procedures. Thus, a less invasive procedure may be an open surgical procedure involving one or more relatively small incisions, a transvascular percutaneous procedure, a transvascular procedure via cut-down, a laparoscopic or other endoscopic procedure, or any procedure in which a goal is to minimize or reduce invasiveness to the patient may be considered less invasive.


The present application typically describes devices and methods for stabilization and/or exposure in the context of heart valve repair, and more specifically mitral valve repair to treat mitral regurgitation. Devices and methods of the invention may be used in any suitable procedure, however, both cardiac and non-cardiac. For example, they may be used in procedures to repair any heart valve, to repair an atrial-septal defect, to access and possibly perform a procedure from (or through) the coronary sinus, to place one or more pacemaker leads, to perform a cardiac ablation procedure such as ablating around pulmonary veins to treat atrial fibrillation, and/or the like. In other embodiments, the devices and methods may be used to enhance a laparoscopic or other endoscopic procedure on any part of the body, such as the bladder, stomach, gastroesophageal junction, vasculature, gall bladder, or the like. In some embodiments, for example, devices and methods include coupling multiple tethered anchors to a valve annulus and cinching the annulus to reduce a diameter of the valve. Similar devices and methods may be used, alternatively, to close or reduce the diameter of an atrial-septal defect, a gastroesophageal junction, or any other suitable body lumen, valve or other structure. Therefore, although the following description typically focuses on mitral valve and other heart valve repair, such description should not be interpreted to limit the scope of the invention as defined by the claims.


Devices and methods of the invention generally provide for enhanced stabilization, exposure and/or treatment of a cardiac valve annulus. By “stabilize,” it is meant that the annulus will be at least partially immobilized relative to the cardiac tissue surrounding the annulus, at least partially delineated or exposed relative to cardiac tissue surrounding the annulus, or both. For example, in some instances “stabilization” may not involve immobilizing annular tissue but may instead involve moving or positioning annular tissue in such a way to allow enhanced visualization of that tissue relative to surrounding tissues. Methods generally involve introducing a stabilizing member beneath one or more leaflets of a heart valve to engage the ventricular side of the annulus at an intersection between the leaflets and the interior ventricular wall of the heart. The stabilizing member will usually be curved or C-shaped to conform to at least a portion of the ventricular side of the annulus, and force is applied to the stabilizing member to engage and stabilize the valve annulus.


In addition to stabilizing, methods and apparatus of the present invention may also help expose, position, or delineate the valve annulus, to enhance the physician's ability to view and operate on the annular tissue. Some embodiments also include a second stabilizing member, to be introduced above the leaflets, allowing a physician to grasp or clamp annular tissue between the upper and lower stabilizing members for further stabilization. Various embodiments further provide for treatment of a valve annulus. For example, either the upper or lower stabilizing member may include actuators or effectors for performing any one or more of a variety of interventions. For example, either or both stabilizing members hay be adapted to deliver devices for constricting or reshaping the valve annulus to treat regurgitation or other conditions. The devices may comprise anchors, tethered anchors, rings, or the like for reinforcing or cinching the annulus. In a specific example, the stabilizing member may be configured to hydraulically or otherwise deliver a series of tethered hooks, tethered clips or other tethered anchors or fasteners for engaging and cinching valve annulus tissue to decrease the diameter of a regurgitant valve. The stabilizer(s) will also be adaptable for delivering other therapies, including applying radiofrequency energy (or other heat sources) to shrink the collagen tissue in the annulus, delivering bulking agents, delivering drugs and biological agents such as growth factors.


In most cases, the methods of the present invention will be performed on a beating heart. Access to the beating heart may be accomplished by any available technique, including intravascular, transthoracic, and the like. In addition to beating heart access, the methods of the present invention may be used for intravascular stopped heart access as well as stopped heart open chest procedures.


Referring now to FIG. 1, a heart H is shown in cross section, with a stabilization device 100 introduced within the heart H. Generally, stabilization device 100 comprises an elongate body with at least a first stabilizing member 102 at its distal end for providing stabilization and/or exposure of a heart valve annulus. In some embodiments, the elongate body comprises a rigid shaft, while in other embodiments it comprises a flexible catheter, so that the first stabilizing member may be positioned in the heart H and under one or more valve leaflets to engage an valve annulus via a transvascular approach. Transvascular access may be gained, for example, through the internal jugular vein (not shown) to the superior vena cava SVC to the right atrium RA, across the interatrial septum to the left atrium LA, and then under one or more mitral valve leaflets MVL to a position within the left ventricle (LV) under the valve annulus (not shown). Alternatively, access to the heart may be achieved via the femoral vein and the inferior vena cave In other embodiments, access may be gained via the coronary sinus (not shown) and through the atrial wall into the left atrium.


