The mitral valve controls blood flow from the left atrium to the left ventricle of the heart, preventing blood from flowing backwards from the left ventricle into the left atrium so that it is instead forced through the aortic valve for delivery of oxygenated blood throughout the body. A properly functioning mitral valve opens and closes to enable blood flow in one direction. However, in some circumstances the mitral valve is unable to close properly, allowing blood to regurgitate back into the atrium.
Mitral valve regurgitation has several causes. Functional mitral valve regurgitation is characterized by structurally normal mitral valve leaflets that are nevertheless unable to properly coapt with one another to close properly due to other structural deformations of surrounding heart structures. Other causes of mitral valve regurgitation are related to defects of the mitral valve leaflets, mitral valve annulus, or other mitral valve tissues.
The most common treatments for mitral valve regurgitation rely on valve replacement or repair including leaflet and annulus remodeling, the latter generally referred to as valve annuloplasty. One technique for mitral valve repair which relies on suturing adjacent segments of the opposed valve leaflets together is referred to as the “bowtie” or “edge-to-edge” technique. While all these techniques can be effective, they usually rely on open heart surgery where the patient's chest is opened, typically via a sternotomy, and the patient placed on cardiopulmonary bypass. The need to both open the chest and place the patient on bypass is traumatic and has associated high mortality and morbidity. In some patients, a fixation device can be installed into the heart using minimally invasive techniques. The fixation device can hold the adjacent segments of the opposed valve leaflets together and may reduce mitral valve regurgitation. One such device used to clip the anterior and posterior leaflets of the mitral valve together is the MitraClip® fixation device, sold by Abbott Vascular, Santa Clara, California, USA.
However, sometimes after a fixation device is installed, undesirable mitral valve regurgitation can still exist, or can arise again. For these sub-optimally treated patients, the presence of a fixation device in their mitral valves obstructs transcatheter mitral valve replacement. These patients may also be considered too frail to tolerate open-heart surgery, so they are left with no viable options to further improve the function of their mitral valve.
Accordingly, it would be desirable to provide alternative and additional methods, devices, and systems for removing or disabling fixation devices that are already installed. The methods, devices, and systems may be useful for repair of tissues in the body other than heart valves. At least some of these objectives will be met by the inventions described hereinbelow.
Implementations of the present invention solve one or more problems in the art with systems, methods, and apparatus configured to cut leaflet tissue at a cardiac valve. A device may comprise a guide catheter having a proximal end and a distal end, the guide catheter being positionable at a cardiac valve. The device may further include a cutting mechanism routable through the guide catheter and configured to extend from the distal end of the guide catheter, the cutting mechanism configured to cut a portion of leaflet tissue of the cardiac valve. Finally, the device may comprise a handle coupled to the proximal end of the guide catheter, the handle comprising at least one control operatively connected to the cutting mechanism such that the at least one control is configured to provide selective actuation of the cutting mechanism.
A system for cutting leaflet tissue at a cardiac valve may comprise a guide catheter having a proximal end and a distal end, wherein the distal end of the guide catheter is guided to a position at a cardiac valve. The system may also comprise a cutting mechanism having a proximal end and a distal end, wherein the cutting mechanism is routable through the guide catheter and configured to extend beyond the distal end of the guide catheter and retract into the guide catheter, wherein the cutting mechanism is configured to cut a portion of leaflet tissue of the cardiac valve.
A method of cutting cardiac valve tissue at a cardiac valve within a body may comprise positioning a guide catheter, having a proximal and a distal end such that the distal end of the guide catheter is positioned at a cardiac valve. The method may also include routing a cutting mechanism through the guide catheter such that the cutting mechanism extends distally beyond the distal end of the guide catheter, wherein the cardiac valve is associated with an interventional implant that approximates adjacent leaflets of the cardiac valve, and a cutting mechanism extends from the guide catheter. Finally, the method may comprise actuating the cutting mechanism to cut at a portion of least one leaflet of the approximated adjacent leaflet.
Additional features and advantages of exemplary implementations of the invention will be set forth in the description which follows, and in part will be obvious from the description, or may be learned by the practice of such exemplary implementations. The features and advantages of such implementations may be realized and obtained by means of the instruments and combinations particularly pointed out in the appended claims. These and other features will become more fully apparent from the following description and appended claims or may be learned by the practice of such exemplary implementations as set forth hereinafter.
In order to describe the manner in which the above-recited and other advantages and features of the invention can be obtained, a more particular description of the invention briefly described above will be rendered by reference to specific embodiments thereof which are illustrated in the appended drawings. Understanding that these drawings depict only typical embodiments of the invention and are not therefore to be considered to be limiting of its scope, the invention will be described and explained with additional specificity and detail through the use of the accompanying drawings in which:
Implementations of the present invention solve one or more problems in the art with systems, methods, and apparatus configured to cut leaflet tissue at a cardiac valve. More specifically, in at least one embodiment of the present invention a device may comprise a guide catheter having a proximal end and a distal end, the guide catheter being positionable at a cardiac valve. The device may further include a cutting mechanism routable through the guide catheter and configured to extend from the distal end of the guide catheter, the cutting mechanism configured to cut a portion of leaflet tissue of the cardiac valve. Finally, the device may comprise a handle coupled to the proximal end of the guide catheter, the handle comprising at least one control operatively connected to the cutting mechanism such that the at least one control is configured to provide selective actuation of the cutting mechanism.
In at least one embodiment, the at least one control 120 is operatively coupled to one or more control lines 125 (e.g., pull wires) extending from the handle 110 through the guide catheter 105 to the distal end 115 of the guide catheter (e.g., through one or more lumens in the guide catheter 105). Actuation of the at least one control 120 may adjust the tensioning of a control line 125 to pull the guide catheter 105 in the corresponding direction.
While control lines or wires are described at various points in this application, it should be understood that references made throughout this application to control lines or wires may be a single wire or a plurality of wires including, or made of, steel, titanium alloy, aluminum alloy, nickel alloy, other metals, a shape memory material (such as a shape memory alloy or shape memory polymer), inorganic polymer, organic polymer, ceramic, carbon materials, or other flexible material with sufficient tensile strength. For example, a control line 125 may be a steel cable. In another example, a control line 125 may be a monofilament suture. In another example, a control line 125 may be a multifilament suture. In yet another example, a control line 125 may be a braided suture.
It is desirable for guide catheter 105 to provide an adjustable distal end 115, which is capable of being positioned within a target body cavity in a desired orientation. Guide catheter 105 should have a large lumen diameter to accommodate the passage of a variety of devices, such as the various embodiments of the cutting mechanisms discussed hereinafter and should have good wall strength to avoid kinking or collapse when bent around tight curves, and should have good column, tensile, and torsional strength to avoid deformation when the devices are passed through the lumen and torqued or translated. Guide catheter 105 should provide for a high degree of controlled deflection at its distal end 115 but should not take up significant lumen area to allow for passage of interventional devices, such as the cutting mechanisms discussed below. Further, guide catheter 105 should be positionable in a manner which allows compound curves to be formed, for example curvature within more than one plane. Such manipulation should also allow fine control over distal end 115 to accommodate anatomical variations within the same type of body cavity and for use in different types of body cavities.
The guide catheter 105 may comprise a main body made of or including a flexible material. The main body may be made of or include a variety of flexible materials, such as thermoplastic elastomers (TPE). In some embodiments, the main body may be a polyether block amide (PEBA or PEBAX). The main body may have a constant durometer or may have varying durometer that varies along its longitudinal length or that varies in different portions of the body. For example, the main body of guide catheter 105 may be made of or include a body material having a durometer of 25 D to 75 D. In another example, the main body of guide catheter 105 may be made of or include a body material that has a durometer of about 45 D. In at least one embodiment, the body material may include PEBAX 4533. In at least another embodiment, the body material may include PEBAX 3533.
The guide catheter 105 preferably defines a central lumen, extending axially through its entire length, through which other elongate elements, such as the cutting mechanisms may be inserted for accessing a treatment site. The central lumen may also include a central lumen lining on an inner surface thereof. In some embodiments, the central lumen lining may be a protective material that protects the interior walls from damage due to another element of the elongated member moving through or within the central lumen. In other embodiments, the central lumen lining may include a lubricious coating that reduces friction between the interior wall and another element of the elongated member moving through or within the central lumen. The central lumen lining may include PEBA or PEBAX, polytetrafluoroethylene (“PTFE”), polyetheretherketone (“PEEK”), other polymers, thermoplastic polyurethane (“TPU”), polyethylene with pebble stone surface, silicone oil stainless steel, Nitinol, other metals, or combinations thereof. In at least one embodiment, the central lumen lining may include a plurality of PEBA or PEBAX materials having different durometers.
In other embodiments, the guide catheter 105 may also have an outer layer. In some embodiments, the outer layer may be made of or include a single material or may be made of or include different materials to impart different handling characteristics to the guide catheter 105. For example, the outer layer may be made of or include softer materials to promote flexibility of the guide catheter 105. In other examples, the outer layer may be made of or include stiffer materials to promote pushability and/or torqueability of the guide catheter 105. In yet other examples, the outer layer may include lubricious materials to reduce friction between the guide catheter 105 and the body lumen of the patient. The outer layer may include PEBA or PEBAX, polytetrafluoroethylene (“PTFE”), polyetheretherketone (“PEEK”), other polymers, thermoplastic polyurethane (“TPU”), polyethylene with pebble stone surface, silicone oil stainless steel, Nitinol, other metals, or combinations thereof. In at least one embodiment, the outer layer may include a plurality of PEBA or PEBAX materials having different durometers.
In some embodiments, the outer layer of guide catheter 105 may also include a radiopaque marker to improve visualization of guide catheter 105 during a medical procedure. For example, the outer layer may include a barium sulfate (BaSO4), gold, platinum, platinum iridium, iodine, other radiopaque materials, or combinations thereof on a distal portion of guide catheter 105. In at least one embodiment, one or more additional radiopaque markers may be longitudinally located at one or more intermediate locations along the length of guide catheter 105.
The curves of guide catheter 105 may be formed by any suitable means. In some embodiments, one or more of the curves are preset so that the curve is formed by shape memory. For example, guide catheter 105 may be comprised of a flexible polymer material in which a curve is preset by heating. When guide catheter 105 is loaded on a guidewire, dilator, obturator or introductory device, the flexibility of guide catheter 105 can allow it to follow the shape or path of the introductory device for proper positioning within the body. When the introductory device is pulled back and/or removed, guide catheter 105 can then resume the shape memory configuration which was preset into the catheter.
Alternatively, the curves may be formed or enhanced with the use of one or more steering mechanisms. In some embodiments, the steering mechanism comprises at least one control wire or pullwire attached to one of the guide catheter 105, wherein actuation of the steering mechanism applies tension to the at least one pullwire whereby the curve is formed. The pullwires can extend through the central lumen or through individual lumens in the wall of guide catheter 105. It may be appreciated that more than one pullwire may extend through any given lumen. The presence of each pullwire allows curvature of guide catheter 105 in the direction of the pullwire. For example, when pulling or applying tension to a pullwire extending along one side of the catheter, the catheter will bend, arc or form a curvature toward that side. To then straighten the catheter, the tension may be relieved for recoiling effects or tension may be applied to a pullwire extending along the opposite side of the catheter. Therefore, pullwires are often symmetrically placed along the sides of the catheter.
Thus, in some embodiments at least two pullwires are attached in diametrically opposed locations wherein applying tension to one of the pullwires curves the catheter in one direction and applying tension to the pullwire attached in the diametrically opposed location curves the catheter in another direction opposite to the one direction. The diametrically opposed pullwires may be considered a set. Any number of sets may be present in a catheter to provide unlimited directions of curvature. In some embodiments, the steering mechanism can comprise at least four pullwires wherein two of the at least four pullwires are attached to the guide catheter in diametrically opposed locations and another two of the at least four pullwires are attached to the guide catheter in diametrically opposed locations. In other words, the catheter may include two sets of pullwires, each set functioning in an opposing manner as described. When the two sets of pullwires are positioned so that each pullwire is 90 degrees apart, the catheter may be curved so that the distal end is directed from side to side and up and down. In other embodiments, the steering mechanism comprises at least three pullwires, each pullwire symmetrically positioned approximately 120 degrees apart. When tension is applied to any of the pullwires individually, the catheter is curved in the direction of the pullwire under tension. When tension is applied to two pullwires simultaneously, the catheter is curved in a direction between the pullwires under tension. Additional directions may also be achieved by various levels of tension on the pullwires. It may be appreciated that any number, combination and arrangement of pullwires may be used to direct the catheters in any desired direction.
