Devices and methods for controlling media presentation

Information

  • Patent Grant
  • 10613634
  • Patent Number
    10,613,634
  • Date Filed
    Monday, August 13, 2018
    6 years ago
  • Date Issued
    Tuesday, April 7, 2020
    4 years ago
Abstract
An electronic device is configured to: while presenting media content at a first non-zero playback speed, detect a press input by a first contact on a first media control; and, in response to detecting the press input: determine whether an intensity of the first contact is above a first intensity threshold; if the intensity of the first contact is above the first intensity threshold, present the media content at a second playback speed, where the second playback speed is faster than the first non-zero playback speed; and, if the intensity of the first contact is below the first intensity threshold, maintain presentation of the media content at the first non-zero playback speed.
Description
TECHNICAL FIELD

This relates generally to electronic devices with touch-sensitive surfaces, including but not limited to electronic devices with touch-sensitive surfaces for controlling playback of digital media, including fast scanning through media files.


BACKGROUND

The use of touch-sensitive surfaces as input devices for computers and other electronic computing devices has increased significantly in recent years. Exemplary touch-sensitive surfaces include touchpads and touch-screen displays. Such surfaces are sometimes used to control presentation of video, audio, and/or other media on a display, for example by interacting with virtual play, pause, fast forward, and rewind buttons on the display.


But existing methods and devices for controlling media presentation are cumbersome and inefficient. For example, the inputs required to adjust playback speed may not be clear and intuitive to a user.


SUMMARY

Accordingly, there is a need for electronic devices with faster, more efficient methods and interfaces for controlling media presentation (e.g., controlling the rewind, fast forward, and/or playback speeds of various media). Such methods and interfaces optionally complement or replace conventional methods for controlling media presentation. Such methods and interfaces reduce the number, extent, and/or nature of the inputs from a user and produce a more efficient human-machine interface. For battery-operated devices, such methods and interfaces conserve power and increase the time between battery charges.


The above deficiencies and other problems associated with user interfaces for electronic devices with touch-sensitive surfaces are reduced or eliminated by the disclosed devices. In some embodiments, the device is a desktop computer. In some embodiments, the device is portable (e.g., a notebook computer, tablet computer, or handheld device). In some embodiments, the device is a personal electronic device (e.g., a wearable electronic device, such as a watch). In some embodiments, the device has a touchpad. In some embodiments, the device has a touch-sensitive display (also known as a “touch screen” or “touch-screen display”). In some embodiments, the device has a graphical user interface (GUI), one or more processors, memory and one or more modules, programs or sets of instructions stored in the memory for performing multiple functions. In some embodiments, the user interacts with the GUI primarily through stylus and/or finger contacts and gestures on the touch-sensitive surface. In some embodiments, the functions optionally include image editing, drawing, presenting, word processing, spreadsheet making, game playing, telephoning, video conferencing, e-mailing, instant messaging, workout support, digital photographing, digital videoing, web browsing, digital music playing, note taking, and/or digital video playing. Executable instructions for performing these functions are, optionally, included in a non-transitory computer readable storage medium or other computer program product configured for execution by one or more processors.


In accordance with some embodiments, a method is performed at an electronic device with a display, a touch-sensitive surface, and one or more sensors to detect intensity of contacts with the touch-sensitive surface. The method includes: while presenting media content at a first non-zero playback speed, detecting a press input by a first contact on the touch-sensitive surface that corresponds to a focus selector at a first location of a first media control on the display; and, in response to detecting the press input: determining whether an intensity of the first contact is above a first intensity threshold; in accordance with a determination that the intensity of the first contact is above the first intensity threshold, presenting the media content at a second playback speed, wherein the second playback speed is faster than the first non-zero playback speed; and, in accordance with a determination that the intensity of the first contact is below the first intensity threshold, maintaining presentation of the media content at the first non-zero playback speed.


In accordance with some embodiments, a method is performed at an electronic device with a display, a touch-sensitive surface, and one or more sensors to detect intensity of contacts with the touch-sensitive surface. The method includes: while presenting media content at a first speed, detecting a press input by a first contact on the touch-sensitive surface that corresponds to a focus selector at a first location of a first media control on the display; and, in response to detecting the press input by the first contact: determining whether a first intensity of the first contact has satisfied a first intensity threshold; subsequent to determining whether the first intensity of the first contact has satisfied the first intensity threshold, determining whether the first contact continues to satisfy a second intensity threshold during a predefined time interval; in accordance with determining that the first intensity of the first contact has satisfied the first intensity threshold and determining that the first contact continues to satisfy the second intensity threshold during the predefined time interval, presenting the media content at a first fast-forward speed that is higher than the first speed as long as the first contact satisfies the second intensity threshold; and, in accordance with determining that the intensity of the first contact has satisfied the first intensity threshold and determining that the first contact does not continue to satisfy the second intensity threshold during the predefined time interval, presenting the media content at the first fast-forward speed.


In accordance with some embodiments, an electronic device includes a display unit configured to display a user interface, a touch-sensitive surface unit to receive contacts, one or more sensor units to detect intensity of contacts with the touch-sensitive surface unit; and a processing unit coupled with the display unit, the touch-sensitive surface unit, and the one or more sensor units. The processing unit is configured to: while presenting media content at a first non-zero playback speed, detecting a press input by a first contact on the touch-sensitive surface that corresponds to a focus selector at a first location of a first media control on the display; and, in response to detecting the press input: determining whether an intensity of the first contact is above a first intensity threshold; in accordance with a determination that the intensity of the first contact is above the first intensity threshold, presenting the media content at a second playback speed, wherein the second playback speed is faster than the first non-zero playback speed; and, in accordance with a determination that the intensity of the first contact is below the first intensity threshold, maintaining presentation of the media content at the first non-zero playback speed.


In accordance with some embodiments, an electronic device includes a display unit configured to display a user interface, a touch-sensitive surface unit to receive contacts, one or more sensor units to detect intensity of contacts with the touch-sensitive surface unit; and a processing unit coupled with the display unit, the touch-sensitive surface unit, and the one or more sensor units. The processing unit is configured to: while presenting media content at a first non-zero playback speed, detect a press input by a first contact on the touch-sensitive surface that corresponds to a focus selector at a first location of a first media control on the display; and, in response to detecting the press input: determine whether an intensity of the first contact is above a first intensity threshold; in accordance with a determination that the intensity of the first contact is above the first intensity threshold, present the media content at a second playback speed, wherein the second playback speed is faster than the first non-zero playback speed; and, in accordance with a determination that the intensity of the first contact is below the first intensity threshold, maintain presentation of the media content at the first non-zero playback speed.


In accordance with some embodiments, an electronic device includes a display, a touch-sensitive surface, optionally one or more sensors to detect intensity of contacts with the touch-sensitive surface, one or more processors, memory, and one or more programs; the one or more programs are stored in the memory and configured to be executed by the one or more processors and the one or more programs include instructions for performing or causing performance of the operations of any of the methods described herein. In accordance with some embodiments, a computer readable storage medium has stored therein instructions which when executed by an electronic device with a display, a touch-sensitive surface, and optionally one or more sensors to detect intensity of contacts with the touch-sensitive surface, cause the device to perform or cause performance of the operations of any of the methods described herein. In accordance with some embodiments, a graphical user interface on an electronic device with a display, a touch-sensitive surface, optionally one or more sensors to detect intensity of contacts with the touch-sensitive surface, a memory, and one or more processors to execute one or more programs stored in the memory includes one or more of the elements displayed in any of the methods described above, which are updated in response to inputs, as described in any of the methods described herein. In accordance with some embodiments, an electronic device includes: a display, a touch-sensitive surface, and optionally one or more sensors to detect intensity of contacts with the touch-sensitive surface; and means for performing or causing performance of the operations of any of the methods described herein. In accordance with some embodiments, an information processing apparatus, for use in an electronic device with a display and a touch-sensitive surface, and optionally one or more sensors to detect intensity of contacts with the touch-sensitive surface, includes means for performing or causing performance of the operations of any of the methods described herein.


Thus, electronic devices with displays, touch-sensitive surfaces and one or more sensors to detect intensity of contacts with the touch-sensitive surface are provided with faster, more efficient methods and interfaces for controlling media presentation (e.g., for controlling the rewind, fast forward, and/or playback speeds), thereby increasing the effectiveness, efficiency, and user satisfaction with such devices. Such methods and interfaces may complement or replace conventional methods for controlling media presentation.





BRIEF DESCRIPTION OF THE DRAWINGS

For a better understanding of the various described embodiments, reference should be made to the Description of Embodiments below, in conjunction with the following drawings in which like reference numerals refer to corresponding parts throughout the figures.



FIG. 1A is a block diagram illustrating a portable multifunction device with a touch-sensitive display in accordance with some embodiments.



FIG. 1B is a block diagram illustrating exemplary components for event handling in accordance with some embodiments.



FIG. 2 illustrates a portable multifunction device having a touch screen in accordance with some embodiments.



FIG. 3 is a block diagram of an exemplary multifunction device with a display and a touch-sensitive surface in accordance with some embodiments.



FIG. 4A illustrates an exemplary user interface for a menu of applications on a portable multifunction device in accordance with some embodiments.



FIG. 4B illustrates an exemplary user interface for a multifunction device with a touch-sensitive surface that is separate from the display in accordance with some embodiments.



FIGS. 4C-4E illustrate exemplary dynamic intensity thresholds in accordance with some embodiments.



FIGS. 5A-5F illustrate exemplary user interfaces for controlling media presentation in accordance with some embodiments.



FIGS. 6A-6K illustrate exemplary control heuristics for controlling media presentation in accordance with some embodiments.



FIGS. 7A-7H are flow diagrams illustrating a method of controlling media presentation in accordance with some embodiments.



FIGS. 8A-8C are flow diagrams illustrating a method of controlling media presentation in accordance with some embodiments.



FIGS. 9 and 10 are functional block diagrams of an electronic device in accordance with some embodiments.





DESCRIPTION OF EMBODIMENTS

Many electronic devices provide a media playback function for presenting media content (e.g., music, video, a collection of images in a slideshow, etc.). A software application that provides the media playback function typically provides respective graphical user interface controls for controlling various aspects of media presentation (e.g., for starting, pausing, stopping, fast forwarding, and/or rewinding the media content). Sometimes, the user may wish to start playing the media content at a speed higher than the normal playback speed (e.g., scanning the media content at 2×, 5×, 10×). Sometimes, while playing the media content at a normal playback speed (e.g., 1×), the user may wish to increase the playback speed to multiple times of the normal playback speed (e.g., scanning at 2×, 5×, 10×, 30×, etc.). Sometimes, while the media content is being scanned at a first speed (e.g., 2×), the user may wish to change that speed to a higher speed (e.g., 5×, 10×, 30×, etc.). Sometimes, the user may wish to increase the speed for just a brief time; while at other times, the user may wish to maintain the higher playback speed once it has been achieved.


Here improved methods are described for controlling media presentation based on an intensity of a press input or a profile of the intensity of the press input on a touch-sensitive surface of the electronic device. Depending on a current playback speed of the media presentation and a relative intensity of a press input to one or more predetermined activation intensity thresholds associated with different playback speeds, the playback speed of the media presentation may be altered. For example, the playback speed may increase or decrease in response to changes in contact intensity of the press input detected on a corresponding user interface control (e.g., a fast forward control or a rewind control). These methods provide more convenient and intuitive ways to control media presentation, thereby reducing the cognitive burden on a user and increasing the effectiveness, efficiency, and user satisfaction with such devices.


Below, FIGS. 1A-1B, 2, and 3 provide a description of exemplary devices. FIGS. 4A-4B and 5A-5F illustrate exemplary user interfaces for controlling media presentation. FIGS. 6A-6K illustrate exemplary control heuristics for controlling media presentation. FIGS. 7A-7H and 8A-8C are flow diagrams of methods of controlling media presentation. The user interfaces in FIGS. 5A-5F and the control heuristics in FIGS. 6A-6K are used to illustrate the processes in FIGS. 7A-7H and 8A-8C.


Exemplary Devices

Reference will now be made in detail to embodiments, examples of which are illustrated in the accompanying drawings. In the following detailed description, numerous specific details are set forth in order to provide a thorough understanding of the various described embodiments. However, it will be apparent to one of ordinary skill in the art that the various described embodiments may be practiced without these specific details. In other instances, well-known methods, procedures, components, circuits, and networks have not been described in detail so as not to unnecessarily obscure aspects of the embodiments.


It will also be understood that, although the terms first, second, etc. are, in some instances, used herein to describe various elements, these elements should not be limited by these terms. These terms are only used to distinguish one element from another. For example, a first contact could be termed a second contact, and, similarly, a second contact could be termed a first contact, without departing from the scope of the various described embodiments. The first contact and the second contact are both contacts, but they are not the same contact, unless the context clearly indicates otherwise.


The terminology used in the description of the various described embodiments herein is for the purpose of describing particular embodiments only and is not intended to be limiting. As used in the description of the various described embodiments and the appended claims, the singular forms “a,” “an,” and “the” are intended to include the plural forms as well, unless the context clearly indicates otherwise. It will also be understood that the term “and/or” as used herein refers to and encompasses any and all possible combinations of one or more of the associated listed items. It will be further understood that the terms “includes,” “including,” “comprises,” and/or “comprising,” when used in this specification, specify the presence of stated features, integers, steps, operations, elements, and/or components, but do not preclude the presence or addition of one or more other features, integers, steps, operations, elements, components, and/or groups thereof.


As used herein, the term “if” is, optionally, construed to mean “when” or “upon” or “in response to determining” or “in response to detecting,” depending on the context. Similarly, the phrase “if it is determined” or “if [a stated condition or event] is detected” is, optionally, construed to mean “upon determining” or “in response to determining” or “upon detecting [the stated condition or event]” or “in response to detecting [the stated condition or event],” depending on the context.


Embodiments of electronic devices, user interfaces for such devices, and associated processes for using such devices are described. In some embodiments, the device is a portable communications device, such as a mobile telephone, that also contains other functions, such as PDA and/or music player functions. Exemplary embodiments of portable multifunction devices include, without limitation, the iPhone®, iPod Touch®, and iPad® devices from Apple Inc. of Cupertino, California. Other portable electronic devices, such as laptops or tablet computers with touch-sensitive surfaces (e.g., touch-screen displays and/or touchpads), are, optionally, used. It should also be understood that, in some embodiments, the device is not a portable communications device, but is a desktop computer with a touch-sensitive surface (e.g., a touch-screen display and/or a touchpad).


In the discussion that follows, an electronic device that includes a display and a touch-sensitive surface is described. It should be understood, however, that the electronic device optionally includes one or more other physical user-interface devices, such as a physical keyboard, a mouse and/or a joystick.


The device typically supports a variety of applications, such as one or more of the following: a note taking application, a drawing application, a presentation application, a word processing application, a website creation application, a disk authoring application, a spreadsheet application, a gaming application, a telephone application, a video conferencing application, an e-mail application, an instant messaging application, a workout support application, a photo management application, a digital camera application, a digital video camera application, a web browsing application, a digital music player application, and/or a digital video player application.


The various applications that are executed on the device optionally use at least one common physical user-interface device, such as the touch-sensitive surface. One or more functions of the touch-sensitive surface as well as corresponding information displayed on the device are, optionally, adjusted and/or varied from one application to the next and/or within a respective application. In this way, a common physical architecture (such as the touch-sensitive surface) of the device optionally supports the variety of applications with user interfaces that are intuitive and transparent to the user.


Attention is now directed toward embodiments of portable devices with touch-sensitive displays. FIG. 1A is a block diagram illustrating portable multifunction device 100 with touch-sensitive display system 112 in accordance with some embodiments. Touch-sensitive display system 112 is sometimes called a “touch screen” for convenience, and is sometimes simply called a touch-sensitive display. Device 100 includes memory 102 (which optionally includes one or more computer readable storage mediums), memory controller 122, one or more processing units (CPUs) 120, peripherals interface 118, RF circuitry 108, audio circuitry 110, speaker 111, microphone 113, input/output (I/O) subsystem 106, other input or control devices 116, and external port 124. Device 100 optionally includes one or more optical sensors 164. Device 100 optionally includes one or more intensity sensors 165 for detecting intensity of contacts on device 100 (e.g., a touch-sensitive surface such as touch-sensitive display system 112 of device 100). Device 100 optionally includes one or more tactile output generators 167 for generating tactile outputs on device 100 (e.g., generating tactile outputs on a touch-sensitive surface such as touch-sensitive display system 112 of device 100 or touchpad 355 of device 300). These components optionally communicate over one or more communication buses or signal lines 103.


As used in the specification and claims, the term “tactile output” refers to physical displacement of a device relative to a previous position of the device, physical displacement of a component (e.g., a touch-sensitive surface) of a device relative to another component (e.g., housing) of the device, or displacement of the component relative to a center of mass of the device that will be detected by a user with the user's sense of touch. For example, in situations where the device or the component of the device is in contact with a surface of a user that is sensitive to touch (e.g., a finger, palm, or other part of a user's hand), the tactile output generated by the physical displacement will be interpreted by the user as a tactile sensation corresponding to a perceived change in physical characteristics of the device or the component of the device. For example, movement of a touch-sensitive surface (e.g., a touch-sensitive display or trackpad) is, optionally, interpreted by the user as a “down click” or “up click” of a physical actuator button. In some cases, a user will feel a tactile sensation such as an “down click” or “up click” even when there is no movement of a physical actuator button associated with the touch-sensitive surface that is physically pressed (e.g., displaced) by the user's movements. As another example, movement of the touch-sensitive surface is, optionally, interpreted or sensed by the user as “roughness” of the touch-sensitive surface, even when there is no change in smoothness of the touch-sensitive surface. While such interpretations of touch by a user will be subject to the individualized sensory perceptions of the user, there are many sensory perceptions of touch that are common to a large majority of users. Thus, when a tactile output is described as corresponding to a particular sensory perception of a user (e.g., an “up click,” a “down click,” “roughness”), unless otherwise stated, the generated tactile output corresponds to physical displacement of the device or a component thereof that will generate the described sensory perception for a typical (or average) user.


It should be appreciated that device 100 is only one example of a portable multifunction device, and that device 100 optionally has more or fewer components than shown, optionally combines two or more components, or optionally has a different configuration or arrangement of the components. The various components shown in FIG. 1A are implemented in hardware, software, firmware, or a combination thereof, including one or more signal processing and/or application specific integrated circuits.


Memory 102 optionally includes high-speed random access memory and optionally also includes non-volatile memory, such as one or more magnetic disk storage devices, flash memory devices, or other non-volatile solid-state memory devices. Access to memory 102 by other components of device 100, such as CPU(s) 120 and the peripherals interface 118, is, optionally, controlled by memory controller 122.


Peripherals interface 118 can be used to couple input and output peripherals of the device to CPU(s) 120 and memory 102. The one or more processors 120 run or execute various software programs and/or sets of instructions stored in memory 102 to perform various functions for device 100 and to process data.


In some embodiments, peripherals interface 118, CPU(s) 120, and memory controller 122 are, optionally, implemented on a single chip, such as chip 104. In some other embodiments, they are, optionally, implemented on separate chips.


RF (radio frequency) circuitry 108 receives and sends RF signals, also called electromagnetic signals. RF circuitry 108 converts electrical signals to/from electromagnetic signals and communicates with communications networks and other communications devices via the electromagnetic signals. RF circuitry 108 optionally includes well-known circuitry for performing these functions, including but not limited to an antenna system, an RF transceiver, one or more amplifiers, a tuner, one or more oscillators, a digital signal processor, a CODEC chipset, a subscriber identity module (SIM) card, memory, and so forth. RF circuitry 108 optionally communicates with networks, such as the Internet, also referred to as the World Wide Web (WWW), an intranet and/or a wireless network, such as a cellular telephone network, a wireless local area network (LAN) and/or a metropolitan area network (MAN), and other devices by wireless communication. The wireless communication optionally uses any of a plurality of communications standards, protocols and technologies, including but not limited to Global System for Mobile Communications (GSM), Enhanced Data GSM Environment (EDGE), high-speed downlink packet access (HSDPA), high-speed uplink packet access (HSDPA), Evolution, Data-Only (EV-DO), HSPA, HSPA+, Dual-Cell HSPA (DC-HSPDA), long term evolution (LTE), near field communication (NFC), wideband code division multiple access (W-CDMA), code division multiple access (CDMA), time division multiple access (TDMA), Bluetooth, Wireless Fidelity (Wi-Fi) (e.g., IEEE 802.11a, IEEE 802.11ac, IEEE 802.11ax, IEEE 802.11b, IEEE 802.11g and/or IEEE 802.11n), voice over Internet Protocol (VoIP), Wi-MAX, a protocol for e-mail (e.g., Internet message access protocol (IMAP) and/or post office protocol (POP)), instant messaging (e.g., extensible messaging and presence protocol (XMPP), Session Initiation Protocol for Instant Messaging and Presence Leveraging Extensions (SIMPLE), Instant Messaging and Presence Service (IMPS)), and/or Short Message Service (SMS), or any other suitable communication protocol, including communication protocols not yet developed as of the filing date of this document.


Audio circuitry 110, speaker 111, and microphone 113 provide an audio interface between a user and device 100. Audio circuitry 110 receives audio data from peripherals interface 118, converts the audio data to an electrical signal, and transmits the electrical signal to speaker 111. Speaker 111 converts the electrical signal to human-audible sound waves. Audio circuitry 110 also receives electrical signals converted by microphone 113 from sound waves. Audio circuitry 110 converts the electrical signal to audio data and transmits the audio data to peripherals interface 118 for processing. Audio data is, optionally, retrieved from and/or transmitted to memory 102 and/or RF circuitry 108 by peripherals interface 118. In some embodiments, audio circuitry 110 also includes a headset jack (e.g., 212, FIG. 2). The headset jack provides an interface between audio circuitry 110 and removable audio input/output peripherals, such as output-only headphones or a headset with both output (e.g., a headphone for one or both ears) and input (e.g., a microphone).


I/O subsystem 106 couples input/output peripherals on device 100, such as touch-sensitive display system 112 and other input or control devices 116, with peripherals interface 118. I/O subsystem 106 optionally includes display controller 156, optical sensor controller 158, intensity sensor controller 159, haptic feedback controller 161, and one or more input controllers 160 for other input or control devices. The one or more input controllers 160 receive/send electrical signals from/to other input or control devices 116. The other input or control devices 116 optionally include physical buttons (e.g., push buttons, rocker buttons, etc.), dials, slider switches, joysticks, click wheels, and so forth. In some alternate embodiments, input controller(s) 160 are, optionally, coupled with any (or none) of the following: a keyboard, infrared port, USB port, stylus, and/or a pointer device such as a mouse. The one or more buttons (e.g., 208, FIG. 2) optionally include an up/down button for volume control of speaker 111 and/or microphone 113. The one or more buttons optionally include a push button (e.g., 206, FIG. 2).


Touch-sensitive display system 112 provides an input interface and an output interface between the device and a user. Display controller 156 receives and/or sends electrical signals from/to touch-sensitive display system 112. Touch-sensitive display system 112 displays visual output to the user. The visual output optionally includes graphics, text, icons, video, and any combination thereof (collectively termed “graphics”). In some embodiments, some or all of the visual output corresponds to user-interface objects.


Touch-sensitive display system 112 has a touch-sensitive surface, sensor or set of sensors that accepts input from the user based on haptic and/or tactile contact. Touch-sensitive display system 112 and display controller 156 (along with any associated modules and/or sets of instructions in memory 102) detect contact (and any movement or breaking of the contact) on touch-sensitive display system 112 and converts the detected contact into interaction with user-interface objects (e.g., one or more soft keys, icons, web pages or images) that are displayed on touch-sensitive display system 112. In an exemplary embodiment, a point of contact between touch-sensitive display system 112 and the user corresponds to a finger of the user or a stylus.


Touch-sensitive display system 112 optionally uses LCD (liquid crystal display) technology, LPD (light emitting polymer display) technology, or LED (light emitting diode) technology, although other display technologies are used in other embodiments. Touch-sensitive display system 112 and display controller 156 optionally detect contact and any movement or breaking thereof using any of a plurality of touch sensing technologies now known or later developed, including but not limited to capacitive, resistive, infrared, and surface acoustic wave technologies, as well as other proximity sensor arrays or other elements for determining one or more points of contact with touch-sensitive display system 112. In an exemplary embodiment, projected mutual capacitance sensing technology is used, such as that found in the iPhone®, iPod Touch®, and iPad® from Apple Inc. of Cupertino, Calif.


Touch-sensitive display system 112 optionally has a video resolution in excess of 100 dpi. In some embodiments, the touch screen video resolution is in excess of 400 dpi (e.g., 500 dpi, 800 dpi, or greater). The user optionally makes contact with touch-sensitive display system 112 using any suitable object or appendage, such as a stylus, a finger, and so forth. In some embodiments, the user interface is designed to work with finger-based contacts and gestures, which can be less precise than stylus-based input due to the larger area of contact of a finger on the touch screen. In some embodiments, the device translates the rough finger-based input into a precise pointer/cursor position or command for performing the actions desired by the user.


In some embodiments, in addition to the touch screen, device 100 optionally includes a touchpad (not shown) for activating or deactivating particular functions. In some embodiments, the touchpad is a touch-sensitive area of the device that, unlike the touch screen, does not display visual output. The touchpad is, optionally, a touch-sensitive surface that is separate from touch-sensitive display system 112 or an extension of the touch-sensitive surface formed by the touch screen.


Device 100 also includes power system 162 for powering the various components. Power system 162 optionally includes a power management system, one or more power sources (e.g., battery, alternating current (AC)), a recharging system, a power failure detection circuit, a power converter or inverter, a power status indicator (e.g., a light-emitting diode (LED)) and any other components associated with the generation, management and distribution of power in portable devices.


Device 100 optionally also includes one or more optical sensors 164. FIG. 1A shows an optical sensor coupled with optical sensor controller 158 in I/O subsystem 106. Optical sensor(s) 164 optionally include charge-coupled device (CCD) or complementary metal-oxide semiconductor (CMOS) phototransistors. Optical sensor(s) 164 receive light from the environment, projected through one or more lens, and converts the light to data representing an image. In conjunction with imaging module 143 (also called a camera module), optical sensor(s) 164 optionally capture still images and/or video. In some embodiments, an optical sensor is located on the back of device 100, opposite touch-sensitive display system 112 on the front of the device, so that the touch screen is enabled for use as a viewfinder for still and/or video image acquisition. In some embodiments, another optical sensor is located on the front of the device so that the user's image is obtained (e.g., for selfies, for videoconferencing while the user views the other video conference participants on the touch screen, etc.).


Device 100 optionally also includes one or more contact intensity sensors 165. FIG. 1A shows a contact intensity sensor coupled with intensity sensor controller 159 in I/O subsystem 106. Contact intensity sensor(s) 165 optionally include one or more piezoresistive strain gauges, capacitive force sensors, electric force sensors, piezoelectric force sensors, optical force sensors, capacitive touch-sensitive surfaces, or other intensity sensors (e.g., sensors used to measure the force (or pressure) of a contact on a touch-sensitive surface). Contact intensity sensor(s) 165 receive contact intensity information (e.g., pressure information or a proxy for pressure information) from the environment. In some embodiments, at least one contact intensity sensor is collocated with, or proximate to, a touch-sensitive surface (e.g., touch-sensitive display system 112). In some embodiments, at least one contact intensity sensor is located on the back of device 100, opposite touch-screen display system 112 which is located on the front of device 100.


Device 100 optionally also includes one or more proximity sensors 166. FIG. 1A shows proximity sensor 166 coupled with peripherals interface 118. Alternately, proximity sensor 166 is coupled with input controller 160 in I/O subsystem 106. In some embodiments, the proximity sensor turns off and disables touch-sensitive display system 112 when the multifunction device is placed near the user's ear (e.g., when the user is making a phone call).


Device 100 optionally also includes one or more tactile output generators 167. FIG. 1A shows a tactile output generator coupled with haptic feedback controller 161 in I/O subsystem 106. Tactile output generator(s) 167 optionally include one or more electroacoustic devices such as speakers or other audio components and/or electromechanical devices that convert energy into linear motion such as a motor, solenoid, electroactive polymer, piezoelectric actuator, electrostatic actuator, or other tactile output generating component (e.g., a component that converts electrical signals into tactile outputs on the device). Tactile output generator(s) 167 receive tactile feedback generation instructions from haptic feedback module 133 and generates tactile outputs on device 100 that are capable of being sensed by a user of device 100. In some embodiments, at least one tactile output generator is collocated with, or proximate to, a touch-sensitive surface (e.g., touch-sensitive display system 112) and, optionally, generates a tactile output by moving the touch-sensitive surface vertically (e.g., in/out of a surface of device 100) or laterally (e.g., back and forth in the same plane as a surface of device 100). In some embodiments, at least one tactile output generator sensor is located on the back of device 100, opposite touch-sensitive display system 112, which is located on the front of device 100.


Device 100 optionally also includes one or more accelerometers 168. FIG. 1A shows accelerometer 168 coupled with peripherals interface 118. Alternately, accelerometer 168 is, optionally, coupled with an input controller 160 in I/O subsystem 106. In some embodiments, information is displayed on the touch-screen display in a portrait view or a landscape view based on an analysis of data received from the one or more accelerometers. Device 100 optionally includes, in addition to accelerometer(s) 168, a magnetometer (not shown) and a GPS (or GLONASS or other global navigation system) receiver (not shown) for obtaining information concerning the location and orientation (e.g., portrait or landscape) of device 100.


In some embodiments, the software components stored in memory 102 include operating system 126, communication module (or set of instructions) 128, contact/motion module (or set of instructions) 130, graphics module (or set of instructions) 132, haptic feedback module (or set of instructions) 133, text input module (or set of instructions) 134, Global Positioning System (GPS) module (or set of instructions) 135, and applications (or sets of instructions) 136. Furthermore, in some embodiments, memory 102 stores device/global internal state 157, as shown in FIGS. 1A and 3. Device/global internal state 157 includes one or more of: active application state, indicating which applications, if any, are currently active; display state, indicating what applications, views or other information occupy various regions of touch-sensitive display system 112; sensor state, including information obtained from the device's various sensors and other input or control devices 116; and location and/or positional information concerning the device's location and/or attitude.


Operating system 126 (e.g., iOS, Darwin, RTXC, LINUX, UNIX, OS X, WINDOWS, or an embedded operating system such as VxWorks) includes various software components and/or drivers for controlling and managing general system tasks (e.g., memory management, storage device control, power management, etc.) and facilitates communication between various hardware and software components.