In other embodiments, access to the heart H may be transthoracic, with the stabilization device being introduced into the heart via an incision or port on the heart wall. Even open heart surgical procedures may benefit from methods and devices of the invention. Furthermore, some embodiments may be used to enhance procedures on the tricuspid valve annulus, adjacent the tricuspid valve leaflets TVL, or any other cardiac or vascular valve. Therefore, although the following description typically focuses on minimally invasive or less invasive mitral valve repair for treating mitral regurgitation, the invention is in no way limited to that use.


With reference to FIGS. 1A and 1B, a method for using stabilization device 100 is depicted in a cross-sectional view. First, as in FIG. 1A, stabilizing member 102 is positioned in a desired location under a valve leaflet L and adjacent a ventricular wall VW. The valve annulus generally comprises an area of heart wall tissue at the junction of the ventricular wall VW and the atrial wall AW that is relatively fibrous and, thus, significantly stronger that leaflet tissue and other heart wall tissue. Stabilizing member 102 may be advanced into position under the valve annulus by any suitable technique, some of which are described below in further detail. For example, using a stabilization device having a flexible elongate body as shown in FIG. 1, stabilizing member 102 may be passed from the right atrium RA through the interatrial septum in the area of the foramen ovale (not shown—behind the aorta A), into the left atrium LA. Oftentimes, stabilizing member 102 will then naturally travel, upon further advancement, under the posterior valve leaflet to a position under the valve annulus VA, as shown in FIG. 1A.


In some embodiments, stabilizing member 102 includes a shape-changing portion which enables stabilizing member 102 to conform to the shape of the valve annulus VA. The catheter may be introduced through the vasculature with the shape-changing stabilizing member in a generally straight, flexible configuration. Once it is in place beneath the leaflet at the intersection between the leaflet and the interior ventricular wall, the shape of stabilizing member 102 is changed to conform to the annulus and usually the shape is “locked” to provide sufficient stiffness or rigidity to permit the application of force from stabilizing member 102 to the annulus. Shaping and optionally locking stabilizing member 102 may be accomplished in any of a number of ways. For example, in some embodiments, a shape-changing portion may be sectioned, notched, slotted or segmented and one of more tensioning cords, wires or other tensioning devices coupled with the shape-changing portion may be used to shape and rigidify stabilizing member 102. A segmented stabilizing member, for example, may include multiple segments coupled with two tensioning cords, each cord providing a different direction of articulation to the stabilizing member. A first bend may be created by tensioning a first cord to give the stabilizing member a C-shape or similar shape to conform to the valve annulus, while a second bend may be created by tensioning a second cord to articulate the C-shaped member upwards against the annulus. In various embodiments, any configurations and combinations may be used to give stabilizing member 102 a desired shape.


In transthoracic and other embodiments, stabilizing member 102 may be pre-shaped, and the method may simply involve introducing stabilizing member 102 under the valve leaflets. The pre-shaped stabilizing member 102 may be rigid or formed from a shape memory material such as nitinol, spring stainless steel, or the like.


Once stabilizing member 102 is positioned under the annulus, force may be applied to stabilize the valve annulus VA, as shown in FIG. 1B. Such force may be directed in any suitable direction to expose, position and/or stabilize the annulus. For example, upward and lateral force is shown in FIG. 1B by the solid-headed arrow drawn from the center of stabilizing member 102. In other cases, only upward, only lateral, or any other suitable force(s) may be applied. With application of force to stabilizing member 102, the valve annulus VA is caused to rise or project outwardly, thus exposing the annulus for easier viewing and access. The applied force may also stabilize the valve annulus VA, also facilitating surgical procedures and visualization.


With reference now to FIG. 2, one embodiment of a stabilization device 200 may include an upper or atrial stabilizing member 202, coupled with an outer shaft 210, and a lower or ventricular stabilizing member 204 coupled with an inner shaft 212. Upper stabilizing member 202 and lower stabilizing member 204 are typically adapted for placement above and below a valve annulus, such as the mitral valve annulus. Stabilizing members 202 and 204 will typically be formed from an elastic material having a geometry selected to engage and optionally shape or constrict the valve annulus. For example, the rings may be formed from shape memory alloy, such as nitinol, from a spring stainless steel, or the like. In other instances, however, the stabilizing members could be formed from an inflatable or other structure can be selectively rigidified in situ, such as a gooseneck or lockable element shaft, any of the rigidifying structures described above, or any other rigidifying structure.