In some embodiments, a portion of guide catheter 105 can comprise one or more articulating members. In this case, the at least one pullwire is attached to one of the articulating members so that the curve is formed by at least some of the articulating members. Each pullwire is attached to the catheter at a location chosen to result in a particular desired curvature of the catheter when tension is applied to the pullwire. For example, if a pullwire is attached to the most distal articulating member in the series, applying tension to the pullwire will compress the articulating members proximal to the attachment point along the path of the pullwire. This results in a curvature forming in the direction of the pullwire proximal to the attachment point. It may be appreciated that the pullwires may be attached to any location along the catheter and is not limited to attachment to articulating members. Typically, the articulating members comprise interfitting domed rings but may have any suitable shape.
It may also be appreciated that curves in guide catheter 105 may be formed by any combination of mechanisms. For example, a portion of guide catheter could form a curve by shape memory material, while a different portion of guide catheter could form a curve by actuation of a steering mechanism.
The steering mechanisms may be actuated by manipulation of actuators located on handle 110. The handle 110 can be connected with the proximal end of the guide catheter 105 and remains outside of the body. One or more actuators or controls 120 can be provided on handle 110 and may have any suitable form, including buttons, levers, knobs, switches, toggles, dials, or thumbwheels, to name a few. When pullwires are used, each actuator may apply tension to an individual pullwire or to a set of pullwires. The handle may also include one or more locking mechanisms (not shown in the figures) configured to interface with, and selectively lock into place, one or more of the controls 120.
In at least one embodiment, the handle 110 includes at least one control 120 for actuating and/or adjusting one or more components of a cutting mechanism 130. As shown in
As further illustrated in
As shown in
The guide catheter is not shown in
In at least one embodiment, the cutting mechanism 130 further comprises a wire (not shown) that extends from the handle 110 to the cutting edge 304, the wire configured to selectively provide electrosurgical energy to the portion of leaflet tissue of the mitral valve via the cutting edge 304. The cutting edge 304 may comprise a material with low impedance, such as platinum iridium, silver, gold, or a combination thereof. In at least one embodiment, the excision edge 304 comprises a sharp edge or other cutting means. Thus, cutting of the leaflet tissue by cutting edge 304 may be accomplished through mechanical cutting by cutting edge 304, by the application of electrosurgical energy through cutting edge 304, or by a combination of both.
Although
In this and other embodiments described herein, inner catheter or hypotube 300 should preferably have sufficient flexibility as to be able to conform to bends formed by guide catheter 105. Additional flexibility to accommodate bending may be provided in certain regions of hypotube 300 by a series of laser cuts formed in the outer wall of hypotube 300. In addition, hypotube 300 should also provide sufficient compressive and tensile strength to permit forces to be transmitted through hypotube 300, from the proximal end to the distal end, sufficient to facilitate advancement and retraction of hypotube 300 relative to guide catheter 105 Further still, hypotube 300 should provide sufficient torqueability to allow a rotational force applied through one or more controls at the proximal end of system 100 to be transmitted through the length of hypotube 300 to facilitate rotation of hypotube 300 to effectuate cutting of leaflet tissue.
As shown, the cutting mechanism 130b may comprise a shaft 400 having a proximal end and a distal end. The distal end of the shaft 400 can include a cutout area 402, with a cutting wire 404 that extends in an axial direction across the cutout 402. The height of cutout 402 should preferably be somewhat larger than the thickness of the leaflet tissue that is to be cut.
The shaft 400 may be configured to extend from the distal end 115 of the guide catheter 105. In at least one embodiment, the shaft 400 is configured to be selectively advanced beyond the distal end 115 of the guide catheter 105 into a first orifice 222 of the mitral valve 205. The guide catheter 105 may then be manipulated to move the shaft 400 in a transverse direction to bring cutting wire 404 into contact with leaflet tissue.
The cutting wire 404 may be configured to selectively provide electrosurgical energy to the portion of leaflet tissue of the mitral valve, thereby cutting the portion of leaflet tissue. In at least one embodiment, cutting wire 404 can comprise a material with low impedance, such as platinum iridium, silver, gold, or a combination thereof. Additionally, or alternatively, the cutting wire 404 can include a sharpened edge. The at least one control 120 may be configured to advance the shaft 400 along a horizontal plane, thereby cutting the portion of the leaflet tissue along the horizontal plane 406, as shown in
One skilled in the art will appreciate that the shaft 400, cutout area 402, and cutting wire 404 shown in
One skilled in the art will appreciate that the present invention is not limited to use within the mitral valve. The cardiac valve could also be the tricuspid aortic, pulmonic valve, etc. More generally, the embodiments described herein may be applied in other implementations involving removal of a previously implanted or deployed device from tissue. Further, any suitable delivery approach may be used, including transseptal, transfemoral, radial, transjugular, or transapical.
In describing the various embodiments above, the description may at times have explicitly discussed one particular mitral valve leaflet, such as anterior leaflet 210. It should be understood and appreciated, however, that the invention is not intended to be limited to either specific leaflet, but instead can be used to cut either anterior leaflet 210, posterior leaflet 215, or both.
It should also be understood that the order of manipulation of components of the various embodiments as described above are provided as representative examples only, and changes in the order of manipulation that may be readily understood by those skilled in the art are intended to be encompassed within the scope of this disclosure.
Further still, in addition to the embodiments described above, it should also be understood that individual components from one embodiment could also be combined with and/or substituted for a comparable component described in a different embodiment.
Similarly, while many of the embodiments discussed above contemplate mechanical cutting of leaflet tissue by means of sharpened edges of a cutting element, it should be further understood that such embodiments could also be adapted to include suitable electrical connections between the cutting element and a source of electrosurgical energy so that such cutting elements may accomplish cutting of tissue by mechanical cutting, by the application of electrosurgical energy to surrounding tissue through the cutting element, or by a combination of both.
Also, with any or all of the foregoing embodiments, one or more components of the leaflet cutting system can also include one or more radiopaque and/or echogenic markers to aid in the visualization of such components during a procedure. For example, one or more radiopaque and/or echogenic markers can be provided on the distal end 115 and/or the steerable portion 117 of the guide catheter 105. Similarly, one or more radiopaque and/or echogenic markers can also be provided on various components of the different embodiments of the cutting mechanisms described above, including, but not limited to, such markings being provided on the distal ends of the inner catheter, hypotube, cutting blades, stabilizing extension, etc.
One skilled in the art will appreciate that the present invention is not limited to use within the mitral valve. The cardiac valve could also be the tricuspid aortic, pulmonic valve, etc. More generally, the embodiments described herein may be applied in other implementations involving removal of a previously implanted or deployed device from tissue. Further, although the figures show the guide catheter 105 extending through the interatrial septum 200, the present invention is not limited to use via a transseptal approach. Any suitable delivery approach may be used, including transfemoral, radial, transjugular, or transapical.
The present invention may be embodied in other specific forms without departing from its spirit or essential characteristics. The described embodiments are to be considered in all respects only as illustrative and not restrictive. The scope of the invention is, therefore, indicated by the appended claims rather than by the foregoing description. All changes that come within the meaning and range of equivalency of the claims are to be embraced within their scope.
Following are some further example embodiments of the invention. These are presented only by way of example and are not intended to limit the scope of the invention in any way.
Embodiment 1. A device for cutting leaflet tissue at a cardiac valve, comprising: a guide catheter having a proximal end and a distal end, the guide catheter being positionable at a cardiac valve, a cutting mechanism routable through the guide catheter and configured to extend from the distal end of the guide catheter, the cutting mechanism configured to cut a portion of leaflet tissue of the cardiac valve, and a handle coupled to the proximal end of the guide catheter, the handle comprising at least one control operatively connected to the cutting mechanism such that the at least one control is configured to provide selective actuation of the cutting mechanism.
Embodiment 2. The device of embodiment 1, wherein the guide catheter is positionable at the cardiac valve transseptally or transapically.
Embodiment 3. The device in any of embodiments 1 to 2, wherein the cutting mechanism comprises an extension configured to secure an interventional implant and an opposing excision edge configured to cut the portion of leaflet tissue of the cardiac valve.
Embodiment 4. The device in any of embodiments 1-3, wherein the extension extends distally past a distal end of the excision edge.
Embodiment 5. The device in any of embodiments 1-4, wherein the cutting mechanism further comprises a wire that extends from the handle to the excision edge, the wire configured to selectively provide radio frequency current energy to the portion of leaflet tissue of the cardiac valve via the excision edge.
Embodiment 6. The device in any of embodiments 1-5, wherein the excision edge comprises a material with low impedance.
Embodiment 7. The device in any of embodiments 1-6, wherein the excision edge comprises platinum iridium, silver, gold, or a combination thereof.
Embodiment 8. The device in any of embodiments 1-7, wherein: the cutting mechanism comprises a shaft having a proximal end and a distal end, the cutting mechanism comprises a cutting wire disposed within the shaft, the distal end of the shaft comprises a cutout area that exposes a portion of the cutting wire disposed within the shaft, and the shaft is configured to extend from the distal end of the guide catheter through a first orifice of the cardiac valve thereby engaging the cutting wire with leaflet tissue.
Embodiment 9. The device in any of embodiments 1-8, wherein the cutting wire is configured to selectively provide radio frequency current energy to the portion of leaflet tissue of the cardiac valve thereby cutting the portion of leaflet tissue.
Embodiment 10. The device in any of embodiments 1-9, wherein the cutting wire comprises a material with low impedance.
Embodiment 11. The device in any of the embodiments 1-10, wherein the cutting wire comprises platinum iridium, silver, gold, or a combination thereof.
Embodiment 12. The device in any of embodiments 1-11, wherein the cutting wire comprises a sharp edge.
Embodiment 13. The device in any of embodiments 1-12, wherein the shaft is configured to advance along a horizontal plane thereby cutting the portion of the leaflet tissue along the horizontal plane.
Embodiment 14. A system for cutting leaflet tissue at a cardiac valve, comprising, a guide catheter having a proximal end and a distal end, wherein the distal end of the guide catheter is guided to a position at a cardiac valve; a cutting mechanism having a proximal end and a distal end, wherein the cutting mechanism is routable through the guide catheter and configured to extend beyond the distal end of the guide catheter and retract into the guide catheter, wherein the cutting mechanism is configured to cut a portion of leaflet tissue of the cardiac valve.
Embodiment 15. The system of embodiment 14, wherein the cutting mechanism comprises an extension configured to secure an interventional implant and an opposing excision edge configured to cut the portion of leaflet tissue of the cardiac valve.
Embodiment 16. The system in any of embodiments 14-15, wherein the extension extends distally past a distal end of the excision edge.
Embodiment 17. The system in any of embodiments 14-16, wherein the cutting mechanism further comprises a cutting wire that extends from the proximal end of the guide catheter to the excision edge, the cutting wire configured to selectively provide radio frequency current energy to the portion of leaflet tissue of the cardiac valve via the excision edge.
Embodiment 18. The system in any of embodiments 14-17, wherein: the cutting mechanism comprises a shaft having a proximal end and a distal end, the cutting mechanism comprises a cutting wire disposed within the shaft, the distal end of the shaft comprises a cutout area that exposes a portion of the wire disposed within the shaft, and the shaft is configured to extend from the distal end of the guide catheter through a first orifice of the cardiac valve thereby engaging the cutting wire with leaflet tissue.
Embodiment 19. The system in any of embodiments 14-18, wherein the cutting wire is configured to selectively provide radio frequency current energy to the portion of leaflet tissue of the cardiac valve thereby cutting the portion of leaflet tissue.