Communication module 128 facilitates communication with other devices over one or more external ports 124 and also includes various software components for handling data received by RF circuitry 108 and/or external port 124. External port 124 (e.g., Universal Serial Bus (USB), FIREWIRE, etc.) is adapted for coupling directly to other devices or indirectly over a network (e.g., the Internet, wireless LAN, etc.). In some embodiments, the external port is a multi-pin (e.g., 30-pin) connector that is the same as, or similar to and/or compatible with the 30-pin connector used in some iPhone®, iPod Touch®, and iPad® devices from Apple Inc. of Cupertino, Calif. In some embodiments, the external port is a Lightning connector that is the same as, or similar to and/or compatible with the Lightning connector used in some iPhone®, iPod Touch®, and iPad® devices from Apple Inc. of Cupertino, Calif.


Contact/motion module 130 optionally detects contact with touch-sensitive display system 112 (in conjunction with display controller 156) and other touch-sensitive devices (e.g., a touchpad or physical click wheel). Contact/motion module 130 includes various software components for performing various operations related to detection of contact (e.g., by a finger or by a stylus), such as determining if contact has occurred (e.g., detecting a finger-down event), determining an intensity of the contact (e.g., the force or pressure of the contact or a substitute for the force or pressure of the contact), determining if there is movement of the contact and tracking the movement across the touch-sensitive surface (e.g., detecting one or more finger-dragging events), and determining if the contact has ceased (e.g., detecting a finger-up event or a break in contact). Contact/motion module 130 receives contact data from the touch-sensitive surface. Determining movement of the point of contact, which is represented by a series of contact data, optionally includes determining speed (magnitude), velocity (magnitude and direction), and/or an acceleration (a change in magnitude and/or direction) of the point of contact. These operations are, optionally, applied to single contacts (e.g., one finger contacts or stylus contacts) or to multiple simultaneous contacts (e.g., “multitouch”/multiple finger contacts). In some embodiments, contact/motion module 130 and display controller 156 detect contact on a touchpad.


Contact/motion module 130 optionally detects a gesture input by a user. Different gestures on the touch-sensitive surface have different contact patterns (e.g., different motions, timings, and/or intensities of detected contacts). Thus, a gesture is, optionally, detected by detecting a particular contact pattern. For example, detecting a finger tap gesture includes detecting a finger-down event followed by detecting a finger-up (lift off) event at the same position (or substantially the same position) as the finger-down event (e.g., at the position of an icon). As another example, detecting a finger swipe gesture on the touch-sensitive surface includes detecting a finger-down event followed by detecting one or more finger-dragging events, and subsequently followed by detecting a finger-up (lift off) event. Similarly, tap, swipe, drag, and other gestures are optionally detected for a stylus by detecting a particular contact pattern for the stylus.


Graphics module 132 includes various known software components for rendering and displaying graphics on touch-sensitive display system 112 or other display, including components for changing the visual impact (e.g., brightness, transparency, saturation, contrast or other visual property) of graphics that are displayed. As used herein, the term “graphics” includes any object that can be displayed to a user, including without limitation text, web pages, icons (such as user-interface objects including soft keys), digital images, videos, animations and the like.


In some embodiments, graphics module 132 stores data representing graphics to be used. Each graphic is, optionally, assigned a corresponding code. Graphics module 132 receives, from applications etc., one or more codes specifying graphics to be displayed along with, if necessary, coordinate data and other graphic property data, and then generates screen image data to output to display controller 156.


Haptic feedback module 133 includes various software components for generating instructions used by tactile output generator(s) 167 to produce tactile outputs at one or more locations on device 100 in response to user interactions with device 100.


Text input module 134, which is, optionally, a component of graphics module 132, provides soft keyboards for entering text in various applications (e.g., contacts 137, e-mail 140, IM 141, browser 147, and any other application that needs text input).


GPS module 135 determines the location of the device and provides this information for use in various applications (e.g., to telephone 138 for use in location-based dialing, to camera 143 as picture/video metadata, and to applications that provide location-based services such as weather widgets, local yellow page widgets, and map/navigation widgets).


Applications 136 optionally include the following modules (or sets of instructions), or a subset or superset thereof:

    • contacts module 137 (sometimes called an address book or contact list);
    • telephone module 138;
    • video conferencing module 139;
    • e-mail client module 140;
    • instant messaging (IM) module 141;
    • workout support module 142;
    • camera module 143 for still and/or video images;
    • image management module 144;
    • browser module 147;
    • calendar module 148;
    • widget modules 149, which optionally include one or more of: weather widget 149-1, stocks widget 149-2, calculator widget 149-3, alarm clock widget 149-4, dictionary widget 149-5, and other widgets obtained by the user, as well as user-created widgets 149-6;
    • widget creator module 150 for making user-created widgets 149-6;
    • search module 151;
    • video and music player module 152, which is, optionally, made up of a video player module and a music player module;
    • notes module 153;
    • map module 154; and/or
    • online video module 155.


Examples of other applications 136 that are, optionally, stored in memory 102 include other word processing applications, other image editing applications, drawing applications, presentation applications, JAVA-enabled applications, encryption, digital rights management, voice recognition, and voice replication.


In conjunction with touch-sensitive display system 112, display controller 156, contact module 130, graphics module 132, and text input module 134, contacts module 137 includes executable instructions to manage an address book or contact list (e.g., stored in application internal state 192 of contacts module 137 in memory 102 or memory 370), including: adding name(s) to the address book; deleting name(s) from the address book; associating telephone number(s), e-mail address(es), physical address(es) or other information with a name; associating an image with a name; categorizing and sorting names; providing telephone numbers and/or e-mail addresses to initiate and/or facilitate communications by telephone 138, video conference 139, e-mail 140, or IM 141; and so forth.


In conjunction with RF circuitry 108, audio circuitry 110, speaker 111, microphone 113, touch-sensitive display system 112, display controller 156, contact module 130, graphics module 132, and text input module 134, telephone module 138 includes executable instructions to enter a sequence of characters corresponding to a telephone number, access one or more telephone numbers in address book 137, modify a telephone number that has been entered, dial a respective telephone number, conduct a conversation and disconnect or hang up when the conversation is completed. As noted above, the wireless communication optionally uses any of a plurality of communications standards, protocols and technologies.


In conjunction with RF circuitry 108, audio circuitry 110, speaker 111, microphone 113, touch-sensitive display system 112, display controller 156, optical sensor(s) 164, optical sensor controller 158, contact module 130, graphics module 132, text input module 134, contact list 137, and telephone module 138, videoconferencing module 139 includes executable instructions to initiate, conduct, and terminate a video conference between a user and one or more other participants in accordance with user instructions.


In conjunction with RF circuitry 108, touch-sensitive display system 112, display controller 156, contact module 130, graphics module 132, and text input module 134, e-mail client module 140 includes executable instructions to create, send, receive, and manage e-mail in response to user instructions. In conjunction with image management module 144, e-mail client module 140 makes it very easy to create and send e-mails with still or video images taken with camera module 143.


In conjunction with RF circuitry 108, touch-sensitive display system 112, display controller 156, contact module 130, graphics module 132, and text input module 134, the instant messaging module 141 includes executable instructions to enter a sequence of characters corresponding to an instant message, to modify previously entered characters, to transmit a respective instant message (for example, using a Short Message Service (SMS) or Multimedia Message Service (MMS) protocol for telephony-based instant messages or using XMPP, SIMPLE, Apple Push Notification Service (APNs) or IMPS for Internet-based instant messages), to receive instant messages and to view received instant messages. In some embodiments, transmitted and/or received instant messages optionally include graphics, photos, audio files, video files and/or other attachments as are supported in a MMS and/or an Enhanced Messaging Service (EMS). As used herein, “instant messaging” refers to both telephony-based messages (e.g., messages sent using SMS or MMS) and Internet-based messages (e.g., messages sent using XMPP, SIMPLE, APNs, or IMPS).


In conjunction with RF circuitry 108, touch-sensitive display system 112, display controller 156, contact module 130, graphics module 132, text input module 134, GPS module 135, map module 154, and music player module 146, workout support module 142 includes executable instructions to create workouts (e.g., with time, distance, and/or calorie burning goals); communicate with workout sensors (in sports devices and smart watches); receive workout sensor data; calibrate sensors used to monitor a workout; select and play music for a workout; and display, store and transmit workout data.


In conjunction with touch-sensitive display system 112, display controller 156, optical sensor(s) 164, optical sensor controller 158, contact module 130, graphics module 132, and image management module 144, camera module 143 includes executable instructions to capture still images or video (including a video stream) and store them into memory 102, modify characteristics of a still image or video, and/or delete a still image or video from memory 102.


In conjunction with touch-sensitive display system 112, display controller 156, contact module 130, graphics module 132, text input module 134, and camera module 143, image management module 144 includes executable instructions to arrange, modify (e.g., edit), or otherwise manipulate, label, delete, present (e.g., in a digital slide show or album), and store still and/or video images.


In conjunction with RF circuitry 108, touch-sensitive display system 112, display system controller 156, contact module 130, graphics module 132, and text input module 134, browser module 147 includes executable instructions to browse the Internet in accordance with user instructions, including searching, linking to, receiving, and displaying web pages or portions thereof, as well as attachments and other files linked to web pages.


In conjunction with RF circuitry 108, touch-sensitive display system 112, display system controller 156, contact module 130, graphics module 132, text input module 134, e-mail client module 140, and browser module 147, calendar module 148 includes executable instructions to create, display, modify, and store calendars and data associated with calendars (e.g., calendar entries, to do lists, etc.) in accordance with user instructions.


In conjunction with RF circuitry 108, touch-sensitive display system 112, display system controller 156, contact module 130, graphics module 132, text input module 134, and browser module 147, widget modules 149 are mini-applications that are, optionally, downloaded and used by a user (e.g., weather widget 149-1, stocks widget 149-2, calculator widget 149-3, alarm clock widget 149-4, and dictionary widget 149-5) or created by the user (e.g., user-created widget 149-6). In some embodiments, a widget includes an HTML (Hypertext Markup Language) file, a CSS (Cascading Style Sheets) file, and a JavaScript file. In some embodiments, a widget includes an XML (Extensible Markup Language) file and a JavaScript file (e.g., Yahoo! Widgets).


In conjunction with RF circuitry 108, touch-sensitive display system 112, display system controller 156, contact module 130, graphics module 132, text input module 134, and browser module 147, the widget creator module 150 includes executable instructions to create widgets (e.g., turning a user-specified portion of a web page into a widget).


In conjunction with touch-sensitive display system 112, display system controller 156, contact module 130, graphics module 132, and text input module 134, search module 151 includes executable instructions to search for text, music, sound, image, video, and/or other files in memory 102 that match one or more search criteria (e.g., one or more user-specified search terms) in accordance with user instructions.


In conjunction with touch-sensitive display system 112, display system controller 156, contact module 130, graphics module 132, audio circuitry 110, speaker 111, RF circuitry 108, and browser module 147, video and music player module 152 includes executable instructions that allow the user to download and play back recorded music and other sound files stored in one or more file formats, such as MP3 or AAC files, and executable instructions to display, present or otherwise play back videos (e.g., on touch-sensitive display system 112, or on an external display connected wirelessly or via external port 124). In some embodiments, device 100 optionally includes the functionality of an MP3 player, such as an iPod (trademark of Apple Inc.).


In conjunction with touch-sensitive display system 112, display controller 156, contact module 130, graphics module 132, and text input module 134, notes module 153 includes executable instructions to create and manage notes, to do lists, and the like in accordance with user instructions.


In conjunction with RF circuitry 108, touch-sensitive display system 112, display system controller 156, contact module 130, graphics module 132, text input module 134, GPS module 135, and browser module 147, map module 154 includes executable instructions to receive, display, modify, and store maps and data associated with maps (e.g., driving directions; data on stores and other points of interest at or near a particular location; and other location-based data) in accordance with user instructions.


In conjunction with touch-sensitive display system 112, display system controller 156, contact module 130, graphics module 132, audio circuitry 110, speaker 111, RF circuitry 108, text input module 134, e-mail client module 140, and browser module 147, online video module 155 includes executable instructions that allow the user to access, browse, receive (e.g., by streaming and/or download), play back (e.g., on the touch screen 112, or on an external display connected wirelessly or via external port 124), send an e-mail with a link to a particular online video, and otherwise manage online videos in one or more file formats, such as H.264. In some embodiments, instant messaging module 141, rather than e-mail client module 140, is used to send a link to a particular online video.


Each of the above identified modules and applications correspond to a set of executable instructions for performing one or more functions described above and the methods described in this application (e.g., the computer-implemented methods and other information processing methods described herein). These modules (i.e., sets of instructions) need not be implemented as separate software programs, procedures or modules, and thus various subsets of these modules are, optionally, combined or otherwise re-arranged in various embodiments. In some embodiments, memory 102 optionally stores a subset of the modules and data structures identified above. Furthermore, memory 102 optionally stores additional modules and data structures not described above.


In some embodiments, device 100 is a device where operation of a predefined set of functions on the device is performed exclusively through a touch screen and/or a touchpad. By using a touch screen and/or a touchpad as the primary input control device for operation of device 100, the number of physical input control devices (such as push buttons, dials, and the like) on device 100 is, optionally, reduced.


The predefined set of functions that are performed exclusively through a touch screen and/or a touchpad optionally include navigation between user interfaces. In some embodiments, the touchpad, when touched by the user, navigates device 100 to a main, home, or root menu from any user interface that is displayed on device 100. In such embodiments, a “menu button” is implemented using a touchpad. In some other embodiments, the menu button is a physical push button or other physical input control device instead of a touchpad.



FIG. 1B is a block diagram illustrating exemplary components for event handling in accordance with some embodiments. In some embodiments, memory 102 (in FIGS. 1A) or 370 (FIG. 3) includes event sorter 170 (e.g., in operating system 126) and a respective application 136-1 (e.g., any of the aforementioned applications 136, 137-155, 380-390).


Event sorter 170 receives event information and determines the application 136-1 and application view 191 of application 136-1 to which to deliver the event information. Event sorter 170 includes event monitor 171 and event dispatcher module 174. In some embodiments, application 136-1 includes application internal state 192, which indicates the current application view(s) displayed on touch-sensitive display system 112 when the application is active or executing. In some embodiments, device/global internal state 157 is used by event sorter 170 to determine which application(s) is (are) currently active, and application internal state 192 is used by event sorter 170 to determine application views 191 to which to deliver event information.


In some embodiments, application internal state 192 includes additional information, such as one or more of: resume information to be used when application 136-1 resumes execution, user interface state information that indicates information being displayed or that is ready for display by application 136-1, a state queue for enabling the user to go back to a prior state or view of application 136-1, and a redo/undo queue of previous actions taken by the user.


Event monitor 171 receives event information from peripherals interface 118. Event information includes information about a sub-event (e.g., a user touch on touch-sensitive display system 112, as part of a multi-touch gesture). Peripherals interface 118 transmits information it receives from I/O subsystem 106 or a sensor, such as proximity sensor 166, accelerometer(s) 168, and/or microphone 113 (through audio circuitry 110). Information that peripherals interface 118 receives from I/O subsystem 106 includes information from touch-sensitive display system 112 or a touch-sensitive surface.


In some embodiments, event monitor 171 sends requests to the peripherals interface 118 at predetermined intervals. In response, peripherals interface 118 transmits event information. In other embodiments, peripheral interface 118 transmits event information only when there is a significant event (e.g., receiving an input above a predetermined noise threshold and/or for more than a predetermined duration).


In some embodiments, event sorter 170 also includes a hit view determination module 172 and/or an active event recognizer determination module 173.


Hit view determination module 172 provides software procedures for determining where a sub-event has taken place within one or more views, when touch-sensitive display system 112 displays more than one view. Views are made up of controls and other elements that a user can see on the display.


Another aspect of the user interface associated with an application is a set of views, sometimes herein called application views or user interface windows, in which information is displayed and touch-based gestures occur. The application views (of a respective application) in which a touch is detected optionally correspond to programmatic levels within a programmatic or view hierarchy of the application. For example, the lowest level view in which a touch is detected is, optionally, called the hit view, and the set of events that are recognized as proper inputs are, optionally, determined based, at least in part, on the hit view of the initial touch that begins a touch-based gesture.


Hit view determination module 172 receives information related to sub-events of a touch-based gesture. When an application has multiple views organized in a hierarchy, hit view determination module 172 identifies a hit view as the lowest view in the hierarchy which should handle the sub-event. In most circumstances, the hit view is the lowest level view in which an initiating sub-event occurs (i.e., the first sub-event in the sequence of sub-events that form an event or potential event). Once the hit view is identified by the hit view determination module, the hit view typically receives all sub-events related to the same touch or input source for which it was identified as the hit view.


Active event recognizer determination module 173 determines which view or views within a view hierarchy should receive a particular sequence of sub-events. In some embodiments, active event recognizer determination module 173 determines that only the hit view should receive a particular sequence of sub-events. In other embodiments, active event recognizer determination module 173 determines that all views that include the physical location of a sub-event are actively involved views, and therefore determines that all actively involved views should receive a particular sequence of sub-events. In other embodiments, even if touch sub-events were entirely confined to the area associated with one particular view, views higher in the hierarchy would still remain as actively involved views.


Event dispatcher module 174 dispatches the event information to an event recognizer (e.g., event recognizer 180). In embodiments including active event recognizer determination module 173, event dispatcher module 174 delivers the event information to an event recognizer determined by active event recognizer determination module 173. In some embodiments, event dispatcher module 174 stores in an event queue the event information, which is retrieved by a respective event receiver module 182.


In some embodiments, operating system 126 includes event sorter 170. Alternatively, application 136-1 includes event sorter 170. In yet other embodiments, event sorter 170 is a stand-alone module, or a part of another module stored in memory 102, such as contact/motion module 130.


In some embodiments, application 136-1 includes a plurality of event handlers 190 and one or more application views 191, each of which includes instructions for handling touch events that occur within a respective view of the application's user interface. Each application view 191 of the application 136-1 includes one or more event recognizers 180. Typically, a respective application view 191 includes a plurality of event recognizers 180. In other embodiments, one or more of event recognizers 180 are part of a separate module, such as a user interface kit (not shown) or a higher level object from which application 136-1 inherits methods and other properties. In some embodiments, a respective event handler 190 includes one or more of: data updater 176, object updater 177, GUI updater 178, and/or event data 179 received from event sorter 170. Event handler 190 optionally utilizes or calls data updater 176, object updater 177 or GUI updater 178 to update the application internal state 192. Alternatively, one or more of the application views 191 includes one or more respective event handlers 190. Also, in some embodiments, one or more of data updater 176, object updater 177, and GUI updater 178 are included in a respective application view 191.


A respective event recognizer 180 receives event information (e.g., event data 179) from event sorter 170, and identifies an event from the event information. Event recognizer 180 includes event receiver 182 and event comparator 184. In some embodiments, event recognizer 180 also includes at least a subset of: metadata 183, and event delivery instructions 188 (which optionally include sub-event delivery instructions).


Event receiver 182 receives event information from event sorter 170. The event information includes information about a sub-event, for example, a touch or a touch movement. Depending on the sub-event, the event information also includes additional information, such as location of the sub-event. When the sub-event concerns motion of a touch, the event information optionally also includes speed and direction of the sub-event. In some embodiments, events include rotation of the device from one orientation to another (e.g., from a portrait orientation to a landscape orientation, or vice versa), and the event information includes corresponding information about the current orientation (also called device attitude) of the device.


Event comparator 184 compares the event information to predefined event or sub-event definitions and, based on the comparison, determines an event or sub-event, or determines or updates the state of an event or sub-event. In some embodiments, event comparator 184 includes event definitions 186. Event definitions 186 contain definitions of events (e.g., predefined sequences of sub-events), for example, event 1 (187-1), event 2 (187-2), and others. In some embodiments, sub-events in an event 187 include, for example, touch begin, touch end, touch movement, touch cancellation, and multiple touching. In one example, the definition for event 1 (187-1) is a double tap on a displayed object. The double tap, for example, comprises a first touch (touch begin) on the displayed object for a predetermined phase, a first lift-off (touch end) for a predetermined phase, a second touch (touch begin) on the displayed object for a predetermined phase, and a second lift-off (touch end) for a predetermined phase. In another example, the definition for event 2 (187-2) is a dragging on a displayed object. The dragging, for example, comprises a touch (or contact) on the displayed object for a predetermined phase, a movement of the touch across touch-sensitive display system 112, and lift-off of the touch (touch end). In some embodiments, the event also includes information for one or more associated event handlers 190.


In some embodiments, event definition 187 includes a definition of an event for a respective user-interface object. In some embodiments, event comparator 184 performs a hit test to determine which user-interface object is associated with a sub-event. For example, in an application view in which three user-interface objects are displayed on touch-sensitive display system 112, when a touch is detected on touch-sensitive display system 112, event comparator 184 performs a hit test to determine which of the three user-interface objects is associated with the touch (sub-event). If each displayed object is associated with a respective event handler 190, the event comparator uses the result of the hit test to determine which event handler 190 should be activated. For example, event comparator 184 selects an event handler associated with the sub-event and the object triggering the hit test.


In some embodiments, the definition for a respective event 187 also includes delayed actions that delay delivery of the event information until after it has been determined whether the sequence of sub-events does or does not correspond to the event recognizer's event type.


When a respective event recognizer 180 determines that the series of sub-events do not match any of the events in event definitions 186, the respective event recognizer 180 enters an event impossible, event failed, or event ended state, after which it disregards subsequent sub-events of the touch-based gesture. In this situation, other event recognizers, if any, that remain active for the hit view continue to track and process sub-events of an ongoing touch-based gesture.


In some embodiments, a respective event recognizer 180 includes metadata 183 with configurable properties, flags, and/or lists that indicate how the event delivery system should perform sub-event delivery to actively involved event recognizers. In some embodiments, metadata 183 includes configurable properties, flags, and/or lists that indicate how event recognizers interact, or are enabled to interact, with one another. In some embodiments, metadata 183 includes configurable properties, flags, and/or lists that indicate whether sub-events are delivered to varying levels in the view or programmatic hierarchy.


In some embodiments, a respective event recognizer 180 activates event handler 190 associated with an event when one or more particular sub-events of an event are recognized. In some embodiments, a respective event recognizer 180 delivers event information associated with the event to event handler 190. Activating an event handler 190 is distinct from sending (and deferred sending) sub-events to a respective hit view. In some embodiments, event recognizer 180 throws a flag associated with the recognized event, and event handler 190 associated with the flag catches the flag and performs a predefined process.


In some embodiments, event delivery instructions 188 include sub-event delivery instructions that deliver event information about a sub-event without activating an event handler. Instead, the sub-event delivery instructions deliver event information to event handlers associated with the series of sub-events or to actively involved views. Event handlers associated with the series of sub-events or with actively involved views receive the event information and perform a predetermined process.


In some embodiments, data updater 176 creates and updates data used in application 136-1. For example, data updater 176 updates the telephone number used in contacts module 137, or stores a video file used in video player module 145. In some embodiments, object updater 177 creates and updates objects used in application 136-1. For example, object updater 177 creates a new user-interface object or updates the position of a user-interface object. GUI updater 178 updates the GUI. For example, GUI updater 178 prepares display information and sends it to graphics module 132 for display on a touch-sensitive display.


In some embodiments, event handler(s) 190 includes or has access to data updater 176, object updater 177, and GUI updater 178. In some embodiments, data updater 176, object updater 177, and GUI updater 178 are included in a single module of a respective application 136-1 or application view 191. In other embodiments, they are included in two or more software modules.


It shall be understood that the foregoing discussion regarding event handling of user touches on touch-sensitive displays also applies to other forms of user inputs to operate multifunction devices 100 with input-devices, not all of which are initiated on touch screens. For example, mouse movement and mouse button presses, optionally coordinated with single or multiple keyboard presses or holds; contact movements such as taps, drags, scrolls, etc., on touch-pads; pen stylus inputs; movement of the device; oral instructions; detected eye movements; biometric inputs; and/or any combination thereof are optionally utilized as inputs corresponding to sub-events which define an event to be recognized.



FIG. 2 illustrates a portable multifunction device 100 having a touch screen (e.g., touch-sensitive display system 112, FIG. 1A) in accordance with some embodiments. The touch screen optionally displays one or more graphics within user interface (UI) 200. In this embodiment, as well as others described below, a user is enabled to select one or more of the graphics by making a gesture on the graphics, for example, with one or more fingers 202 (not drawn to scale in the figure) or one or more styluses 203 (not drawn to scale in the figure). In some embodiments, selection of one or more graphics occurs when the user breaks contact with the one or more graphics. In some embodiments, the gesture optionally includes one or more taps, one or more swipes (from left to right, right to left, upward and/or downward) and/or a rolling of a finger (from right to left, left to right, upward and/or downward) that has made contact with device 100. In some implementations or circumstances, inadvertent contact with a graphic does not select the graphic. For example, a swipe gesture that sweeps over an application icon optionally does not select the corresponding application when the gesture corresponding to selection is a tap.


Device 100 optionally also includes one or more physical buttons, such as “home” or menu button 204. As described previously, menu button 204 is, optionally, used to navigate to any application 136 in a set of applications that are, optionally executed on device 100. Alternatively, in some embodiments, the menu button is implemented as a soft key in a GUI displayed on the touch-screen display.


In some embodiments, device 100 includes the touch-screen display, menu button 204, push button 206 for powering the device on/off and locking the device, volume adjustment button(s) 208, Subscriber Identity Module (SIM) card slot 210, head set jack 212, and docking/charging external port 124. Push button 206 is, optionally, used to turn the power on/off on the device by depressing the button and holding the button in the depressed state for a predefined time interval; to lock the device by depressing the button and releasing the button before the predefined time interval has elapsed; and/or to unlock the device or initiate an unlock process. In some embodiments, device 100 also accepts verbal input for activation or deactivation of some functions through microphone 113. Device 100 also, optionally, includes one or more contact intensity sensors 165 for detecting intensity of contacts on touch-sensitive display system 112 and/or one or more tactile output generators 167 for generating tactile outputs for a user of device 100.



FIG. 3 is a block diagram of an exemplary multifunction device with a display and a touch-sensitive surface in accordance with some embodiments. Device 300 need not be portable. In some embodiments, device 300 is a laptop computer, a desktop computer, a tablet computer, a multimedia player device, a navigation device, an educational device (such as a child's learning toy), a gaming system, or a control device (e.g., a home or industrial controller). Device 300 typically includes one or more processing units (CPU's) 310, one or more network or other communications interfaces 360, memory 370, and one or more communication buses 320 for interconnecting these components. Communication buses 320 optionally include circuitry (sometimes called a chipset) that interconnects and controls communications between system components. Device 300 includes input/output (I/O) interface 330 comprising display 340, which is typically a touch-screen display. I/O interface 330 also optionally includes a keyboard and/or mouse (or other pointing device) 350 and touchpad 355, tactile output generator 357 for generating tactile outputs on device 300 (e.g., similar to tactile output generator(s) 167 described above with reference to FIG. 1A), sensors 359 (e.g., optical, acceleration, proximity, touch-sensitive, and/or contact intensity sensors similar to contact intensity sensor(s) 165 described above with reference to FIG. 1A). Memory 370 includes high-speed random access memory, such as DRAM, SRAM, DDR RAM or other random access solid state memory devices; and optionally includes non-volatile memory, such as one or more magnetic disk storage devices, optical disk storage devices, flash memory devices, or other non-volatile solid state storage devices. Memory 370 optionally includes one or more storage devices remotely located from CPU(s) 310. In some embodiments, memory 370 stores programs, modules, and data structures analogous to the programs, modules, and data structures stored in memory 102 of portable multifunction device 100 (FIG. 1A), or a subset thereof. Furthermore, memory 370 optionally stores additional programs, modules, and data structures not present in memory 102 of portable multifunction device 100. For example, memory 370 of device 300 optionally stores drawing module 380, presentation module 382, word processing module 384, website creation module 386, disk authoring module 388, and/or spreadsheet module 390, while memory 102 of portable multifunction device 100 (FIG. 1A) optionally does not store these modules.


Each of the above identified elements in FIG. 3 are, optionally, stored in one or more of the previously mentioned memory devices. Each of the above identified modules corresponds to a set of instructions for performing a function described above. The above identified modules or programs (i.e., sets of instructions) need not be implemented as separate software programs, procedures or modules, and thus various subsets of these modules are, optionally, combined or otherwise re-arranged in various embodiments. In some embodiments, memory 370 optionally stores a subset of the modules and data structures identified above. Furthermore, memory 370 optionally stores additional modules and data structures not described above.


Attention is now directed towards embodiments of user interfaces (“UI”) that are, optionally, implemented on portable multifunction device 100.



FIG. 4A illustrates an exemplary user interface for a menu of applications on portable multifunction device 100 in accordance with some embodiments. Similar user interfaces are, optionally, implemented on device 300. In some embodiments, user interface 400 includes the following elements, or a subset or superset thereof:

    • Signal strength indicator(s) 402 for wireless communication(s), such as cellular and Wi-Fi signals;
    • Time 404;
    • Bluetooth indicator 405;
    • Battery status indicator 406;
    • Tray 408 with icons for frequently used applications, such as:
      • Icon 416 for telephone module 138, labeled “Phone,” which optionally includes an indicator 414 of the number of missed calls or voicemail messages;
      • Icon 418 for e-mail client module 140, labeled “Mail,” which optionally includes an indicator 410 of the number of unread e-mails;
      • Icon 420 for browser module 147, labeled “Browser;” and
      • Icon 422 for video and music player module 152, also referred to as iPod (trademark of Apple Inc.) module 152, labeled “iPod;” and
    • Icons for other applications, such as:
      • Icon 424 for IM module 141, labeled “Messages;”
      • Icon 426 for calendar module 148, labeled “Calendar;”
      • Icon 428 for image management module 144, labeled “Photos;”
      • Icon 430 for camera module 143, labeled “Camera;”
      • Icon 432 for online video module 155, labeled “Online Video;”
      • Icon 434 for stocks widget 149-2, labeled “Stocks;”
      • Icon 436 for map module 154, labeled “Maps;”
      • Icon 438 for weather widget 149-1, labeled “Weather;”
      • Icon 440 for alarm clock widget 149-4, labeled “Clock;”
      • Icon 442 for workout support module 142, labeled “Workout Support;”
      • Icon 444 for notes module 153, labeled “Notes;” and
      • Icon 446 for a settings application or module, which provides access to settings for device 100 and its various applications 136.


It should be noted that the icon labels illustrated in FIG. 4A are merely exemplary. For example, in some embodiments, icon 422 for video and music player module 152 is labeled “Music” or “Music Player.” Other labels are, optionally, used for various application icons. In some embodiments, a label for a respective application icon includes a name of an application corresponding to the respective application icon. In some embodiments, a label for a particular application icon is distinct from a name of an application corresponding to the particular application icon.