As described above, the device 200 may be introduced to the left atrium of a beating heart, either transeptally or through an incision in the heart wall. Once in the atrium, the lower or ventricular stabilizing member will be introduced through the mitral valve opening, with a corner 206 of the stabilizing member typically being engaged against a commisure. The ventricular stabilizing member 204 may be adjusted so that it lies at a junction between the valve leaflet L and the ventricular wall VW, as illustrated in FIG. 3. The upper or atrial stabilizing member 202 may then be clamped down onto the upper surface of the annulus VA, typically by sliding outer shaft 210 down over inner shaft 212. Thus, the annulus will be circumferentially clamped between the stabilizing members, again as observed in FIG.3. Such clamping will stabilize the annulus relative to the remainder of the beating heart, thus facilitating subsequent minimally invasive surgical procedures. For example, and with reference now to FIG. 4, a clip applier may be used to introduce individual tethered clips 156 into the valve annulus VA. Exemplary clip appliers for applying tethered clips to a valve annulus are described more fully in U.S. patent application Ser. No. 10/461043, which was previously incorporated by reference. Alternatively, atrial stabilizing member 202 could be replaced with a circular clip applier 220, as shown in FIG. 5. A stabilizing device employing such a clip applier could be used to simultaneously stabilize the annulus and deliver clips 222 using a clip driver, such as a balloon 224.


Although not illustrated, in some instances it may be desirable to provide a third stabilizing element on the exterior of the heart, optionally between the coronary sinus CS and circumflex artery CF or within the coronary sinus.


As is described further below, any stabilizing member, including an atrial stabilizing member, a ventricular stabilizing member, or both, may include one or more devices for treating a valve annulus. Such devices may include any suitable device for treating an annulus, and the present invention is not limited to any specific embodiments. For example, in some embodiments a stabilizing member comprises a housing for containing a plurality of tethered anchors and a system for delivering the anchors into annular tissue. “Anchors” may comprise curved hooks, straight hooks, barbed hooks, clips of any kind, T-tags, shape memory hooks, or any other suitable fastener(s). Delivery of anchors may be accomplished by any suitable device and technique, such as by hydraulic balloon delivery as discussed below. Alternatively, any other suitable treatment may be delivered to an annulus. For example, energy such as radiofrequency energy may be delivered to the annulus via a stabilizing member to constrict the annular tissue. Alternatively, a shape memory stent may be delivered to the annulus such that when deployed the stent longitudinally shrinks to constrict the annulus. In other embodiments, one or more drugs or bulking agents may be administered to the annulus. Therefore, although the following description focuses on delivery of a plurality of tethered hooks to a valve annulus, many other types of anchors and other treatment modalities may alternatively be delivered using devices and methods of the invention.


That being said, and referring now to FIGS. 5A and 5B, in one embodiment, upper stabilizing member 202 could be replaced with a circular hook applier 230, including a housing for multiple tethered hooks 232 and a hook driver such as a balloon 234. Again, hooks 232 may be replaced by any other anchors in various embodiments. Hooks 232 may be coupled to the device via a pivot mandrel 236, so that when balloon 234 is inflated, as in FIG. 5B, hooks 232 pivot around mandrel 236 to enter tissue of the valve annulus VA. Hydraulically driving curved hooks 232 in this way closely replicates the motion of a surgeon manually driving a suture needle into tissue and allows hooks 232 to be driven strongly into the tissue of the valve annulus VA. After hooks 232 are engaged with the valve annulus VA, they may be cinched, using the tether (not shown), to decrease the diameter of the annulus and thus the valve. The housing, the balloon 234 and the pivot mandrel 236 may be withdrawn before or after cinching.


As mentioned above, in various embodiments other anchor delivery mechanisms may be used, although one or more expandable balloons are used in one embodiment. For example, other hydraulic delivery systems may be used, anchors may be advanced into tissue using a pull-cord, or the like. In some embodiments, treatment devices and delivery mechanisms may be incorporated into lower/ventricular stabilizing member 204, rather than upper/atrial stabilizing member 202. In still other embodiments, some of which are described immediately below, both stabilizing members 202 and 204 may include devices for treatment of the valve annulus VA.