Embodiment 20. The system in any of embodiments 14-19, wherein the cutting wire comprises a sharp edge.
Embodiment 21. The system in any of embodiments 14-20, wherein the shaft is configured to advance along a horizontal plane thereby cutting the portion of the leaflet tissue along the horizontal plane.
Embodiment 22. A method of cutting cardiac valve tissue at a cardiac valve within a body, comprising: positioning a guide catheter, having a proximal and a distal end such that the distal end of the guide catheter is positioned at a cardiac valve, routing a cutting mechanism through the guide catheter such that the cutting mechanism extends distally beyond the distal end of the guide catheter, wherein the cardiac valve is associated with an interventional implant that approximates adjacent leaflets of the cardiac valve, and a cutting mechanism extends from the guide catheter, and actuating the cutting mechanism to cut at a portion of least one leaflet of the approximated adjacent leaflet.
Embodiment 23. The method of embodiment 22, wherein actuating the cutting mechanism comprises delivering radio frequency current energy through the cutting mechanism.
This application claims priority to U.S. Provisional Patent Application No. 63/020,671, filed May 6, 2020, the entire contents of which are incorporated by reference herein.
Number | Name | Date | Kind |
---|---|---|---|
1996261 | Storz | Apr 1935 | A |
2097018 | Chamberlin | Oct 1937 | A |
2108206 | Mecker | Feb 1938 | A |
3296668 | Aiken | Jan 1967 | A |
3378010 | Codling et al. | Apr 1968 | A |
3470875 | Johnson | Oct 1969 | A |
3557780 | Sato | Jan 1971 | A |
3671979 | Moulopoulos | Jun 1972 | A |
3675639 | Cimber | Jul 1972 | A |
3776237 | Hill et al. | Dec 1973 | A |
3874338 | Happel | Apr 1975 | A |
3874388 | King et al. | Apr 1975 | A |
4007743 | Blake | Feb 1977 | A |
4056854 | Boretos et al. | Nov 1977 | A |
4064881 | Meredith | Dec 1977 | A |
4091815 | Larsen | May 1978 | A |
4112951 | Hulka et al. | Sep 1978 | A |
4235238 | Ogiu et al. | Nov 1980 | A |
4297749 | Davis et al. | Nov 1981 | A |
4312337 | Donohue | Jan 1982 | A |
4425908 | Simon | Jan 1984 | A |
4458682 | Cerwin | Jul 1984 | A |
4484579 | Meno et al. | Nov 1984 | A |
4487205 | Di et al. | Dec 1984 | A |
4498476 | Cerwin et al. | Feb 1985 | A |
4510934 | Batra | Apr 1985 | A |
4531522 | Bedi et al. | Jul 1985 | A |
4578061 | Lemelson | Mar 1986 | A |
4641366 | Yokoyama et al. | Feb 1987 | A |
4686965 | Bonnet et al. | Aug 1987 | A |
4777951 | Cribier et al. | Oct 1988 | A |
4809695 | Gwathmey et al. | Mar 1989 | A |
4872455 | Pinchuk et al. | Oct 1989 | A |
4878495 | Grayzel | Nov 1989 | A |
4917089 | Sideris | Apr 1990 | A |
4944295 | Gwathmey et al. | Jul 1990 | A |
4969890 | Sugita et al. | Nov 1990 | A |
4994077 | Dobben | Feb 1991 | A |
5015249 | Nakao et al. | May 1991 | A |
5019096 | Fox et al. | May 1991 | A |
5042707 | Taheri | Aug 1991 | A |
5047041 | Samuels | Sep 1991 | A |
5049153 | Nakao et al. | Sep 1991 | A |
5053043 | Gottesman et al. | Oct 1991 | A |
5061277 | Carpentier et al. | Oct 1991 | A |
5069679 | Taheri | Dec 1991 | A |
5071428 | Chin et al. | Dec 1991 | A |
5078722 | Stevens | Jan 1992 | A |
5078723 | Dance et al. | Jan 1992 | A |
5108368 | Hammerslag et al. | Apr 1992 | A |
5125758 | Dewan | Jun 1992 | A |
5171252 | Friedland | Dec 1992 | A |
5171259 | Inoue | Dec 1992 | A |
5190554 | Coddington et al. | Mar 1993 | A |
5195968 | Lundquist et al. | Mar 1993 | A |
5209756 | Seedhom et al. | May 1993 | A |
5217460 | Knoepfler | Jun 1993 | A |
5226429 | Kuzmak | Jul 1993 | A |
5226911 | Chee et al. | Jul 1993 | A |
5234437 | Sepetka | Aug 1993 | A |
5242456 | Nash et al. | Sep 1993 | A |
5250071 | Palermo | Oct 1993 | A |
5251611 | Zehel et al. | Oct 1993 | A |
5254130 | Poncet et al. | Oct 1993 | A |
5261916 | Engelson | Nov 1993 | A |
5271381 | Ailinger et al. | Dec 1993 | A |
5275578 | Adams | Jan 1994 | A |
5282845 | Bush et al. | Feb 1994 | A |
5304131 | Paskar | Apr 1994 | A |
5306283 | Conners | Apr 1994 | A |
5306286 | Stack et al. | Apr 1994 | A |
5312415 | Palermo | May 1994 | A |
5314424 | Nicholas | May 1994 | A |
5318525 | West et al. | Jun 1994 | A |
5320632 | Heidmueller | Jun 1994 | A |
5325845 | Adair | Jul 1994 | A |
5330442 | Green et al. | Jul 1994 | A |
5332402 | Teitelbaum | Jul 1994 | A |
5336227 | Nakao et al. | Aug 1994 | A |
5342393 | Stack | Aug 1994 | A |
5350397 | Palermo et al. | Sep 1994 | A |
5350399 | Erlebacher et al. | Sep 1994 | A |
5359994 | Krauter et al. | Nov 1994 | A |
5368564 | Savage | Nov 1994 | A |
5368601 | Sauer et al. | Nov 1994 | A |
5373854 | Kolozsi | Dec 1994 | A |
5383886 | Kensey et al. | Jan 1995 | A |
5387219 | Rappe | Feb 1995 | A |
5391182 | Chin | Feb 1995 | A |
5395030 | Kuramoto et al. | Mar 1995 | A |
5403312 | Yates et al. | Apr 1995 | A |
5403326 | Harrison et al. | Apr 1995 | A |
5411552 | Andersen et al. | May 1995 | A |
5417684 | Jackson et al. | May 1995 | A |
5417699 | Klein et al. | May 1995 | A |
5417700 | Egan | May 1995 | A |
5423830 | Schneebaum et al. | Jun 1995 | A |
5423857 | Rosenman et al. | Jun 1995 | A |
5423858 | Bolanos et al. | Jun 1995 | A |
5423882 | Jackman et al. | Jun 1995 | A |
5431666 | Sauer et al. | Jul 1995 | A |
5437551 | Chalifoux | Aug 1995 | A |
5437681 | Meade et al. | Aug 1995 | A |
5447966 | Hermes et al. | Sep 1995 | A |
5450860 | O'Connor | Sep 1995 | A |
5456400 | Shichman et al. | Oct 1995 | A |
5456684 | Schmidt et al. | Oct 1995 | A |
5462527 | Stevens-Wright et al. | Oct 1995 | A |
5472044 | Hall et al. | Dec 1995 | A |
5472423 | Gronauer | Dec 1995 | A |
5476470 | Fitzgibbons, Jr. | Dec 1995 | A |
5477856 | Lundquist | Dec 1995 | A |
5478309 | Sweezer et al. | Dec 1995 | A |
5478353 | Yoon | Dec 1995 | A |
5487746 | Yu et al. | Jan 1996 | A |
5496332 | Sierra et al. | Mar 1996 | A |
5507725 | Savage et al. | Apr 1996 | A |
5507755 | Gresl et al. | Apr 1996 | A |
5507757 | Sauer et al. | Apr 1996 | A |
5520701 | Lerch | May 1996 | A |
5522873 | Jackman et al. | Jun 1996 | A |
5527313 | Scott et al. | Jun 1996 | A |
5527321 | Hinchliffe | Jun 1996 | A |
5527322 | Klein et al. | Jun 1996 | A |
5536251 | Evard et al. | Jul 1996 | A |
5540705 | Meade et al. | Jul 1996 | A |
5542949 | Yoon | Aug 1996 | A |
5554185 | Block et al. | Sep 1996 | A |
5562678 | Booker | Oct 1996 | A |
5569274 | Rapacki et al. | Oct 1996 | A |
5571085 | Accisano, III | Nov 1996 | A |
5571137 | Marlow et al. | Nov 1996 | A |
5571215 | Sterman et al. | Nov 1996 | A |
5575802 | McQuilkin et al. | Nov 1996 | A |
5582611 | Tsuruta et al. | Dec 1996 | A |
5584803 | Stevens et al. | Dec 1996 | A |
5593424 | Northrup, III | Jan 1997 | A |
5593435 | Carpentier et al. | Jan 1997 | A |
5609598 | Laufer et al. | Mar 1997 | A |
5617854 | Munsif | Apr 1997 | A |
5618306 | Roth et al. | Apr 1997 | A |
5620452 | Yoon | Apr 1997 | A |
5620461 | Muijs et al. | Apr 1997 | A |
5626588 | Sauer et al. | May 1997 | A |
5634932 | Schmidt | Jun 1997 | A |
5636634 | Kordis et al. | Jun 1997 | A |
5639277 | Mariant et al. | Jun 1997 | A |
5640955 | Ockuly et al. | Jun 1997 | A |
5649937 | Bito et al. | Jul 1997 | A |
5662681 | Nash et al. | Sep 1997 | A |
5669917 | Sauer et al. | Sep 1997 | A |
5669919 | Sanders et al. | Sep 1997 | A |
5690671 | Mcgurk et al. | Nov 1997 | A |
5695504 | Gifford et al. | Dec 1997 | A |
5695505 | Yoon | Dec 1997 | A |
5702825 | Keita et al. | Dec 1997 | A |
5706824 | Whittier | Jan 1998 | A |
5709707 | Lock et al. | Jan 1998 | A |
5713910 | Gordon et al. | Feb 1998 | A |
5713911 | Racenet et al. | Feb 1998 | A |
5715817 | Stevens-Wright et al. | Feb 1998 | A |
5716367 | Koike et al. | Feb 1998 | A |
5718725 | Sterman et al. | Feb 1998 | A |
5719725 | Nakao | Feb 1998 | A |
5722421 | Francese et al. | Mar 1998 | A |
5725542 | Yoon | Mar 1998 | A |
5725556 | Moser et al. | Mar 1998 | A |
5738649 | Macoviak | Apr 1998 | A |
5741271 | Nakao et al. | Apr 1998 | A |
5741280 | Fleenor | Apr 1998 | A |
5746747 | Mckeating | May 1998 | A |
5749828 | Yeung | May 1998 | A |
5759193 | Burbank et al. | Jun 1998 | A |
5769812 | Stevens et al. | Jun 1998 | A |
5769863 | Garrison | Jun 1998 | A |
5772578 | Heimberger et al. | Jun 1998 | A |
5782845 | Shewchuk | Jul 1998 | A |
5797927 | Yoon | Aug 1998 | A |
5797960 | Stevens et al. | Aug 1998 | A |
5810847 | Laufer et al. | Sep 1998 | A |
5810849 | Kontos | Sep 1998 | A |
5810853 | Yoon | Sep 1998 | A |
5810876 | Kelleher | Sep 1998 | A |
5814029 | Hassett | Sep 1998 | A |
5820591 | Thompson et al. | Oct 1998 | A |
5820592 | Hammerslag | Oct 1998 | A |
5820630 | Lind | Oct 1998 | A |
5820631 | Nobles | Oct 1998 | A |
5823955 | Kuck et al. | Oct 1998 | A |
5823956 | Roth et al. | Oct 1998 | A |
5824065 | Gross | Oct 1998 | A |
5827237 | Macoviak et al. | Oct 1998 | A |
5829447 | Stevens et al. | Nov 1998 | A |