FIG. 4B illustrates an exemplary user interface on a device (e.g., device 300, FIG. 3) with a touch-sensitive surface 451 (e.g., a tablet or touchpad 355, FIG. 3) that is separate from the display 450. Device 300 also, optionally, includes one or more contact intensity sensors (e.g., one or more of sensors 357) for detecting intensity of contacts on touch-sensitive surface 451 and/or one or more tactile output generators 359 for generating tactile outputs for a user of device 300.



FIG. 4B illustrates an exemplary user interface on a device (e.g., device 300, FIG. 3) with a touch-sensitive surface 451 (e.g., a tablet or touchpad 355, FIG. 3) that is separate from the display 450. Although many of the examples that follow will be given with reference to inputs on touch screen display 112 (where the touch sensitive surface and the display are combined), in some embodiments, the device detects inputs on a touch-sensitive surface that is separate from the display, as shown in FIG. 4B. In some embodiments, the touch-sensitive surface (e.g., 451 in FIG. 4B) has a primary axis (e.g., 452 in FIG. 4B) that corresponds to a primary axis (e.g., 453 in FIG. 4B) on the display (e.g., 450). In accordance with these embodiments, the device detects contacts (e.g., 460 and 462 in FIG. 4B) with the touch-sensitive surface 451 at locations that correspond to respective locations on the display (e.g., in FIG. 4B, 460 corresponds to 468 and 462 corresponds to 470). In this way, user inputs (e.g., contacts 460 and 462, and movements thereof) detected by the device on the touch-sensitive surface (e.g., 451 in FIG. 4B) are used by the device to manipulate the user interface on the display (e.g., 450 in FIG. 4B) of the multifunction device when the touch-sensitive surface is separate from the display. It should be understood that similar methods are, optionally, used for other user interfaces described herein.


Additionally, while the following examples are given primarily with reference to finger inputs (e.g., finger contacts, finger tap gestures, finger swipe gestures, etc.), it should be understood that, in some embodiments, one or more of the finger inputs are replaced with input from another input device (e.g., a mouse based input or a stylus input). For example, a swipe gesture is, optionally, replaced with a mouse click (e.g., instead of a contact) followed by movement of the cursor along the path of the swipe (e.g., instead of movement of the contact). As another example, a tap gesture is, optionally, replaced with a mouse click while the cursor is located over the location of the tap gesture (e.g., instead of detection of the contact followed by ceasing to detect the contact). Similarly, when multiple user inputs are simultaneously detected, it should be understood that multiple computer mice are, optionally, used simultaneously, or a mouse and finger contacts are, optionally, used simultaneously.


As used herein, the term “focus selector” refers to an input element that indicates a current part of a user interface with which a user is interacting. In some implementations that include a cursor or other location marker, the cursor acts as a “focus selector,” so that when an input (e.g., a press input) is detected on a touch-sensitive surface (e.g., touchpad 355 in FIG. 3 or touch-sensitive surface 451 in FIG. 4B) while the cursor is over a particular user interface element (e.g., a button, window, slider or other user interface element), the particular user interface element is adjusted in accordance with the detected input. In some implementations that include a touch-screen display (e.g., touch-sensitive display system 112 in FIG. 1A or the touch screen in FIG. 4A) that enables direct interaction with user interface elements on the touch-screen display, a detected contact on the touch-screen acts as a “focus selector,” so that when an input (e.g., a press input by the contact) is detected on the touch-screen display at a location of a particular user interface element (e.g., a button, window, slider or other user interface element), the particular user interface element is adjusted in accordance with the detected input. In some implementations, focus is moved from one region of a user interface to another region of the user interface without corresponding movement of a cursor or movement of a contact on a touch-screen display (e.g., by using a tab key or arrow keys to move focus from one button to another button); in these implementations, the focus selector moves in accordance with movement of focus between different regions of the user interface. Without regard to the specific form taken by the focus selector, the focus selector is generally the user interface element (or contact on a touch-screen display) that is controlled by the user so as to communicate the user's intended interaction with the user interface (e.g., by indicating, to the device, the element of the user interface with which the user is intending to interact). For example, the location of a focus selector (e.g., a cursor, a contact, or a selection box) over a respective button while a press input is detected on the touch-sensitive surface (e.g., a touchpad or touch screen) will indicate that the user is intending to activate the respective button (as opposed to other user interface elements shown on a display of the device).


As used in the specification and claims, the term “intensity” of a contact on a touch-sensitive surface refers to the force or pressure (force per unit area) of a contact (e.g., a finger contact or a stylus contact) on the touch-sensitive surface, or to a substitute (proxy) for the force or pressure of a contact on the touch-sensitive surface. The intensity of a contact has a range of values that includes at least four distinct values and more typically includes hundreds of distinct values (e.g., at least 256). Intensity of a contact is, optionally, determined (or measured) using various approaches and various sensors or combinations of sensors. For example, one or more force sensors underneath or adjacent to the touch-sensitive surface are, optionally, used to measure force at various points on the touch-sensitive surface. In some implementations, force measurements from multiple force sensors are combined (e.g., a weighted average or a sum) to determine an estimated force of a contact. Similarly, a pressure-sensitive tip of a stylus is, optionally, used to determine a pressure of the stylus on the touch-sensitive surface. Alternatively, the size of the contact area detected on the touch-sensitive surface and/or changes thereto, the capacitance of the touch-sensitive surface proximate to the contact and/or changes thereto, and/or the resistance of the touch-sensitive surface proximate to the contact and/or changes thereto are, optionally, used as a substitute for the force or pressure of the contact on the touch-sensitive surface. In some implementations, the substitute measurements for contact force or pressure are used directly to determine whether an intensity threshold has been exceeded (e.g., the intensity threshold is described in units corresponding to the substitute measurements). In some implementations, the substitute measurements for contact force or pressure are converted to an estimated force or pressure and the estimated force or pressure is used to determine whether an intensity threshold has been exceeded (e.g., the intensity threshold is a pressure threshold measured in units of pressure). Using the intensity of a contact as an attribute of a user input allows for user access to additional device functionality that may otherwise not be readily accessible by the user on a reduced-size device with limited real estate for displaying affordances (e.g., on a touch-sensitive display) and/or receiving user input (e.g., via a touch-sensitive display, a touch-sensitive surface, or a physical/mechanical control such as a knob or a button).


In some embodiments, contact/motion module 130 uses a set of one or more intensity thresholds to determine whether an operation has been performed by a user (e.g., to determine whether a user has “clicked” on an icon). In some embodiments, at least a subset of the intensity thresholds are determined in accordance with software parameters (e.g., the intensity thresholds are not determined by the activation intensity thresholds of particular physical actuators and can be adjusted without changing the physical hardware of device 100). For example, a mouse “click” threshold of a trackpad or touch-screen display can be set to any of a large range of predefined thresholds values without changing the trackpad or touch-screen display hardware. Additionally, in some embodiments, a user of the device is provided with software settings for adjusting one or more of the set of intensity thresholds (e.g., by adjusting individual intensity thresholds and/or by adjusting a plurality of intensity thresholds at once with a system-level click “intensity” parameter).


As used in the specification and claims, the term “characteristic intensity” of a contact refers to a characteristic of the contact based on one or more intensities of the contact. In some embodiments, the characteristic intensity is based on multiple intensity samples. The characteristic intensity is, optionally, based on a predefined number of intensity samples, or a set of intensity samples collected during a predetermined time period (e.g., 0.05, 0.1, 0.2, 0.5, 1, 2, 5, 10 seconds) relative to a predefined event (e.g., after detecting the contact, prior to detecting liftoff of the contact, before or after detecting a start of movement of the contact, prior to detecting an end of the contact, before or after detecting an increase in intensity of the contact, and/or before or after detecting a decrease in intensity of the contact). A characteristic intensity of a contact is, optionally based on one or more of: a maximum value of the intensities of the contact, a mean value of the intensities of the contact, an average value of the intensities of the contact, a top 10 percentile value of the intensities of the contact, a value at the half maximum of the intensities of the contact, a value at the 90 percent maximum of the intensities of the contact, or the like. In some embodiments, the duration of the contact is used in determining the characteristic intensity (e.g., when the characteristic intensity is an average of the intensity of the contact over time). In some embodiments, the characteristic intensity is compared to a set of one or more intensity thresholds to determine whether an operation has been performed by a user. For example, the set of one or more intensity thresholds may include a first intensity threshold and a second intensity threshold. In this example, a contact with a characteristic intensity that does not exceed the first threshold results in a first operation, a contact with a characteristic intensity that exceeds the first intensity threshold and does not exceed the second intensity threshold results in a second operation, and a contact with a characteristic intensity that exceeds the second intensity threshold results in a third operation. In some embodiments, a comparison between the characteristic intensity and one or more intensity thresholds is used to determine whether or not to perform one or more operations (e.g., whether to perform a respective option or forgo performing the respective operation) rather than being used to determine whether to perform a first operation or a second operation.


In some embodiments, a portion of a gesture is identified for purposes of determining a characteristic intensity. For example, a touch-sensitive surface may receive a continuous swipe contact transitioning from a start location and reaching an end location (e.g., a drag gesture), at which point the intensity of the contact increases. In this example, the characteristic intensity of the contact at the end location may be based on only a portion of the continuous swipe contact, and not the entire swipe contact (e.g., only the portion of the swipe contact at the end location). In some embodiments, a smoothing algorithm may be applied to the intensities of the swipe contact prior to determining the characteristic intensity of the contact. For example, the smoothing algorithm optionally includes one or more of: an unweighted sliding-average smoothing algorithm, a triangular smoothing algorithm, a median filter smoothing algorithm, and/or an exponential smoothing algorithm. In some circumstances, these smoothing algorithms eliminate narrow spikes or dips in the intensities of the swipe contact for purposes of determining a characteristic intensity.


The control heuristics figures (e.g., FIGS. 6A-6K) described below include various intensity diagrams that show the current intensity of the contact on the touch-sensitive surface relative to one or more intensity thresholds (e.g., a light press activation intensity threshold ILA, respective activation intensity threshold ITspeedA associated with various playback speeds, a light press release intensity threshold ILR and/or respective release intensity thresholds associated with various playback speeds). In some embodiments, the light press activation intensity threshold corresponds to an intensity at which the device will perform operations typically associated with clicking a button of a physical mouse or a trackpad. In some embodiments, the higher activation intensity thresholds correspond to intensities at which the device will perform operations that are different from operations typically associated with clicking a button of a physical mouse or a trackpad. In some embodiments, when a contact is detected with a characteristic intensity below the light press intensity threshold (e.g., and above a nominal contact-detection intensity threshold below which the contact is no longer detected), the device will move a focus selector in accordance with movement of the contact on the touch-sensitive surface without performing an operation associated with the light press activation intensity threshold or the higher activation intensity thresholds. Generally, unless otherwise stated, these intensity thresholds are consistent between different sets of user interface figures.


In some embodiments, the response of the device to inputs detected by the device depends on criteria based on the contact intensity during the input. For example, for some “light press” inputs, the intensity of a contact exceeding a first intensity threshold during the input triggers a first response. In some embodiments, the response of the device to inputs detected by the device depends on criteria that include both the contact intensity during the input and time-based criteria. For example, for some “deep press” inputs (e.g., press inputs with intensities reaching above one or more of the higher activation intensity thresholds), the intensity of a contact exceeding a second intensity threshold during the input, greater than the first intensity threshold for a light press, triggers a second response only if a delay time has elapsed between meeting the first intensity threshold and meeting the second intensity threshold. This delay time is typically less than 200 ms in duration (e.g., 40, 100, or 120 ms, depending on the magnitude of the second intensity threshold, with the delay time increasing as the second intensity threshold increases). This delay time helps to avoid accidental deep press inputs. As another example, for some “deep press” inputs, there is a reduced-sensitivity time period that occurs after the time at which the first intensity threshold is met. During the reduced-sensitivity time period, the second intensity threshold is increased. This temporary increase in the second intensity threshold also helps to avoid accidental deep press inputs. For other deep press inputs, the response to detection of a deep press input does not depend on time-based criteria.


In some embodiments, one or more of the input intensity thresholds and/or the corresponding outputs vary based on one or more factors, such as user settings, contact motion, input timing, application running, rate at which the intensity is applied, number of concurrent inputs, user history, environmental factors (e.g., ambient noise), focus selector position, and the like. Exemplary factors are described in U.S. patent application Ser. Nos. 14/399,606 and 14/624,296, which are incorporated by reference herein in their entireties.


For example, FIG. 4C illustrates a dynamic intensity threshold 480 that changes over time based in part on the intensity of touch input 476 over time. Dynamic intensity threshold 480 is a sum of two components, first component 474 that decays over time after a predefined delay time p1 from when touch input 476 is initially detected, and second component 478 that trails the intensity of touch input 476 over time. The initial high intensity threshold of first component 474 reduces accidental triggering of a “deep press” response, while still allowing an immediate “deep press” response if touch input 476 provides sufficient intensity. Second component 478 reduces unintentional triggering of a “deep press” response by gradual intensity fluctuations of a touch input. In some embodiments, when touch input 476 satisfies dynamic intensity threshold 480 (e.g., at point 481 in FIG. 4C), the “deep press” response is triggered.



FIG. 4D illustrates another dynamic intensity threshold 486 (e.g., intensity threshold ID). FIG. 4D also illustrates two other intensity thresholds: a first intensity threshold IH and a second intensity threshold IL. In FIG. 4D, although touch input 484 satisfies the first intensity threshold IH and the second intensity threshold IL prior to time p2, no response is provided until delay time p2 has elapsed at time 482. Also in FIG. 4D, dynamic intensity threshold 486 decays over time, with the decay starting at time 488 after a predefined delay time p1 has elapsed from time 482 (when the response associated with the second intensity threshold IL was triggered). This type of dynamic intensity threshold reduces accidental triggering of a response associated with the dynamic intensity threshold ID immediately after, or concurrently with, triggering a response associated with a lower intensity threshold, such as the first intensity threshold IH or the second intensity threshold IL.



FIG. 4E illustrate yet another dynamic intensity threshold 492 (e.g., intensity threshold ID). In FIG. 4E, a response associated with the intensity threshold IL is triggered after the delay time p2 has elapsed from when touch input 490 is initially detected. Concurrently, dynamic intensity threshold 492 decays after the predefined delay time p1 has elapsed from when touch input 490 is initially detected. So a decrease in intensity of touch input 490 after triggering the response associated with the intensity threshold IL, followed by an increase in the intensity of touch input 490, without releasing touch input 490, can trigger a response associated with the intensity threshold ID (e.g., at time 494) even when the intensity of touch input 490 is below another intensity threshold, for example, the intensity threshold IL.


An increase of characteristic intensity of the contact from an intensity below the light press activation intensity threshold ITLA to an intensity between the light press activation intensity threshold ITLA and the next higher activation intensity threshold is sometimes referred to as a “light press” input. An increase of characteristic intensity of the contact from an intensity below a higher activation intensity threshold to an intensity above the higher activation intensity threshold is sometimes referred to as a “deep press” input. An increase of characteristic intensity of the contact from an intensity below the contact-detection intensity threshold to an intensity between the contact-detection intensity threshold and the light press activation intensity threshold ITLA is sometimes referred to as detecting the contact on the touch-surface. A decrease of characteristic intensity of the contact from an intensity above the contact-detection intensity threshold to an intensity below the contact-detection intensity threshold is sometimes referred to as detecting liftoff of the contact from the touch-surface. In some embodiments, the contact-detection intensity is zero. In some embodiments, the contact-detection intensity is greater than zero. In some illustrations a shaded circle or oval is used to represent intensity of a contact on the touch-sensitive surface (e.g., as in shown by contact 512, FIGS. 5C-5E). In some illustrations, a circle or oval without shading is used represent a respective contact on the touch-sensitive surface without specifying the intensity of the respective contact.


In some embodiments, described herein, one or more operations are performed in response to detecting a gesture that includes a respective press input or in response to detecting the respective press input performed with a respective contact (or a plurality of contacts), where the respective press input is detected based at least in part on detecting an increase in intensity of the contact (or plurality of contacts) above a press-input intensity threshold. In some embodiments, the respective operation is performed in response to detecting the increase in intensity of the respective contact above the press-input intensity threshold (e.g., the respective operation is performed on a “down stroke” of the respective press input). In some embodiments, the press input includes an increase in intensity of the respective contact above the press-input intensity threshold and a subsequent decrease in intensity of the contact below the press-input intensity threshold, and the respective operation is performed in response to detecting the subsequent decrease in intensity of the respective contact below the press-input threshold (e.g., the respective operation is performed on an “up stroke” of the respective press input).


In some embodiments, the device employs intensity hysteresis to avoid accidental inputs sometimes termed “jitter,” where the device defines or selects a hysteresis intensity threshold with a predefined relationship to the press-input intensity threshold (e.g., the hysteresis intensity threshold is X intensity units lower than the press-input intensity threshold or the hysteresis intensity threshold is 75%, 90%, or some reasonable proportion of the press-input intensity threshold). Thus, in some embodiments, the press input includes an increase in intensity of the respective contact above the press-input intensity threshold and a subsequent decrease in intensity of the contact below the hysteresis intensity threshold that corresponds to the press-input intensity threshold, and the respective operation is performed in response to detecting the subsequent decrease in intensity of the respective contact below the hysteresis intensity threshold (e.g., the respective operation is performed on an “up stroke” of the respective press input). Similarly, in some embodiments, the press input is detected only when the device detects an increase in intensity of the contact from an intensity at or below the hysteresis intensity threshold to an intensity at or above the press-input intensity threshold and, optionally, a subsequent decrease in intensity of the contact to an intensity at or below the hysteresis intensity, and the respective operation is performed in response to detecting the press input (e.g., the increase in intensity of the contact or the decrease in intensity of the contact, depending on the circumstances).


For ease of explanation, the description of operations performed in response to a press input associated with a press-input intensity threshold or in response to a gesture including the press input are, optionally, triggered in response to detecting: an increase in intensity of a contact above the press-input intensity threshold, an increase in intensity of a contact from an intensity below the hysteresis intensity threshold to an intensity above the press-input intensity threshold, a decrease in intensity of the contact below the press-input intensity threshold, or a decrease in intensity of the contact below the hysteresis intensity threshold corresponding to the press-input intensity threshold. Additionally, in examples where an operation is described as being performed in response to detecting a decrease in intensity of a contact below the press-input intensity threshold, the operation is, optionally, performed in response to detecting a decrease in intensity of the contact below a hysteresis intensity threshold corresponding to, and lower than, the press-input intensity threshold. As described above, in some embodiments, the triggering of these responses also depends on time-based criteria being met (e.g., a delay time has elapsed between a first intensity threshold being met and a second intensity threshold being met).


User Interfaces and Associated Processes

Attention is now directed towards embodiments of user interfaces (“UI”) and associated processes that may be implemented on an electronic device, such as portable multifunction device 100 or device 300, with a display, a touch-sensitive surface, and one or more sensors to detect intensity of contacts with the touch-sensitive surface.



FIGS. 5A-5F illustrate exemplary user interfaces for controlling media presentation in accordance with some embodiments. FIGS. 6A-6K illustrate exemplary control heuristics for controlling media presentation in accordance with some embodiments. The user interfaces and control heuristics in these figures are used to illustrate the processes described below, including the processes in FIGS. 7A-7H and 8A-8C. Although some of the examples which follow will be given with reference to inputs on a touch-screen display (where the touch-sensitive surface and the display are combined), in some embodiments, the device detects inputs on a touch-sensitive surface 451 that is separate from the display 450, as shown in FIG. 4B.



FIG. 5A illustrates exemplary user interface 400 of an electronic device (e.g., device 300, FIG. 3, or portable multifunction device 100, FIG. 1A) when a media player application (e.g., video and music player module represented by icon 422, FIG. 4A) is executed on the electronic device. The media player application provides a media playback function to present media content (e.g., a collection of images, animation, video, music, speech, etc.) continuously at a selected playback speed (e.g., 0×, 1×, 2×, 5×, 10×, 20×, 30×, 60×, etc.). Examples of the media player application includes a music player application, a video player application, a presentation application that displays a slideshow, a multi-media editor application, an audio recorder application, a photo editor application that displays photos in a slideshow, and the like. User Interface 400 includes content window 502 and various user interface controls for controlling different aspects of media presentation in the media player application. In some embodiments, content window 502 includes play button 504, and optionally a still image (e.g., an album cover image or representative video frame) or text (e.g., a title of media content) associated with a currently selected media file (e.g., a video clip titled “Life in the Desert”).


In some embodiments, user interface 400 further includes scrubber 506 which displays the total duration of the currently selected media content, and indicates (e.g., using indicator 508) the current playback progress of the selected media content. In some embodiments, a user can drag indicator 508 forward or backward along scrubber 506 to quickly jump to different locations in the selected media content.


In some embodiments, user interface 400 further includes a number of playback controls, including play control 510, fast forward control 512, and rewind control 514. Play control 510 is used to start normal playback (e.g., at 1× speed) of the media content. Fast forward control 512 is used to start fast forwarding of the media content, e.g., by playing the media content at a speed higher than the normal playback speed. Rewind control 512 is used start rewinding of the media content, e.g., by playing the media content backward at a speed higher than the normal playback speed. In some embodiments, as described later in the present disclosure, one or more of playback controls 510, 512 and 514 are used to increase the current playback speed to one or more higher levels. The higher playback speed may be momentary and lasts only for a user-specified duration (e.g., while the intensity of the press input meets certain criteria). Alternatively, the higher playback speeds may be maintained until a new input on one of the playback controls is received.



FIG. 5B illustrates that normal playback (e.g., at 1× speed) of the currently selected media content has been started, e.g., in response to a tap or light press input detected on play button 504 or play control 510. While the normal playback of the media content is ongoing, the current progress of the playback is indicated by indicator 508 on scrubber 506. In some embodiments, playback control 510 is replaced with pause control 518. In some embodiments, a stop control (not shown) may be included in user interface 400 for stopping the playback at any speed and return the start position of the selected media content to the beginning of the selected media content. For example, in some embodiments, a stop control may be presented next to playback controls 514, 518, or 512 after the media player has started playing the media content.



FIG. 5C illustrates that when a press input (e.g., represented by contact 520) is detected on fast forward control 512 while the media content is being presented at a normal playback speed (e.g., 1× speed), and the intensity of the contact reaches above a predetermined activation intensity threshold (e.g., the activation intensity threshold for a light press input ILA or the activation intensity threshold associated with 2× speed), fast forward control 512 is optionally highlighted to indicate the activation of the fast forward function. In some embodiments, upon activation of the fast forward function, the speed by which the selected media content is presented in content window 502 is increased from the normal playback speed (e.g., 1× speed) to a first predetermined higher value (e.g., a first fast forward speed of two times the normal playback speed, or, 2× speed). In some embodiments, a playback speed indicator (e.g., speed indicator 522) is presented in user interface 400 to indicate the current playback speed (e.g., 2×). In some embodiments, tactile feedback (e.g., a tactile feedback that causes a click sensation in the user's finger in contact with fast forward control 512) is provided on touch screen 112 at the activation of the fast forward function.



FIG. 5D illustrates that when the intensity of the same press input (e.g., the press input represented by contact 520 in FIG. 5C) increases from the predetermined activation intensity threshold for 2× speed to a value above the next higher activation intensity threshold (e.g., the activation intensity threshold for 5× speed), the speed of the media playback is increased from the first fast forward speed (e.g., 2× speed) to a second, higher fast forward speed (e.g., 5× speed). In some embodiments, the higher fast forward speed (e.g., 5× speed) is indicated by speed indicator 522 in content window 502. In some embodiments, when the contact intensity reaches the second, higher activation intensity threshold (e.g., the activation intensity threshold for 5× speed), fast forward control 512 is highlighted (e.g., in a different manner from the highlighting shown in FIG. 5C) to indicate the activation of the second, higher fast forward speed. In some embodiments, tactile feedback (e.g., a tactile feedback that causes a click sensation in the user's finger in contact with fast forward control 512) is provided on touch screen 112 at the activation of the second, higher fast forward speed (e.g., 5× speed).



FIG. 5E illustrates that when the intensity of the same press input (e.g., the press input represented by contact 520 in FIGS. 5C and 5D) increases from the predetermined activation intensity threshold for 5× speed to above the next higher activation intensity threshold (e.g., the activation intensity threshold for 10× speed), the speed of the media playback is increased from the second fast forward speed (e.g., 5× speed) to a third, higher fast forward speed (e.g., 10× speed). In some embodiments, the higher fast forward speed (e.g., 10×) is indicated by speed indicator 522 in content window 502. In some embodiments, when the contact intensity reaches the next higher activation intensity threshold (e.g., the activation intensity threshold for 10× speed), fast forward control 512 is highlighted (e.g., in a different manner from the highlighting shown in FIGS. 5C and 5D) to indicate the activation of the higher fast forward speed (e.g., 10× speed). In some embodiments, tactile feedback (e.g., a tactile feedback that causes a click sensation in the user's finger in contact with fast forward control 512) is provided on touch screen 112 at the activation of the higher fast forward speed (e.g., 10× speed).



FIG. 5F illustrates that the press input (e.g., the press input represented by contact 520 in FIGS. 5C-5E) has been terminated (e.g., intensity of contact 520 has dropped below a predetermined release intensity threshold for a tap or light press input and/or become undetectable). Upon detection that the termination of press input, the playback speed of the media content is returned back to the normal playback speed (e.g., 1× speed). In some embodiments, when the playback speed is first returned to the normal playback speed, speed indicator 522 displays the playback speed (e.g., 1×). In some embodiments, after the playback speed has remained at the normal playback speed for a predetermined duration (e.g., 3 seconds), speed indicator 522 is optionally removed from content window 502. As shown in FIG. 5F, fast forward control 512 is returned to its normal un-highlighted appearance after the press input has been terminated.


In some embodiments, although not shown in FIGS. 5E and 5F, when the intensity of the press input drops gradually from a level above the activation intensity threshold for 10× speed to a level below the release intensity threshold for 2× speed, the intensity of contact 520 crosses respective release intensity thresholds for fast forward speed 10×, fast forward speed 5×, and fast forward speed 2×, one by one. In some embodiments, as the intensity of the contact crosses the respective release intensity thresholds of each of the fast forward speeds, the playback speed is dropped from a current fast forward speed to the next lower speed. Correspondingly, the highlighting of fast forward control 512 and the speed shown by speed indicator 522 are changed to those shown in FIGS. 5E, 5D, and 5C according to the current playback speed of the media content. In some embodiments, tactile feedback is provided at each instant that the respective release intensity threshold for the current fast forward speed is crossed.


The user interfaces illustrated in FIGS. 5A-5F are merely one example of how playback speed may be changed in response to a press input detected on a playback control. For example, in some embodiments, instead of a sustained press input, multiple press inputs or tap inputs may be used to raise the playback speed to different fast forward levels. In some embodiments, instead of returning the current playback speed to the normal playback speed or zero (0×) after a release intensity threshold for the lowest fast forward speed is crossed, the highest fast forward speed reached by a current press input can be locked in and maintained until a separate speed-restoring input is received (e.g., when a tap input is detected on pause control 518 or fast forward control 512). In some embodiments, whether to lock in a speed depends on the intensity profile of the press input relative to a predetermined lock time threshold (or time delay). In some embodiments, instead of increasing the playback speed in the forward direction in response to a press input detected on fast forward control 512, the rewind speed may be increased in a similar manner in response to a press input detected on rewind control 514.



FIGS. 6A-6K illustrate exemplary control heuristics for controlling media presentation in accordance with some embodiments. The control heuristics illustrated in these figures may be used in the processes described below, including the processes in FIGS. 7A-7H and 8A-8C. The inputs referenced in the description of the control heuristics may be inputs on a touch-screen display (where the touch-sensitive surface and the display are combined), or in some embodiments, inputs on a touch-sensitive surface 451 that is separate from the display 450, as shown in FIG. 4B.



FIGS. 6A and 6B illustrate how a lock time threshold TL is used to determine whether a light press input that triggers activation of a first fast forward speed (e.g., 2×) will cause the fast forward speed to be locked in after the light press input is terminated. In FIGS. 6A and 6B, the initial playback speed at the time that the press input is received is zero (0×). In other words, the media content is in a paused or stopped state when the light press input is first detected (e.g., with a finger-down event triggered by the initial contact of a finger on the touch screen). The lock time threshold TL may be any suitable length (e.g., 50 ms, 100 ms, 200 ms, 300 ms, 500 ms, 700 ms, or 1000 ms), and is optionally predefined in accordance with user preference or heuristics.



FIG. 6A illustrates an exemplary scenario where the intensity of the press input increases above the activation intensity threshold I2×A (e.g., I2×A=the activation intensity threshold ILA for a “light press” input) of the first fast forward speed (e.g., 2×), and then falls below the release intensity threshold I2×R (e.g., I2×R=the release intensity threshold ILR for a “light press” input) of the first fast forward speed (e.g., 2×) before the lock time threshold TL expires. The intensity of the press input never reaches the activation intensity threshold of the next higher playback speed (e.g., I5×A). As a result, the speed of playback is increased from zero (0×) to the first fast forward speed (e.g., 2×) upon crossing of the activation intensity threshold I2×A and remains at the first fast forward speed (e.g., 2×) after the intensity of the press input drops below the release intensity threshold I2×R for the first fast forward speed (e.g., 2×) and the press input is finally terminated (e.g., when the intensity drops below the contact-detection intensity or becomes undetectable).



FIG. 6B illustrates an exemplary scenario where, instead of falling below the release intensity threshold I2×R before the lock time threshold TL is reached, the intensity of the press input stayed above the release intensity threshold I2×R until the lock time threshold TL has expired. The intensity of the press input then falls below the release intensity threshold I2×R of the first fast forward speed (e.g., 2×) before the press input is terminated. The intensity of the press input never reached the activation intensity of the next higher playback speed. As a result, the speed of playback is increased from zero (0×) to the first fast forward speed (e.g., 2×) upon crossing of the activation intensity threshold I2×A and remains at the first fast forward speed (e.g., 2×) until the intensity of the press input drops below the release intensity threshold I2×R for the first fast forward speed (e.g., 2×). In response to the intensity of the press input dropping below the release intensity threshold I2×R for the first fast forward speed (e.g., 2×), the playback speed is decreased from the first fast forward speed (e.g., 2×) to zero. The media player is returned from a fast forward state to the paused state. In some embodiments, as the contact intensity falls below the corresponding release intensity threshold for the higher playback speed, the reduction of the playback speed to zero may be gradual (e.g., in accordance with the rate of reduction of the contact intensity).