Additionally, and with reference now to FIGS. 5C and 5D, some embodiments may include one or more fasteners and fastener receiving pieces. For example, a circular hook applier 240, including multiple tethered hooks 242 on a pivot mandrel 246 and a balloon 244 may be disposed on the upper, atrial side of the valve annulus VA, and lower stabilizing member 204 may carry one or more receiving pieces 248 for receiving part of one or more of hooks 242. As shown in FIG. 5D, when balloon 244 is inflated, it drives hooks 242 in a curved path through tissue of the valve annulus VA and into receiving piece 248. Receiving piece 248 may comprise any suitable material with any configuration for receiving and holding a portion of hooks 242. In some embodiments, for example, receiving piece 248 may comprise a Dacron strip, while in other embodiments the fastener and fastener receiving piece may be configured similar to a plastic garbage bag tie or the like. Any configuration is contemplated within the scope of the invention. In alternative embodiments, anchors may be driven from lower stabilizing member 204 into a receiving piece carried by upper stabilizing member 202.


Referring now to FIGS. 6, 7 and 8, one embodiment of a stabilizing and hook delivery device 260 is shown. Typically, hook delivery device 260 will include an elongate housing or shaft 261, which will house a series of hooks 264 coupled to housing 261 via a pivot mandrel 266 and coupled to one another via a tether 268. Housing 262 will also include one or more expandable balloons 262 for driving hooks 264. Housing 262 may be flexible or rigid in various embodiments. Of course, any number, size and shape of hooks 264 (or other anchors) may be included in housing 261. Tether 268 may be one long piece of material or two or more pieces and may comprise any suitable material, such as suture, suture-like material, a Dacron strip or the like. Pivot mandrel 268 may also have any suitable configuration and be made of any suitable material. In one embodiment, mandrel 268 is made of a metal such as stainless steel, titanium or nitinol. Expandable balloon 262 may have any suitable size and configuration. In some embodiments, more than one balloon may be used. As shown in FIG. 8, inflating balloon 262 drives hooks 264 in a curvilinear path (arrows) into adjacent tissue (not shown). Hooks thus driven into tissue of a cardiac valve annulus may then be cinched, via tether 268, to reduce the valve diameter, thus treating or ameliorating valve regurgitation.


Although the foregoing is a complete and accurate description of the present invention, the description provided above is for exemplary purposes only, and variations may be made to the embodiments described without departing from the scope of the invention. Thus, the above description should not be construed to limit the scope of the invention as described in the appended claims.

Claims
  • 1. A method for constricting a heart valve annulus comprising: introducing a stabilizing member from beneath one or more leaflets of a heart valve to a ventricular side of a heart valve annulus, wherein the stabilizing member comprises an elongate body having a proximal end, a distal end, and a longitudinal axis therebetween, the distal end having a curvature that conforms to at least a portion of the ventricular side of the annulus and adapted to deliver at least one tethered anchor enclosed therein;delivering the at least one tethered anchor transversely to the longitudinal axis of the stabilizing member into ventricular wall tissue, wherein the at least one tethered anchor does not penetrate into tissue of an atrium; andcinching the tether to reduce the circumference of at least a portion of the heart valve annulus.
  • 2. The method of claim 1 wherein the heart valve annulus is a mitral valve annulus.
  • 3. The method of claim 1 performed on a beating heart.
CROSS REFERENCE TO RELATED APPLICATIONS

The present application is a divisional of U.S. application Ser. No. 10/656,797, filed Sep. 4, 2003, which is related to, and contains subject matter in common with, U.S. patent application Ser. No. 10/461,043, filed on Jun. 13, 2003, which is assigned to the assignees of the present invention, and which is hereby incorporated fully by reference.