5833671 | Macoviak et al. | Nov 1998 | A |
5836955 | Buelna et al. | Nov 1998 | A |
5840081 | Andersen et al. | Nov 1998 | A |
5843031 | Hermann et al. | Dec 1998 | A |
5843103 | Wulfman | Dec 1998 | A |
5849019 | Yoon | Dec 1998 | A |
5853422 | Huebsch et al. | Dec 1998 | A |
5855271 | Eubanks et al. | Jan 1999 | A |
5855590 | Malecki et al. | Jan 1999 | A |
5855614 | Stevens et al. | Jan 1999 | A |
5860990 | Nobles et al. | Jan 1999 | A |
5861003 | Latson et al. | Jan 1999 | A |
5868733 | Ockuly et al. | Feb 1999 | A |
5876399 | Chia et al. | Mar 1999 | A |
5879307 | Chio et al. | Mar 1999 | A |
5885271 | Hamilton et al. | Mar 1999 | A |
5891160 | Williamson et al. | Apr 1999 | A |
5895404 | Ruiz | Apr 1999 | A |
5895417 | Pomeranz et al. | Apr 1999 | A |
5906620 | Nakao et al. | May 1999 | A |
5908420 | Parins et al. | Jun 1999 | A |
5916147 | Boury | Jun 1999 | A |
5928224 | Laufer | Jul 1999 | A |
5944733 | Engelson | Aug 1999 | A |
5947363 | Bolduc et al. | Sep 1999 | A |
5954732 | Hart et al. | Sep 1999 | A |
5957949 | Leonhardt et al. | Sep 1999 | A |
5957973 | Quiachon et al. | Sep 1999 | A |
5972020 | Carpentier et al. | Oct 1999 | A |
5972030 | Garrison et al. | Oct 1999 | A |
5980455 | Daniel et al. | Nov 1999 | A |
5989284 | Laufer | Nov 1999 | A |
5997547 | Nakao et al. | Dec 1999 | A |
6007546 | Snow et al. | Dec 1999 | A |
6015417 | Reynolds, Jr. | Jan 2000 | A |
6019722 | Spence et al. | Feb 2000 | A |
6022360 | Reimels et al. | Feb 2000 | A |
6033378 | Lundquist et al. | Mar 2000 | A |
6033419 | Hamblin et al. | Mar 2000 | A |
6036699 | Andreas et al. | Mar 2000 | A |
6048351 | Gordon et al. | Apr 2000 | A |
6053933 | Balazs et al. | Apr 2000 | A |
6056769 | Epstein et al. | May 2000 | A |
6059757 | Macoviak et al. | May 2000 | A |
6060628 | Aoyama et al. | May 2000 | A |
6060629 | Pham et al. | May 2000 | A |
6063106 | Gibson | May 2000 | A |
6066146 | Carroll et al. | May 2000 | A |
6068628 | Fanton et al. | May 2000 | A |
6068629 | Haissaguerre et al. | May 2000 | A |
6077214 | Mortier et al. | Jun 2000 | A |
6086600 | Kortenbach | Jul 2000 | A |
6088889 | Luther et al. | Jul 2000 | A |
6090118 | McGuckin, Jr. | Jul 2000 | A |
6099505 | Ryan et al. | Aug 2000 | A |
6099553 | Hart et al. | Aug 2000 | A |
6110145 | Macoviak | Aug 2000 | A |
6117144 | Nobles et al. | Sep 2000 | A |
6117159 | Huebsch et al. | Sep 2000 | A |
6123665 | Kawano | Sep 2000 | A |
6123699 | Webster, Jr. | Sep 2000 | A |
6126658 | Baker | Oct 2000 | A |
6132447 | Dorsey | Oct 2000 | A |
6136010 | Modesitt et al. | Oct 2000 | A |
6139508 | Simpson et al. | Oct 2000 | A |
6143024 | Campbell et al. | Nov 2000 | A |
6159240 | Sparer et al. | Dec 2000 | A |
6162233 | Williamson et al. | Dec 2000 | A |
6165164 | Hill et al. | Dec 2000 | A |
6165183 | Kuehn et al. | Dec 2000 | A |
6165204 | Levinson et al. | Dec 2000 | A |
6168614 | Andersen et al. | Jan 2001 | B1 |
6171320 | Monassevitch | Jan 2001 | B1 |
6174322 | Schneidt | Jan 2001 | B1 |
6180059 | Divino et al. | Jan 2001 | B1 |
6182664 | Cosgrove | Feb 2001 | B1 |
6187003 | Buysse et al. | Feb 2001 | B1 |
6190408 | Melvin | Feb 2001 | B1 |
6197043 | Davidson | Mar 2001 | B1 |
6203531 | Ockuly et al. | Mar 2001 | B1 |
6203553 | Robertson et al. | Mar 2001 | B1 |
6206893 | Klein et al. | Mar 2001 | B1 |
6206907 | Marino et al. | Mar 2001 | B1 |
6210419 | Mayenberger et al. | Apr 2001 | B1 |
6210432 | Solem et al. | Apr 2001 | B1 |
6245079 | Nobles et al. | Jun 2001 | B1 |
6264617 | Bales et al. | Jul 2001 | B1 |
6267746 | Bumbalough | Jul 2001 | B1 |
6267781 | Tu | Jul 2001 | B1 |
6269819 | Oz et al. | Aug 2001 | B1 |
6277555 | Duran et al. | Aug 2001 | B1 |
6283127 | Sterman et al. | Sep 2001 | B1 |
6283962 | Tu et al. | Sep 2001 | B1 |
6299637 | Shaolian et al. | Oct 2001 | B1 |
6306133 | Tu et al. | Oct 2001 | B1 |
6312447 | Grimes | Nov 2001 | B1 |
6319250 | Falwell et al. | Nov 2001 | B1 |
6322559 | Daulton et al. | Nov 2001 | B1 |
6332893 | Mortier et al. | Dec 2001 | B1 |
6334860 | Dorn | Jan 2002 | B1 |
6352708 | Duran et al. | Mar 2002 | B1 |
6355030 | Aldrich et al. | Mar 2002 | B1 |
6358277 | Duran | Mar 2002 | B1 |
6368326 | Dakin et al. | Apr 2002 | B1 |
6387104 | Pugsley et al. | May 2002 | B1 |
6402780 | Williamson et al. | Jun 2002 | B2 |
6402781 | Langberg et al. | Jun 2002 | B1 |
6406420 | McCarthy et al. | Jun 2002 | B1 |
6419640 | Taylor | Jul 2002 | B1 |
6419669 | Frazier et al. | Jul 2002 | B1 |
6461366 | Seguin | Oct 2002 | B1 |
6464707 | Bjerken | Oct 2002 | B1 |
6482224 | Michler et al. | Nov 2002 | B1 |
6485489 | Teirstein et al. | Nov 2002 | B2 |
6494881 | Bales et al. | Dec 2002 | B1 |
6508828 | Akerfeldt et al. | Jan 2003 | B1 |
6517550 | Konya et al. | Feb 2003 | B1 |
6533796 | Sauer et al. | Mar 2003 | B1 |
6537314 | Langberg et al. | Mar 2003 | B2 |
6540755 | Ockuly et al. | Apr 2003 | B2 |
6551331 | Nobles et al. | Apr 2003 | B2 |
6562037 | Paton et al. | May 2003 | B2 |
6562052 | Nobles et al. | May 2003 | B2 |
6575971 | Hauck et al. | Jun 2003 | B2 |
6585761 | Taheri | Jul 2003 | B2 |
6599311 | Biggs et al. | Jul 2003 | B1 |
6616684 | Vidlund et al. | Sep 2003 | B1 |
6619291 | Hlavka et al. | Sep 2003 | B2 |
6626899 | Houser et al. | Sep 2003 | B2 |
6626921 | Blatter et al. | Sep 2003 | B2 |
6626930 | Allen et al. | Sep 2003 | B1 |
6629534 | St et al. | Oct 2003 | B1 |
6641592 | Sauer et al. | Nov 2003 | B1 |
6656221 | Taylor et al. | Dec 2003 | B2 |
6669687 | Saadat | Dec 2003 | B1 |
6685648 | Flaherty et al. | Feb 2004 | B2 |
6689164 | Seguin | Feb 2004 | B1 |
6695866 | Kuehn et al. | Feb 2004 | B1 |
6701929 | Hussein | Mar 2004 | B2 |
6702825 | Frazier et al. | Mar 2004 | B2 |
6702826 | Liddicoat et al. | Mar 2004 | B2 |
6709382 | Horner | Mar 2004 | B1 |
6709456 | Langberg et al. | Mar 2004 | B2 |
6718985 | Hlavka et al. | Apr 2004 | B2 |
6719767 | Kimblad | Apr 2004 | B1 |
6723038 | Schroeder et al. | Apr 2004 | B1 |
6726716 | Marquez | Apr 2004 | B2 |
6740107 | Loeb et al. | May 2004 | B2 |
6746471 | Mortier et al. | Jun 2004 | B2 |
6752813 | Goldfarb et al. | Jun 2004 | B2 |
6755777 | Schweich et al. | Jun 2004 | B2 |
6764510 | Vidlund et al. | Jul 2004 | B2 |
6767349 | Ouchi | Jul 2004 | B2 |
6770083 | Seguin | Aug 2004 | B2 |
6797001 | Mathis et al. | Sep 2004 | B2 |
6797002 | Spence et al. | Sep 2004 | B2 |
6860179 | Hopper et al. | Mar 2005 | B2 |
6875224 | Grimes | Apr 2005 | B2 |
6926715 | Hauck et al. | Aug 2005 | B1 |
6932810 | Ryan | Aug 2005 | B2 |
6945978 | Hyde | Sep 2005 | B1 |
6949122 | Adams et al. | Sep 2005 | B2 |
6966914 | Abe | Nov 2005 | B2 |
6986775 | Morales et al. | Jan 2006 | B2 |
7004970 | Cauthen et al. | Feb 2006 | B2 |
7011669 | Kimblad | Mar 2006 | B2 |
7033390 | Johnson et al. | Apr 2006 | B2 |
7048754 | Martin et al. | May 2006 | B2 |
7056294 | Khairkhahan et al. | Jun 2006 | B2 |
7112207 | Allen et al. | Sep 2006 | B2 |
7226467 | Lucatero | Jun 2007 | B2 |
7258694 | Choi et al. | Aug 2007 | B1 |
7288097 | Seguin | Oct 2007 | B2 |
7291168 | Macoviak et al. | Nov 2007 | B2 |
7338467 | Lutter | Mar 2008 | B2 |
7381210 | Zarbatany et al. | Jun 2008 | B2 |
7435257 | Lashinski et al. | Oct 2008 | B2 |
7464712 | Oz et al. | Dec 2008 | B2 |
7497822 | Kugler et al. | Mar 2009 | B1 |
7533790 | Knodel et al. | May 2009 | B1 |
7563267 | Goldfarb et al. | Jul 2009 | B2 |
7563273 | Goldfarb et al. | Jul 2009 | B2 |
7604646 | Goldfarb et al. | Oct 2009 | B2 |
7608091 | Goldfarb et al. | Oct 2009 | B2 |
7635329 | Goldfarb et al. | Dec 2009 | B2 |
7651502 | Jackson | Jan 2010 | B2 |
7655015 | Goldfarb et al. | Feb 2010 | B2 |
7666204 | Thornton et al. | Feb 2010 | B2 |
7955340 | Michlitsch et al. | Jun 2011 | B2 |
8216234 | Long | Jul 2012 | B2 |
8257356 | Bleich et al. | Sep 2012 | B2 |
8398708 | Meiri et al. | Mar 2013 | B2 |
8435237 | Bahney | May 2013 | B2 |
8496655 | Epp et al. | Jul 2013 | B2 |
8500768 | Cohen | Aug 2013 | B2 |
8523881 | Cabiri et al. | Sep 2013 | B2 |
8623077 | Cohn | Jan 2014 | B2 |
8690858 | Machold et al. | Apr 2014 | B2 |
8821518 | Saliman et al. | Sep 2014 | B2 |
8926588 | Berthiaume et al. | Jan 2015 | B2 |
9126032 | Khairkhahan et al. | Sep 2015 | B2 |
9211119 | Hendricksen et al. | Dec 2015 | B2 |
9370341 | Ceniccola et al. | Jun 2016 | B2 |
9498331 | Chang et al. | Nov 2016 | B2 |
9572666 | Basude et al. | Feb 2017 | B2 |
9770256 | Cohen et al. | Sep 2017 | B2 |
9949833 | McCleary et al. | Apr 2018 | B2 |
10238493 | Metchik et al. | Mar 2019 | B1 |
10667804 | Basude et al. | Jun 2020 | B2 |
11013554 | Coates | May 2021 | B2 |
11406250 | Saadat et al. | Aug 2022 | B2 |
20010002445 | Vesely | May 2001 | A1 |
20010004715 | Duran et al. | Jun 2001 | A1 |
20010005787 | Oz et al. | Jun 2001 | A1 |
20010010005 | Kammerer et al. | Jul 2001 | A1 |
20010018611 | Solem et al. | Aug 2001 | A1 |
20010022872 | Marui | Sep 2001 | A1 |
20010037084 | Nardeo | Nov 2001 | A1 |