Although the above description of FIGS. 6A and 6B uses fast forwarding as an example. The same control heuristic can be used for rewinding. For example, in response to a light press input detected on a rewind control (e.g., rewind control 514) while the media player is in a paused or stopped state, the rewind speed is increased from zero to a first rewind speed (e.g., 2×) in the backward direction when the intensity of the press input reaches above the activation intensity threshold associated with the first rewind speed (e.g., 2×). Depending on the intensity profile of the press input relative to the lock time threshold TL, the rewind speed may be locked in at the first rewind speed (e.g., 2×), or returned to zero when the intensity of the press input drops below the release intensity associated with the first rewind speed (e.g., 2×).


In some embodiments, the respective activation intensity threshold and release intensity threshold associated with the first fast forward speed (e.g., 2×) are the same. In some embodiments, the respective activation intensity threshold and release intensity threshold associated with the first fast forward speed (e.g., 2×) are different, with the activation intensity threshold being greater than the release intensity threshold. In some embodiments, the activation intensity threshold and release intensity threshold associated with the first higher speed level (e.g., fast forward speed of 2× and rewind speed of 2×) are the same as the activation intensity threshold and release intensity threshold for a tap input that activates the play button (e.g., play control 510) of the media player.



FIG. 6A above illustrates how to lock into a next higher playback speed with a light press input while the media player is in a stopped or paused state. FIGS. 6B-6D illustrate control heuristics in which higher playback speeds (e.g., different levels of fast forward or rewind speeds) are not locked in at the end of the press input (e.g., a press input with an intensity reaching above one or more higher activation intensity thresholds (e.g., the activation intensity thresholds associated with 2×, 5×, and 10× speeds). Instead, the playback speed is gradually stepped up in discrete levels and then stepped down to a predetermined level (e.g., 0×).



FIG. 6C illustrates that, when the media player is at a paused or stopped state (with a playback speed of 0×), a deep press input with an intensity reaching above the respective activation intensity thresholds associated with two consecutive fast forward speeds (e.g., I2×A associated with fast forward speed 2×, and I5×A associated with fast forward speed 5×) is detected. In response to the rising intensity of the deep press input, the playback speed is stepped up from zero (0×) to the first fast forward speed (e.g., 2×) upon the intensity crossing the activation intensity threshold (e.g., I2×A) associated with the first fast forward speed (e.g., 2×). Then, as the intensity of the deep press input continues to increase and crosses the activation intensity threshold (e.g., I5×A) associated with the next higher fast forward speed (e.g., 5×), the playback speed is stepped up from the first fast forward speed (e.g., 2×) to the next higher fast forward speed (e.g., 5×). When the intensity of the deep press input then decreases and crosses the release intensity threshold (e.g., I5×R) associated with the highest achieved fast forward speed (e.g., 5×), the playback speed is stepped down from the highest achieved fast forward speed (e.g., 5×) to the next lower fast forward speed (e.g., 2×). When the intensity of the deep press input further decreases and crosses the release intensity threshold (e.g., I2>R=ILR) associated with the next lower fast forward speed (e.g., 2×), the media player is returned to the paused state with a playback speed of zero (0×).



FIG. 6D is similar to FIG. 6C, where the media player is in a stopped or paused state when a deep press input is detected. The intensity of the deep press input reaches above the respective activation intensity thresholds associated with three fast forward speeds (e.g., I2×A associated with fast forward speed 2×, I5×A associated with fast forward speed 5×, and I10×A associated with fast forward speed 10×). In response to the rising intensity of the deep press input, the playback speed is stepped up from zero to the initial fast forward speed of 2× upon the intensity crossing the activation intensity threshold I2×A, then from the initial fast forward speed of 2× to the next higher fast forward speed of 5× upon the intensity crossing the activation intensity threshold I5×A, and then from the fast forward speed of 5× to the next higher fast forward speed of 10× upon the intensity crossing the activation intensity threshold I10×A. When the intensity of the deep press input has peaked and started to decrease, the playback speed is stepped down from the highest achieved fast forward speed of 10× to the next lower fast forward speed of 5× upon the intensity crossing the release intensity threshold I10×R associated with the fast forward speed of 10×. When the intensity of the deep press input decreases further and crosses the release intensity threshold I5×R associated with the fast forward speed of 5×, the playback speed is stepped down from the fast forward speed of 5× to the next lower fast forward speed of 2×. When the intensity of the press input decreases further and crosses the release intensity threshold I2×R (e.g., I2×R=ILR) associated with the fast forward speed of 2×, the media player is returned to the paused state with a playback speed of zero.


Although the above description of FIGS. 6C and 6D uses fast forwarding as an example. The same control heuristic can be used for rewinding. For example, in response to a deep press input detected on a rewind control (e.g., rewind control 514) while the media player is in a paused or stopped state, the rewind speed is stepped up from zero to two or more higher rewind speeds (e.g., 2×, 5×, and 10×) in the backward direction when the intensity of the deep press input reaches above the activation intensity threshold associated each of those higher rewind speeds. On the down-stroke of the deep press input, the rewind speed is stepped down from the highest achieved rewind speed to each of the lower rewind speeds, and finally to zero, when the intensity of the deep press input reaches below the release intensity threshold associated with each of the previously achieved rewind speeds.



FIGS. 6E and 6F illustrate how a lock time threshold TL (e.g., the same TL value or a different TL value from the TL value in FIGS. 6A and 6B) is used to determine whether a light press input that triggers activation of a first fast forward speed (e.g., 2×) will cause the fast forward speed to be locked in after the light press input is terminated. In FIGS. 6E and 6F, the initial playback speed at the time that the light press input is received is the normal playback speed (e.g., 1×). In other words, the media content is in a normal playback state when the light press input is first detected (e.g., with a finger-down event triggered by the initial contact of a finger on the touch screen). The lock time threshold TL may be any suitable length (e.g., 50 ms, 100 ms, 200 ms, 300 ms, 500 ms, 700 ms, or 1000 ms), and is optionally predefined in accordance with user preference or heuristics.



FIG. 6E illustrates an exemplary scenario where the intensity of the deep press input increases above the activation intensity threshold I2×A (e.g., I2×A=the activation intensity threshold ILA-for a “light press” input) of a first fast forward speed (e.g., 2×), and then falls below the release intensity threshold I2×R (e.g., I2×R=the activation intensity threshold ILR-for a “light press” input) of the first fast forward speed (e.g., 2×) before the lock time threshold TL expires. The intensity of the light press never reaches the next higher activation intensity threshold (e.g., I5×A). As a result, the speed of playback is increased from the normal playback speed (e.g., 1×) to the first fast forward speed (e.g., 2×) upon crossing of the activation intensity threshold I2×A and remains at the first fast forward speed (e.g., 2×) after the intensity of the light press input has dropped below the release intensity threshold I2×R for the first fast forward speed (e.g., 2×) and the press input is finally terminated (e.g., when the intensity drops below the contact-detection intensity or becomes undetectable).



FIG. 6F illustrates an exemplary scenario where, instead of falling below the release intensity threshold I2×R before the lock time threshold TL is reached, the intensity of the light press input stayed above the release intensity threshold I2×R until the lock time threshold TL has expired. The intensity of the press input then falls below the release intensity threshold I2×R of the first fast forward speed (e.g., 2×) before the press input is terminated. The intensity of the light press input never reached the next higher activation intensity threshold (e.g., I5×A). As a result, the speed of playback is increased from the normal playback speed (e.g., 1×) to the first fast forward speed (e.g., 2×) upon crossing of the activation intensity threshold I2×A and remains at the first fast forward speed (e.g., 2×) until the intensity of the light press input drops below the release intensity threshold I2×R for the first fast forward speed (e.g., 2×). When the intensity of the light press input drops below the release intensity threshold I2×R for the first fast forward speed (e.g., 2×), the playback speed is decreased from the first fast forward speed (e.g., 2×) to the normal playback speed (e.g., 1×). The media player is returned from a fast forward state to the normal playback state.


Although the above description of FIGS. 6E and 6F uses fast forwarding as an example. The same control heuristic can be used for rewinding. For example, in response to a light press input detected on a rewind control (e.g., rewind control 514) while the media player is in a normal playback state (e.g., at 1× speed), the media player can change the normal playback speed in the forward direction to a first rewind speed (e.g., 2×) in the backward direction when the intensity of the light press input reaches above the activation intensity threshold associated with the first rewind speed (e.g., 2×). Depending on the intensity profile of the light press input relative to the lock time threshold TL, the rewind speed may be locked in at the first rewind speed (e.g., 2×) in the backward direction, or returned to the normal playback speed (e.g., 1×) in the forward direction when the intensity of the light press input drops below the release intensity associated with the first rewind speed (e.g., 2×).



FIG. 6E above illustrates how to lock into a next higher playback speed with a light press input while the media player is in a normal playback state. FIGS. 6F-6H illustrate control heuristics in which higher playback speeds (e.g., different levels of fast forward or rewind speeds) are not locked in at the end of the press input (e.g., a deep press input with an intensity reaching above one or more higher activation intensity thresholds (e.g., the activation intensity thresholds associated with 2×, 5×, and 10× speeds). Instead, the playback speed is gradually stepped up in discrete levels and then stepped down to a predetermined level (e.g., 1×).



FIG. 6G illustrates that, when the media player is already in a normal playback state (e.g., with a playback speed of 1×), a deep press input reaching above the respective activation intensity thresholds associated with two consecutive fast forward speeds (e.g., I2×A associated with fast forward speed 2×, and I5×A associated with fast forward speed 5×) is detected. In response to the rising intensity of the press input, the playback speed is stepped up from the normal playback speed (e.g., 1×) to the first fast forward speed (e.g., 2×) upon the intensity crossing the activation intensity threshold (e.g., I2×A) associated with the first fast forward speed (e.g., 2×). Then, as the intensity of the deep press input continues to increase and crosses the next higher activation intensity threshold (e.g., I5×A) associated with the next higher fast forward speed (e.g., 5×), the playback speed is stepped up from the first fast forward speed (e.g., 2×) to the next higher fast forward speed (e.g., 5×). When the intensity of the deep press input then decreases and crosses the release intensity threshold I5×R associated with the highest achieved fast forward speed (e.g., 5×), the playback speed is stepped down from the highest achieved fast forward speed (e.g., 5×) to the next lower fast forward speed (e.g., 2×). When the intensity of the deep press input further decreases and crosses the release intensity threshold (e.g., I2×R=ILR) associated with the lowest fast forward speed (e.g., 2×), the media player is returned to the normal playback state with a normal playback speed (e.g., 1×).



FIG. 6H is similar to FIG. 6G, where the media player is already in a normal playback state (e.g., with a playback speed of 1×) when a deep press input is detected. The intensity of the deep press input reaches above the respective activation intensity thresholds associated with three fast forward speeds (e.g., I2×A associated with fast forward speed 2×, I5×A associated with fast forward speed 5×, and I10×A associated with fast forward speed 10×). In response to the rising intensity of the deep press input, the playback speed is stepped up from the normal playback speed (e.g., 1×) to the initial fast forward speed (e.g., 2×) upon the intensity crossing the lowest activation intensity threshold (e.g., I2×A), then from the initial fast forward speed (e.g., 2×) to the next higher fast forward speed (e.g., 5×) upon the intensity crossing the corresponding activation intensity threshold (e.g., I5×A), and then from that higher fast forward speed (e.g., 5×) to the next, even higher fast forward speed (e.g., 10×) upon the intensity crossing the corresponding activation intensity threshold (e.g., I10×A). When the intensity of the deep press input has peaked and started to decrease, the playback speed is stepped down from the highest achieved fast forward speed (e.g.,10×) to the next lower fast forward speed (e.g., 5×) upon the intensity crossing the release intensity threshold (e.g., I10×R) associated with the highest achieved fast forward speed (e.g., 10×). When the intensity of the deep press input decreases further and crosses the release intensity threshold (e.g., I5×R) associated with the fast forward speed of 5×, the playback speed is stepped down from the fast forward speed of 5× to the next lower fast forward speed of 2×. When the intensity of the press input decreases further and crosses the release intensity threshold I2×R (e.g., I2×R=ILR) associated with the fast forward speed of 2×, the media player is returned to the normal playback state and stays in the normal playback state with a playback speed of 1×. Corresponding user interface changes for the scenario shown in FIG. 6H are illustrated in FIGS. 5A-5F.


Although the above description of FIGS. 6G and 6H uses fast forwarding as an example. The same control heuristic can be used for rewinding. For example, in response to a deep press input detected on a rewind control (e.g., rewind control 514) while the media player is in a normal playback state, the device goes from the normal playback state into the rewind state, and the rewind speed is stepped up from zero to two or more higher rewind speeds (e.g., 2×, 5×, and 10×) in the backward direction when the intensity of the deep press input reaches above the activation intensity threshold associated each of those higher rewind speeds. On the down-stroke of the deep press input, the rewind speed is stepped down from the highest achieved rewind speed to each of the lower rewind speeds, and finally to zero, when the intensity of the deep press input reaches below the release intensity threshold associated with each of the previously achieved rewind speeds. When the rewind speed is back to zero, the device restarts the playback with a normal playback speed in the forward direction.



FIGS. 6I-6K illustrate three control heuristics in which the initial playback speed of the media content is greater than the normal playback speed, e.g., at a first fast forward speed of 2×, when a press input is detected.



FIG. 6I illustrates a control heuristic in which the lock time threshold TL is not used to lock in a higher playback speed (e.g., a fast forward speed of 5×). As shown in FIG. 6I, the initial playback speed at the time that the press input is received is the first fast forward speed (e.g., 2×). In other words, the media content is already being fast forwarded at 2× speed after a previous press input (e.g., the press input described in FIGS. 6A or 6E) on the fast forward control has been processed. As shown in FIG. 6I, in some embodiments, instead of triggering the next higher fast forward speed (e.g., 5×) upon detecting the intensity of the press input reaching above the activation intensity threshold (e.g., I5×A) associated with the next higher fast forward speed (e.g., 5×), the playback speed is increased from the current fast forward speed (e.g., 2×) to the next higher fast forward speed (e.g., 5×) when the intensity of the light press input drops below the release intensity threshold ILR of a light press. In other words, instead of triggering the activation of the higher playback speed on the down-stroke (or pushing down) of the light press input, the higher playback speed is triggered on the up-stroke (or lifting up) of the light press input. As shown in FIG. 6I, if the media player is already in a fast forward state, a newly detected tap input on the fast forward control will cause the media player to go into and lock in the next higher fast forward speed (e.g., 5×).


Although the above description of FIGS. 6I uses fast forwarding as an example. The same control heuristic can be used for rewinding. For example, when the media player is already in the rewind state with a rewind speed of 2× in the backward direction, in response to a tap input detected on the rewind control (e.g., rewind control 514), the media player changes the rewind speed from 2× to 5× and maintains it at 5× in response to the intensity of the tap input falling below the release intensity threshold ILR.



FIG. 6J illustrates that, when the media player is already in an initial fast forward state (with a fast forward speed of 2×), a deep press input reaching above the respective activation intensity threshold associated with the next higher fast forward speed (e.g., I5×A associated with fast forward speed of 5×) is detected. In response to the rising intensity of the deep press input, the playback speed is stepped up from the initial fast forward speed of 2× to the next higher fast forward speed of 5× upon the intensity crossing the activation intensity threshold I5×A associated with the next higher fast forward speed of 5×. When the intensity of the deep press input then decreases and crosses the release intensity threshold I5×R associated with the fast forward speed of 5×, the playback speed is stepped down from the fast forward speed of 5× to the next lower fast forward speed of 2×. When the intensity of the deep press input further decreases and crosses the release intensity threshold I2×R (e.g., I2×R=ILR ) associated with the fast forward speed of 2×, the media player is returned to the normal playback state with a normal playback speed of 1×.


It is worth noting that in FIGS. 6I and 6J, if the media player is already in a fast forward state (e.g., with a playback speed of 2×), a press input may trigger the next higher fast forward speed (e.g., 5×) either on the up-stroke (e.g. lifting up) or the down-stroke (e.g., pushing down) of the press input. Specifically, if the press input is a light press that only crosses the lowest activation intensity threshold (e.g., ILA), the next higher fast forward speed (e.g., 5×) is triggered when the intensity of the press input decreases and crosses the release intensity threshold (e.g., ILR ) corresponding to the lowest activation intensity threshold (e.g., ILA). In contrast, if the press input is a deep press that crosses not only the lowest activation intensity threshold (e.g., ILA), but also one or more higher activation intensity thresholds (e.g., I5×A , I10×A , etc.), the next higher fast forward speed (e.g., 5×) is triggered when the intensity of the press input increases and crosses the next higher activation intensity threshold (e.g., I5×A ).



FIG. 6K illustrates that, when the media player is already in an initial fast forward state (with a fast forward speed of 2×), a deep press input reaching above the respective activation intensity thresholds associated with two higher fast forward speeds (e.g., I5×A associated with fast forward speed 5× and I10×A associated with fast forward speed 10×) is detected. In response to the rising intensity of the deep press input, the playback speed is stepped up from the initial fast forward speed of 2× to the next higher fast forward speed of 5× upon the intensity crossing the activation intensity threshold I5×A associated with the next higher fast forward speed of 5×. Then, in response to further rising of the intensity of the deep press input, the playback speed is stepped up from the fast forward speed of 5× to the next higher fast forward speed of 10× upon the intensity crossing the activation intensity threshold I10×A associated with the next higher fast forward speed of 10×. When the intensity of the deep press input then decreases and crosses the release intensity threshold I10×R associated with the fast forward speed of 10×, the playback speed is stepped down from the fast forward speed of 10× to the next lower fast forward speed of 5×. When the intensity of the deep press input decreases further and crosses the release intensity threshold I5×R associated with the fast forward speed of 5×, the playback speed is stepped down from the fast forward speed of 5× to the next lower fast forward speed of 2×. When the intensity of the press input decreases further and crosses the release intensity threshold I2×R (e.g., I2×R=ILR ) associated with the fast forward speed of 2×, the media player is returned to the normal playback state with a normal playback speed of 1×.


Although only three levels of fast forward speeds are shown in FIGS. 6D, 6H, and 6K, additional higher levels of fast forward speeds (e.g., 20×, 30×, 60×, 100×, 500×, etc.) are possible, each having an increasingly higher activation intensity threshold and corresponding release intensity threshold.


Similarly, although FIGS. 6I-6K shows the initial playback speed to be the lowest fast forward speed, the same heuristics shown in these figures are optionally used in cases where the initial playback speed is higher than the lowest fast forward speed. For example, if the initial playback speed at the time when the press input is detected is 5×, the playback speed can be stepped up to 10× on the up-stroke (or lifting up) of a light press input when the intensity crosses the release intensity threshold ILR . If the media player supports additional levels of playback speeds above 10× (e.g., 20×, 50×, 100×, etc.) and if the initial playback speed is 10×, each of these higher playback speeds (e.g., 20×, 50×, 100×) may be achieved one by one with the intensity of a deep press input crossing respective activation intensity thresholds associated with the different higher playback speeds (e.g., 20×, 50×, 100×). In some embodiments, the activation and release intensity thresholds of the higher playback speeds may be adjusted (e.g., lowered) depending on the initial playback speed of the media content.


Although the above description of FIGS. 6I-6K uses fast forwarding as an example. The same control heuristic can be used for rewinding. In response to a light press input detected on the rewind control (e.g., rewind control 514), the media player can step up the rewind speed from an initial value (e.g., 2×) in the backward direction to the next higher rewind speed (e.g., 5×) upon lift up of the light press input. In response to a deep press input detected on the rewind control, the media player can step up the rewind speed from the initial value (e.g., 2×) in the backward direction to one or more higher rewind speeds (e.g., 5×, and/or 10×) in response to the contact intensity crossing the corresponding activation intensity thresholds of the one or more higher rewind speeds. The media player can then step down the rewind speeds one level at a time when the contact intensity of the press input crosses the release intensity threshold of each of the one or more achieved rewind speeds. In the case of rewinding, when the contact intensity of the deep press input crosses the lowest release intensity threshold (e.g., I2×R=ILR ) corresponding to the lowest rewind speed (e.g., 2×), the playback speed is optionally changed from the lowest rewind speed (e.g., 2×) in the backward direction to the normal playback speed (e.g., 1×) in the forward direction.


Although FIGS. 6A-6K shows the changes in playback speeds in discrete steps that are integer multiples of the normal playback speed (e.g., 1×), in some embodiments, the change from one level to the next may be implemented as a gradual change that goes through multiple sub-steps (e.g., as factions speeds 1.2, 1.5, 1.7, 1.9, etc.) or a curved slope in a predetermined transition period (e.g., 2 ms). In some embodiments, the mapping of the multiple sub-steps to the intensity values of the contact is triggered when a modification input (e.g., holding down an “option” key) is detected concurrently with detecting the interaction with the media playback control.


In various embodiments, a subset or all of the above control heuristics may be implemented in a particular media player application to control media presentation.



FIGS. 7A-7H illustrate a flow diagram of a method 700 of controlling media presentation in accordance with some embodiments. The method 700 is performed at an electronic device (e.g., device 300, FIG. 3, or portable multifunction device 100, FIG. 1A) with a display, a touch-sensitive surface, and one or more sensors to detect intensity of contacts with the touch-sensitive surface. In some embodiments, the display is a touch-screen display and the touch-sensitive surface is on or integrated with the display. In some embodiments, the display is separate from the touch-sensitive surface. Some operations in method 700 are, optionally, combined and/or the order of some operations is, optionally, changed.


As described below, the method 700 provides an intuitive way to control playback speed of a media presentation. The method reduces the cognitive burden on a user when changing media playback speed in software applications, thereby creating a more efficient human-machine interface. For battery-operated electronic devices, enabling a user to control media playback faster and more efficiently conserves power and increases the time between battery charges.


While presenting media content (e.g., a collection of images in a slideshow, an audio track, a video, or the like) at a first non-zero playback speed, the device detects (702) a press input by a first contact on the touch-sensitive surface that corresponds to a focus selector at a first location of a first media control on the display (e.g., a fast-forward control). For example, the first playback speed is 1× speed (e.g., FIGS. 6E-6H). In another example, the first playback speed is ≥2× where the user previously performed one or more legacy tap/click operations at the first location that corresponds to the first media control to present the media item at the first playback speed (e.g., FIGS. 6I-6K).


In response to detecting the press input: the device determines (704) whether an intensity of the first contact (e.g., a characteristic intensity) is above a first intensity threshold. In some embodiments, the first intensity threshold corresponds to a predetermined minimum playback speed such as 2×, 5×, or 10× . For example, the user must at least press hard enough to get above the 2× threshold before the playback speed is changed based on intensity. In some embodiments, the intensity of the first contact passes through a plurality of intensities that correspond to intensity thresholds for playback speeds below the current playback speed.


In accordance with a determination that the intensity of the first contact is above the first intensity threshold, the device presents the media content at a second playback speed, where the second playback speed is faster than the first non-zero playback speed. In some embodiments, the first intensity threshold is distinct from a detection threshold or an activation intensity threshold, which are lower than the first intensity threshold (e.g., the first intensity threshold is higher than the activation intensity threshold).


In accordance with a determination that the intensity of the first contact is below the first intensity threshold, the device maintains presentation of the media content at the first non-zero playback speed.


In some embodiments, a contact having an intensity above the activation intensity threshold on the touch-sensitive surface at a location that corresponds to another user interface element besides the first media control initiates an operation that corresponds to the another user interface element. For example, a contact having an intensity above the activation intensity threshold on the touch-sensitive surface at a location that corresponds to a play button initiates provision of the media content at a normal playback speed (e.g., 1×).


In some embodiments, the first non-zero playback speed is (706) a normal playback speed (e.g., FIGS. 6E-6H). In some embodiments, the media content is presented at the default speed in which the media content was captured/generated when played in the normal playback speed (i.e., 1×).


In some embodiments, the first non-zero playback speed is (708) a fast-forward playback speed that is greater than or equal to two times a normal playback speed (e.g., FIGS. 6I-6K). In some embodiments, the first non-zero playback speed is (710) a rewind playback speed whose magnitude is greater than or equal to two times a normal playback speed. (e.g., 2×, 5×, etc.).


In some embodiments, the first intensity threshold corresponds (712) to a predetermined minimum intensity value. For example, the user must press at least hard enough to get above the intensity threshold that corresponds to the 2×, 5×, or 10× playback speed before the playback speed is changed based on intensity.


In some embodiments, the first playback control corresponds (714) to a fast-forward control (e.g., 512).


In some embodiments, the first playback control corresponds (716) to a rewind control (e.g., 514).


In some embodiments, the media content includes (718) a collection of one or more images, an audio track, and/or a video.


In some embodiments, while presenting the media content at the second playback speed, the device detects (720) a subsequent press input by a second contact distinct from the first contact (e.g., after the first contact by a first finger ends/lifts off, a second contact by the same first finger is detected as part of a second press input) on the touch-sensitive surface that corresponds to the focus selector at the first location of the first media control on the display. In response to detecting the subsequent press input, the device determines whether an intensity of the second contact has crossed a second intensity threshold that is above the first intensity threshold. In some embodiments, the intensity of the second contact is deemed to have crossed above the second intensity threshold based on a determination that the intensity of the second contact has changed from below the second intensity threshold to above the second intensity threshold. In some embodiments, while detecting the subsequent press input and before detecting the intensity of the second contact increase above the second intensity threshold, the device detects the intensity of the second contact increase above the first intensity threshold without providing tactile output corresponding to crossing the first intensity threshold. While continuing to detect the second contact on the touch-sensitive surface, and in accordance with a determination that the intensity of the second contact has crossed above the second intensity threshold: the device provides tactile output that corresponds to the second intensity threshold, and presents the media content at a third playback speed greater than the second playback speed. In accordance with a determination that the intensity of the second contact has not crossed above the second intensity threshold, the device foregoes provision of the tactile output that corresponds to the second intensity threshold and continues to present the media content at the second playback speed. In some embodiments, detents are provided upon crossing intensity thresholds that are greater than the one that corresponds to the current playback speed (e.g., the second playback speed) but not when crossing the intensity threshold that corresponds to the current playback speed or any lower speeds. In some embodiments, visual feedback is also provided as the intensity thresholds are crossed that are greater than the threshold that corresponds to the current playback speed.


In some embodiments, in response to detecting the press input: the device, in accordance with the determination that the intensity of the first contact is above the first intensity threshold, provides (722) tactile output that corresponds to the first intensity threshold; and in accordance with the determination that the intensity of the first contact is below the first intensity threshold, the device foregoes provision of the tactile output that corresponds to the first intensity threshold. In some embodiments, detents are provided upon crossing intensity thresholds that are greater than the one that corresponds to the current playback speed (e.g., the first non-zero playback speed) but not when crossing the intensity threshold that corresponds to the current playback speed or any lower speeds. In some embodiments, visual feedback is also provided as the intensity thresholds are crossed that are greater than the one that corresponds to the current playback speed.


In some embodiments, while presenting the media content at the second playback speed, the device detects (724) a subsequent press input by a second contact distinct from the first contact (e.g., after the first contact by a first finger ends/lifts off, a second contact by the same first finger is detected as part of a second press input) on the touch-sensitive surface that corresponds to the focus selector at the first location of the first media control on the display. While detecting the subsequent press input, the device detects that an intensity of the second contact has crossed above the first intensity threshold. In response to detecting that the intensity of the second contact has crossed above the first intensity threshold: in accordance with a determination that the first intensity threshold is above a predetermined minimum intensity value (e.g., the predetermined minimum intensity value corresponds to a minimum playback speed for providing tactile output such as 2×, 5×, or 10×), the device provides tactile output that corresponds to the first intensity threshold; and, in accordance with a determination that the first intensity threshold is below the predetermined minimum intensity value, the device foregoes provision of the tactile output that corresponds to the first intensity threshold.


While continuing to detect the second contact on the touch-sensitive surface, the device detects (726) that the intensity of the second contact has crossed above a second intensity threshold that is above the first intensity threshold. In response to detecting that the intensity of the second contact has crossed above the second intensity threshold: in accordance with a determination that the second intensity threshold equals or exceeds the predetermined minimum intensity value, the device provides tactile output that corresponds to the second intensity threshold; and, in accordance with a determination that the second intensity threshold does not equal or exceed the predetermined minimum intensity value, the device foregoes provision of the tactile output that corresponds to the second intensity threshold. For example, detents are provided upon reaching intensity thresholds above and including the predetermined minimum intensity value for a predefined playback speed such as 2×, 5, or 10×. In some embodiments, the predetermined minimum intensity value must be reached before the playback speed is changed based on intensity. In some embodiments, visual feedback is also provided as the intensity increases above the predetermined minimum intensity value.


In some embodiments, in response to detecting the press input, and in accordance with the determination that the intensity of the first contact is above the first intensity threshold: in accordance with a determination that the first intensity threshold is above a predetermined minimum intensity value (e.g., the predetermined minimum intensity value corresponds to a minimum playback speed for providing tactile output such as 2×, 5×, or 10×), the device provides (728) tactile output that corresponds to the first intensity threshold; and, in accordance with a determination that the first intensity threshold is below the predetermined minimum intensity value, the device foregoes provision of the tactile output that corresponds to the first intensity threshold. For example, detents are provided upon reaching intensity thresholds above and including the predetermined minimum intensity value for a predefined playback speed such as 2×, 5×, or 10× . In some embodiments, the predetermined minimum intensity value must be reached before the playback speed is changed based on intensity. In some embodiments, visual feedback is also provided as the intensity increases above the predetermined minimum intensity value.


In some embodiments, while presenting the media content at the second playback speed, and while continuing to detect the first contact on the touch-sensitive surface: the device detects (730) that the intensity of the first contact is above a second intensity threshold distinct from the first intensity threshold. In some embodiments, the second intensity threshold has a pressure or force threshold higher than a pressure or force threshold in the first intensity threshold. In response to detecting that the intensity of the first contact is above the second intensity threshold, the device presents the media content at a third playback speed, where the third playback speed is faster than the second playback speed. In some embodiments, the playback speeds include 0×, 1×, 2×, 5×, 10×, 30×, and 60×. For example, the first playback speed is 1×, the second playback speed is 10×, and the third playback speed is 30×.


In some embodiments, while presenting the media content at the third playback speed, and while continuing to detect the first contact on the touch-sensitive surface, the device detects (732) that the intensity of the first contact has crossed below the second intensity threshold. In response to detecting that the intensity of the first contact has crossed below the second intensity threshold: the device provides tactile output that corresponds to the second intensity threshold and presents the media content at the second playback speed. In some embodiments, the intensity of the first contact is deemed to have crossed below the second intensity threshold based on a determination that the intensity of the first contact has changed from being above the second intensity threshold to being below the second intensity threshold. While presenting the media content at the second playback speed, and while continuing to detect the first contact on the touch-sensitive surface, the device detects that the intensity of the first contact has crossed below the first intensity threshold. In response to detecting that the intensity of the first contact has crossed below the first intensity threshold: the device provides tactile output that corresponds to the first intensity threshold and presents the media content at a fourth playback speed. For example, the playback speed is reduced and detents are provided as the intensity crosses below each intensity threshold.