US Referenced Citations (330)
Number Name Date Kind
2108206 Meeker Feb 1938 A
3656185 Carpentier Apr 1972 A
3727614 Kniazuk Apr 1973 A
3773034 Burns et al. Nov 1973 A
3961419 Schwartz Jun 1976 A
3976079 Samuels et al. Aug 1976 A
4014492 Rothfuss Mar 1977 A
4034473 May Jul 1977 A
4042979 Angell Aug 1977 A
4043504 Hueil et al. Aug 1977 A
4053979 Tuthill et al. Oct 1977 A
4055861 Carpentier et al. Nov 1977 A
4069825 Akiyama Jan 1978 A
4290151 Massana Sep 1981 A
4384406 Tischlinger May 1983 A
4445892 Hussein et al. May 1984 A
4489446 Reed Dec 1984 A
4494542 Lee Jan 1985 A
4619247 Inoue et al. Oct 1986 A
4700250 Kuriyama Oct 1987 A
4726371 Gibbens Feb 1988 A
4758221 Jureidini Jul 1988 A
4784133 Mackin Nov 1988 A
4845851 Warthen Jul 1989 A
4848341 Ahmad Jul 1989 A
4850354 McGurk-Burleson et al. Jul 1989 A
4961738 Mackin Oct 1990 A
4969893 Swor Nov 1990 A
4976710 Mackin Dec 1990 A
5053047 Yoon Oct 1991 A
5064431 Gilbertson et al. Nov 1991 A
5078731 Hayhurst Jan 1992 A
5084058 Li Jan 1992 A
5103804 Abele et al. Apr 1992 A
5133723 Li et al. Jul 1992 A
5221255 Mahurkar et al. Jun 1993 A
5242456 Nash et al. Sep 1993 A
5242457 Akopov et al. Sep 1993 A
5257975 Foshee Nov 1993 A
5312341 Turi May 1994 A
5324298 Phillips et al. Jun 1994 A
5346500 Suchart Sep 1994 A
5358479 Wilson Oct 1994 A
5358514 Schulman et al. Oct 1994 A
5364407 Poll Nov 1994 A
5366479 McGarry et al. Nov 1994 A
5368591 Lennox et al. Nov 1994 A
5383905 Golds et al. Jan 1995 A
5409483 Campbell et al. Apr 1995 A
5409499 Yi Apr 1995 A
5417700 Egan May 1995 A
5423837 Mericle et al. Jun 1995 A
5437680 Yoon Aug 1995 A
5439470 Li Aug 1995 A
5450860 O'Connor Sep 1995 A
5452513 Zinnbauer et al. Sep 1995 A
5474572 Hayhurst Dec 1995 A
5520702 Sauer et al. May 1996 A
5522873 Jackman et al. Jun 1996 A
5524630 Crowley Jun 1996 A
5527323 Jervis et al. Jun 1996 A
5531686 Lundquist et al. Jul 1996 A
5545134 Hilaire et al. Aug 1996 A
5545168 Burke Aug 1996 A
5565122 Zinnbauer et al. Oct 1996 A
5571215 Sterman et al. Nov 1996 A
5591194 Berthiaume Jan 1997 A
5626614 Hart May 1997 A
5630824 Hart May 1997 A
5643289 Sauer et al. Jul 1997 A
5669917 Sauer et al. Sep 1997 A
5674279 Wright et al. Oct 1997 A
5690655 Hart et al. Nov 1997 A
5709695 Northrup, III Jan 1998 A
5716370 Williamson, IV et al. Feb 1998 A
5718725 Sterman et al. Feb 1998 A
5725542 Yoon Mar 1998 A
5735290 Sterman et al. Apr 1998 A
5741260 Songer et al. Apr 1998 A
5741301 Pagedas Apr 1998 A
5752518 McGee et al. May 1998 A
5752964 Mericle May 1998 A
5752966 Chang May 1998 A
5755730 Swain et al. May 1998 A
5766240 Johnson Jun 1998 A
5769812 Stevens et al. Jun 1998 A
5782861 Cragg et al. Jul 1998 A
5810848 Hayhurst Sep 1998 A
5810853 Yoon Sep 1998 A
5817107 Schaller Oct 1998 A
5827171 Dobak, III et al. Oct 1998 A
5843169 Taheri Dec 1998 A
5848969 Panescu et al. Dec 1998 A
5860992 Daniel et al. Jan 1999 A
5860993 Thompson et al. Jan 1999 A
5868733 Ockuly et al. Feb 1999 A
5879371 Gardiner et al. Mar 1999 A
5885238 Stevens et al. Mar 1999 A
5888240 Carpentier et al. Mar 1999 A
5902321 Caspari et al. May 1999 A
5904651 Swanson et al. May 1999 A
5919208 Valenti Jul 1999 A
5935149 Ek Aug 1999 A
5947983 Solar et al. Sep 1999 A
5961440 Schweich, Jr. et al. Oct 1999 A