20010039411 | Johansson et al. | Nov 2001 | A1 |
20010044568 | Langberg et al. | Nov 2001 | A1 |
20010044635 | Niizeki et al. | Nov 2001 | A1 |
20020013547 | Paskar | Jan 2002 | A1 |
20020013571 | Goldfarb et al. | Jan 2002 | A1 |
20020022848 | Garrison et al. | Feb 2002 | A1 |
20020026233 | Shaknovich | Feb 2002 | A1 |
20020035361 | Houser et al. | Mar 2002 | A1 |
20020035381 | Bardy et al. | Mar 2002 | A1 |
20020042651 | Liddicoat et al. | Apr 2002 | A1 |
20020055767 | Forde et al. | May 2002 | A1 |
20020055774 | Liddicoat | May 2002 | A1 |
20020055775 | Carpentier et al. | May 2002 | A1 |
20020058910 | Hermann et al. | May 2002 | A1 |
20020058995 | Stevens | May 2002 | A1 |
20020077687 | Ahn | Jun 2002 | A1 |
20020087148 | Brock et al. | Jul 2002 | A1 |
20020087169 | Brock et al. | Jul 2002 | A1 |
20020087173 | Alferness et al. | Jul 2002 | A1 |
20020103532 | Langberg et al. | Aug 2002 | A1 |
20020107534 | Schaefer et al. | Aug 2002 | A1 |
20020147456 | Diduch et al. | Oct 2002 | A1 |
20020156526 | Hlavka et al. | Oct 2002 | A1 |
20020158528 | Tsuzaki et al. | Oct 2002 | A1 |
20020161378 | Downing | Oct 2002 | A1 |
20020169360 | Taylor et al. | Nov 2002 | A1 |
20020173811 | Tu et al. | Nov 2002 | A1 |
20020173841 | Ortiz et al. | Nov 2002 | A1 |
20020183766 | Seguin | Dec 2002 | A1 |
20020183787 | Wahr et al. | Dec 2002 | A1 |
20020183835 | Taylor et al. | Dec 2002 | A1 |
20030005797 | Hopper et al. | Jan 2003 | A1 |
20030045778 | Ohline et al. | Mar 2003 | A1 |
20030050693 | Quijano et al. | Mar 2003 | A1 |
20030069570 | Witzel et al. | Apr 2003 | A1 |
20030069593 | Tremulis et al. | Apr 2003 | A1 |
20030069636 | Solem et al. | Apr 2003 | A1 |
20030074012 | Nguyen et al. | Apr 2003 | A1 |
20030078654 | Taylor et al. | Apr 2003 | A1 |
20030083742 | Spence et al. | May 2003 | A1 |
20030105519 | Fasol et al. | Jun 2003 | A1 |
20030105520 | Alferness et al. | Jun 2003 | A1 |
20030120340 | Liska et al. | Jun 2003 | A1 |
20030120341 | Shennib et al. | Jun 2003 | A1 |
20030130669 | Damarati | Jul 2003 | A1 |
20030130730 | Cohn et al. | Jul 2003 | A1 |
20030144697 | Mathis et al. | Jul 2003 | A1 |
20030167071 | Martin et al. | Sep 2003 | A1 |
20030171776 | Adams et al. | Sep 2003 | A1 |
20030187467 | Schreck | Oct 2003 | A1 |
20030195562 | Collier et al. | Oct 2003 | A1 |
20030208231 | Williamson et al. | Nov 2003 | A1 |
20030229395 | Cox | Dec 2003 | A1 |
20030233038 | Hassett | Dec 2003 | A1 |
20040002719 | Oz et al. | Jan 2004 | A1 |
20040003819 | St et al. | Jan 2004 | A1 |
20040015232 | Shu et al. | Jan 2004 | A1 |
20040019377 | Taylor et al. | Jan 2004 | A1 |
20040019378 | Hlavka et al. | Jan 2004 | A1 |
20040024414 | Downing | Feb 2004 | A1 |
20040030319 | Korkor et al. | Feb 2004 | A1 |
20040030382 | St et al. | Feb 2004 | A1 |
20040034380 | Woolfson et al. | Feb 2004 | A1 |
20040039442 | St et al. | Feb 2004 | A1 |
20040039443 | Solem et al. | Feb 2004 | A1 |
20040044350 | Martin et al. | Mar 2004 | A1 |
20040044365 | Bachman | Mar 2004 | A1 |
20040049207 | Goldfarb et al. | Mar 2004 | A1 |
20040049211 | Tremulis et al. | Mar 2004 | A1 |
20040059345 | Nakao et al. | Mar 2004 | A1 |
20040073302 | Rourke et al. | Apr 2004 | A1 |
20040078053 | Berg et al. | Apr 2004 | A1 |
20040087975 | Lucatero et al. | May 2004 | A1 |
20040088047 | Spence et al. | May 2004 | A1 |
20040092858 | Wilson et al. | May 2004 | A1 |
20040092962 | Thornton et al. | May 2004 | A1 |
20040097878 | Anderson et al. | May 2004 | A1 |
20040097979 | Svanidze et al. | May 2004 | A1 |
20040106989 | Wilson et al. | Jun 2004 | A1 |
20040111099 | Nguyen et al. | Jun 2004 | A1 |
20040116848 | Gardeski et al. | Jun 2004 | A1 |
20040116951 | Rosengart | Jun 2004 | A1 |
20040122448 | Levine | Jun 2004 | A1 |
20040127849 | Kantor | Jul 2004 | A1 |
20040127981 | Rahdert et al. | Jul 2004 | A1 |
20040127982 | Machold et al. | Jul 2004 | A1 |
20040127983 | Mortier et al. | Jul 2004 | A1 |
20040133062 | Pai et al. | Jul 2004 | A1 |
20040133063 | McCarthy et al. | Jul 2004 | A1 |
20040133082 | Abraham-Fuchs et al. | Jul 2004 | A1 |
20040133192 | Houser et al. | Jul 2004 | A1 |
20040133220 | Lashinski et al. | Jul 2004 | A1 |
20040133232 | Rosenbluth et al. | Jul 2004 | A1 |
20040133240 | Adams et al. | Jul 2004 | A1 |
20040133273 | Cox | Jul 2004 | A1 |
20040138744 | Lashinski et al. | Jul 2004 | A1 |
20040138745 | Macoviak et al. | Jul 2004 | A1 |
20040147826 | Peterson | Jul 2004 | A1 |
20040148021 | Cartledge et al. | Jul 2004 | A1 |
20040152847 | Emri et al. | Aug 2004 | A1 |
20040152947 | Schroeder et al. | Aug 2004 | A1 |
20040153144 | Seguin | Aug 2004 | A1 |
20040158123 | Jayaraman | Aug 2004 | A1 |
20040162610 | Liska et al. | Aug 2004 | A1 |
20040167539 | Kuehn et al. | Aug 2004 | A1 |
20040186486 | Roue et al. | Sep 2004 | A1 |
20040186566 | Hindrichs et al. | Sep 2004 | A1 |
20040193191 | Starksen et al. | Sep 2004 | A1 |
20040215339 | Drasler et al. | Oct 2004 | A1 |
20040220593 | Greenhalgh | Nov 2004 | A1 |
20040220657 | Nieminen et al. | Nov 2004 | A1 |
20040225233 | Frankowski et al. | Nov 2004 | A1 |
20040225300 | Goldfarb et al. | Nov 2004 | A1 |
20040225305 | Ewers et al. | Nov 2004 | A1 |
20040225353 | McGuckin et al. | Nov 2004 | A1 |
20040236354 | Seguin | Nov 2004 | A1 |
20040242960 | Orban | Dec 2004 | A1 |
20040243229 | Vidlund et al. | Dec 2004 | A1 |
20040249452 | Adams et al. | Dec 2004 | A1 |
20040249453 | Cartledge et al. | Dec 2004 | A1 |
20040260393 | Rahdert et al. | Dec 2004 | A1 |
20050004583 | Oz et al. | Jan 2005 | A1 |
20050004665 | Aklog | Jan 2005 | A1 |
20050004668 | Aklog et al. | Jan 2005 | A1 |
20050021056 | St et al. | Jan 2005 | A1 |
20050021057 | St et al. | Jan 2005 | A1 |
20050021058 | Negro | Jan 2005 | A1 |
20050033446 | Deem et al. | Feb 2005 | A1 |
20050038383 | Kelley et al. | Feb 2005 | A1 |
20050038508 | Gabbay | Feb 2005 | A1 |
20050049698 | Bolling et al. | Mar 2005 | A1 |
20050055089 | Macoviak et al. | Mar 2005 | A1 |
20050059351 | Cauwels et al. | Mar 2005 | A1 |
20050065453 | Shabaz et al. | Mar 2005 | A1 |
20050085903 | Lau | Apr 2005 | A1 |
20050119735 | Spence et al. | Jun 2005 | A1 |
20050131438 | Cohn | Jun 2005 | A1 |
20050143809 | Salahieh et al. | Jun 2005 | A1 |
20050149014 | Hauck et al. | Jul 2005 | A1 |
20050159763 | Mollenauer et al. | Jul 2005 | A1 |
20050159810 | Filsoufi | Jul 2005 | A1 |
20050192633 | Montpetit | Sep 2005 | A1 |
20050197694 | Pai et al. | Sep 2005 | A1 |
20050197695 | Stacchino et al. | Sep 2005 | A1 |
20050216039 | Lederman | Sep 2005 | A1 |
20050228422 | Machold et al. | Oct 2005 | A1 |
20050228495 | Macoviak | Oct 2005 | A1 |
20050251001 | Hassett | Nov 2005 | A1 |
20050256452 | Demarchi et al. | Nov 2005 | A1 |
20050267493 | Schreck et al. | Dec 2005 | A1 |
20050273160 | Lashinski et al. | Dec 2005 | A1 |
20050277876 | Hayden | Dec 2005 | A1 |
20050287493 | Novak et al. | Dec 2005 | A1 |
20060004247 | Kute et al. | Jan 2006 | A1 |
20060009759 | Chrisitian | Jan 2006 | A1 |
20060015003 | Moaddes et al. | Jan 2006 | A1 |
20060015179 | Bulman-Fleming et al. | Jan 2006 | A1 |
20060020275 | Goldfarb et al. | Jan 2006 | A1 |
20060020327 | Lashinski et al. | Jan 2006 | A1 |
20060020334 | Lashinski et al. | Jan 2006 | A1 |
20060030866 | Schreck | Feb 2006 | A1 |
20060030867 | Zadno | Feb 2006 | A1 |
20060030885 | Hyde | Feb 2006 | A1 |
20060058871 | Zakay et al. | Mar 2006 | A1 |
20060064115 | Allen et al. | Mar 2006 | A1 |
20060064116 | Allen et al. | Mar 2006 | A1 |
20060064118 | Kimblad | Mar 2006 | A1 |
20060074484 | Huber | Apr 2006 | A1 |
20060089671 | Goldfarb et al. | Apr 2006 | A1 |
20060089711 | Dolan | Apr 2006 | A1 |
20060135961 | Rosenman et al. | Jun 2006 | A1 |
20060135993 | Seguin | Jun 2006 | A1 |
20060184198 | Bales et al. | Aug 2006 | A1 |
20060184203 | Martin et al. | Aug 2006 | A1 |
20060195012 | Mortier et al. | Aug 2006 | A1 |
20060229708 | Powell et al. | Oct 2006 | A1 |
20060252984 | Rahdert et al. | Nov 2006 | A1 |
20060276890 | Solem et al. | Dec 2006 | A1 |
20070016225 | Nakao | Jan 2007 | A1 |
20070038293 | St et al. | Feb 2007 | A1 |
20070060997 | de Boer | Mar 2007 | A1 |
20070073185 | Nakao | Mar 2007 | A1 |
20070100356 | Lucatero et al. | May 2007 | A1 |
20070118155 | Goldfarb et al. | May 2007 | A1 |
20070129737 | Goldfarb et al. | Jun 2007 | A1 |
20070173757 | Levine et al. | Jul 2007 | A1 |
20070197858 | Goldfarb et al. | Aug 2007 | A1 |
20070198082 | Kapadia et al. | Aug 2007 | A1 |
20070260225 | Sakakine et al. | Nov 2007 | A1 |
20070287884 | Schena | Dec 2007 | A1 |
20080009858 | Rizvi | Jan 2008 | A1 |
20080039935 | Buch et al. | Feb 2008 | A1 |
20080045936 | Vaska et al. | Feb 2008 | A1 |
20080051703 | Thornton et al. | Feb 2008 | A1 |
20080051807 | St et al. | Feb 2008 | A1 |
20080097467 | Gruber et al. | Apr 2008 | A1 |
20080097489 | Goldfarb et al. | Apr 2008 | A1 |