In some embodiments, while presenting the media content at the second playback speed, the device detects (734) a subsequent press input by a second contact distinct from the first contact (e.g., after the first contact by a first finger ends/lifts off, a second contact by the same first finger is detected as part of a second press input) on the touch-sensitive surface that corresponds to the focus selector at the first location of the first media control on the display. While detecting the subsequent press input: the device determines whether an intensity of the second contact has not crossed above a second intensity threshold that is above the first intensity threshold; and, subsequent to a determination that the intensity of the second contact has not crossed above the second intensity threshold: the device detects that the intensity of the second contact has crossed below the first intensity threshold; and, in response to detecting that the intensity of the second contact has crossed below the first intensity threshold, the device foregoes provision of a tactile output that corresponds to the first intensity threshold.


In some embodiments, while presenting the media content at the second playback speed, and while continuing to detect the first contact on the touch-sensitive surface, the device detects (736) that the intensity of the first contact is below the first intensity threshold. In one example, lift-off of the first contact is detected. In another example, the intensity of the first contact falls below first intensity threshold but lift-off is not detected. In response to detecting that the intensity of the first contact is below the first intensity threshold, the device presents the media content at a fourth playback speed.


In some embodiments, the fourth playback speed is (738) the second playback speed. For example, provision of the media content at the second playback speed is maintained. In some embodiments, actuation of a modifier key is required to lock in a higher playback speed.


In some embodiments, the fourth playback speed is (740) the first non-zero playback speed. For example, the playback speed is reduced from the second playback speed. In some embodiments, the playback speed tracks the intensity of the contact, so that as the intensity of the contact decreases from an intensity above the first intensity threshold to an intensity below the first intensity threshold, the playback speed is adjusted through a plurality of levels that are mapped to different contact intensities.


In some embodiments, the fourth playback speed is (742) a normal playback speed. In some embodiments, the media content is presented at the default speed in which that the media content was captured/generated when played in the normal playback speed (i.e., 1×). In some embodiments, in the fourth playback speed (e.g., 0×), a still image that corresponds to the media content is presented. For example, in the 0× playback speed, the media content is paused.


In some embodiments, while presenting a still image that corresponds to the media content, (i.e., 0× playback speed), the device detects (744) a subsequent press input by a second contact distinct from the first contact (e.g., after the first contact by a first finger ends/lifts off, a second contact by the same first finger is detected as part of a second press input) on the touch-sensitive surface that corresponds to the focus selector at the first location of the first media control on the display. In some embodiments, the media content is paused when played in the 0× playback speed. In some embodiments, provision of the media content is paused in response to a user activation (e.g., using a touch input) of a pause button in the user interface. In response to detecting the subsequent press input: the device determines whether an intensity of the second contact (e.g., a characteristic intensity) is above the first intensity threshold. In accordance with a determination that the intensity of the second contact (e.g., characteristic intensity) is above the first intensity threshold, the device presents the media content at the second playback speed. In accordance with a determination that the intensity of the second contact is below the first intensity threshold, the device increases the playback speed of the media content from the still image up to the second playback speed according to the intensity of the second contact. For example, the fast-forward control operates like a gas pedal whereby the playback speed increases from 0× to 2× before the intensity of the second contact crosses the first intensity threshold. Alternatively, in some embodiments, the electronic device maintains presentation of the still image corresponding to the media content until the intensity of the second contact crosses the first intensity threshold (e.g., a jump from 0× to 2×).


In some embodiments, while presenting the media content at a normal playback speed (e.g., 1×), the device detects (746) a subsequent press input by a second contact distinct from the first contact (e.g., after the first contact by a first finger ends/lifts off, a second contact by the same first finger is detected as part of a second press input) on the touch-sensitive surface that corresponds to the focus selector at a second location of a second media control (e.g., the play control) on the display, wherein the second playback control is distinct from the first playback control. The device determines whether the intensity of the second contact (e.g., characteristic intensity) is above the first intensity threshold. In accordance with a determination that the intensity of the second contact is above the first intensity threshold, the device presents the media content at a first fractional playback speed, wherein the first fractional playback speed is faster than the normal playback speed and less than two times the normal playback speed. In accordance with a determination that the intensity of the second contact is below the first intensity threshold, the device maintains presentation of the media content at the normal playback speed. In some embodiments, the fractional playback speeds include 1.1×, 1.2×, 1.5×, and 1.7×. Alternatively, in some embodiments, the fractional playback speeds are accessed in response to detecting a press input at a location corresponding to the first playback control in addition to detecting activation of a modifier key (e.g., the option key).


In some embodiments, while continuing to detect the second contact on the touch-sensitive surface: the device detects (748) that the intensity of the second contact is above a second intensity threshold distinct from the first intensity threshold. In response to detecting that the intensity of the second contact is above the second intensity threshold, the device presents the media content at a second fractional playback speed, wherein the second fractional playback speed is faster than the first fractional playback speed and less than two times the normal playback speed.


In some embodiments, in response to detecting the subsequent press input, the device displays (750) a fractional playback scrubber at least partially overlaid on the second playback control that indicates a current playback speed of the media content. In some embodiments, the fractional playback scrubber is adjacent to but not overlaid on the second playback control. In some embodiments, detents are provided when crossing above all intensity thresholds over a predetermined minimum intensity value. In some embodiments, detents are provided when crossing below all intensity thresholds.


In some embodiments, the second playback control corresponds (752) to at least one of: a play control and a pause control.


It should be understood that the particular order in which the operations in FIGS. 7A-7H have been described is merely exemplary and is not intended to indicate that the described order is the only order in which the operations could be performed. One of ordinary skill in the art would recognize various ways to reorder the operations described herein. Additionally, it should be noted that details of other processes described herein with respect to other methods described herein (e.g., method 800) are also applicable in an analogous manner to method 700 described above with respect to FIGS. 7A-7H. For example, the contacts, gestures, press input, user interface objects, tactile outputs, intensity thresholds, focus selectors, and playback speeds described above with reference to method 700 optionally have one or more of the characteristics of the contacts, gestures, press input, user interface objects, tactile outputs, intensity thresholds, focus selectors, playback speeds described herein with reference to other methods described herein (e.g., method 800). For brevity, these details are not repeated here.



FIGS. 8A-8C illustrate a flow diagram of a method 800 of controlling media presentation in accordance with some embodiments. The method 800 is performed at an electronic device (e.g., device 300, FIG. 3, or portable multifunction device 100, FIG. 1A) with a display, a touch-sensitive surface, and one or more sensors to detect intensity of contacts with the touch-sensitive surface. In some embodiments, the display is a touch-screen display and the touch-sensitive surface is on or integrated with the display. In some embodiments, the display is separate from the touch-sensitive surface. Some operations in method 800 are, optionally, combined and/or the order of some operations is, optionally, changed.


As described below, the method 800 provides an intuitive way to control playback speed of media presentation. The method reduces the cognitive burden on a user when changing media playback speed in software applications, thereby creating a more efficient human-machine interface. For battery-operated electronic devices, enabling a user to control media playback faster and more efficiently conserves power and increases the time between battery charges.


In some embodiments, while presenting media content (e.g., a collection of images in a slideshow, an audio track, a video, or the like) at a first speed, the device detects (802) a press input by a first contact on the touch-sensitive surface that corresponds to a focus selector at a first location of a first media control on the display (e.g., a fast-forward control). In some embodiments, the first speed is not a fast-forward speed. For example, the first speed is 0× speed (e.g., paused) or 1× speed (e.g., normal playback).


In response to detecting the press input by the first contact: the device determines (804) whether a first intensity of the first contact (e.g., a characteristic intensity) has satisfied a first intensity threshold (e.g., an activation intensity threshold). In some embodiments, the first intensity threshold is an activation intensity threshold for a first intensity stage. Subsequent to determining whether the first intensity of the first contact has satisfied the first intensity threshold (e.g., an activation intensity threshold), the device determines whether the first contact continues to satisfy a second intensity threshold (e.g., remaining above a release intensity threshold) during a predefined time interval (e.g., before a lock time threshold is reached). In some embodiments, the second intensity threshold is a release intensity threshold for the first intensity stage.


In accordance with determining that the first intensity of the first contact has satisfied the first intensity threshold and determining that the first contact continues to satisfy the second intensity threshold during the predefined time interval, the device presents the media content at a first fast-forward speed that is higher than the first speed as long as the first contact satisfies the second intensity threshold (e.g., as shown in FIGS. 6B and 6F, where the higher speed is not locked in at the end of the press input).


In accordance with determining that the intensity of the first contact has satisfied the first intensity threshold and determining that the first contact does not continue to satisfy the second intensity threshold during the predefined time interval (e.g., the first contact is lifted off or the intensity of the first contact falls below the second intensity threshold during the predefined time interval), the device presents the media content at the first fast-forward speed (e.g., even though the first contact is no longer detected on the touch-sensitive surface) (e.g., as shown in FIGS. 6A and 6E, where the higher speed is locked in).


In some embodiments, the first intensity threshold is (806) higher than the second intensity threshold (e.g., the activation intensity threshold for the first fast forward speed may be higher than the release intensity threshold for the first fast forward speed). In some embodiments, the first intensity threshold is identical to the second intensity threshold.


In some embodiments, while presenting the media content at the first fast-forward speed (e.g., 2×) in accordance with determining that the first intensity of the first contact has satisfied the first intensity threshold and determining that the first contact continues to satisfy the second intensity threshold during the predefined time interval, the device detects (808) a second intensity of the first contact that does not satisfy the second intensity threshold subsequent to the predefined time interval (e.g., as shown in FIG. 6B and 6F, where the intensity of the press input falls below the release intensity threshold for 2× after the lock time threshold has expired). In response to detecting the second intensity of the first contact that does not satisfy the second intensity threshold subsequent to the predefined time interval, the device ceases to present the media content at the first fast-forward speed (e.g., as shown in FIG. 6B and 6F, where the playback speed is returned to the initial playback speed when the contact intensity crosses the release intensity threshold associated with the first fast forward speed of 2×). In some embodiments, ceasing to present the media content at the first fast-forward speed includes presenting the media content at the first speed. In some embodiments, ceasing to present the media content at the first fast-forward speed includes presenting the media content at a normal playback speed (e.g., as shown in FIG. 6F where the final speed is 1×). In some embodiments, ceasing to present the media content at the first fast-forward speed includes presenting a still image of the media content (e.g., paused state and/or 0× speed) (e.g., as shown in FIG. 6B where the final speed is 0×).


In some embodiments, while presenting the media content at the first fast-forward speed (e.g., 2×) in accordance with determining that the first intensity of the first contact has satisfied the first intensity threshold and determining that the first contact does not continue to satisfy the second intensity threshold during the predefined time interval, the device detects (810) a press input by a second contact on the touch-sensitive surface that corresponds to the focus selector at the first location of the first media control on the display. In some embodiments, the second contact is distinct and separate from the first contact. The device determines whether a first intensity of the second contact (e.g., a characteristic intensity) has satisfied the first intensity threshold (e.g., an activation intensity threshold). Subsequent to determining whether the first intensity of the second contact has satisfied the first intensity threshold (e.g., an activation intensity threshold), the device determines whether the second contact satisfies the second intensity threshold (e.g., remaining above a release intensity threshold). In accordance with determining that the first intensity of the second contact has satisfied the first intensity threshold (e.g., ILA) and subsequently determining that the second contact does not satisfy the second intensity threshold (e.g., ILR ), the device presents the media content at a second fast-forward speed (e.g., 5×) that is higher than the first fast-forward speed (e.g., 2×). This is illustrated in FIG. 6I, for example, after the intensity of the press input has risen above ILA, reached a peak, and then fallen to a point just below ILR , the playback speed is increased to 5×.


In some embodiments, in response to detecting the press input by the second contact, in accordance with determining that the first intensity of the second contact has satisfied the first intensity threshold (e.g., ILA) and subsequently determining that the second contact satisfies the second intensity threshold (e.g., ILR ), the device presents (812) the media content at the first fast-forward speed while the second contact satisfies the second intensity threshold. This is illustrated in FIG. 6I, for example, where, after the intensity of the press input has risen above ILA, and remains above ILR , the playback speed remains at 2×, and does not increase to 5× until the intensity falls to a point below ILR .


In some embodiments, in response to detecting the press input by the second contact, in accordance with determining that the first intensity of the second contact has satisfied the first intensity threshold and subsequently determining that the second contact satisfies the second intensity threshold, the device visually distinguishes (814) the first media control on the display while the second contact satisfies the second intensity threshold. In some embodiments, the visual distinction indicates that the second contact satisfies the second intensity threshold. For example, in FIG. 6I, during the period of time after the intensity of the press input has risen above ILA, reached a peak, and then fallen to a point just above ILR , the playback speed remains at 2×, but the media control being activated by the press input is optionally highlighted to indicate that the activation intensity threshold for the next higher play speed has been achieved, and that ceasing the press input now would cause an increase in the playback speed and subsequent locking in of the increased playback speed.


In some embodiments, while presenting the media content at the first fast-forward speed (e.g., 2×) in accordance with determining that the first intensity of the first contact has satisfied the first intensity threshold and determining that the first contact continues to satisfy the second intensity threshold during the predefined time interval and while continuing to detect the first contact on the touch-sensitive surface, the device detects (816) a second intensity of the first contact that satisfies a third intensity threshold (e.g., I5×A) that is higher than the first intensity threshold (e.g., I2×A). In some embodiments, the third intensity threshold is an activation intensity threshold for the second intensity stage (e.g., 5×). In response to detecting the second intensity of the first contact, the device presents the media content at the second fast-forward speed (e.g., 5×) that is higher than the first fast-forward speed (e.g., 2×). This is illustrated in FIG. 6J, where a deep press meeting I5×A causes the playback speed to increase from 2× to 5×.


In some embodiments, while presenting the media content at the second fast-forward speed (e.g., 5×) and while continuing to detect the first contact on the touch-sensitive surface, the device detects (818) a third intensity of the first contact that does not satisfy a fourth intensity threshold (e.g., I5×R). In some embodiments, the fourth intensity threshold is a release intensity threshold for the second intensity stage. In some embodiments, the fourth intensity threshold is identical to the third intensity threshold. In some embodiments, the fourth intensity threshold is distinct from the third intensity threshold. In response to detecting the third intensity of the first contact, the device presents the media content at the first fast-forward speed. This is illustrated in FIG. 6J, where after the intensity of the deep press input falls below the release intensity threshold I5×R , the previously achieved higher playback speed 5× is reduced to 2× again.


It should be understood that the particular order in which the operations in FIGS. 8A-8C have been described is merely exemplary and is not intended to indicate that the described order is the only order in which the operations could be performed. One of ordinary skill in the art would recognize various ways to reorder the operations described herein. Additionally, it should be noted that details of other processes described herein with respect to other methods described herein (e.g., method 700) are also applicable in an analogous manner to method 800 described above with respect to FIGS. 8A-8C. For example, the contacts, gestures, press input, user interface objects, tactile outputs, intensity thresholds, focus selectors, and playback speeds described above with reference to method 800 optionally have one or more of the characteristics of the contacts, gestures, press input, user interface objects, tactile outputs, intensity thresholds, focus selectors, playback speeds described herein with reference to other methods described herein (e.g., method 700). For brevity, these details are not repeated here.


In accordance with some embodiments, FIG. 9 shows a functional block diagram of an electronic device 900 configured in accordance with the principles of the various described embodiments. The functional blocks of the device are, optionally, implemented by hardware, software, firmware, or a combination thereof to carry out the principles of the various described embodiments. It is understood by persons of skill in the art that the functional blocks described in FIG. 9 are, optionally, combined or separated into sub-blocks to implement the principles of the various described embodiments. Therefore, the description herein optionally supports any possible combination or separation or further definition of the functional blocks described herein.


As shown in FIG. 9, an electronic device 900 includes a display unit 902 configured to display a user interface, a touch-sensitive surface unit 904 configured to receive contacts, one or more sensor units 906 configured to detect intensity of contacts with the touch-sensitive surface unit 904; and a processing unit 910 coupled with the display unit 902, the touch-sensitive surface unit 904 and the one or more sensor units 906. In some embodiments, the processing unit 910 includes: a detecting unit 912, a determining unit 914, a presenting unit 916, a maintaining unit 918, a providing unit 920, and an increasing unit 922.


The processing unit 910 is configured to: while presenting media content at a first non-zero playback speed, detect a press input by a first contact on the touch-sensitive surface that corresponds to a focus selector at a first location of a first media control on the display (e.g., with the detecting unit 912); and, in response to detecting the press input: determine whether an intensity of the first contact is above a first intensity threshold (e.g., with the determining unit 914); in accordance with a determination that the intensity of the first contact is above the first intensity threshold, present the media content at a second playback speed (e.g., with the presenting unit 916), wherein the second playback speed is faster than the first non-zero playback speed; and, in accordance with a determination that the intensity of the first contact is below the first intensity threshold, maintain presentation of the media content at the first non-zero playback speed (e.g., with the maintaining unit 918).


In some embodiments, the first non-zero playback speed is a normal playback speed.


In some embodiments, the first non-zero playback speed is a fast-forward playback speed that is greater than or equal to two times a normal playback speed.


In some embodiments, the first non-zero playback speed is a rewind playback speed whose magnitude is greater than or equal to two times a normal playback speed.


In some embodiments, the first intensity threshold corresponds to a predetermined minimum intensity value.


In some embodiments, the first playback control corresponds to a fast-forward control.


In some embodiments, the first playback control corresponds to a rewind control.


In some embodiments, the media content includes a collection of one or more images, an audio track, and/or a video.


In some embodiments, the processing unit 910 is further configured to: while presenting the media content at the second playback speed, detect a subsequent press input by a second contact distinct from the first contact on the touch-sensitive surface that corresponds to the focus selector at the first location of the first media control on the display (e.g., with the detecting unit 912); in response to detecting the subsequent press input, determine whether an intensity of the second contact has crossed a second intensity threshold that is above the first intensity threshold (e.g., with the determining unit 914); while continuing to detect the second contact on the touch-sensitive surface, and in accordance with a determination that the intensity of the second contact has crossed above the second intensity threshold: provide tactile output that corresponds to the second intensity threshold (e.g., with the providing unit 920); and present the media content at a third playback speed greater than the second playback speed (e.g., with the presenting unit 916); and, in accordance with a determination that the intensity of the second contact has not crossed above the second intensity threshold, forego provision of the tactile output that corresponds to the second intensity threshold and continuing to present the media content at the second playback speed (e.g., with the providing unit 924).


In some embodiments, the processing unit 910 is further configured to: in response to detecting the press input: in accordance with the determination that the intensity of the first contact is above the first intensity threshold, provide tactile output that corresponds to the first intensity threshold (e.g., with the providing unit 920); and, in accordance with the determination that the intensity of the first contact is below the first intensity threshold, forego provision of the tactile output that corresponds to the first intensity threshold (e.g., with the providing unit 920).


In some embodiments, the processing unit 910 is further configured to: while presenting the media content at the second playback speed, detect a subsequent press input by a second contact distinct from the first contact on the touch-sensitive surface that corresponds to the focus selector at the first location of the first media control on the display (e.g., with the detecting unit 912); in response to detecting the subsequent press input, detect that an intensity of the second contact has crossed above the first intensity threshold (e.g., with the detecting unit 912); in response to detecting that the intensity of the second contact has crossed above the first intensity threshold: in accordance with a determination that the first intensity threshold is above a predetermined minimum intensity value, provide tactile output that corresponds to the first intensity threshold (e.g., with the providing unit 920); and, in accordance with a determination that the first intensity threshold is below the predetermined minimum intensity value, forego provision of the tactile output that corresponds to the first intensity threshold (e.g., with the providing unit 920); and, while continuing to detect the second contact on the touch-sensitive surface, detect that the intensity of the second contact has crossed above a second intensity threshold that is above the first intensity threshold (e.g., with the detecting unit 912): in response to detecting that the intensity of the second contact has crossed above the second intensity threshold: in accordance with a determination that the second intensity threshold equals or exceeds the predetermined minimum intensity value, provide tactile output that corresponds to the second intensity threshold (e.g., with the providing unit 920); and, in accordance with a determination that the second intensity threshold does not equal or exceed the predetermined minimum intensity value, forego provision of the tactile output that corresponds to the second intensity threshold (e.g., with the providing unit 920).


In some embodiments, the processing unit 910 is further configured to: in response to detecting the press input, and in accordance with the determination that the intensity of the first contact is above the first intensity threshold: in accordance with a determination that the first intensity threshold is above a predetermined minimum intensity value, provide tactile output that corresponds to the first intensity threshold (e.g., with the providing unit 920); and, in accordance with a determination that the first intensity threshold is below the predetermined minimum intensity value, forego provision of the tactile output that corresponds to the first intensity threshold (e.g., with the providing unit 920).


In some embodiments, the processing unit 910 is further configured to: while presenting the media content at the second playback speed, and while continuing to detect the first contact on the touch-sensitive surface: detect that the intensity of the first contact is above a second intensity threshold distinct from the first intensity threshold (e.g., with the detecting unit 912); and, in response to detecting that the intensity of the first contact is above the second intensity threshold, present the media content at a third playback speed, wherein the third playback speed is faster than the second playback speed (e.g., with the presenting unit 912).


In some embodiments, the processing unit 910 is further configured to: while presenting the media content at the third playback speed, and while continuing to detect the first contact on the touch-sensitive surface, detect that the intensity of the first contact has crossed below the second intensity threshold (e.g., with the detecting unit 912); in response to detecting that the intensity of the first contact has crossed below the second intensity threshold: provide tactile output that corresponds to the second intensity threshold (e.g., with the providing unit 920); and present the media content at the second playback speed (e.g., with the presenting unit 916); and, while presenting the media content at the second playback speed, and while continuing to detect the first contact on the touch-sensitive surface, detect that the intensity of the first contact has crossed below the first intensity threshold (e.g., with the detecting unit 912); in response to detecting that the intensity of the first contact has crossed below the first intensity threshold: provide tactile output that corresponds to the first intensity threshold (e.g., with the providing unit 920); and present the media content at a fourth playback speed (e.g., with the presenting unit 916).


In some embodiments, the processing unit 910 is further configured to: while presenting the media content at the second playback speed, detect a subsequent press input by a second contact distinct from the first contact on the touch-sensitive surface that corresponds to the focus selector at the first location of the first media control on the display (e.g., with the detecting unit 912); and while detecting the subsequent press input: determine whether an intensity of the second contact has not crossed above a second intensity threshold that is above the first intensity threshold (e.g., with the determining unit 914); and, subsequent to a determination that the intensity of the second contact has not crossed above the second intensity threshold: detect that the intensity of the second contact has crossed below the first intensity threshold (e.g., with the detecting unit 912); and, in response to detecting that the intensity of the second contact has crossed below the first intensity threshold, forego provision of a tactile output that corresponds to the first intensity threshold (e.g., with the providing unit 920).


In some embodiments, the processing unit 910 is further configured to: while presenting the media content at the second playback speed, and while continuing to detect the first contact on the touch-sensitive surface, detect that the intensity of the first contact is below the first intensity threshold (e.g., with the detecting unit 912); and, in response to detecting that the intensity of the first contact is below the first intensity threshold, present the media content at a fourth playback speed (e.g., with the presenting unit 914).


In some embodiments, the fourth playback speed is the second playback speed.


In some embodiments, the fourth playback speed is the first non-zero playback speed.


In some embodiments, the fourth playback speed is a normal playback speed.


In some embodiments, the processing unit 910 is further configured to: while presenting a still image that corresponds to the media content, detect a subsequent press input by a second contact distinct from the first contact on the touch-sensitive surface that corresponds to the focus selector at the first location of the first media control on the display (e.g., with the detecting unit 912); and, in response to detecting the subsequent press input: determine whether an intensity of the second contact is above the first intensity threshold (e.g., with the determining unit 914); in accordance with a determination that the intensity of the second contact is above the first intensity threshold, present the media content at the second playback speed (e.g., with the presenting unit 916); and, in accordance with a determination that the intensity of the second contact is below the first intensity threshold, increase the playback speed of the media content from the still image up to the second playback speed according to the intensity of the second contact (e.g., with the increasing unit 922).


In some embodiments, the processing unit 910 is further configured to: while presenting the media content at a normal playback speed , detect a subsequent press input by a second contact distinct from the first contact on the touch-sensitive surface that corresponds to the focus selector at a second location of a second media control on the display (e.g., with the detecting unit 912), wherein the second playback control is distinct from the first playback control; and, in response to detecting the subsequent press input: determine whether the intensity of the second contact is above the first intensity threshold (e.g., with the determining unit 914); in accordance with a determination that the intensity of the second contact is above the first intensity threshold, present the media content at a first fractional playback speed, wherein the first fractional playback speed is faster than the normal playback speed and less than two times the normal playback speed (e.g., with the presenting unit 916); and, in accordance with a determination that the intensity of the second contact is below the first intensity threshold, maintain presentation of the media content at the normal playback speed (e.g., with the maintaining unit 918).


In some embodiments, the processing unit 910 is further configured to: while continuing to detect the second contact on the touch-sensitive surface: detect that the intensity of the second contact is above a second intensity threshold distinct from the first intensity threshold (e.g., with the detecting unit 912); and, in response to detecting that the intensity of the second contact is above the second intensity threshold, present the media content at a second fractional playback speed (e.g., with the presenting unit 916), wherein the second fractional playback speed is faster than the first fractional playback speed and less than two times the normal playback speed.


In some embodiments, the processing unit 910 is further configured to: in response to detecting the subsequent press input, display a fractional playback scrubber at least partially overlaid on the second playback control that indicates a current playback speed of the media content (e.g., with the display unit 902).


In some embodiments, the second playback control corresponds to at least one of: a play control and a pause control.


In accordance with some embodiments, FIG. 10 shows a functional block diagram of an electronic device 1000 configured in accordance with the principles of the various described embodiments. The functional blocks of the device are, optionally, implemented by hardware, software, firmware, or a combination thereof to carry out the principles of the various described embodiments. It is understood by persons of skill in the art that the functional blocks described in FIG. 10 are, optionally, combined or separated into sub-blocks to implement the principles of the various described embodiments. Therefore, the description herein optionally supports any possible combination or separation or further definition of the functional blocks described herein.


As shown in FIG. 10, an electronic device 1000 includes a display unit 1002 configured to display a user interface, a touch-sensitive surface unit 1004 configured to receive contacts, one or more sensor units 1006 configured to detect intensity of contacts with the touch-sensitive surface unit 1004; and a processing unit 1010 coupled with the display unit 1002, the touch-sensitive surface unit 1004 and the one or more sensor units 1006. In some embodiments, the processing unit 1010 includes: a detecting unit 1012, a determining unit 1014, a presenting unit 1016, a ceasing unit 1018, and a distinguishing unit 1020.


The processing unit 1010 is configured to: while presenting media content at a first speed, detect a press input by a first contact on the touch-sensitive surface that corresponds to a focus selector at a first location of a first media control on the display (e.g., with the detecting unit 1012); and, in response to detecting the press input by the first contact: determine whether a first intensity of the first contact has satisfied a first intensity threshold (e.g., with the determining unit 1014); subsequent to determining whether the first intensity of the first contact has satisfied the first intensity threshold, determine whether the first contact continues to satisfy a second intensity threshold during a predefined time interval (e.g., with the determining unit 1014); in accordance with determining that the first intensity of the first contact has satisfied the first intensity threshold and determining that the first contact continues to satisfy the second intensity threshold during the predefined time interval, present the media content at a first fast-forward speed that is higher than the first speed as long as the first contact satisfies the second intensity threshold (e.g., with the presenting unit 1016); and, in accordance with determining that the intensity of the first contact has satisfied the first intensity threshold and determining that the first contact does not continue to satisfy the second intensity threshold during the predefined time interval, present the media content at the first fast-forward speed (e.g., with the presenting unit 1016).


In some embodiments, the first intensity threshold is higher than the second intensity threshold.


In some embodiments, the processing unit 1010 is further configured to: while presenting the media content at the first fast-forward speed in accordance with determining that the first intensity of the first contact has satisfied the first intensity threshold and determining that the first contact continues to satisfy the second intensity threshold during the predefined time interval, detect a second intensity of the first contact that does not satisfy the second intensity threshold subsequent to the predefined time interval (e.g., with the detecting unit 1012); and, in response to detecting the second intensity of the first contact that does not satisfy the second intensity threshold subsequent to the predefined time interval, cease to present the media content at the first fast-forward speed (e.g., with the ceasing unit 1018).


In some embodiments, the processing unit 1010 is further configured to: while presenting the media content at the first fast-forward speed in accordance with determining that the first intensity of the first contact has satisfied the first intensity threshold and determining that the first contact does not continue to satisfy the second intensity threshold during the predefined time interval, detect a press input by a second contact on the touch-sensitive surface that corresponds to the focus selector at the first location of the first media control on the display (e.g., with the detecting unit 1012); determine whether a first intensity of the second contact has satisfied the first intensity threshold (e.g., with the determining unit 1014); subsequent to determining whether the first intensity of the second contact has satisfied the first intensity threshold, determine whether the second contact satisfies the second intensity threshold (e.g., with the determining unit 1014); and, in accordance with determining that the first intensity of the second contact has satisfied the first intensity threshold and subsequently determining that the second contact does not satisfy the second intensity threshold, present the media content at a second fast-forward speed that is higher than the first fast-forward speed (e.g., with the presenting unit 1016).


In some embodiments, the processing unit 1010 is further configured to: in response to detecting the press input by the second contact, in accordance with determining that the first intensity of the second contact has satisfied the first intensity threshold and subsequently determining that the second contact satisfies the second intensity threshold, present the media content at the first fast-forward speed while the second contact satisfies the second intensity threshold (e.g., with the presenting unit 1016).


In some embodiments, the processing unit 1010 is further configured to: in response to detecting the press input by the second contact, in accordance with determining that the first intensity of the second contact has satisfied the first intensity threshold and subsequently determining that the second contact satisfies the second intensity threshold, visually distinguish the first media control on the display while the second contact satisfies the second intensity threshold (e.g., with the distinguishing unit 1020).


In some embodiments, the processing unit 1010 is further configured to: while presenting the media content at the first fast-forward speed in accordance with determining that the first intensity of the first contact has satisfied the first intensity threshold and determining that the first contact continues to satisfy the second intensity threshold during the predefined time interval and while continuing to detect the first contact on the touch-sensitive surface, detect a second intensity of the first contact that satisfies a third intensity threshold that is higher than the first intensity threshold (e.g., with the detecting unit 1012); and, in response to detecting the second intensity of the first contact, present the media content at the second fast-forward speed that is higher than the first fast-forward speed (e.g., with the presenting unit 1016).