5961539 Northrup, III et al. Oct 1999 A
5972004 Williamson, IV et al. Oct 1999 A
5989284 Laufer Nov 1999 A
5991650 Swanson et al. Nov 1999 A
6010531 Donlon et al. Jan 2000 A
6015428 Pagedas Jan 2000 A
6045497 Schweich, Jr. et al. Apr 2000 A
6050936 Schweich, Jr. et al. Apr 2000 A
6066160 Colvin et al. May 2000 A
6074401 Gardiner et al. Jun 2000 A
6077214 Mortier et al. Jun 2000 A
6077989 Kandel et al. Jun 2000 A
6099553 Hart et al. Aug 2000 A
6125852 Stevens et al. Oct 2000 A
6149658 Gardiner et al. Nov 2000 A
6162168 Schweich, Jr. et al. Dec 2000 A
6165183 Kuehn et al. Dec 2000 A
6171329 Shaw et al. Jan 2001 B1
6197017 Brock et al. Mar 2001 B1
6221084 Fleenor Apr 2001 B1
6228096 Marchand May 2001 B1
6250308 Cox Jun 2001 B1
6254620 Koh et al. Jul 2001 B1
6258118 Baum et al. Jul 2001 B1
6260552 Mortier et al. Jul 2001 B1
6269819 Oz et al. Aug 2001 B1
6283993 Cosgrove et al. Sep 2001 B1
6306149 Meade Oct 2001 B1
6312447 Grimes Nov 2001 B1
6328727 Frazier et al. Dec 2001 B1
6332893 Mortier et al. Dec 2001 B1
6355030 Aldrich et al. Mar 2002 B1
6378289 Trudeau et al. Apr 2002 B1
6391048 Ginn et al. May 2002 B1
6409743 Fenton, Jr. Jun 2002 B1
6423088 Fenton, Jr. Jul 2002 B1
6432123 Schwartz et al. Aug 2002 B2
6461327 Addis et al. Oct 2002 B1
6514265 Ho et al. Feb 2003 B2
6524338 Gundry Feb 2003 B1
6533753 Haarstad et al. Mar 2003 B1
6551332 Nguyen et al. Apr 2003 B1
6575971 Hauck et al. Jun 2003 B2
6602288 Cosgrove et al. Aug 2003 B1
6602289 Colvin et al. Aug 2003 B1
6607541 Gardiner et al. Aug 2003 B1
6613059 Schaller et al. Sep 2003 B2
6619291 Hlavka et al. Sep 2003 B2
6626899 Houser et al. Sep 2003 B2
6629534 St. Goar et al. Oct 2003 B1
6641593 Schaller et al. Nov 2003 B1
6648903 Pierson, III Nov 2003 B1
6651671 Donlon et al. Nov 2003 B1
6655386 Makower et al. Dec 2003 B1
6669687 Saadat Dec 2003 B1
6676702 Mathis Jan 2004 B2
6689164 Seguin Feb 2004 B1
6699263 Cope Mar 2004 B2
6702826 Liddicoat et al. Mar 2004 B2
6716243 Colvin et al. Apr 2004 B1
6718985 Hlavka et al. Apr 2004 B2
6723107 Skiba et al. Apr 2004 B1
6733509 Nobles et al. May 2004 B2
6752813 Goldfarb et al. Jun 2004 B2
6790231 Liddicoat et al. Sep 2004 B2
6793618 Schweich, Jr. et al. Sep 2004 B2
6811560 Jones et al. Nov 2004 B2
6908424 Mortier et al. Jun 2005 B2
6923818 Muramatsu et al. Aug 2005 B2
6932792 St. Goar et al. Aug 2005 B1
6986775 Morales et al. Jan 2006 B2
6991643 Saadat Jan 2006 B2
6997931 Sauer et al. Feb 2006 B2
7004958 Adams et al. Feb 2006 B2
7037334 Hlavka et al. May 2006 B1
7044957 Foerster et al. May 2006 B2
7048754 Martin et al. May 2006 B2
7101395 Tremulis et al. Sep 2006 B2
7125421 Tremulis et al. Oct 2006 B2
7166127 Spence et al. Jan 2007 B2
7186262 Saadat Mar 2007 B2
7189199 McCarthy et al. Mar 2007 B2
7235086 Sauer et al. Jun 2007 B2
7241310 Taylor et al. Jul 2007 B2
7344544 Bender et al. Mar 2008 B2
7452325 Schaller Nov 2008 B2
7588582 Starksen et al. Sep 2009 B2
7618449 Tremulis et al. Nov 2009 B2
7666193 Starksen et al. Feb 2010 B2
7727247 Kimura et al. Jun 2010 B2
7753922 Starksen Jul 2010 B2
7758637 Starksen et al. Jul 2010 B2
20010005787 Oz et al. Jun 2001 A1
20010014800 Frazier et al. Aug 2001 A1
20010023332 Hahnen Sep 2001 A1
20010031979 Ricci Oct 2001 A1
20020013621 Stobie et al. Jan 2002 A1