20080167714 | St et al. | Jul 2008 | A1 |
20080183194 | Goldfarb et al. | Jul 2008 | A1 |
20080188850 | Mody et al. | Aug 2008 | A1 |
20080195126 | Solem | Aug 2008 | A1 |
20080243249 | Kohm et al. | Oct 2008 | A1 |
20080294175 | Bardsley et al. | Nov 2008 | A1 |
20080312496 | Zwolinski | Dec 2008 | A1 |
20090012538 | Saliman et al. | Jan 2009 | A1 |
20090036768 | Seehusen et al. | Feb 2009 | A1 |
20090156995 | Martin et al. | Jun 2009 | A1 |
20090163934 | Raschdorf et al. | Jun 2009 | A1 |
20090177266 | Powell et al. | Jul 2009 | A1 |
20090192510 | Bahney | Jul 2009 | A1 |
20090198322 | Deem et al. | Aug 2009 | A1 |
20090204005 | Keast et al. | Aug 2009 | A1 |
20090209955 | Forster et al. | Aug 2009 | A1 |
20090209991 | Hinchliffe et al. | Aug 2009 | A1 |
20090270858 | Hauck et al. | Oct 2009 | A1 |
20090276039 | Meretei | Nov 2009 | A1 |
20090281619 | Le et al. | Nov 2009 | A1 |
20090326567 | Goldfarb et al. | Dec 2009 | A1 |
20100016958 | St et al. | Jan 2010 | A1 |
20100022823 | Goldfarb et al. | Jan 2010 | A1 |
20100044410 | Argentine et al. | Feb 2010 | A1 |
20100121437 | Subramanian et al. | May 2010 | A1 |
20100152612 | Headley et al. | Jun 2010 | A1 |
20100217261 | Watson | Aug 2010 | A1 |
20100262231 | Tuval et al. | Oct 2010 | A1 |
20100268226 | Epp et al. | Oct 2010 | A1 |
20100298929 | Thornton et al. | Nov 2010 | A1 |
20110009864 | Bucciaglia et al. | Jan 2011 | A1 |
20110184405 | Mueller | Jul 2011 | A1 |
20110224710 | Bleich | Sep 2011 | A1 |
20110238052 | Robinson | Sep 2011 | A1 |
20110282250 | Fung et al. | Nov 2011 | A1 |
20120022527 | Woodruff et al. | Jan 2012 | A1 |
20120022640 | Gross et al. | Jan 2012 | A1 |
20120065464 | Ellis et al. | Mar 2012 | A1 |
20120150194 | Odermatt et al. | Jun 2012 | A1 |
20120157765 | Mitelberg | Jun 2012 | A1 |
20120172915 | Fifer et al. | Jul 2012 | A1 |
20120179184 | Orlov | Jul 2012 | A1 |
20120265222 | Gordin et al. | Oct 2012 | A1 |
20120310330 | Buchbinder et al. | Dec 2012 | A1 |
20120316639 | Kleinschrodt | Dec 2012 | A1 |
20120330348 | Strauss et al. | Dec 2012 | A1 |
20130041314 | Dillon | Feb 2013 | A1 |
20130066341 | Ketai et al. | Mar 2013 | A1 |
20130066342 | Dell et al. | Mar 2013 | A1 |
20130109910 | Alexander et al. | May 2013 | A1 |
20130172828 | Kappel et al. | Jul 2013 | A1 |
20130317515 | Kuroda et al. | Nov 2013 | A1 |
20140039511 | Morris et al. | Feb 2014 | A1 |
20140135799 | Henderson | May 2014 | A1 |
20140228871 | Cohen et al. | Aug 2014 | A1 |
20140276913 | Tah | Sep 2014 | A1 |
20140309670 | Bakos et al. | Oct 2014 | A1 |
20140324164 | Gross et al. | Oct 2014 | A1 |
20140350662 | Vaturi | Nov 2014 | A1 |
20140358224 | Tegels et al. | Dec 2014 | A1 |
20140364866 | Dryden et al. | Dec 2014 | A1 |
20140379074 | Spence et al. | Dec 2014 | A1 |
20150005704 | Heisel et al. | Jan 2015 | A1 |
20150005801 | Marquis et al. | Jan 2015 | A1 |
20150051698 | Ruyra et al. | Feb 2015 | A1 |
20150094800 | Chawla | Apr 2015 | A1 |
20150112430 | Creaven et al. | Apr 2015 | A1 |
20150211946 | Pons et al. | Jul 2015 | A1 |
20150230947 | Krieger et al. | Aug 2015 | A1 |
20150257877 | Hernandez | Sep 2015 | A1 |
20150257883 | Basude et al. | Sep 2015 | A1 |
20150306806 | Dando et al. | Oct 2015 | A1 |
20150313581 | Wolfe et al. | Nov 2015 | A1 |
20160015410 | Asirvatham et al. | Jan 2016 | A1 |
20160074165 | Spence et al. | Mar 2016 | A1 |
20160174979 | Wei | Jun 2016 | A1 |
20160317174 | Dake | Nov 2016 | A1 |
20170042678 | Ganesan et al. | Feb 2017 | A1 |
20170100183 | Iaizzo et al. | Apr 2017 | A1 |
20170143330 | Basude et al. | May 2017 | A1 |
20170202559 | Taha | Jul 2017 | A1 |
20170232238 | Biller et al. | Aug 2017 | A1 |
20180008268 | Khairkhahan | Jan 2018 | A1 |
20180028215 | Cohen | Feb 2018 | A1 |
20180092661 | Prabhu | Apr 2018 | A1 |
20180133010 | Kizuka | May 2018 | A1 |
20180161159 | Lee et al. | Jun 2018 | A1 |
20180360457 | Ellis et al. | Dec 2018 | A1 |
20190029790 | Bak-Boychuk et al. | Jan 2019 | A1 |
20190183571 | De Marchena | Jun 2019 | A1 |
20190298517 | Sanchez et al. | Oct 2019 | A1 |
20190307458 | Mathis et al. | Oct 2019 | A1 |
20200121460 | Dale et al. | Apr 2020 | A1 |
20210113232 | Ortiz et al. | Apr 2021 | A1 |
20210145574 | Childs | May 2021 | A1 |
Number | Date | Country |
---|---|---|
1469724 | Jan 2004 | CN |
102770080 | Nov 2012 | CN |
103841899 | Jun 2014 | CN |
104244841 | Dec 2014 | CN |
3504292 | Jul 1986 | DE |
9100873 | Apr 1991 | DE |
10116168 | Nov 2001 | DE |
0179562 | Apr 1986 | EP |
0558031 | Sep 1993 | EP |
0684012 | Nov 1995 | EP |
0727239 | Aug 1996 | EP |
0782836 | Jul 1997 | EP |
1230899 | Aug 2002 | EP |
1674040 | Jun 2006 | EP |
1980288 | Oct 2008 | EP |
2005912 | Dec 2008 | EP |
2537487 | Dec 2012 | EP |
2641570 | Sep 2013 | EP |
2702965 | Mar 2014 | EP |
2740419 | Jun 2014 | EP |
3009103 | Apr 2016 | EP |
2705556 | Dec 1994 | FR |
2768324 | Mar 1999 | FR |
2903292 | Jan 2008 | FR |
1598111 | Sep 1981 | GB |
2151142 | Jul 1985 | GB |
09-253030 | Sep 1997 | JP |
11-089937 | Apr 1999 | JP |
2000-283130 | Oct 2000 | JP |
2001-517529 | Oct 2001 | JP |
2006-528911 | Dec 2006 | JP |
2013-516244 | May 2013 | JP |
2013-523384 | Jun 2013 | JP |
2014-523274 | Sep 2014 | JP |
2015-502548 | Jan 2015 | JP |
2018-030008 | Mar 2018 | JP |
8100668 | Mar 1981 | WO |
9101689 | Feb 1991 | WO |
9118881 | Dec 1991 | WO |
9212690 | Aug 1992 | WO |
9418881 | Sep 1994 | WO |
9418893 | Sep 1994 | WO |
9508292 | Mar 1995 | WO |
9511620 | May 1995 | WO |
9515715 | Jun 1995 | WO |
9614032 | May 1996 | WO |
9620655 | Jul 1996 | WO |
9622735 | Aug 1996 | WO |
9630072 | Oct 1996 | WO |
9718746 | May 1997 | WO |
9725927 | Jul 1997 | WO |
9726034 | Jul 1997 | WO |
9738748 | Oct 1997 | WO |
9739688 | Oct 1997 | WO |
9748436 | Dec 1997 | WO |
9807375 | Feb 1998 | WO |
9824372 | Jun 1998 | WO |
9830153 | Jul 1998 | WO |
9832382 | Jul 1998 | WO |
9835638 | Aug 1998 | WO |
9900059 | Jan 1999 | WO |
9901377 | Jan 1999 | WO |
9907295 | Feb 1999 | WO |
9907354 | Feb 1999 | WO |
9913777 | Mar 1999 | WO |
9944524 | Sep 1999 | WO |
9966967 | Dec 1999 | WO |
0002489 | Jan 2000 | WO |
0003651 | Jan 2000 | WO |
0003759 | Jan 2000 | WO |
0012168 | Mar 2000 | WO |
0044313 | Aug 2000 | WO |
0059382 | Oct 2000 | WO |
0060995 | Oct 2000 | WO |
0100111 | Jan 2001 | WO |
0100114 | Jan 2001 | WO |
0103651 | Jan 2001 | WO |
0126557 | Apr 2001 | WO |
0126586 | Apr 2001 | WO |
0126587 | Apr 2001 | WO |
0126588 | Apr 2001 | WO |
0126703 | Apr 2001 | WO |
0128432 | Apr 2001 | WO |
0128455 | Apr 2001 | WO |
0147438 | Jul 2001 | WO |
0149213 | Jul 2001 | WO |
0150985 | Jul 2001 | WO |
0154618 | Aug 2001 | WO |
0156512 | Aug 2001 | WO |
0166001 | Sep 2001 | WO |
0170320 | Sep 2001 | WO |
0189440 | Nov 2001 | WO |
0195831 | Dec 2001 | WO |
0195832 | Dec 2001 | WO |
0197741 | Dec 2001 | WO |
0200099 | Jan 2002 | WO |
0201999 | Jan 2002 | WO |
0203892 | Jan 2002 | WO |
0234167 | May 2002 | WO |
0260352 | Aug 2002 | WO |
0262263 | Aug 2002 | WO |
0262270 | Aug 2002 | WO |
0262408 | Aug 2002 | WO |
0301893 | Jan 2003 | WO |
0303930 | Jan 2003 | WO |
0320179 | Mar 2003 | WO |
0328558 | Apr 2003 | WO |
0337171 | May 2003 | WO |
0347467 | Jun 2003 | WO |
0349619 | Jun 2003 | WO |
0373910 | Sep 2003 | WO |
0373913 | Sep 2003 | WO |
0382129 | Oct 2003 | WO |
2003105667 | Dec 2003 | WO |
2004004607 | Jan 2004 | WO |
2004006810 | Jan 2004 | WO |
2004012583 | Feb 2004 | WO |
2004012789 | Feb 2004 | WO |
2004014282 | Feb 2004 | WO |
2004019811 | Mar 2004 | WO |
2004030570 | Apr 2004 | WO |
2004037317 | May 2004 | WO |
2004045370 | Jun 2004 | WO |
2004045378 | Jun 2004 | WO |
2004045463 | Jun 2004 | WO |
2004047679 | Jun 2004 | WO |
2004062725 | Jul 2004 | WO |
2004082523 | Sep 2004 | WO |
2004082538 | Sep 2004 | WO |
2004093730 | Nov 2004 | WO |
2004103162 | Dec 2004 | WO |
2004112585 | Dec 2004 | WO |
2004112651 | Dec 2004 | WO |
2005002424 | Jan 2005 | WO |
2005018507 | Mar 2005 | WO |
2005027797 | Mar 2005 | WO |
2005032421 | Apr 2005 | WO |
2005062931 | Jul 2005 | WO |
2005112792 | Dec 2005 | WO |
2006037073 | Apr 2006 | WO |
2006105008 | Oct 2006 | WO |
2006105009 | Oct 2006 | WO |
2006113906 | Oct 2006 | WO |
2006115875 | Nov 2006 | WO |
2006115876 | Nov 2006 | WO |
2007136829 | Nov 2007 | WO |
2008103722 | Aug 2008 | WO |
2010024801 | Mar 2010 | WO |
2010121076 | Oct 2010 | WO |
2012020521 | Feb 2012 | WO |
2013049734 | Apr 2013 | WO |
2013103934 | Jul 2013 | WO |
2014064694 | May 2014 | WO |
2014121280 | Aug 2014 | WO |
2016022797 | Feb 2016 | WO |
2016144708 | Sep 2016 | WO |
2016150806 | Sep 2016 | WO |
2017223073 | Dec 2017 | WO |
2018009718 | Jan 2018 | WO |
2018106482 | Jun 2018 | WO |
2018236766 | Dec 2018 | WO |
2019040943 | Feb 2019 | WO |
2019195336 | Oct 2019 | WO |
Entry |
---|
Nishimura, et al. 2014 AHA/ACC guideline for the management of patients with valvular heart disease: executive summary: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines. J Am Coll Cardiol. Jun. 10, 2014; 63(22):2438-88. |