In some embodiments, the processing unit 1012 is further configured to: while presenting the media content at the second fast-forward speed and while continuing to detect the first contact on the touch-sensitive surface, detect a third intensity of the first contact that does not satisfy a fourth intensity threshold (e.g., with the detecting unit 1012); and, in response to detecting the third intensity of the first contact, present the media content at the first fast-forward speed (e.g., with the presenting unit 1016).


The operations in the information processing methods described above are, optionally implemented by running one or more functional modules in information processing apparatus such as general purpose processors (e.g., as described above with respect to FIGS. 1A and 3) or application specific chips.


The operations described above with reference to FIGS. 7A-7H and 8A-8C are, optionally, implemented by components depicted in FIGS. 1A-1B or FIGS. 9 and 10. For example, detection operation 702, and determination and presentation operations 704 are, optionally, implemented by event sorter 170, event recognizer 180, and event handler 190. Event monitor 171 in event sorter 170 detects a contact on touch-sensitive display 112, and event dispatcher module 174 delivers the event information to application 136-1. A respective event recognizer 180 of application 136-1 compares the event information to respective event definitions 186, and determines whether a first contact at a first location on the touch-sensitive surface (or whether rotation of the device) corresponds to a predefined event or sub-event, such as selection of an object on a user interface, or rotation of the device from one orientation to another. When a respective predefined event or sub-event is detected, event recognizer 180 activates an event handler 190 associated with the detection of the event or sub-event. Event handler 190 optionally uses or calls data updater 176 or object updater 177 to update the application internal state 192. In some embodiments, event handler 190 accesses a respective GUI updater 178 to update what is displayed by the application. Similarly, it would be clear to a person having ordinary skill in the art how other processes can be implemented based on the components depicted in FIGS. 1A-1B.


The foregoing description, for purpose of explanation, has been described with reference to specific embodiments. However, the illustrative discussions above are not intended to be exhaustive or to limit the invention to the precise forms disclosed. Many modifications and variations are possible in view of the above teachings. The embodiments were chosen and described in order to best explain the principles of the invention and its practical applications, to thereby enable others skilled in the art to best use the invention and various described embodiments with various modifications as are suited to the particular use contemplated.

Claims
  • 1. A non-transitory computer readable storage medium storing one or more programs, the one or more programs comprising instructions which, when executed by an electronic device with a display, a touch-sensitive surface, and one or more sensors to detect intensities of contacts with the touch-sensitive surface, cause the electronic device to: while presenting media content at a first speed, detect a press input by a first contact on the touch-sensitive surface that corresponds to a focus selector at a first location of a first media control on the display; and,in response to detecting the press input by the first contact: determine whether a first intensity of the first contact has satisfied a first intensity threshold;subsequent to determining whether the first intensity of the first contact has satisfied the first intensity threshold, determine whether the first contact continues to satisfy a second intensity threshold during a predefined time interval;in accordance with determining that the first intensity of the first contact has satisfied the first intensity threshold and determining that the first contact continues to satisfy the second intensity threshold during the predefined time interval, present the media content at a first fast-forward speed that is higher than the first speed as long as the first contact satisfies the second intensity threshold; and,in accordance with determining that the first intensity of the first contact has satisfied the first intensity threshold and determining that the first contact does not continue to satisfy the second intensity threshold during the predefined time interval, present the media content at the first fast-forward speed.
  • 2. The storage medium of claim 1, wherein the first intensity threshold is higher than the second intensity threshold.
  • 3. The storage medium of claim 1, including instructions which, when executed by the electronic device, cause the electronic device to: while presenting the media content at the first fast-forward speed in accordance with determining that the first intensity of the first contact has satisfied the first intensity threshold and determining that the first contact continues to satisfy the second intensity threshold during the predefined time interval, detect a second intensity of the first contact that does not satisfy the second intensity threshold subsequent to the predefined time interval; and,in response to detecting the second intensity of the first contact that does not satisfy the second intensity threshold subsequent to the predefined time interval, cease to present the media content at the first fast-forward speed.
  • 4. The storage medium of claim 1, including instructions which, when executed by the electronic device, cause the electronic device to: while presenting the media content at the first fast-forward speed in accordance with determining that the first intensity of the first contact has satisfied the first intensity threshold and determining that the first contact does not continue to satisfy the second intensity threshold during the predefined time interval, detect a press input by a second contact on the touch-sensitive surface that corresponds to the focus selector at the first location of the first media control on the display; and,determine whether a first intensity of the second contact has satisfied the first intensity threshold;subsequent to determining whether the first intensity of the second contact has satisfied the first intensity threshold, determine whether the second contact satisfies the second intensity threshold; and,in accordance with determining that the first intensity of the second contact has satisfied the first intensity threshold and subsequently determining that the second contact does not satisfy the second intensity threshold, present the media content at a second fast-forward speed that is higher than the first fast-forward speed.
  • 5. The storage medium of claim 4, including instructions which, when executed by the electronic device, cause the electronic device to: in response to detecting the press input by the second contact, in accordance with determining that the first intensity of the second contact has satisfied the first intensity threshold and subsequently determining that the second contact satisfies the second intensity threshold, present the media content at the first fast-forward speed while the second contact satisfies the second intensity threshold.
  • 6. The storage medium of claim 5, including instructions which, when executed by the electronic device, cause the electronic device to: in response to detecting the press input by the second contact, in accordance with determining that the first intensity of the second contact has satisfied the first intensity threshold and subsequently determining that the second contact satisfies the second intensity threshold, visually distinguish the first media control on the display while the second contact satisfies the second intensity threshold.
  • 7. The storage medium of claim 1, including instructions which, when executed by the electronic device, cause the electronic device to: while presenting the media content at the first fast-forward speed in accordance with determining that the first intensity of the first contact has satisfied the first intensity threshold and determining that the first contact continues to satisfy the second intensity threshold during the predefined time interval and while continuing to detect the first contact on the touch-sensitive surface, detect a second intensity of the first contact that satisfies a third intensity threshold that is higher than the first intensity threshold; and,in response to detecting the second intensity of the first contact, present the media content at a second fast-forward speed that is higher than the first fast-forward speed.
  • 8. The storage medium of claim 7, including instructions which, when executed by the electronic device, cause the electronic device to: while presenting the media content at the second fast-forward speed and while continuing to detect the first contact on the touch-sensitive surface, detect a third intensity of the first contact that does not satisfy a fourth intensity threshold; and,in response to detecting the third intensity of the first contact, present the media content at the first fast-forward speed.
  • 9. An electronic device, comprising: a display;a touch-sensitive surface;one or more sensors to detect intensities of contacts with the touch-sensitive surface;one or more processors;memory; andone or more programs, wherein the one or more programs are stored in the memory and configured to be executed by the one or more processors, the one or more programs including instructions for: while presenting media content at a first speed, detecting a press input by a first contact on the touch-sensitive surface that corresponds to a focus selector at a first location of a first media control on the display; and,in response to detecting the press input by the first contact: determining whether a first intensity of the first contact has satisfied a first intensity threshold;subsequent to determining whether the first intensity of the first contact has satisfied the first intensity threshold, determining whether the first contact continues to satisfy a second intensity threshold during a predefined time interval;in accordance with determining that the first intensity of the first contact has satisfied the first intensity threshold and determining that the first contact continues to satisfy the second intensity threshold during the predefined time interval, presenting the media content at a first fast-forward speed that is higher than the first speed as long as the first contact satisfies the second intensity threshold; and,in accordance with determining that the first intensity of the first contact has satisfied the first intensity threshold and determining that the first contact does not continue to satisfy the second intensity threshold during the predefined time interval, presenting the media content at the first fast-forward speed.
  • 10. The electronic device of claim 9, wherein the first intensity threshold is higher than the second intensity threshold.
  • 11. The electronic device of claim 9, wherein the one or more programs include instructions for: while presenting the media content at the first fast-forward speed in accordance with determining that the first intensity of the first contact has satisfied the first intensity threshold and determining that the first contact continues to satisfy the second intensity threshold during the predefined time interval, detecting a second intensity of the first contact that does not satisfy the second intensity threshold subsequent to the predefined time interval; and,in response to detecting the second intensity of the first contact that does not satisfy the second intensity threshold subsequent to the predefined time interval, ceasing to present the media content at the first fast-forward speed.
  • 12. The electronic device of claim 9, wherein the one or more programs include instructions for: while presenting the media content at the first fast-forward speed in accordance with determining that the first intensity of the first contact has satisfied the first intensity threshold and determining that the first contact does not continue to satisfy the second intensity threshold during the predefined time interval, detecting a press input by a second contact on the touch-sensitive surface that corresponds to the focus selector at the first location of the first media control on the display; and,determining whether a first intensity of the second contact has satisfied the first intensity threshold;subsequent to determining whether the first intensity of the second contact has satisfied the first intensity threshold, determining whether the second contact satisfies the second intensity threshold; and,in accordance with determining that the first intensity of the second contact has satisfied the first intensity threshold and subsequently determining that the second contact does not satisfy the second intensity threshold, presenting the media content at a second fast-forward speed that is higher than the first fast-forward speed.
  • 13. The electronic device of claim 12, wherein the one or more programs include instructions for: in response to detecting the press input by the second contact, in accordance with determining that the first intensity of the second contact has satisfied the first intensity threshold and subsequently determining that the second contact satisfies the second intensity threshold, presenting the media content at the first fast-forward speed while the second contact satisfies the second intensity threshold.
  • 14. The electronic device of claim 13, wherein the one or more programs include instructions for: in response to detecting the press input by the second contact, in accordance with determining that the first intensity of the second contact has satisfied the first intensity threshold and subsequently determining that the second contact satisfies the second intensity threshold, visually distinguishing the first media control on the display while the second contact satisfies the second intensity threshold.
  • 15. The electronic device of claim 9, wherein the one or more programs include instructions for: while presenting the media content at the first fast-forward speed in accordance with determining that the first intensity of the first contact has satisfied the first intensity threshold and determining that the first contact continues to satisfy the second intensity threshold during the predefined time interval and while continuing to detect the first contact on the touch-sensitive surface, detecting a second intensity of the first contact that satisfies a third intensity threshold that is higher than the first intensity threshold; and,in response to detecting the second intensity of the first contact, presenting the media content at a second fast-forward speed that is higher than the first fast-forward speed.
  • 16. The electronic device of claim 15, wherein the one or more programs include instructions for: while presenting the media content at the second fast-forward speed and while continuing to detect the first contact on the touch-sensitive surface, detecting a third intensity of the first contact that does not satisfy a fourth intensity threshold; and,in response to detecting the third intensity of the first contact, presenting the media content at the first fast-forward speed.
  • 17. A method, comprising: at an electronic device with a touch-sensitive surface and a display, wherein the electronic device includes one or more sensors to detect intensities of contacts with the touch-sensitive surface: while presenting media content at a first speed, detecting a press input by a first contact on the touch-sensitive surface that corresponds to a focus selector at a first location of a first media control on the display; and,in response to detecting the press input by the first contact: determining whether a first intensity of the first contact has satisfied a first intensity threshold;subsequent to determining whether the first intensity of the first contact has satisfied the first intensity threshold, determining whether the first contact continues to satisfy a second intensity threshold during a predefined time interval;in accordance with determining that the first intensity of the first contact has satisfied the first intensity threshold and determining that the first contact continues to satisfy the second intensity threshold during the predefined time interval, presenting the media content at a first fast-forward speed that is higher than the first speed as long as the first contact satisfies the second intensity threshold; and,in accordance with determining that the first intensity of the first contact has satisfied the first intensity threshold and determining that the first contact does not continue to satisfy the second intensity threshold during the predefined time interval, presenting the media content at the first fast-forward speed.
  • 18. The method of claim 17, wherein the first intensity threshold is higher than the second intensity threshold.
  • 19. The method of claim 17, including: while presenting the media content at the first fast-forward speed in accordance with determining that the first intensity of the first contact has satisfied the first intensity threshold and determining that the first contact continues to satisfy the second intensity threshold during the predefined time interval, detecting a second intensity of the first contact that does not satisfy the second intensity threshold subsequent to the predefined time interval; and,in response to detecting the second intensity of the first contact that does not satisfy the second intensity threshold subsequent to the predefined time interval, ceasing to present the media content at the first fast-forward speed.
  • 20. The method of claim 17, including: while presenting the media content at the first fast-forward speed in accordance with determining that the first intensity of the first contact has satisfied the first intensity threshold and determining that the first contact does not continue to satisfy the second intensity threshold during the predefined time interval, detecting a press input by a second contact on the touch-sensitive surface that corresponds to the focus selector at the first location of the first media control on the display; and,determining whether a first intensity of the second contact has satisfied the first intensity threshold;subsequent to determining whether the first intensity of the second contact has satisfied the first intensity threshold, determining whether the second contact satisfies the second intensity threshold; and,in accordance with determining that the first intensity of the second contact has satisfied the first intensity threshold and subsequently determining that the second contact does not satisfy the second intensity threshold, presenting the media content at a second fast-forward speed that is higher than the first fast-forward speed.
  • 21. The method of claim 20, including: in response to detecting the press input by the second contact, in accordance with determining that the first intensity of the second contact has satisfied the first intensity threshold and subsequently determining that the second contact satisfies the second intensity threshold, presenting the media content at the first fast-forward speed while the second contact satisfies the second intensity threshold.
  • 22. The method of claim 21, including: in response to detecting the press input by the second contact, in accordance with determining that the first intensity of the second contact has satisfied the first intensity threshold and subsequently determining that the second contact satisfies the second intensity threshold, visually distinguishing the first media control on the display while the second contact satisfies the second intensity threshold.
  • 23. The method of claim 17, including: while presenting the media content at the first fast-forward speed in accordance with determining that the first intensity of the first contact has satisfied the first intensity threshold and determining that the first contact continues to satisfy the second intensity threshold during the predefined time interval and while continuing to detect the first contact on the touch-sensitive surface, detecting a second intensity of the first contact that satisfies a third intensity threshold that is higher than the first intensity threshold; and,in response to detecting the second intensity of the first contact, presenting the media content at a second fast-forward speed that is higher than the first fast-forward speed.
  • 24. The method of claim 23, including: while presenting the media content at the second fast-forward speed and while continuing to detect the first contact on the touch-sensitive surface, detecting a third intensity of the first contact that does not satisfy a fourth intensity threshold; and,in response to detecting the third intensity of the first contact, presenting the media content at the first fast-forward speed.
RELATED APPLICATION

This application is a continuation of U.S. application Ser. No. 14/866,159, filed Sep. 25, 2015, which claims priority to U.S. Provisional Patent Application Ser. No. 62/129,941, filed Mar. 8, 2015, entitled “Devices and Methods for Controlling Media Presentation,” both of which are incorporated by reference herein in their entirety.