20020026201 Foerster et al. Feb 2002 A1
20020029080 Mortier et al. Mar 2002 A1
20020035361 Houser et al. Mar 2002 A1
20020042621 Liddicoat et al. Apr 2002 A1
20020065536 Hart et al. May 2002 A1
20020072757 Ahmed et al. Jun 2002 A1
20020087048 Brock et al. Jul 2002 A1
20020087049 Brock et al. Jul 2002 A1
20020087148 Brock et al. Jul 2002 A1
20020087169 Brock et al. Jul 2002 A1
20020095167 Liddicoat et al. Jul 2002 A1
20020095175 Brock et al. Jul 2002 A1
20020138044 Streeter et al. Sep 2002 A1
20020156526 Hlavka et al. Oct 2002 A1
20020161378 Downing Oct 2002 A1
20020165486 Bertolero et al. Nov 2002 A1
20020173841 Ortiz et al. Nov 2002 A1
20020193815 Foerster et al. Dec 2002 A1
20030009196 Peterson Jan 2003 A1
20030018358 Saadat Jan 2003 A1
20030032979 Mortier et al. Feb 2003 A1
20030033006 Phillips et al. Feb 2003 A1
20030060813 Loeb et al. Mar 2003 A1
20030069593 Tremulis et al. Apr 2003 A1
20030074012 Nguyen et al. Apr 2003 A1
20030078465 Pai et al. Apr 2003 A1
20030078603 Schaller et al. Apr 2003 A1
20030093118 Ho et al. May 2003 A1
20030105520 Alferness et al. Jun 2003 A1
20030125739 Bagga et al. Jul 2003 A1
20030125767 Collier et al. Jul 2003 A1
20030130731 Vidlund et al. Jul 2003 A1
20030144697 Mathis et al. Jul 2003 A1
20030158464 Bertolero Aug 2003 A1
20030158581 Levinson Aug 2003 A1
20030167062 Gambale et al. Sep 2003 A1
20030167071 Martin et al. Sep 2003 A1
20030199974 Lee et al. Oct 2003 A1
20030220685 Hlavka et al. Nov 2003 A1
20030225420 Wardle Dec 2003 A1
20030233105 Gayton Dec 2003 A1
20030233142 Morales et al. Dec 2003 A1
20030236535 Onuki et al. Dec 2003 A1
20040003819 St. Goar et al. Jan 2004 A1
20040019378 Hlavka et al. Jan 2004 A1
20040030382 St. Goar et al. Feb 2004 A1
20040039442 St. Goar et al. Feb 2004 A1
20040092962 Thornton et al. May 2004 A1
20040093024 Lousararian et al. May 2004 A1
20040097788 Mourlas et al. May 2004 A1
20040122450 Oren et al. Jun 2004 A1
20040172046 Hlavka et al. Sep 2004 A1
20040181238 Zarbatany et al. Sep 2004 A1
20040193191 Starksen et al. Sep 2004 A1
20040204724 Kissel et al. Oct 2004 A1
20040210238 Nobles et al. Oct 2004 A1
20040236372 Anspach, III et al. Nov 2004 A1
20040236419 Milo Nov 2004 A1
20040243227 Starksen et al. Dec 2004 A1
20050055052 Lombardo et al. Mar 2005 A1
20050055087 Starksen Mar 2005 A1
20050065550 Starksen et al. Mar 2005 A1
20050080454 Drews et al. Apr 2005 A1
20050107810 Morales et al. May 2005 A1
20050107811 Starksen et al. May 2005 A1
20050107812 Starksen et al. May 2005 A1
20050107871 Realyvasquez et al. May 2005 A1
20050119523 Starksen et al. Jun 2005 A1
20050119673 Gordon et al. Jun 2005 A1
20050184122 Hlavka et al. Aug 2005 A1
20050192599 Demarais Sep 2005 A1
20050192629 Saadat et al. Sep 2005 A1
20050197694 Pai et al. Sep 2005 A1
20050216078 Starksen et al. Sep 2005 A1
20050228452 Mourlas et al. Oct 2005 A1
20050251157 Saadat et al. Nov 2005 A1
20050251159 Ewers et al. Nov 2005 A1
20050251166 Vaughan et al. Nov 2005 A1
20050251177 Saadat et al. Nov 2005 A1
20050251205 Ewers et al. Nov 2005 A1
20050251207 Flores et al. Nov 2005 A1
20050251208 Elmer et al. Nov 2005 A1
20050251209 Saadat et al. Nov 2005 A1
20050251210 Westra et al. Nov 2005 A1
20050273138 To et al. Dec 2005 A1