Park et al, Clinical Use of Blade Atrial Septostomy, Circulation, 1978, pp. 600-608, vol. 58. |
Patel et al., #57 Epicardial Atrial Defibrillation: Novel Treatment of Postoperative Atrial Fibrillation, 2003 STS Presentation, [Abstract Only]. |
Privitera et al., “Alfieri Mitral Valve Repair: Clinical Outcome and Pathology,” Circulation, 106:e173-e174 (2002). |
Redaelli et al., “A Computational Study of the Hemodynamics After ‘Edge-To-Edge’ Mitral Valve Repair,” Journal of Biomechanical Engineering, 123:565-570 (2001). |
Reul et al., “Mitral Valve Reconstruction for Mitral Insufficiency,” Progress in Cardiovascular Diseases, XXXIX(6):567-599 (1997). |
Ricchi et al, Linear Segmental Annuloplasty for Mitral Valve Repair, Ann. Thorac. Surg., Jan. 7, 1997, pp. 1805-1806, vol. 63. |
Robicsek et al., #60 The Bicuspid Aortic Valve: How Does It Function? Why Does It Fail? 2003 STS Presentation, [Abstract Only]. |
Rose et al., “Late MitraClip Failure: Removal Technique for Leaflet-Sparing Mitral Valve Repair”, Journal of Cardiac Surgery, (Jul. 4, 2012), XP055047339, DOI: 10.1111/j. 1540-8191.2012.01483.x [retrieved on Dec. 11, 2012]. |
Supplemental European Search Report of EP Application No. 02746781, dated May 13, 2008, 3 pages total. |
Supplementary European Search Report issued in European Application No. 05753261.6 dated Jun. 9, 2011, 3 pages total. |
Tager et al, Long-Term Follow-Up of Rheumatic Patients Undergoing Left-Sided Valve Replacement With Tricuspid Annuloplasty—Validity of Preoperative Echocardiographic Criteria in the Decision to Perform Tricuspid Annuloplasty, Am. J. Cardiol., Apr. 15, 1998, pp. 1013-1016, vol. 81. |
Takizawa H et al: Development of a microfine active bending catheter equipped with MIF tactile sensors“, Micro Electro Mechanical Systems, 1999. MEMS '99. Twelfth IEEE Interna Tional Conference on Orlando, FL, USA Jan. 17-21, 1999, Piscataway, NJ, USA, IEEE, US, Jan. 17, 1999 (Jan. 17, 1999), pp. 412-417, XP010321677, ISBN: 978-0-7803-5194-3 figures 1-3.” |
Tamura et al., “Edge to Edge Repair for Mitral Regurgitation in a Patient with Chronic Hemodialysis: Report of a Case,” Kyobu Geka. The Japanese Journal of Thoracic Surgery, 54(9):788-790 (2001). |
Tibayan et al., #59 Annular Geometric Remodeling in Chronic Ischemic Mitral Regurgitation, 2003 STS Presentation, [Abstract Only]. |
Timek et al., “Edge-to-edge mitral repair: gradients and three-dimensional annular dynamics in vivo during inotropic stimulation,” Eur J. of Cardiothoracic Surg., 19:431-437 (2001). |
Timek, “Edge-to-Edge Mitral Valve Repair without Annuloplasty Ring in Acute Ischemic Mitral Regurgitation,” [Abstract] Clinical Science, Abstracts from Scientific Sessions, 106(19):2281 (2002). |
Totaro, “Mitral valve repair for isolated prolapse of the anterior leaflet: an 11-year follow-up,” European Journal of Cardio-thoracic Surgery, 15:119-126 (1999). |
U.S. Provisional Application Filed on Jul. 6, 2016, by Khairkhahan., U.S. Appl. No. 62/359,121. |
U.S. Provisional Application Filed on Nov. 7, 2016, by Khairkhahan., U.S. Appl. No. 62/418,571. |
U.S. Provisional Application Filed on Oct. 22, 2018, by Dale et al., U.S. Appl. No. 62/748,947. |
Uchida et al, Percutaneous Cardiomyotomy and Valvulotomy with Angioscopic Guidance, Am. Heart J., Apr. 1991, pp. 1221-1224, vol. 121. |
Umana et al, ‘Bow-Tie’ Mitral Valve Repair: An Adjuvant Technique for Ischemic Mitral Regurgitation, Ann. Thorac. Surg., May 12, 1998, pp. 1640-1646, vol. 66. |
Umana et al., “‘Bow-tie’ Mitral Valve Repair Successfully Addresses Subvalvular Dysfunction in Ischemic Mitral Regurgitation,” Surgical Forum, XLVIII:279-280 (1997). |
U.S. Appl. No. 14/216,813, filed Mar. 17, 2014, Hernandez. |
Votta et al., “3-D Computational Analysis of the Stress Distribution on the Leaflets after Edge-to-Edge Repair of Mitral Regurgitation,” Journal of Heart Valve Disease, 11:810-822 (2002). |
Abe et al, “De Vega's Annuloplasty for Acquired Tricuspid Disease: Early and Late Results in 110 Patients”, Ann. Thorac. Surg., pp. 670-676, vol. 48 (Jan. 1989). |
Abe et al., “Updated in 1996—De Vega's Annuloplasty for Acquired Tricuspid Disease: Early and Late Results in 110 Patients”, Ann. Thorac. Surg., pp. 1876-1877, vol. 62 (1996). |
Agricola et al., “Mitral Valve Reserve in Double Orifice Technique: an Exercise Echocardiographic Study,” Journal of Heart Valve Disease, 11(5):637-643 (2002). |
Alfieri et al., “An Effective Technique to Correct Anterior Mitral Leaflet Prolapse,” J. Card Surg., 14:468-470 (1999). |
Alfieri et al., “Novel Suture Device for Beating Heart Mitral Leaflet Approximation,” Annals of Thoracic Surgery, 74:1488-1493 (2002). |
Alfieri et al., “The double orifice technique in mitral valve repair: a simple solution for complex problems,” Journal of Thoracic and Cardiovascular Surgery, 122:674-681 (2001). |
Alfieri et al., “The Edge to Edge Technique,” The European Association For Cardio-Thoracic Surgery, 14th Annual Meeting, Frankfurt/ Germany, Oct. 7-11, 2000, Post Graduate Courses, Book of Proceedings. |
Alfieri, “The Edge-to-Edge Repair of the Mitral Valve,” [Abstract] 6th Annual New Era Cardiac Care: Innovation & Technology, Heart Surgery Forum, (Jan. 2003) pp. 103. |
Ali Khan et al, Blade Atrial Septostomy: Experience with the First 50 Procedures, Cathet. Cardiovasc. Diagn., Aug. 1991, pp. 257-262, vol. 23. |
Alvarez et al, Repairing the Degenerative Mitral Valve: Ten to Fifteen-year Follow-up, Journal Thoracic of Cardiovascular Surgery, Aug. 1996, pp. 238-247, vol. 112, No. 2. |
Arisi et al., “Mitral Valve Repair with Alfieri Technique in Mitral Regurgitation of Diverse Etiology: Early Echocardiographic Results,” Circulation Supplement II, 104(17):3240 (2001). |
Bach et al, Early Improvement in Congestive Heart Failure After Correction of Secondary Mitral Regurgitation in End-stage Cardiomyopathy, American Heart Journal, Jun. 1995, pp. 1165-1170, vol. 129, No. 6. |
Bach et al, Improvement Following Correction of Secondary Mitral Regurgitation in End-stage Cardiomyopathy With Mitral Annuloplasty, Am. J. Cardiol., Oct. 15, 1996, pp. 966-969, vol. 78. |
Bailey, “Mitral Regurgitation” in Surgery of the Heart, Chapter 20, pp. 686-737 (1955). |
Bernal et al., “The Valve Racket: a new and different concept of atrioventricular valve repair,” Eur. J. Cardio-thoracic Surgery 29:1026-1029 (2006). |
Bhudia et al., “Edge-to-Edge (Alfieri) Mitral Repair: Results in Diverse Clinical Settings,” Ann Thorac Surg, 77:1598-1606 (2004). |
Bhudia, #58 Edge-to-edge mitral repair: a versatile mitral repair technique, 2003 STS Presentation, [Abstract Only], 2004. |
Bolling et al, Surgery for Acquired Heart Disease: Early Outcome of Mitral Valve Reconstruction in Patients with End-stage Cardiomyopathy, Journal of Thoracic and Cariovascular Surgery, Apr. 1995, pp. 676-683, vol. 109, No. 4. |
Borghetti et al., “Preliminary observations on haemodynamics during physiological stress conditions following ‘double-orifice’ mitral valve repair,” European Journal of Cardio-thoracic Surgery, 20:262-269 (2001). |
Castedo, “Edge-to-Edge Tricuspid Repair for Redeveloped Valve Incompetence after DeVega's Annuloplasty,” Ann Thora Surg., 75:605-606 (2003). |
Chinese Office Action issued in Chinese Application No. 200980158707.2 dated Sep. 9, 2013. |
Communication dated Apr. 16, 2018 from the European Patent Office in counterpart European application No. 04752603.3. |
Communication dated Apr. 28, 2017 issued by the European Patent Office in counterpart application No. 16196023.2. |
Communication dated Jan. 26, 2017, from the European Patent Office in counterpart European application No. 16196023.2. |
Communication dated May 8, 2017, from the European Patent Office in counterpart European Application No. 04752714.8. |
Dang N C et al., “Surgical Revision After Percutaneous Mitral Valve Repair with a Clip: Initial Multicenter Experience”, The Annals of Thracic Surgery, Elsevier, United States, vol. 80, No. 6, pp. 2338-2342, (Dec. 1, 2005), XP027732951, ISSN:0003-4975 [retrieved on Dec. 1, 2005]. |
Dec et al, Idiopathic Dilated Cardiomyopathy, The New England Journal of Medicine, Dec. 8, 1994, pp. 1564-1575, vol. 331, No. 23. |
Dottori et al., “Echocardiographic imaging of the Alfieri type mitral valve repair,” Ital. Heart J., 2(4):319-320 (2001). |
Downing et al., “Beating heart mitral valve surgery: Preliminary model and methodology,” Journal of Thoracic and Cardiovascular Surgery, 123(6):1141-1146 (2002). |
Extended European Search Report, dated Oct. 17, 2014, issued in European Patent Application No. 06751584.1. |
Falk et al., “Computer-Enhanced Mitral Valve Surgery: Toward a Total Endoscopic Procedure,” Seminars in Thoracic and Cardiovascular Surgery, 11(3):244-249 (1999). |