US Referenced Citations (928)
Number Name Date Kind
4864520 Setoguchi et al. Sep 1989 A
5184120 Schultz Feb 1993 A
5374787 Miller et al. Dec 1994 A
5428730 Baker et al. Jun 1995 A
5463722 Venolia Oct 1995 A
5510813 Makinwa et al. Apr 1996 A
5555354 Strasnick et al. Sep 1996 A
5559301 Bryan, Jr. et al. Sep 1996 A
5710896 Seidl Jan 1998 A
5717438 Kim et al. Feb 1998 A
5793360 Fleck et al. Aug 1998 A
5793377 Moore Aug 1998 A
5801692 Muzio et al. Sep 1998 A
5805144 Scholder et al. Sep 1998 A
5805167 Van Cruyningen Sep 1998 A
5809267 Moran et al. Sep 1998 A
5819293 Comer et al. Oct 1998 A
5825352 Bisset et al. Oct 1998 A
5844560 Crutcher et al. Dec 1998 A
5872922 Hogan et al. Feb 1999 A
5946647 Miller et al. Aug 1999 A
6002397 Jaaskelainen, Jr. Dec 1999 A
6031989 Cordell Feb 2000 A
6088019 Rosenberg Jul 2000 A
6088027 Konar et al. Jul 2000 A
6111575 Martinez et al. Aug 2000 A
6121960 Carroll et al. Sep 2000 A
6208329 Ballare Mar 2001 B1
6208340 Amin et al. Mar 2001 B1
6219034 Elbing et al. Apr 2001 B1
6232891 Rosenberg May 2001 B1
6243080 Molne Jun 2001 B1
6252594 Xia et al. Jun 2001 B1
6396523 Segal et al. May 2002 B1
6429846 Rosenberg et al. Aug 2002 B2
6448977 Braun et al. Sep 2002 B1
6459442 Edwards et al. Oct 2002 B1
6489978 Gong et al. Dec 2002 B1
6512530 Rzepkowski et al. Jan 2003 B1
6563487 Martin et al. May 2003 B2
6567102 Kung May 2003 B2
6583798 Hoek et al. Jun 2003 B1
6590568 Astala et al. Jul 2003 B1
6661438 Shiraishi et al. Dec 2003 B1
6735307 Volckers May 2004 B1
6750890 Sugimoto Jun 2004 B1
6822635 Shahoian et al. Nov 2004 B2
6906697 Rosenberg Jun 2005 B2
6919927 Hyodo Jul 2005 B1
6943778 Astala et al. Sep 2005 B1
7138983 Wakai et al. Nov 2006 B2
7312791 Hoshino et al. Dec 2007 B2
7411575 Hill et al. Aug 2008 B2
7434177 Ording et al. Oct 2008 B1
7471284 Bathiche et al. Dec 2008 B2
7479949 Jobs et al. Jan 2009 B2
7533352 Chew et al. May 2009 B2
7552397 Holecek et al. Jun 2009 B2
7577530 Vignalou-Marche Aug 2009 B2
7614008 Ording Nov 2009 B2
7619616 Rimas Ribikauskas et al. Nov 2009 B2
7629966 Anson Dec 2009 B2
7656413 Khan et al. Feb 2010 B2
7683889 Rimas Ribikauskas et al. Mar 2010 B2
7743348 Robbins et al. Jun 2010 B2
7760187 Kennedy Jul 2010 B2
7787026 Flory et al. Aug 2010 B1
7797642 Karam et al. Sep 2010 B1
7801950 Eisenstadt et al. Sep 2010 B2
7812826 Ording et al. Oct 2010 B2
7890862 Kompe et al. Feb 2011 B2
7903090 Soss et al. Mar 2011 B2
7952566 Poupyrev et al. May 2011 B2
7956847 Christie Jun 2011 B2
7973778 Chen Jul 2011 B2
8040142 Bokma et al. Oct 2011 B1
8059104 Shahoian et al. Nov 2011 B2
8106856 Matas et al. Jan 2012 B2
8125440 Guyot-Sionnest et al. Feb 2012 B2
8125492 Wainwright et al. Feb 2012 B1
RE43448 Kimoto et al. Jun 2012 E
8209628 Davidson Jun 2012 B1
8271900 Wakizaka et al. Sep 2012 B2
8325398 Satomi et al. Dec 2012 B2
8363020 Li et al. Jan 2013 B2
8390583 Forutanpour et al. Mar 2013 B2
8423089 Song et al. Apr 2013 B2
8446376 Levy et al. May 2013 B2
8453057 Stallings et al. May 2013 B2
8456431 Victor Jun 2013 B2
8466889 Tong et al. Jun 2013 B2
8482535 Pryor Jul 2013 B2
8499778 Yuki Jul 2013 B2
8508494 Moore Aug 2013 B2
8542205 Keller Sep 2013 B1
8553092 Tezuka et al. Oct 2013 B2
8581870 Bokma et al. Nov 2013 B2
8587542 Moore Nov 2013 B2
8593415 Han et al. Nov 2013 B2
8593420 Buuck Nov 2013 B1
8625882 Backlund et al. Jan 2014 B2
8638311 Kang et al. Jan 2014 B2
8665227 Gunawan Mar 2014 B2
8669945 Coddington Mar 2014 B2
8698765 Keller Apr 2014 B1
8717305 Williamson et al. May 2014 B2
8743069 Morton et al. Jun 2014 B2
8769431 Prasad Jul 2014 B1
8773389 Freed Jul 2014 B1
8788964 Shin et al. Jul 2014 B2
8793577 Schellingerhout et al. Jul 2014 B2
8799816 Wells et al. Aug 2014 B2
8816989 Nicholson et al. Aug 2014 B2
8854316 Shenfield Oct 2014 B2
8872729 Lyons et al. Oct 2014 B2
8872773 Mak et al. Oct 2014 B2
8875044 Ozawa et al. Oct 2014 B2
8881062 Kim et al. Nov 2014 B2
8914732 Jun et al. Dec 2014 B2
8952987 Momeyer et al. Feb 2015 B2
8954889 Fujibayashi Feb 2015 B2
8959430 Spivak et al. Feb 2015 B1
8976128 Moore Mar 2015 B2
9026932 Dixon May 2015 B1
9030419 Freed May 2015 B1
9030436 Ikeda May 2015 B2
9032321 Cohen et al. May 2015 B1
9046999 Teller et al. Jun 2015 B1
9052925 Chaudhri Jun 2015 B2
9063563 Gray et al. Jun 2015 B1
9069460 Moore Jun 2015 B2
9086755 Cho et al. Jul 2015 B2
9092058 Kasahara et al. Jul 2015 B2
9098188 Kim Aug 2015 B2
9104260 Marsden et al. Aug 2015 B2
9116571 Zeliff et al. Aug 2015 B2
9122364 Kuwabara et al. Sep 2015 B2
9146914 Dhaundiyal Sep 2015 B1
9164779 Brakensiek et al. Oct 2015 B2
9170607 Bose et al. Oct 2015 B2
9170649 Ronkainen Oct 2015 B2
9218105 Mansson et al. Dec 2015 B2
9244562 Rosenberg et al. Jan 2016 B1
9244576 Vadagave et al. Jan 2016 B1
9244601 Kim et al. Jan 2016 B2
9244606 Kocienda et al. Jan 2016 B2
9246487 Casparian et al. Jan 2016 B2
9262002 Momeyer et al. Feb 2016 B2
9304668 Rezende et al. Apr 2016 B2
9307112 Molgaard et al. Apr 2016 B2
9349552 Huska et al. May 2016 B2
9361018 Defazio et al. Jun 2016 B2
9389718 Letourneur Jul 2016 B1
9389722 Matsuki et al. Jul 2016 B2
9400581 Bokma et al. Jul 2016 B2
9405367 Jung et al. Aug 2016 B2
9417754 Smith Aug 2016 B2
9423938 Morris Aug 2016 B1
9436344 Kuwabara et al. Sep 2016 B2
9448694 Sharma et al. Sep 2016 B2
9451230 Henderson et al. Sep 2016 B1
9471145 Langlois et al. Oct 2016 B2
9477393 Zambetti et al. Oct 2016 B2
9542013 Dearman et al. Jan 2017 B2
9569093 Lipman et al. Feb 2017 B2
9600114 Milam et al. Mar 2017 B2
9600116 Tao et al. Mar 2017 B2
9612741 Brown et al. Apr 2017 B2
9619076 Bernstein et al. Apr 2017 B2
9671943 Van der Velden Jun 2017 B2
9733716 Shaffer Aug 2017 B2
9760241 Lewbel Sep 2017 B1
9785305 Alonso Ruiz et al. Oct 2017 B2
10055066 Lynn et al. Aug 2018 B2
10057490 Shin et al. Aug 2018 B2
10095396 Kudurshian et al. Oct 2018 B2
10222980 Alonso Ruiz et al. Mar 2019 B2
10235023 Gustafsson et al. Mar 2019 B2
20010024195 Hayakawa et al. Sep 2001 A1
20010045965 Orbanes et al. Nov 2001 A1
20020008691 Hanajima et al. Jan 2002 A1
20020015064 Robotham et al. Feb 2002 A1
20020042925 Ebisu et al. Apr 2002 A1
20020109668 Rosenberg et al. Aug 2002 A1
20020109678 Marmolin et al. Aug 2002 A1
20020140680 Lu Oct 2002 A1
20020140740 Chen Oct 2002 A1
20020163498 Chang et al. Nov 2002 A1
20020180763 Kung Dec 2002 A1
20020186257 Cadiz et al. Dec 2002 A1
20030001869 Nissen Jan 2003 A1
20030086496 Zhang et al. May 2003 A1
20030112269 Lentz et al. Jun 2003 A1
20030117440 Hellyar et al. Jun 2003 A1
20030122779 Martin et al. Jul 2003 A1
20030128242 Gordon Jul 2003 A1
20030151589 Bensen et al. Aug 2003 A1
20030184574 Phillips et al. Oct 2003 A1
20030189552 Chuang et al. Oct 2003 A1
20030189647 Kang Oct 2003 A1
20030206169 Springer et al. Nov 2003 A1
20030222915 Marion et al. Dec 2003 A1
20040015662 Cummings Jan 2004 A1
20040021643 Hoshino et al. Feb 2004 A1
20040056849 Lohbihler et al. Mar 2004 A1
20040108995 Hoshino et al. Jun 2004 A1
20040138849 Schmidt et al. Jul 2004 A1
20040150631 Fleck et al. Aug 2004 A1
20040150644 Kincaid et al. Aug 2004 A1
20040174399 Wu et al. Sep 2004 A1
20040219969 Casey et al. Nov 2004 A1
20040267877 Shapiro et al. Dec 2004 A1
20050012723 Pallakoff Jan 2005 A1
20050039141 Burke et al. Feb 2005 A1
20050091604 Davis Apr 2005 A1
20050110769 DaCosta et al. May 2005 A1
20050114785 Finnigan et al. May 2005 A1
20050125742 Grotjohn et al. Jun 2005 A1
20050134578 Chambers et al. Jun 2005 A1
20050183017 Cain Aug 2005 A1
20050190280 Haas et al. Sep 2005 A1
20050204295 Voorhees et al. Sep 2005 A1
20050223338 Partanen Oct 2005 A1
20050229112 Clay et al. Oct 2005 A1
20050289476 Tokkonen Dec 2005 A1
20060001650 Robbins et al. Jan 2006 A1
20060001657 Monney et al. Jan 2006 A1
20060022955 Kennedy Feb 2006 A1
20060026536 Hotelling et al. Feb 2006 A1
20060031776 Glein et al. Feb 2006 A1
20060036971 Mendel et al. Feb 2006 A1
20060059436 Nurmi Mar 2006 A1
20060067677 Tokiwa et al. Mar 2006 A1
20060101347 Runov et al. May 2006 A1
20060109252 Kolmykov-Zotov et al. May 2006 A1
20060109256 Grant et al. May 2006 A1
20060119586 Grant et al. Jun 2006 A1
20060132455 Rimas-Ribikauskas et al. Jun 2006 A1
20060132456 Anson Jun 2006 A1
20060132457 Rimas-Ribikauskas et al. Jun 2006 A1
20060136834 Cao et al. Jun 2006 A1
20060136845 Rimas-Ribikauskas et al. Jun 2006 A1
20060161861 Holecek et al. Jul 2006 A1
20060161870 Hotelling et al. Jul 2006 A1
20060190834 Marcjan Aug 2006 A1
20060195438 Galuten Aug 2006 A1
20060197753 Hotelling Sep 2006 A1
20060212812 Simmons et al. Sep 2006 A1
20060213754 Jarrett et al. Sep 2006 A1
20060224989 Pettiross et al. Oct 2006 A1
20060233248 Rynderman et al. Oct 2006 A1
20060274042 Krah et al. Dec 2006 A1
20060274086 Forstall et al. Dec 2006 A1
20060277469 Chaudhri et al. Dec 2006 A1
20060282778 Barsness et al. Dec 2006 A1
20060284858 Rekimoto Dec 2006 A1
20060290681 Ho et al. Dec 2006 A1
20070024595 Baker et al. Feb 2007 A1
20070024646 Saarinen et al. Feb 2007 A1
20070080953 Lii Apr 2007 A1
20070113681 Nishimura et al. May 2007 A1
20070120834 Boillot May 2007 A1
20070120835 Sato May 2007 A1
20070124699 Michaels May 2007 A1
20070152959 Peters Jul 2007 A1
20070157173 Klein et al. Jul 2007 A1
20070168369 Bruns Jul 2007 A1
20070168890 Zhao et al. Jul 2007 A1
20070176904 Russo Aug 2007 A1
20070182999 Anthony et al. Aug 2007 A1
20070186178 Schiller Aug 2007 A1
20070200713 Weber et al. Aug 2007 A1
20070222768 Geurts et al. Sep 2007 A1
20070229455 Martin et al. Oct 2007 A1
20070229464 Hotelling et al. Oct 2007 A1
20070236450 Colgate et al. Oct 2007 A1
20070236477 Ryu et al. Oct 2007 A1
20070245241 Bertram et al. Oct 2007 A1
20070257821 Son et al. Nov 2007 A1
20070270182 Gulliksson et al. Nov 2007 A1
20070288862 Ording Dec 2007 A1
20070294295 Finkelstein et al. Dec 2007 A1
20070299923 Skelly et al. Dec 2007 A1
20080001924 dos los Reyes et al. Jan 2008 A1
20080024459 Poupyrev et al. Jan 2008 A1
20080034306 Ording Feb 2008 A1
20080034331 Josephsoon et al. Feb 2008 A1
20080036743 Westerman et al. Feb 2008 A1
20080051989 Welsh Feb 2008 A1
20080052945 Matas et al. Mar 2008 A1
20080066010 Brodersen et al. Mar 2008 A1
20080094367 Van De Ven et al. Apr 2008 A1
20080094398 Ng et al. Apr 2008 A1
20080106523 Conrad May 2008 A1
20080109753 Karstens May 2008 A1
20080136790 Hio Jun 2008 A1
20080155415 Yoon et al. Jun 2008 A1
20080163119 Kim et al. Jul 2008 A1
20080168395 Ording et al. Jul 2008 A1
20080168403 Westerman et al. Jul 2008 A1
20080168404 Ording Jul 2008 A1
20080202824 Philipp et al. Aug 2008 A1
20080204427 Heesemans et al. Aug 2008 A1
20080219493 Tadmor Sep 2008 A1
20080222569 Champion et al. Sep 2008 A1
20080225007 Nakadaira et al. Sep 2008 A1
20080244448 Goering et al. Oct 2008 A1
20080259046 Carsanaro Oct 2008 A1
20080263452 Tomkins Oct 2008 A1
20080284866 Mizutani Nov 2008 A1
20080294984 Ramsay et al. Nov 2008 A1
20080297475 Woolf et al. Dec 2008 A1
20080303795 Lowles et al. Dec 2008 A1
20080303799 Schwesig et al. Dec 2008 A1
20080307335 Chaudhri et al. Dec 2008 A1
20080307359 Louch et al. Dec 2008 A1
20080317378 Steinberg et al. Dec 2008 A1
20080320419 Matas et al. Dec 2008 A1
20090007017 Anzures et al. Jan 2009 A1
20090046110 Sadler et al. Feb 2009 A1
20090058828 Jiang et al. Mar 2009 A1
20090061837 Chaudhri et al. Mar 2009 A1
20090066668 Kim et al. Mar 2009 A1
20090073118 Yamaji et al. Mar 2009 A1
20090083665 Anttila et al. Mar 2009 A1
20090085878 Heubel et al. Apr 2009 A1
20090085881 Keam Apr 2009 A1
20090085886 Huang et al. Apr 2009 A1
20090089293 Garritano et al. Apr 2009 A1
20090100343 Lee et al. Apr 2009 A1
20090102804 Wong et al. Apr 2009 A1
20090102805 Meijer et al. Apr 2009 A1
20090140985 Liu Jun 2009 A1
20090158198 Hayter et al. Jun 2009 A1
20090160793 Rekimoto Jun 2009 A1
20090160814 Li et al. Jun 2009 A1
20090167507 Maenpaa Jul 2009 A1
20090167508 Fadell et al. Jul 2009 A1
20090167704 Terlizzi et al. Jul 2009 A1
20090169061 Anderson et al. Jul 2009 A1
20090187824 Hinckley et al. Jul 2009 A1
20090198767 Jakobson et al. Aug 2009 A1
20090219294 Young et al. Sep 2009 A1
20090225037 Williamson et al. Sep 2009 A1
20090228842 Westerman et al. Sep 2009 A1
20090237374 Li et al. Sep 2009 A1
20090247112 Lundy et al. Oct 2009 A1
20090247230 Lundy et al. Oct 2009 A1
20090256947 Ciurea et al. Oct 2009 A1
20090259975 Asai et al. Oct 2009 A1
20090267906 Schroderus Oct 2009 A1
20090276730 Aybes et al. Nov 2009 A1
20090280860 Dahlke Nov 2009 A1
20090282360 Park et al. Nov 2009 A1
20090284478 De la Torre Baltierra et al. Nov 2009 A1
20090288032 Chang et al. Nov 2009 A1
20090293009 Meserth et al. Nov 2009 A1
20090295739 Nagara Dec 2009 A1
20090303187 Pallakoff Dec 2009 A1
20090307583 Tonisson Dec 2009 A1
20090307633 Haughay, Jr. et al. Dec 2009 A1
20090322893 Stallings et al. Dec 2009 A1
20100007926 Imaizumi et al. Jan 2010 A1
20100011304 Van Os Jan 2010 A1
20100013613 Weston Jan 2010 A1
20100013777 Baudisch et al. Jan 2010 A1
20100017710 Kim et al. Jan 2010 A1
20100026640 Kim et al. Feb 2010 A1
20100026647 Abe et al. Feb 2010 A1
20100039446 Hillis et al. Feb 2010 A1
20100044121 Simon et al. Feb 2010 A1
20100045619 Birnbaum et al. Feb 2010 A1
20100057235 Wang et al. Mar 2010 A1
20100058231 Duarte et al. Mar 2010 A1
20100061637 Mochizuki et al. Mar 2010 A1
20100070908 Mori et al. Mar 2010 A1
20100073329 Raman et al. Mar 2010 A1
20100083116 Akifusa et al. Apr 2010 A1
20100085302 Fairweather et al. Apr 2010 A1
20100085314 Kwok Apr 2010 A1
20100085317 Park et al. Apr 2010 A1
20100088596 Griffin et al. Apr 2010 A1
20100088654 Henhoeffer Apr 2010 A1
20100110082 Myrick et al. May 2010 A1
20100111434 Madden May 2010 A1
20100127983 Irani et al. May 2010 A1
20100128002 Stacy et al. May 2010 A1
20100138776 Korhonen Jun 2010 A1
20100146507 Kang et al. Jun 2010 A1
20100148999 Casparian et al. Jun 2010 A1
20100149096 Migos et al. Jun 2010 A1
20100153879 Rimas-Ribikauskas et al. Jun 2010 A1
20100156807 Stallings et al. Jun 2010 A1
20100156813 Duarte et al. Jun 2010 A1
20100156818 Burrough et al. Jun 2010 A1
20100156823 Paleczny et al. Jun 2010 A1
20100156825 Sohn et al. Jun 2010 A1
20100171713 Kwok et al. Jul 2010 A1
20100175023 Gatlin et al. Jul 2010 A1
20100180225 Chiba et al. Jul 2010 A1
20100199227 Xiao et al. Aug 2010 A1
20100211872 Rolston et al. Aug 2010 A1
20100214239 Wu Aug 2010 A1
20100225604 Homma et al. Sep 2010 A1
20100231534 Chaudhri et al. Sep 2010 A1
20100235726 Ording et al. Sep 2010 A1
20100235746 Anzures Sep 2010 A1
20100248787 Smuga et al. Sep 2010 A1
20100251168 Fujita et al. Sep 2010 A1
20100271312 Alameh et al. Oct 2010 A1
20100271500 Park et al. Oct 2010 A1
20100277419 Ganey et al. Nov 2010 A1
20100277496 Kawanishi et al. Nov 2010 A1
20100281379 Meaney et al. Nov 2010 A1
20100281385 Meaney et al. Nov 2010 A1
20100289807 Yu et al. Nov 2010 A1
20100295805 Shin et al. Nov 2010 A1
20100302177 Kim et al. Dec 2010 A1
20100302179 Ahn et al. Dec 2010 A1
20100306702 Warner Dec 2010 A1
20100308983 Conte et al. Dec 2010 A1
20100309147 Fleizach et al. Dec 2010 A1
20100313124 Privault et al. Dec 2010 A1
20100313156 Louch et al. Dec 2010 A1
20100313158 Lee et al. Dec 2010 A1
20100313166 Nakayama et al. Dec 2010 A1
20100315417 Cho et al. Dec 2010 A1
20100315438 Horodezky et al. Dec 2010 A1
20100321301 Casparian et al. Dec 2010 A1
20100325578 Mital et al. Dec 2010 A1
20110010626 Fino et al. Jan 2011 A1
20110012851 Ciesla et al. Jan 2011 A1
20110018695 Bells et al. Jan 2011 A1
20110035145 Yamasaki Feb 2011 A1
20110050576 Forutanpour et al. Mar 2011 A1
20110050588 Li et al. Mar 2011 A1
20110050591 Kim et al. Mar 2011 A1
20110050594 Kim et al. Mar 2011 A1
20110050629 Homma et al. Mar 2011 A1
20110050630 Ikeda Mar 2011 A1
20110050653 Miyazawa et al. Mar 2011 A1
20110054837 Ikeda Mar 2011 A1
20110055135 Dawson et al. Mar 2011 A1
20110055741 Jeon et al. Mar 2011 A1
20110057886 Ng et al. Mar 2011 A1
20110057903 Yamano et al. Mar 2011 A1
20110061029 Yeh et al. Mar 2011 A1
20110063248 Yoon Mar 2011 A1
20110069012 Martensson Mar 2011 A1
20110069016 Victor Mar 2011 A1
20110070342 Wilkens Mar 2011 A1
20110074697 Rapp et al. Mar 2011 A1
20110080350 Almalki et al. Apr 2011 A1
20110084910 Almalki et al. Apr 2011 A1
20110087982 McCann et al. Apr 2011 A1
20110087983 Shim Apr 2011 A1
20110093815 Gobeil Apr 2011 A1
20110093817 Song et al. Apr 2011 A1
20110102340 Martin et al. May 2011 A1
20110102829 Jourdan May 2011 A1
20110107272 Aguilar May 2011 A1
20110109617 Snook et al. May 2011 A1
20110116716 Kwon et al. May 2011 A1
20110126139 Jeong et al. May 2011 A1
20110138295 Momchilov et al. Jun 2011 A1
20110141031 McCullough et al. Jun 2011 A1
20110141052 Bernstein et al. Jun 2011 A1
20110144777 Firkins et al. Jun 2011 A1
20110145752 Fagans Jun 2011 A1
20110145753 Prakash Jun 2011 A1
20110145759 Leffert et al. Jun 2011 A1
20110145764 Higuchi et al. Jun 2011 A1
20110149138 Watkins Jun 2011 A1
20110163971 Wagner et al. Jul 2011 A1
20110163978 Park et al. Jul 2011 A1
20110164042 Chaudhri Jul 2011 A1
20110167369 van Os Jul 2011 A1
20110169765 Aono Jul 2011 A1
20110175826 Moore et al. Jul 2011 A1
20110175830 Miyazawa et al. Jul 2011 A1
20110179368 King et al. Jul 2011 A1
20110179381 King Jul 2011 A1
20110181538 Aono Jul 2011 A1
20110181751 Mizumori Jul 2011 A1
20110185299 Hinckley et al. Jul 2011 A1
20110185300 Hinckley et al. Jul 2011 A1
20110185316 Reid et al. Jul 2011 A1
20110193788 King et al. Aug 2011 A1
20110193809 Walley et al. Aug 2011 A1
20110193881 Rydenhag Aug 2011 A1
20110197160 Kim et al. Aug 2011 A1
20110201387 Paek et al. Aug 2011 A1
20110202834 Mandryk et al. Aug 2011 A1
20110202853 Mujkic Aug 2011 A1
20110202879 Stovicek et al. Aug 2011 A1
20110205163 Hinckley et al. Aug 2011 A1
20110209088 Hinckley et al. Aug 2011 A1
20110209093 Hinckley et al. Aug 2011 A1
20110209097 Hinckley et al. Aug 2011 A1
20110209099 Hinckley et al. Aug 2011 A1
20110209104 Hinckley et al. Aug 2011 A1
20110210931 Shai Sep 2011 A1
20110215914 Edwards Sep 2011 A1
20110221684 Rydenhag Sep 2011 A1
20110221776 Shimotani et al. Sep 2011 A1
20110231789 Bukurak et al. Sep 2011 A1
20110238690 Arrasvuori et al. Sep 2011 A1
20110239110 Garrett et al. Sep 2011 A1
20110242029 Kasahara et al. Oct 2011 A1
20110246877 Kwak et al. Oct 2011 A1
20110248916 Griffin et al. Oct 2011 A1
20110248948 Griffin et al. Oct 2011 A1
20110252346 Chaudhri Oct 2011 A1
20110252357 Chaudhri Oct 2011 A1
20110252362 Cho et al. Oct 2011 A1
20110258537 Rives et al. Oct 2011 A1
20110263298 Park Oct 2011 A1
20110267530 Chun Nov 2011 A1
20110279380 Weber et al. Nov 2011 A1
20110279381 Tong et al. Nov 2011 A1
20110279395 Kuwabara et al. Nov 2011 A1
20110279852 Oda et al. Nov 2011 A1
20110285656 Yaksick et al. Nov 2011 A1
20110285659 Kuwabara et al. Nov 2011 A1
20110291945 Ewing, Jr. et al. Dec 2011 A1
20110291951 Tong Dec 2011 A1
20110296334 Ryu et al. Dec 2011 A1
20110296351 Ewing, Jr. et al. Dec 2011 A1
20110304559 Pasquero Dec 2011 A1
20110304577 Brown et al. Dec 2011 A1
20110310049 Homma et al. Dec 2011 A1
20110319136 Labowicz et al. Dec 2011 A1
20120005622 Park et al. Jan 2012 A1
20120007857 Noda et al. Jan 2012 A1
20120011437 James et al. Jan 2012 A1
20120013541 Boka et al. Jan 2012 A1
20120013542 Shenfield Jan 2012 A1
20120013607 Lee Jan 2012 A1
20120019448 Pitkanen et al. Jan 2012 A1
20120026110 Yamano Feb 2012 A1
20120036441 Basir et al. Feb 2012 A1
20120036556 LeBeau et al. Feb 2012 A1
20120038580 Sasaki Feb 2012 A1
20120044153 Arrasvuori et al. Feb 2012 A1
20120056837 Park et al. Mar 2012 A1
20120056848 Yamano et al. Mar 2012 A1
20120062564 Miyashita et al. Mar 2012 A1
20120062604 Lobo Mar 2012 A1
20120062732 Marman et al. Mar 2012 A1
20120066630 Kim et al. Mar 2012 A1
20120066648 Rolleston et al. Mar 2012 A1
20120081326 Heubel et al. Apr 2012 A1
20120081375 Robert et al. Apr 2012 A1
20120084689 Ledet et al. Apr 2012 A1
20120084713 Desai et al. Apr 2012 A1
20120089932 Kano et al. Apr 2012 A1
20120089942 Gammon Apr 2012 A1
20120089951 Cassidy Apr 2012 A1
20120096393 Shim et al. Apr 2012 A1
20120096400 Cho Apr 2012 A1
20120098780 Fujisawa et al. Apr 2012 A1
20120102437 Worley et al. Apr 2012 A1
20120105358 Momeyer May 2012 A1
20120105367 Son et al. May 2012 A1
20120106852 Khawand et al. May 2012 A1
20120113007 Koch et al. May 2012 A1
20120113023 Koch et al. May 2012 A1
20120126962 Ujii et al. May 2012 A1
20120131495 Goossens et al. May 2012 A1
20120139864 Sleeman et al. Jun 2012 A1
20120144330 Flint Jun 2012 A1
20120146945 Miyazawa et al. Jun 2012 A1
20120147052 Homma et al. Jun 2012 A1
20120154328 Kono Jun 2012 A1
20120158629 Hinckley et al. Jun 2012 A1
20120159380 Kocienda et al. Jun 2012 A1
20120169646 Berkes et al. Jul 2012 A1
20120169716 Mihara Jul 2012 A1
20120176403 Cha et al. Jul 2012 A1
20120179967 Hayes Jul 2012 A1
20120180001 Griffin et al. Jul 2012 A1
20120182226 Tuli Jul 2012 A1
20120183271 Forutanpour et al. Jul 2012 A1
20120206393 Hillis et al. Aug 2012 A1
20120216114 Privault et al. Aug 2012 A1
20120218203 Kanki Aug 2012 A1
20120235912 Laubach Sep 2012 A1
20120240044 Johnson et al. Sep 2012 A1
20120249853 Krolczyk et al. Oct 2012 A1
20120256829 Dodge Oct 2012 A1
20120256846 Mak Oct 2012 A1
20120256847 Mak et al. Oct 2012 A1
20120256857 Mak Oct 2012 A1
20120257071 Prentice Oct 2012 A1
20120260220 Griffin Oct 2012 A1
20120274591 Rimas-Ribikauskas et al. Nov 2012 A1
20120274662 Kim et al. Nov 2012 A1
20120284673 Lamb et al. Nov 2012 A1
20120293449 Dietz Nov 2012 A1
20120293551 Momeyer et al. Nov 2012 A1
20120297041 Momchilov Nov 2012 A1
20120304108 Jarrett et al. Nov 2012 A1
20120304132 Sareen et al. Nov 2012 A1
20120304133 Nan et al. Nov 2012 A1
20120306748 Fleizach et al. Dec 2012 A1
20120306764 Kamibeppu Dec 2012 A1
20120306765 Moore Dec 2012 A1
20120306766 Moore Dec 2012 A1
20120306772 Tan et al. Dec 2012 A1
20120306778 Wheeldreyer et al. Dec 2012 A1
20120306927 Lee et al. Dec 2012 A1
20120311429 Decker et al. Dec 2012 A1
20120311437 Weeldreyer et al. Dec 2012 A1
20120311498 Kluttz et al. Dec 2012 A1
20130002561 Wakasa Jan 2013 A1
20130014057 Reinpoldt et al. Jan 2013 A1
20130016042 Makinen et al. Jan 2013 A1
20130016122 Bhatt et al. Jan 2013 A1
20130019158 Watanabe Jan 2013 A1
20130019174 Gil et al. Jan 2013 A1
20130031514 Gabbert Jan 2013 A1
20130036386 Park et al. Feb 2013 A1
20130044062 Bose et al. Feb 2013 A1
20130047100 Kroeger et al. Feb 2013 A1
20130050131 Lee et al. Feb 2013 A1
20130050143 Kim et al. Feb 2013 A1
20130061172 Huang et al. Mar 2013 A1
20130063364 Moore Mar 2013 A1
20130063389 Moore Mar 2013 A1
20130067383 Kataoka et al. Mar 2013 A1
20130067513 Takami Mar 2013 A1
20130067527 Ashbrook et al. Mar 2013 A1
20130074003 Dolenc Mar 2013 A1
20130076676 Gan Mar 2013 A1
20130077804 Glebe et al. Mar 2013 A1
20130082824 Colley Apr 2013 A1
20130086056 Dyor et al. Apr 2013 A1
20130093691 Moosavi Apr 2013 A1
20130093764 Andersson et al. Apr 2013 A1
20130097520 Lewin et al. Apr 2013 A1
20130097521 Lewin et al. Apr 2013 A1
20130097534 Lewin et al. Apr 2013 A1
20130097539 Mansson et al. Apr 2013 A1
20130097556 Louch Apr 2013 A1
20130097562 Kermoian et al. Apr 2013 A1
20130111398 Lu et al. May 2013 A1
20130113715 Grant et al. May 2013 A1
20130113720 Van Eerd et al. May 2013 A1
20130120278 Cantrell May 2013 A1
20130120280 Kukulski May 2013 A1
20130120295 Kim et al. May 2013 A1
20130120306 Furukawa May 2013 A1
20130125039 Murata May 2013 A1
20130127755 Lynn et al. May 2013 A1
20130135288 King et al. May 2013 A1
20130135499 Song May 2013 A1
20130136243 Takeda et al. May 2013 A1
20130141364 Lynn Jun 2013 A1
20130141396 Lynn et al. Jun 2013 A1
20130145313 Roh et al. Jun 2013 A1
20130154948 Schediwy et al. Jun 2013 A1
20130154959 Lindsay et al. Jun 2013 A1
20130155018 Dagdeviren Jun 2013 A1
20130159893 Lewin et al. Jun 2013 A1
20130162603 Peng et al. Jun 2013 A1
20130162667 Eskolin et al. Jun 2013 A1
20130169549 Seymour et al. Jul 2013 A1
20130174049 Townsend et al. Jul 2013 A1
20130174089 Ki Jul 2013 A1
20130174094 Heo et al. Jul 2013 A1
20130174179 Park et al. Jul 2013 A1
20130179840 Fisher et al. Jul 2013 A1
20130185642 Gammons Jul 2013 A1
20130191791 Rydenhag et al. Jul 2013 A1
20130194217 Lee et al. Aug 2013 A1
20130194480 Fukata et al. Aug 2013 A1
20130198690 Barsoum et al. Aug 2013 A1
20130212515 Eleftheriou Aug 2013 A1
20130212541 Dolenc et al. Aug 2013 A1
20130215079 Johnson et al. Aug 2013 A1
20130222274 Mori et al. Aug 2013 A1
20130222333 Miles et al. Aug 2013 A1
20130222671 Tseng et al. Aug 2013 A1
20130227413 Thorsander et al. Aug 2013 A1
20130227419 Lee et al. Aug 2013 A1
20130227450 Na et al. Aug 2013 A1
20130228023 Drasnin et al. Sep 2013 A1
20130232402 Lu et al. Sep 2013 A1
20130234929 Libin Sep 2013 A1
20130239057 Ubillos et al. Sep 2013 A1
20130249814 Zeng Sep 2013 A1
20130257793 Zeliff et al. Oct 2013 A1
20130257817 Yliaho Oct 2013 A1
20130265246 Tae Oct 2013 A1
20130268875 Han et al. Oct 2013 A1
20130278520 Weng et al. Oct 2013 A1
20130293496 Takamoto Nov 2013 A1
20130305184 Kim et al. Nov 2013 A1
20130307790 Konttori et al. Nov 2013 A1
20130307792 Andres et al. Nov 2013 A1
20130314434 Shetterly et al. Nov 2013 A1
20130321340 Seo et al. Dec 2013 A1
20130321457 Bauermeister et al. Dec 2013 A1
20130325342 Pylappan et al. Dec 2013 A1
20130326420 Liu et al. Dec 2013 A1
20130326421 Jo Dec 2013 A1
20130328770 Parham Dec 2013 A1
20130332836 Cho Dec 2013 A1
20130332892 Matsuki Dec 2013 A1
20130335373 Tomiyasu Dec 2013 A1
20130338847 Lisseman et al. Dec 2013 A1
20130339909 Ha Dec 2013 A1
20140002355 Lee et al. Jan 2014 A1
20140002374 Hunt et al. Jan 2014 A1
20140002386 Rosenberg et al. Jan 2014 A1
20140013271 Moore et al. Jan 2014 A1
20140024414 Fuji Jan 2014 A1
20140026098 Gilman Jan 2014 A1
20140028571 St. Clair Jan 2014 A1
20140028601 Moore Jan 2014 A1
20140049491 Nagar Feb 2014 A1
20140055367 Dearman et al. Feb 2014 A1
20140055377 Kim Feb 2014 A1
20140059460 Ho Feb 2014 A1
20140059485 Lehrian et al. Feb 2014 A1
20140062956 Ishizone et al. Mar 2014 A1
20140063316 Lee et al. Mar 2014 A1
20140063541 Yamazaki Mar 2014 A1
20140072281 Cho Mar 2014 A1
20140072283 Cho Mar 2014 A1
20140078318 Alameh Mar 2014 A1
20140078343 Dai et al. Mar 2014 A1
20140082536 Costa et al. Mar 2014 A1
20140092025 Pala et al. Apr 2014 A1
20140092030 Van der Velden Apr 2014 A1
20140108936 Khosropour et al. Apr 2014 A1
20140109016 Ouyang et al. Apr 2014 A1
20140111456 Kashiwa et al. Apr 2014 A1
20140111480 Kim et al. Apr 2014 A1
20140111670 Lord et al. Apr 2014 A1
20140118268 Kuscher May 2014 A1
20140123080 Gan May 2014 A1
20140139456 Wigdor et al. May 2014 A1
20140139471 Matsuki May 2014 A1
20140152581 Case et al. Jun 2014 A1
20140157203 Jeon et al. Jun 2014 A1
20140160063 Yairi et al. Jun 2014 A1
20140160073 Matsuki Jun 2014 A1
20140164955 Thiruvidam et al. Jun 2014 A1
20140164966 Kim et al. Jun 2014 A1
20140165006 Chaudhri et al. Jun 2014 A1
20140168093 Lawrence Jun 2014 A1
20140168153 Deichmann et al. Jun 2014 A1
20140173517 Chaudhri Jun 2014 A1
20140179377 Song et al. Jun 2014 A1
20140184526 Cho Jul 2014 A1
20140201660 Clausen et al. Jul 2014 A1
20140208271 Bell et al. Jul 2014 A1
20140210758 Park et al. Jul 2014 A1
20140210760 Aberg et al. Jul 2014 A1
20140210798 Wilson Jul 2014 A1
20140223376 Tarvainen et al. Aug 2014 A1
20140237408 Ohlsson et al. Aug 2014 A1
20140245202 Yoon et al. Aug 2014 A1
20140245367 Sasaki et al. Aug 2014 A1
20140267114 Lisseman et al. Sep 2014 A1
20140267135 Chhabra Sep 2014 A1
20140267362 Kocienda et al. Sep 2014 A1
20140282084 Murarka et al. Sep 2014 A1
20140282214 Shirzadi et al. Sep 2014 A1
20140300569 Matsuki et al. Oct 2014 A1
20140304651 Johansson et al. Oct 2014 A1
20140306897 Cueto Oct 2014 A1
20140306899 Hicks Oct 2014 A1
20140310638 Lee et al. Oct 2014 A1
20140313130 Yamano et al. Oct 2014 A1
20140333551 Kim et al. Nov 2014 A1
20140333561 Bull et al. Nov 2014 A1
20140344765 Hicks et al. Nov 2014 A1
20140351744 Jeon et al. Nov 2014 A1
20140354845 Molgaard et al. Dec 2014 A1
20140354850 Kosaka et al. Dec 2014 A1
20140359438 Matsuki Dec 2014 A1
20140359528 Murata Dec 2014 A1
20140365945 Karunamuni et al. Dec 2014 A1
20140365956 Karunamuni et al. Dec 2014 A1
20140380247 Tecarro et al. Dec 2014 A1
20150015763 Lee et al. Jan 2015 A1
20150020036 Kim et al. Jan 2015 A1
20150026584 Kobyakov et al. Jan 2015 A1
20150026592 Mohammed et al. Jan 2015 A1
20150029149 Andersson et al. Jan 2015 A1
20150033184 Kim et al. Jan 2015 A1
20150042588 Park Feb 2015 A1
20150046876 Goldenberg Feb 2015 A1
20150049033 Kim et al. Feb 2015 A1
20150058723 Cieplinski et al. Feb 2015 A1
20150062046 Cho et al. Mar 2015 A1
20150062052 Bernstein et al. Mar 2015 A1
20150062068 Shih et al. Mar 2015 A1
20150067495 Bernstein et al. Mar 2015 A1
20150067496 Missig et al. Mar 2015 A1
20150067497 Cieplinski et al. Mar 2015 A1
20150067513 Zambetti et al. Mar 2015 A1