20050277966 Ewers et al. Dec 2005 A1
20050277981 Maahs et al. Dec 2005 A1
20050277983 Saadat et al. Dec 2005 A1
20060015144 Burbank et al. Jan 2006 A1
20060025750 Starksen et al. Feb 2006 A1
20060025784 Starksen et al. Feb 2006 A1
20060025787 Morales et al. Feb 2006 A1
20060058817 Starksen et al. Mar 2006 A1
20060069429 Spence et al. Mar 2006 A1
20060122633 To et al. Jun 2006 A1
20060129188 Starksen et al. Jun 2006 A1
20060178682 Boehlke Aug 2006 A1
20060184203 Martin et al. Aug 2006 A1
20060190030 To et al. Aug 2006 A1
20060241656 Starksen et al. Oct 2006 A1
20060264975 Pipenhagen et al. Nov 2006 A1
20060271101 Saadat et al. Nov 2006 A1
20060287661 Bolduc et al. Dec 2006 A1
20070005081 Findlay, III et al. Jan 2007 A1
20070005394 Bleyendaal et al. Jan 2007 A1
20070010857 Sugimoto et al. Jan 2007 A1
20070032820 Chin-Chen et al. Feb 2007 A1
20070038293 St.Goar et al. Feb 2007 A1
20070049942 Hindrichs et al. Mar 2007 A1
20070051377 Douk et al. Mar 2007 A1
20070055206 To et al. Mar 2007 A1
20070112424 Spence et al. May 2007 A1
20080045977 To et al. Feb 2008 A1
20080045982 To et al. Feb 2008 A1
20080045983 To et al. Feb 2008 A1
20080051810 To et al. Feb 2008 A1
20080051832 To et al. Feb 2008 A1
20080051837 To et al. Feb 2008 A1
20080058868 To et al. Mar 2008 A1
20080234728 Starksen et al. Sep 2008 A1
20080294177 To et al. Nov 2008 A1
20090182417 Tremulis et al. Jul 2009 A1
20090222083 Nguyen et al. Sep 2009 A1
20090276038 Tremulis et al. Nov 2009 A1
20100049213 Serina et al. Feb 2010 A1
20100082098 Starksen et al. Apr 2010 A1
20100094314 Hernlund et al. Apr 2010 A1
20100121349 Meier et al. May 2010 A1
Foreign Referenced Citations (57)
Number Date Country
0 669 101 Aug 1995 EP
6-510460 Nov 1994 JP
11-506628 Jun 1999 JP
WO-9308740 May 1993 WO
WO-9403227 Feb 1994 WO
WO-9515715 Jun 1995 WO
WO-9608208 Mar 1996 WO
WO-9639081 Dec 1996 WO
WO-9639942 Dec 1996 WO
WO-9727799 Aug 1997 WO
WO-9727807 Aug 1997 WO
WO-9730639 Aug 1997 WO
WO-9807375 Feb 1998 WO
WO-0060995 Oct 2000 WO
WO-0060995 Oct 2000 WO
WO-0067640 Nov 2000 WO
WO-0067640 Nov 2000 WO
WO-0126586 Apr 2001 WO
WO-0154618 Aug 2001 WO
WO-0203892 Jan 2002 WO
WO-02051329 Jul 2002 WO
WO-02085251 Oct 2002 WO
WO-02085252 Oct 2002 WO
WO-03088875 Oct 2003 WO
WO-03105667 Dec 2003 WO
WO-03105667 Dec 2003 WO
WO-03105670 Dec 2003 WO
WO-03105670 Dec 2003 WO
WO-2004037317 May 2004 WO
WO-2004037317 May 2004 WO
WO-2004082523 Sep 2004 WO
WO-2004082523 Sep 2004 WO
WO-2004082538 Sep 2004 WO
WO-2004082538 Sep 2004 WO
WO-2005025644 Mar 2005 WO
WO-2005025644 Mar 2005 WO
WO-2005062931 Jul 2005 WO
WO-2005062931 Jul 2005 WO
WO-2005102181 Nov 2005 WO
WO-2006034243 Mar 2006 WO
WO-2006034243 Mar 2006 WO
WO-2006037073 Apr 2006 WO
WO-2006097931 Sep 2006 WO
WO-2006097931 Sep 2006 WO
WO-2006116558 Nov 2006 WO
WO-2006116558 Nov 2006 WO
WO-2006116558 Nov 2006 WO
WO-2007001936 Jan 2007 WO
WO-2007001936 Jan 2007 WO
WO-2007005495 Jan 2007 WO
WO-2007021564 Feb 2007 WO
WO-2007021834 Feb 2007 WO
WO-2007035449 Mar 2007 WO
WO-2007056502 May 2007 WO
WO-2007100409 Sep 2007 WO
WO-2008028135 Mar 2008 WO
WO-2008028135 Mar 2008 WO
Related Publications (1)
Number Date Country
20080234815 A1 Sep 2008 US
Divisions (1)
Number Date Country
Parent 10656797 Sep 2003 US
Child 12132375 US