Feldman, et al. Randomized Comparison of Percutaneous Repair and Surgery for Mitral Regurgitation: 5-Year Results of Everest Ii. J Am Coll Cardiol. Dec. 29, 2015;66(25):2844-2854. |
Filsoufi et al., “Restoring Optimal Surface of Coaptation With a Mini Leaflet Prosthesis: A New Surgical Concept for the Correction of Mitral Valve Prolapse,” Intl. Soc. for Minimally Invasive Cardiothoracic Surgery 1(4):186-87 (2006). |
Frazier et al., #62 Early Clinical Experience with an Implantable, Intracardiac Circulatory Support Device: Operative Considerations and Physiologic Implications, 2003 STS Presentation, 1 page total. [Abstract Only]. |
Fucci et al, Improved Results with Mitral Valve Repair Using New Surgical Techniques, Eur. J. Cardiothorac. Surg., Nov. 1995, pp. 621-627, vol. 9. |
Fundaro et al., “Chordal Plication and Free Edge Remodeling for Mitral Anterior Leaflet Prolapse Repair: 8-Year Follow-up,” Annals of Thoracic Surgery, 72:1515-1519 (2001). |
Garcia-Rinaldi et al., “Left Ventricular vol. Reduction and Reconstruction is Ischemic Cardiomyopathy,” Journal of Cardiac Surgery, 14:199-210 (1999). |
Gateliene, “Early and postoperative results results of metal and tricuspid valve insufficiency surgical treatment using edge-to-edge central coaptation procedure,” (Oct. 2002) 38 (Suppl 2):172 175. |
Gatti et al., “The edge to edge technique as a trick to rescue an imperfect mitral valve repair,” Eur. J. Cardiothorac Surg, 22:817-820 (2002). |
Gundry, “Facile mitral valve repair utilizing leaflet edge approximation: midterm results of the Alfieri figure of eight repair,” Presented at the Meeting of the Western Thoracic Surgical Association, (1999). |
Gupta et al., #61 Influence of Older Donor Grafts on Heart Transplant Survival: Lack of Recipient Effects, 2003 STS Presentation, [Abstract Only]. |
Ikeda et al., “Batista's Operation with Coronary Artery Bypass Grafting and Mitral Valve Plasty for Ischemic Dilated Cardiomyopathy,” The Japanese Journal of Thoracic and Cardiovascular Surgery, 48:746-749 (2000). |
Izzat et al., “Early Experience with Partial Left Ventriculectomy in the Asia-Pacific Region,” Annuals of Thoracic Surgery, 67:1703-1707 (1999). |
Kallner et al., “Transaortic Approach for the Alfieri Stitch,” Ann Thorac Surg, 71:378-380 (2001). |
Kameda et al., Annuloplasty for Severe Mitral Regurgitation Due to Dilated Cardiomyopathy, Ann. Thorac. Surg., 1996, pp. 1829-1832, vol. 61. |
Kavarana et al., “Transaortic Repair of Mitral Regurgitation,” The Heart Surgery Forum, #2000-2389, 3(1):24-28 (2000). |
Kaza et al., “Ventricular Reconstruction Results in Improved Left Ventricular Function and Amelioration of Mitral Insufficiency,” Annals of Surgery, 235(6):828-832 (2002). |
Khan et al., “Blade Atrial Septostomy; Experience with the First 50 Procedures”, Catheterization and Cardiovascular Diagnosis, 23:257-262 (1991). |
Kherani et al., “The Edge-To-Edge Mitral Valve Repair: The Columbia Presbyterian Experience,” Ann. Thorac. Surg., 78:73-76 (2004). |
Kron et al., “Surgical Relocation of the Posterior Papillary Muscle in Chronic Ischemic Mitral Regurgitation,” Annals. Of Thoracic Surgery, 74:600-601 (2002). |
Kruger et al., “P73—Edge to Edge Technique in Complex Mitral Valve Repair,” Thorac Cardiovasc Surg., 48(Suppl. 1):106 (2000). |
Langer et al., “Posterier mitral leaflet extensions: An adjunctive repair option for ischemic mitral regurgitation?” J Thorac Cardiovasc Surg, 131:868-877 (2006). |
Lorusso et al., “The double-orifice technique for mitral valve reconstruction: predictors of postoperative outcome,” Eur J. Cardiothorac Surg, 20:583-589 (2001). |
Maisano et al., The Edge-to-edge Technique: A Simplified Method to Correct Mitral Insufficiency, Eur. J. Cardiothorac. Surg., Jan. 14, 1998, pp. 240-246, vol. 13. |
Maisano et al, The future of transcatheter mitral valve interventions: competitive or complementary role of repair vs. replacement? Eur Heart J. Jul. 7, 2015; 36(26):1651-1659. |
Maisano et al., “The double orifice repair for Barlow Disease: a simple solution for a complex repair,” Supplement I Circulation, (Nov. 1999); 100(18):1-94. |
Maisano et al., “The double orifice technique as a standardized approach to treat mitral regurgitation due to severe myxomatous disease: surgical technique,” European Journal of Cardio-thoracic Surgery, 17:201-205 (2000). |
Maisano et al., “The Future of Transcatheter Mitral Valve Interventions: Competitive or Complementary Role of Repair vs. Replacement?”, Eur Heart J.36(26):1651-1659 ( Jul. 7, 2015 ). |
Maisano et al., “The hemodynamic effects of double-orifice valve repair for mitral regurgitation: a 3D computational model,” European Journal of Cardio-thoracic Surgery, 15:419-425 (1999). |
Maisano et al., “Valve repair for traumatic tricuspid regurgitation,” Eur. J. Cardio-thorac Surg, (1996) 10:867-873. |
Mantovani et al., “Edge-to-edge Repair of Congenital Familiar Tricuspid Regurgitation: Case Report,” J. Heart Valve Dis., 9:641-643 (2000). |
McCarthy et al, “Tricuspid Valve Repair With the Cosgrove-Edwards Annuloplasty System”, Ann. Thorac. Surg., 64:267-8 ( Jan. 16, 1997). |
McCarthy et al., “Partial left ventriculectomy and mitral valve repair for end-stage congestive heart failure,” European Journal of Cardio-thoracic Surgery, 13:337-343 (1998). |
McCarthy et al., “Tricuspid Valve Repair With the Cosgrove-Edwards Annuloplasty System”, Ann. Throac Surg. 64:267-8 (Jan. 16, 1997). |
Moainie et al., “Correction of Traumatic Tricuspid Regurgitation Using the Double Orifice Technique,” Annals of Thoracic Surgery, 73:963-965 (2002). |
Morales et al., “Development of an Off Bypass Mitral Valve Repair,” The Heart Surgery Forum #1999-4693, 2(2):115-120 (1999). |
Nakanishi et al., “Early Outcome with the Alfieri Mitral Valve Repair,” J. Cardiol., 37: 263-266 (2001) [Abstract in English; Article in Japanese]. |
Nielsen et al., “Edge-to-Edge Mitral Repair: Tension of the Approximating Suture and Leaflet Deformation During Acute Ischemic Mitral Regurgitation in the Ovine Heart,” Circulation, 104(Suppl. 1):1-29-1-35 (2001). |
Noera et al., “Tricuspid Valve Incompetence Caused by Nonpenetrating Thoracic Trauma”, Annals of Thoracic Surgery, 51:320-322 (1991). |
Notice of Allowance received for U.S. Appl. No. 14/216,787, filed Nov. 7, 2016. |
Notice of Allowance received for U.S. Appl. No. 14/216,787, mailed on Nov. 7, 2016. |
Notice of Allowance received for U.S. Appl. No. 14/577,852, filed Apr. 25, 2018. |
Notice of Allowance received for U.S. Appl. No. 14/577,852, mailed on Apr. 25, 2018. |
Notice of Allowance received for U.S. Appl. No. 15/642,245, mailed on Jan. 29, 2020. |
Notice of Allowance received for U.S. Appl. No. 15/642,245, mailed on Mar. 27, 2020. |
Notice of Allowance received for U.S. Appl. No. 15/642,245, mailed on Nov. 6, 2019. |
Notice of Allowance received for U.S. Appl. No. 15/423,060, mailed on Jan. 27, 2020. |
Office Action received for U.S. Appl. No. 14/216,787, filed Apr. 8, 2016. |
Office Action received for U.S. Appl. No. 14/216,787, mailed on Apr. 8, 2016. |
Office Action received for U.S. Appl. No. 14/216,813, filed Apr. 6, 2018. |
Office Action received for U.S. Appl. No. 14/216,813, filed Dec. 15, 2017. |
Office Action received for U.S. Appl. No. 14/216,813, filed Mar. 9, 2017. |
Office Action received for U.S. Appl. No. 14/216,813, mailed on Apr. 6, 2018. |
Office Action received for U.S. Appl. No. 14/216,813, mailed on Dec. 15, 2017. |
Office Action received for U.S. Appl. No. 14/216,813, mailed on Mar. 9, 2017. |
Office Action received for U.S. Appl. No. 14/577,852, filed May 16, 2017. |
Office Action received for U.S. Appl. No. 14/577,852, filed Oct. 20, 2016. |
Office Action received for U.S. Appl. No. 14/577,852, filed Sep. 7, 2017. |
Office Action received for U.S. Appl. No. 14/577,852, mailed on May 16, 2017. |
Office Action received for U.S. Appl. No. 14/577,852, mailed on Oct. 20, 2016. |
Office Action received for U.S. Appl. No. 14/577,852, mailed on Sep. 7, 2017. |
Office Action received for U.S. Appl. No. 15/423,060, mailed on Apr. 25, 2019. |
Office Action received for U.S. Appl. No. 15/423,060, mailed on Aug. 19, 2019. |
Office Action received for U.S. Appl. No. 15/423,060, mailed on Oct. 28, 2019. |
Office Action received for U.S. Appl. No. 15/642,245, mailed on Aug. 9, 2019. |
Office Action received for U.S. Appl. No. 15/724,545, filed Dec. 27, 2019. |
Office Action received for U.S. Appl. No. 15/724,545, mailed on Dec. 27, 2019. |
Office Action received for U.S. Appl. No. 15/724,545, mailed on May 1, 2020. |
Osawa et al., “Partial Left Ventriculectomy in a 3-Year Old Boy with Dilated Cardiomyopathy,” Japanese Journal of Thoracic and Cardiovascular Surg, 48:590-593 (2000). |
Number | Date | Country | |
---|---|---|---|
20210346090 A1 | Nov 2021 | US |
Number | Date | Country | |
---|---|---|---|
63020671 | May 2020 | US |