20150067519 Missig et al. Mar 2015 A1
20150067534 Choi et al. Mar 2015 A1
20150067559 Missig et al. Mar 2015 A1
20150067560 Cieplinski et al. Mar 2015 A1
20150067563 Bernstein et al. Mar 2015 A1
20150067596 Brown et al. Mar 2015 A1
20150067601 Bernstein et al. Mar 2015 A1
20150067602 Bernstein et al. Mar 2015 A1
20150067605 Zambetti et al. Mar 2015 A1
20150071547 Keating et al. Mar 2015 A1
20150116205 Westerman et al. Apr 2015 A1
20150121218 Kim et al. Apr 2015 A1
20150121225 Somasundaram et al. Apr 2015 A1
20150128092 Lee et al. May 2015 A1
20150135109 Zambetti et al. May 2015 A1
20150138126 Westerman May 2015 A1
20150138155 Bernstein et al. May 2015 A1
20150139605 Wiklof May 2015 A1
20150143273 Bernstein et al. May 2015 A1
20150143284 Bennett et al. May 2015 A1
20150149899 Bernstein et al. May 2015 A1
20150149964 Bernstein et al. May 2015 A1
20150149967 Bernstein et al. May 2015 A1
20150153897 Huang et al. Jun 2015 A1
20150153929 Bernstein et al. Jun 2015 A1
20150160729 Nakagawa Jun 2015 A1
20150169059 Behles et al. Jun 2015 A1
20150185840 Golyshko Jul 2015 A1
20150193099 Murphy Jul 2015 A1
20150193951 Lee et al. Jul 2015 A1
20150205495 Koide et al. Jul 2015 A1
20150234446 Nathan et al. Aug 2015 A1
20150234493 Parivar et al. Aug 2015 A1
20150253866 Amm et al. Sep 2015 A1
20150268786 Kitada Sep 2015 A1
20150268813 Bos Sep 2015 A1
20150321607 Cho et al. Nov 2015 A1
20150332107 Paniaras Nov 2015 A1
20150378519 Brown et al. Dec 2015 A1
20150378982 Mckenzie et al. Dec 2015 A1
20150381931 Uhma et al. Dec 2015 A1
20160004373 Huang Jan 2016 A1
20160004393 Faaborg et al. Jan 2016 A1
20160004427 Zambetti et al. Jan 2016 A1
20160004428 Bernstein et al. Jan 2016 A1
20160004430 Missig et al. Jan 2016 A1
20160004431 Bernstein et al. Jan 2016 A1
20160004432 Bernstein et al. Jan 2016 A1
20160011771 Cieplinski Jan 2016 A1
20160019718 Mukkamala et al. Jan 2016 A1
20160021511 Jin et al. Jan 2016 A1
20160041750 Cieplinski et al. Feb 2016 A1
20160048326 Kim et al. Feb 2016 A1
20160062466 Moussette et al. Mar 2016 A1
20160062619 Reeve et al. Mar 2016 A1
20160070401 Kim et al. Mar 2016 A1
20160077721 Laubach et al. Mar 2016 A1
20160085385 Gao et al. Mar 2016 A1
20160125234 Ota et al. May 2016 A1
20160132139 Du et al. May 2016 A1
20160188181 Smith Jun 2016 A1
20160196028 Kenney et al. Jul 2016 A1
20160210025 Bernstein et al. Jul 2016 A1
20160259412 Flint et al. Sep 2016 A1
20160259413 Anzures et al. Sep 2016 A1
20160259495 Butcher et al. Sep 2016 A1
20160259496 Butcher et al. Sep 2016 A1
20160259498 Foss et al. Sep 2016 A1
20160259499 Kocienda et al. Sep 2016 A1
20160259516 Kudurshian et al. Sep 2016 A1
20160259517 Butcher et al. Sep 2016 A1
20160259518 King et al. Sep 2016 A1
20160259519 Foss et al. Sep 2016 A1
20160259527 Kocienda et al. Sep 2016 A1
20160259528 Foss et al. Sep 2016 A1
20160259536 Kudurshian et al. Sep 2016 A1
20160259548 Ma Sep 2016 A1
20160274686 Ruiz et al. Sep 2016 A1
20160274728 Luo et al. Sep 2016 A1
20160274761 Ruiz et al. Sep 2016 A1
20160283054 Suzuki Sep 2016 A1
20160320906 Bokma et al. Nov 2016 A1
20160357368 Federighi et al. Dec 2016 A1
20160357389 Dakin et al. Dec 2016 A1
20160357390 Federighi et al. Dec 2016 A1
20160357404 Alonso Ruiz et al. Dec 2016 A1
20160360116 Penha et al. Dec 2016 A1
20170045981 Karunamuni et al. Feb 2017 A1
20170046039 Karunamuni et al. Feb 2017 A1
20170046058 Karunamuni et al. Feb 2017 A1
20170046059 Karunamuni et al. Feb 2017 A1
20170046060 Karunamuni et al. Feb 2017 A1
20170075520 Bauer et al. Mar 2017 A1
20170075562 Bauer et al. Mar 2017 A1
20170075563 Bauer et al. Mar 2017 A1
20170109011 Jiang Apr 2017 A1
20170115867 Bargmann Apr 2017 A1
20170124699 Lane May 2017 A1
20170139565 Choi May 2017 A1
20170315694 Alonso Ruiz et al. Nov 2017 A1
20180024681 Bernstein et al. Jan 2018 A1
20180082522 Bartosik Mar 2018 A1
20180188920 Bernstein et al. Jul 2018 A1
20180275862 Khoe et al. Sep 2018 A1
20180364883 Khoe et al. Dec 2018 A1
20180364904 Bernstein et al. Dec 2018 A1
20190004605 Flint et al. Jan 2019 A1
20190018562 Bernstein et al. Jan 2019 A1
20190042075 Bernstein et al. Feb 2019 A1
20190042078 Bernstein et al. Feb 2019 A1
20190065043 Zambetti et al. Feb 2019 A1
20190121493 Bernstein et al. Apr 2019 A1
20190121520 Cieplinski et al. Apr 2019 A1
20190138101 Bernstein May 2019 A1
20190138102 Missig May 2019 A1
20190138189 Missig May 2019 A1
20190146643 Foss et al. May 2019 A1
20190155503 Alonso Ruiz et al. May 2019 A1
20190158727 Penha et al. May 2019 A1
20190163358 Dascola et al. May 2019 A1
20190171353 Missig et al. Jun 2019 A1
20190171354 Dascola et al. Jun 2019 A1
20190212896 Karunamuni et al. Jul 2019 A1
20190332257 Kudurshian et al. Oct 2019 A1
Foreign Referenced Citations (265)
Number Date Country
1808362 Jul 2006 CN
101118469 Feb 2008 CN
101202866 Jun 2008 CN
101222704 Jul 2008 CN
101241397 Aug 2008 CN
101320303 Dec 2008 CN
101498979 Aug 2009 CN
101593077 Dec 2009 CN
101604208 Dec 2009 CN
101650615 Feb 2010 CN
101809526 Aug 2010 CN
101965549 Feb 2011 CN
101998052 Mar 2011 CN
102004593 Apr 2011 CN
102112946 Jun 2011 CN
102160021 Aug 2011 CN
102214038 Oct 2011 CN
102301322 Dec 2011 CN
102349038 Feb 2012 CN
102385478 Mar 2012 CN
102438092 May 2012 CN
102460355 May 2012 CN
102483677 May 2012 CN
102646013 Aug 2012 CN
102662571 Sep 2012 CN
102662573 Sep 2012 CN
102792255 Nov 2012 CN
102841677 Dec 2012 CN
103097992 May 2013 CN
103186345 Jul 2013 CN
103518176 Jan 2014 CN
103777850 May 2014 CN
103793134 May 2014 CN
103838465 Jun 2014 CN
104024985 Sep 2014 CN
104331239 Feb 2015 CN
104392292 Mar 2015 CN
104471521 Mar 2015 CN
104487928 Apr 2015 CN
101527745 Sep 2015 CN
100 59 906 Jun 2002 DE
0 859 307 Mar 1998 EP
0 880 090 Nov 1998 EP
1 882 902 Jan 2000 EP
1 028 583 Aug 2000 EP
1 406 150 Apr 2004 EP
1 674 977 Jun 2006 EP
2 000 896 Dec 2008 EP
2 017 701 Jan 2009 EP
2 028 583 Feb 2009 EP
2 077 490 Jul 2009 EP
2 141 574 Jan 2010 EP
2 175 357 Apr 2010 EP
2 196 893 Jun 2010 EP
2 214 087 Aug 2010 EP
2 226 715 Sep 2010 EP
2 299 351 Mar 2011 EP
2 302 496 Mar 2011 EP
2 375 309 Oct 2011 EP
2 375 314 Oct 2011 EP
2 386 935 Nov 2011 EP
2 407 868 Jan 2012 EP
2 420 924 Feb 2012 EP
2 426 580 Mar 2012 EP
2 447 818 May 2012 EP
2 527 966 Nov 2012 EP
2 530 677 Dec 2012 EP
2 541 376 Jan 2013 EP
2 555 500 Feb 2013 EP
2 615 535 Jul 2013 EP
2 631 737 Aug 2013 EP
2 674 846 Dec 2013 EP
2 708 985 Mar 2014 EP
2 708985 Mar 2014 EP
2 733 578 May 2014 EP
2 808 764 Dec 2014 EP
2 809 058 Dec 2014 EP
2 813 938 Dec 2014 EP
2 402 105 Dec 2004 GB
58-182746 Oct 1983 JP
H06-161647 Jun 1994 JP
H07-98769 Apr 1995 JP
H07-104915 Apr 1995 JP
H07-151512 Jun 1995 JP
H08-227341 Sep 1996 JP
H09-269883 Oct 1997 JP
H09-330175 Dec 1997 JP
H11-203044 Jul 1999 JP
2008-033739 Feb 2000 JP
2001-202192 Jul 2001 JP
2001-222355 Aug 2001 JP
2001-306207 Nov 2001 JP
2002-044536 Feb 2002 JP
2002-149312 May 2002 JP
3085481 May 2002 JP
2003-157131 May 2003 JP
2003-186597 Jul 2003 JP
2004-054861 Feb 2004 JP
2004-062648 Feb 2004 JP
2004-070492 Mar 2004 JP
2004-086733 Mar 2004 JP
2004-288208 Oct 2004 JP
2005-031786 Feb 2005 JP
2005-092386 Apr 2005 JP
2005-135106 May 2005 JP
2005-157842 Jun 2005 JP
2005-196810 Jul 2005 JP
2005-352927 Dec 2005 JP
2006-185443 Jul 2006 JP
2007-116384 May 2007 JP
2007-264808 Oct 2007 JP
2008-009759 Jan 2008 JP
2008-015890 Jan 2008 JP
2008-516348 May 2008 JP
2008-146453 Jun 2008 JP
2008-191086 Aug 2008 JP
2008-537615 Sep 2008 JP
2008-305174 Dec 2008 JP
2009-500761 Jan 2009 JP
2009-110243 May 2009 JP
2009-129171 Jun 2009 JP
2009-129443 Jun 2009 JP
2009-211704 Sep 2009 JP
2009-217543 Sep 2009 JP
2009-294688 Dec 2009 JP
2010-009321 Jan 2010 JP
2010-503126 Jan 2010 JP
2010-503130 Jan 2010 JP
2010-055274 Mar 2010 JP
2010-097353 Apr 2010 JP
2010-146507 Jul 2010 JP
2010-152716 Jul 2010 JP
2010-176174 Aug 2010 JP
2010-176337 Aug 2010 JP
2010-181934 Aug 2010 JP
2010-198385 Sep 2010 JP
2010-541071 Dec 2010 JP
2011-501307 Jan 2011 JP
2011-530101 Jan 2011 JP
2011-048666 Mar 2011 JP
2011-048686 Mar 2011 JP
2011-048762 Mar 2011 JP
2011-048832 Mar 2011 JP
2011-053831 Mar 2011 JP
2011-053972 Mar 2011 JP
2011-053973 Mar 2011 JP
2011-053974 Mar 2011 JP
2011-059821 Mar 2011 JP
2011-070342 Apr 2011 JP
2011-100290 May 2011 JP
2011-107823 Jun 2011 JP
2011-123773 Jun 2011 JP
2011-141868 Jul 2011 JP
2011-170538 Sep 2011 JP
2011-192179 Sep 2011 JP
2011-192215 Sep 2011 JP
2011-197848 Oct 2011 JP
2011-221640 Nov 2011 JP
2011-232947 Nov 2011 JP
2011-242386 Dec 2011 JP
2011-253556 Dec 2011 JP
2011-257941 Dec 2011 JP
2012-027940 Feb 2012 JP
2012-043266 Mar 2012 JP
2012-043267 Mar 2012 JP
2012-053687 Mar 2012 JP
2012-053754 Mar 2012 JP
2012-053926 Mar 2012 JP
2012-073873 Apr 2012 JP
2012-509605 Apr 2012 JP
2012-093820 May 2012 JP
2012-118825 Jun 2012 JP
2012-118993 Jun 2012 JP
2012-123564 Jun 2012 JP
2012-128825 Jul 2012 JP
2012-527685 Nov 2012 JP
2013-030050 Feb 2013 JP
2013-058149 Mar 2013 JP
2013-080521 May 2013 JP
2013-105410 May 2013 JP
2013-529339 Jul 2013 JP
2013-542488 Nov 2013 JP
2014-504419 Feb 2014 JP
2014-130567 Jul 2014 JP
2014-140112 Jul 2014 JP
2014-519109 Aug 2014 JP
2014-529137 Oct 2014 JP
2015-099555 May 2015 JP
2015-521315 Jul 2015 JP
2015-153420 Aug 2015 JP
2015-185161 Oct 2015 JP
2006-0071353 Jun 2006 KR
2008-0045143 Apr 2008 KR
100823871 Apr 2008 KR
2008-0054346 Jun 2008 KR
2010-0010860 Feb 2010 KR
2010-0014095 Feb 2010 KR
2010 0070841 Jun 2010 KR
2010 0133246 Dec 2010 KR
2011 0026176 Mar 2011 KR
2011 0086501 Jul 2011 KR
20120103670 Sep 2012 KR
20120135723 Dec 2012 KR
2013 0099647 Sep 2013 KR
2014 0016495 Feb 2014 KR
2014 0029720 Mar 2014 KR
2014 0043760 Apr 2014 KR
2014 0079110 Jun 2014 KR
2014 0122000 Oct 2014 KR
20150013263 Feb 2015 KR
20150021977 Mar 2015 KR
2007145218 Jul 2009 RU
WO 2005106637 Nov 2005 WO
WO 2006013485 Feb 2006 WO
WO 2006042309 Apr 2006 WO
WO 2006094308 Sep 2006 WO
WO 2007121557 Nov 2007 WO
WO 2008030976 Mar 2008 WO
WO 2008064142 May 2008 WO
WO 2009155981 Dec 2009 WO
WO 2009158549 Dec 2009 WO
WO 2010013876 Feb 2010 WO
WO 2010032598 Feb 2010 WO
WO 2010032598 Mar 2010 WO
WO 2010090010 Aug 2010 WO
WO 2010122813 Oct 2010 WO
WO 2010134729 Nov 2010 WO
WO 2011024389 Mar 2011 WO
WO 2011024465 Mar 2011 WO
WO 2011093045 Aug 2011 WO
WO 2011105009 Sep 2011 WO
WO 2011108190 Sep 2011 WO
WO 2011115187 Sep 2011 WO
WO 2011121375 Oct 2011 WO
WO 2012021417 Feb 2012 WO
WO 2012037664 Mar 2012 WO
WO 2012096804 Jul 2012 WO
WO 2012108213 Aug 2012 WO
WO 2012114760 Aug 2012 WO
WO 2012150540 Aug 2012 WO
WO 2012137946 Oct 2012 WO
WO 2012153555 Nov 2012 WO
WO 2013022486 Feb 2013 WO
WO 2013169299 Nov 2013 WO
WO 2013169300 Nov 2013 WO
WO 2013169302 Nov 2013 WO
WO 2013169845 Nov 2013 WO
WO 2013169849 Nov 2013 WO
WO 2013169851 Nov 2013 WO
WO 2013169853 Nov 2013 WO
WO 2013169854 Nov 2013 WO
WO 2013169870 Nov 2013 WO
WO 2013169875 Nov 2013 WO
WO 2013169882 Nov 2013 WO
WO 2013173838 Nov 2013 WO
WO 2014105275 Jul 2014 WO
WO 2014105276 Jul 2014 WO
WO 2014105277 Jul 2014 WO
WO 2014105278 Jul 2014 WO
WO 2014105279 Jul 2014 WO
WO 2014129655 Aug 2014 WO
WO 2014149473 Sep 2014 WO
WO 2013169877 Nov 2014 WO
WO 2014200733 Dec 2014 WO
WO 2016200584 Dec 2016 WO
Non-Patent Literature Citations (1089)
Entry
Anonymous, “Acer Liquid Z5 Duo User's Manual”, https://global-download.acer.com, Feb. 21, 2014, 65 pages.
Anonymous, “Event Handling Guide for iOS”, https://github.com/Ionfee88/iOSDevelopeLibrary/raw/master/EventHandlingiPhoneOS.pdf, Mar. 9, 2015, 74 pages.
Anonymous, “Event Handling Guide for iOS—GitHub”, https://github.com/Ionfee88/iOSDevelopeLibrary/blob/master/EventHandlingiPhoneOS.pdf, Apr. 15, 2015, 3 pages.
Dachis, “All the Awesome Things You Can Do With a Long Press on Your iPhone, iPad, or iPad Touch”, www.lifehacker.com, Jan. 25, 2012, 4 pages.
Jauregui et al, “Design and Evaluation of 3D Cursors and Motion Parallax for the Exploration of Desktop Virtual Environments”, IEEE Symposium on 3D User Interface 2012, Mar. 4, 2012, 8 pages.
Neuburg, “Detailed Explanation iOS SDK”, Oreilly Japan, Dec. 22, 2014, vol. 4, p. 175-186, 15 pages.
Nickinson, “How to use Do Not Disturb on the HTC One M8”, Android Central (Year: 2014), Apr. 7, 2014, 9 pages.
Ogino, iOS 7 Design Standard, Japan, Impress Japan Corporation, Nov. 21, 2013, 1st edition, pp. 58-59.
Plaisant et al, “Touchscreen Toggle Design”, Proceedings of CHI '92, pp. 667-668, May 3-7, 1992, 2 pages.
Rubino et al., “How to Enable ‘Living Images’ on your Nokia Lumia with Windows Phone 8.1”, https://www.youtube.com/watch?v=RX7vpoFy1Dg, Jun. 6, 2014, 5 pages.
Tweak, UltimateiDeviceVids, Cydia Tweak: Quick Center—Add 3-Touch Shortcuts to ControlCenter, https://www.youtube.com/watch?v=8rHOFpGvZFM, Mar. 22, 2016, 2 pages.
Tweak, “iCrackUriDevice, iOS 9.0.2 Jailbreak & 9.2.1—9.3 Support: QuickCenter 3D Touch Cydia Tweak!”, https://www.youtube.com/watch?v=op-OBr3O_Fkl, Mar. 6, 2016, 3 pages.
UpDown-G, “Using Multiple Selection Mode in Android 4.0 / Getting Started”, https://techbooster.org/android/13946, Mar. 7, 2012, 7 pages.
Yatani, et al., SemFeel: A User Interface with Semantic Tactile Feedback for Mobile Touch-Screen Devices, Proceedings of the 22nd annual ACM symposium on user interface software and technology (UIST '09), Oct. 2009, 10 pages.
Office Action, dated Oct. 9, 2018, received in Chinese Patent Application No. 201380068493.6, which corresponds with U.S. Appl. No. 14/608,895, 3 pages.
Patent, dated Dec. 25, 2018, received in Chinese Patent Application No. 201380068493.6, which corresponds with U.S. Appl. No. 14/608,895, 4 pages.
Certificate of Grant, dated Dec. 26, 2018, received in European Patent Application No. 13795391.5, which corresponds with U.S. Appl. No. 14/536,426, 4 pages.
Office Action, dated Oct. 5, 2018, received in Korean Patent Application No. 2018-7028236, which corresponds with U.S. Appl. No. 14/608,895, 6 pages.
Office Action, dated Apr. 12, 2019, received in Australian Patent Application No. 2018223021, which corresponds with U.S. Appl. No. 14/536,426, 3 pages.
Patent, dated Oct. 23, 2018, received in Chinese Patent Application No. 201510566550.4, which corresponds with U.S. Appl. No. 14/536,426, 4 pages.
Decision to Grant, dated Jan. 10, 2019, received in European Patent Application No. 15183980.0, which corresponds with U.S. Appl. No. 14/536,426, 4 pages.
Patent, dated Feb. 6, 2019, received in European Patent Application No. 15183980.0, which corresponds with U.S. Appl. No. 14/536,426, 4 pages.
Office Action, dated Nov. 6, 2018, received in Japanese Patent Application No. 2018-000753, which corresponds with U.S. Appl. No. 14/536,426, 8 pages.
Office Action, dated Nov. 2, 2018, received in U.S. Appl. No. 14/536,644, 24 pages.
Office Action, dated Feb. 22, 2019, received in Japanese Patent Application No. 2018-079290, which corresponds with U.S. Appl. No. 14/608,926, 7 pages.
Patent, dated Oct. 23, 2018, received in Chinese Patent Application No. 201380035893.7, which corresponds with U.S. Appl. No. 14/536,141, 4 pages.
Office Action, dated Mar. 7, 2019, received in European Patent Application No. 13726053.5, which corresponds with U.S. Appl. No. 14/536,141, 5 pages.
Office Action, dated Oct. 8, 2018, received in Chinese Patent Application No. 201380068295.X, which.corresponds with U.S. Appl. No. 14/608,942, 3 pages.
Notice of Allowance, dated Jan. 15, 2019, received in Korean Patent Application No. 2015-7018448, which corresponds with U.S. Appl. No. 14/608,942, 5 pages.
Patent, dated Mar. 8, 2019, received in Korean Patent Application No. 2015-7018448, which corresponds with U.S. Appl. No. 14/608,942, 4 pages.
Certificate of Grant, dated Nov. 1, 2018, received in Australian Patent Application No. 2016238917, which corresponds with U.S. Appl. No. 14/536,203, 1 page.
Decision to Grant, dated Oct. 24, 2018, received in European Patent Application No. 13724104.8, which corresponds with U.S. Appl. No. 14/536,203, 5 pages.
Intention to Grant, dated Mar. 18, 2019, received in European Patent Application No. 13724104.8, which corresponds with U.S. Appl. No. 14/536,203, 9 pages.
Office Action, dated Oct. 19, 2018, received in Japanese Patent Application No. 2018-022394, which corresponds with U.S. Appl. No. 14/536,203, 4 pages.
Final Office Action, dated Jan. 10, 2019, received in U.S. Appl. No. 14/608,965, 17 pages.
Office action, dated Nov. 1, 2018, received in Chinese Patent Application No. 201380074060.1, which corresponds with U.S. Appl. No. 14/608,965, 3 pages.
Office action, dated Apr. 3, 2019, received in Chinese Patent Application No. 201380074060.1, which corresponds with U.S. Appl. No. 14/608,965, 3 pages.
Office Action, dated Mar. 15, 2019, received in Australian Patent Application No. 2018204236, which corresponds with U.S. Appl. No. 14/5326,267, 5 pages.
Office Action, dated Nov. 28, 2018, received in Chinese Patent Application No. 201610537334.1, which corresponds with U.S. Appl. No. 14/536,267, 5 pages.
Decision to Grant, dated Oct. 18, 2018, received in European Patent Application No. 13724106.3, which corresponds with U.S. Appl. No. 14/536,267, 3 pages.
Grant Certificate, dated Nov. 14, 2018, received in European Patent Application No. 13724106.3, which corresponds with U.S. Appl. No. 14/536,267, 3 pages. 4 pages.
Decision to Grant, dated Nov. 29, 2018, received in European Patent Application No. 16177863.4, which corresponds with U.S. Appl. No. 14/536,267, 4 pages.
Patent, dated Dec. 26, 2018, received in European Patent Application No. 16177863.4, which corresponds with U.S. Appl. No. 14/536,267, 4 pages.
Office Action, dated Feb. 4, 2019, received in Japanese Patent Application No. 2017-237035, which corresponds with U.S. Appl. No. 14/536,267, 7 pages.
Office Action, dated Jan. 29, 2018, received in Korean Patent Application No. 2017-7034838, which corresponds with U.S. Appl. No. 14/536,267, 4 pages.
Notice of Allowance, dated Dec. 3, 2018, received in Korean Patent Application No. 2017-703483, which corresponds with U.S. Appl. No. 14/536,267, 5 pages.
Patent, dated Mar. 4, 2019, received in Korean Patent Application No. 2017-7034838, which corresponds with U.S. Appl. No. 14/536,267, 4 pages.
Patent, dated Nov. 30, 2018, received in Australian Patent Application No. 2016216658, which corresponds with U.S. Appl. No. 14/536,291, 4 pages.
Intention to Grant, dated Jan. 8, 2019, received in European Patent Application No. 17186744.3, which corresponds with U.S. Appl. No. 14/536,291, 7 pages.
Patent, dated Feb. 22, 2019, received in Japanese Patent Application No. 2017-083027, which corresponds with U.S. Appl. No. 14/536,291, 3 pages.
Notice of Allowance, dated Jan. 15, 2019, received in Japanese Patent Application No. 2017-083027, which corresponds with U.S. Appl. No. 14/536,291, 5 pages.
Intention to Grant, dated Jan. 16, 2019, received in European Patent Application No. 13811032.5, which corresponds with U.S. Appl. No. 14/608,985, 9 pages.
Office Action, dated Oct. 11, 2018, received in U.S. Appl. No. 14/609,006, 12 pages.
Office Action, dated Jan. 2, 2019, received in U.S. Appl. No. 14/536,648 12 pages.
Intention to Grant, dated Apr. 1, 2019, received in European Patent Application No. 17153418.3, which corresponds with U.S. Appl. No. 14/536,648, 7 pages.
Notice of Allowance, dated Feb. 4, 2019, received in Japanese Patent Application No. 2017-008764, which corresponds with U.S. Appl. No. 14/536,648, 5 pages.
Patent, dated Mar. 1, 2019, received in Japanese Patent Application No. 2017-008764, which corresponds with U.S. Appl. No. 14/536,648, 3 pages.
Notice of Allowance, dated Apr. 9, 2019, received in Japanese Patent Application No. 2017-113598, which corresponds with U.S. Appl. No. 14/609,042, 5 pages.
Notice of Allowance, dated Dec. 17, 2018, received in Korean Patent Application No. 2017-7008614, which corresponds with U.S. Appl. No. 14/609,042, 5 pages.
Patent, dated Mar. 8, 2019, received in Korean Patent Application No. 2017-7008614, which corresponds with U.S. Appl. No. 14/609,042, 4 pages.
Notice of Acceptance, dated Mar. 12, 2019, received in Australian Patent Application No. 2016233792, which corresponds with U.S. Appl. No. 14/864,737, 5 pages.
Notice of Allowance, dated Apr. 17, 2019, received in Chinese Patent Application No. 201610159295.6, which corresponds with U.S. Appl. No. 14/864,737, 3 pages.
Patent, dated Dec. 26, 2018, received in Korean Patent Application No. 2017-7030129, which corresponds with U.S. Appl. No. 14/864,737, 4 pages.
Office Action, dated Nov. 5, 2018, received in Chinese Patent Application No. 201610131415.1, which corresponds with U.S. Appl. No. 14/866,981, 6 pages.
Notice of Allowance, dated Dec. 6, 2018, received in Chinese Patent Application No. 201610137839.9, which corresponds with U.S. Appl. No. 14/866,159, 3 pages.
Patent, dated Feb. 19, 2019, received in Chinese Patent Application No. 201610137839.9, which corresponds with U.S. Appl. No. 14/866,159, 6 pages.
Office Action, dated Feb. 7, 2019, received in Australian Patent Application No. 2017258967, which corresponds with U.S. Appl. No. 14/868,078, 3 page.
Office Action, dated Feb. 26, 2019, received in Chinese Patent Application No. 01610130348.1, which corresponds with U.S. Appl. No. 14/868,078, 4 pages.
Office Action, dated Oct. 25, 2018, received in European Patent Application No. 17184437.6, which corresponds with U.S. Appl. No. 14/868,078, 6 pages.
Office Action, dated Dec. 4, 2018, received in Chinese Patent Application No. 201610342313.4, which corresponds with U.S. Appl. No. 14/863,432, 5 pages.
Office Action, dated Dec. 5, 2018, received in Chinese Patent Application No. 201610342264.4, which corresponds with U.S. Appl. No. 14/866,511, 4 pages.
Office Action, dated Jan. 2, 2019, received in European Patent Application No. 16727900.9, which corresponds with U.S. Appl. No. 14/866,511, 5 pages.
Office Action, dated Oct. 9, 2018, received in Danish Patent Application No. 201670594, which corresponds with U.S. Appl. No. 14/869,899, 2 pages.
Patent, dated Feb. 26, 2019, received in Danish Patent Application No. 201670594, which corresponds with U.S. Appl. No. 14/869,899, 3 pages.
Notice of Allowance, dated Mar. 1, 2019, received in Japanese Patent Application No. 2018-100827, which corresponds with U.S. Appl. No. 14/869,899, 5 pages.
Patent, dated Apr. 5, 2019, received in Japanese Patent Application No. 2018-100827, which corresponds with U.S. Appl. No. 14/869,899, 5 pages.
Office Action, dated Oct. 5, 2018, received in Korean Patent Application No. 2018-7017213, which corresponds with U.S. Appl. No. 14/869,899, 3 pages.
Office Action, dated Mar. 22, 2019, received in Korean Patent Application No. 2018-7017213, which corresponds with U.S. Appl. No. 14/869,899, 6 pages.
Notice of Acceptance, dated Mar. 12, 2019, received in Australian Patent Application No. 2016304890, which corresponds with U.S. Appl. No. 14/866,992, 5 pages.
Office Action, dated Oct. 12, 2018, received in European Patent Application No. 16758008.3, which corresponds with U.S. Appl. No. 14/866,992, 11 pages.
Office Action, dated Jan. 11, 2019, received in Japanese Patent Application No. 2018-506425, which corresponds with U.S. Appl. No. 14/866,992, 6 pages.
Notice of Allowance, dated Nov. 15, 2018, received in U.S. Appl. No. 15/009,676, 6 pages.
Notice of Allowance, dated Nov. 6, 2018, received in U.S. Appl. No. 15/009,688, 10 pages.
Office Action, dated Nov. 20, 2018, received in U.S. Appl. No. 14/856,520, 36 pages.
Final Office Action, dated Apr. 17, 2019, received in U.S. Appl. No. 14/856,520, 38 pages.
Notice of Allowance, dated Aug. 16, 2018, received in U.S. Appl. No. 14/857,636, 5 pages.
Notice of Allowance, dated Jan. 15, 2019, received in Australian Patent Application No. 2017202816, which corresponds with U.S. Appl. No. 14/857,636, 3 pages.
Office Action, dated Nov. 28, 2018, received in Korean Patent Application No. 20177036645, which corresponds with U.S. Appl. No. 14/857,636, 6 pages.
Notice of Allowance, dated Aug. 16, 2018, received in U.S. Appl. No. 14/857,663, 5 pages.
Notice of Allowance, dated Oct. 9, 2018, received in U.S. Appl. No. 14/864,529, 11 pages.
Office Action, dated Nov. 7, 2018, received in Chinese Patent Application No. 201610342151.4, which corresponds with U.S. Appl. No. 14/864,580, 3 pages.
Office Action, dated Aug. 31, 2018, received in Australian Patent Application No. 2016276030, which corresponds with U.S. Appl. No. 14/864,601, 3 pages.
Certificate of Grant, dated Feb. 21, 2019, received in Australian Patent Application No. 2016276030, which corresponds with U.S. Appl. No. 14/864,601, 4 pages.
Office Action, dated Feb. 4, 2019, received in European Patent Application No. 16730554.9, which corresponds with U.S. Appl. No. 14/864,601, 10 pages.
Notice of Allowance, dated Dec. 10, 2018, received in Japanese Patent Application No. 2017-561375, which corresponds with U.S. Appl. No. 14/864,601, 5 pages.
Patent, dated Jan. 11, 2019, received in Japanese Patent Application No. 2017-561375, which corresponds with U.S. Appl. No. 14/864,601, 3 pages.
Office Action, dated Jan. 25, 2019, received in Korean Patent Application No. 2017-7033756, which corresponds with U.S. Appl. No. 14/864,601, 8 pages.
Office Action, dated Oct. 19, 2018, received in Chinese Patent Application No. 201610189298.4, which corresponds with U.S. Appl. No. 14/866,361, 6 pages.
Office Action, dated Jan. 30, 2019, received in European Patent Application No. 17188507.2, which corresponds with U.S. Appl. No. 14/866,361, 13 pages.
Office Action, dated Oct. 12, 2018, received in Japanese Patent Application No. 2017-141962, which corresponds with U.S. Appl. No. 14/866,361, 6 pages.
Office Action, dated Sep. 14, 2018, received in Korean Patent Application No. 2018-7013039, which corresponds with U.S. Appl. No. 14/866,361, 2 pages.
Notice of Allowance, dated Jan. 30, 2019, received in Korean Patent Application No. 2018-7013039, which corresponds with U.S. Appl. No. 14/866,361, 5 pages.
Patent, dated Apr. 23, 2019, received in Korean Patent Application No. 2018-7013039, which corresponds with U.S. Appl. No. 14/866,361, 4 pages.
Final Office Action, dated Oct. 11, 2018, received in U.S. Appl. No. 14/866,987, 20 pages.
Notice of Allowance, dated Apr. 4, 2019, received in U.S. Appl. No. 14/866,987, 5 pages.
Office Action, dated Dec. 4, 2018, received in Chinese Patent Application No. 201610342336.5, which corresponds with U.S. Appl. No. 14/866,987, 5 pages.
Office Action, dated Dec. 11, 2018, received in European Patent Application No. 16189421.7, which corresponds with U.S. Appl. No. 14/866,987, 6 pages.
Notice of Allowance, dated Jan. 17, 2019, received in U.S. Appl. No. 14/866,989, 8 pages.
Notice of Acceptance, dated Feb. 14, 2019, received in Australian Patent Application No. 2017201079, which corresponds with U.S. Appl. No. 14/866,989, 3 pages.
Office Action, dated Sep. 19, 2018, received in Chinese Patent Application No. 201610342314.9, which corresponds with U.S. Appl. No. 14/866,989, 6 pages.
Office Action, dated Feb. 25, 2019, received in Chinese Patent Application No. 201610342314.9, which corresponds with U.S. Appl. No. 14/866,989, 3 pages.
Rejection Decision, dated Apr. 24, 2019, received in Chinese Patent Application No. 201610342314.9, which corresponds with U.S. Appl. No. 14/866,989, 3 pages.
Patent, dated Feb. 15, 2019, received in Russian Patent Application No. 2017131408, which corresponds with U.S. Appl. No. 14/871,236, 2 pages.
Notice of Allowance, dated Dec. 3, 2018, received in U.S. Appl. No. 14/870,754, 8 pages.
Notice of Allowance, dated Dec. 5, 2018, received in U.S. Appl. No. 14/870,882, 8 pages.
Office Action, dated Feb. 11, 2019, received in European Patent Application No. 17171972.7, which corresponds with U.S. Appl. No. 14/870,882, 7 pages.
Notice of Allowance, dated Aug. 27, 2018, received in U.S. Appl. No. 14/870,988, 11 pages.
Notice of Acceptance, dated Oct. 30, 2018, received in Australian Patent Application No. 2016203040, which corresponds with U.S. Appl. No. 14/871,227, 4 pages.
Certificate of Grant, dated Feb. 28, 2019, received in Australian Patent Application No. 2016203040, which corresponds with U.S. Appl. No. 14/871,227, 1 page.
Office Action, dated Oct. 11, 2018, received in Australian Patent Application No. 2017245442, which corresponds with U.S. Appl. No. 14/871,227, 4 pages.
Office Action, dated Nov. 16, 2018, received in Chinese Patent Application No. 201680000466.9, which corresponds with U.S. Appl. No. 14/871,227, 5 pages.
Intent to Grant, dated Sep. 17, 2018, received in European Patent No. 16711743.1, which corresponds with U.S. Appl. No. 14/871,227, 5 pages.
Patent, dated Nov. 28, 2018, received in European Patent No. 16711743.1, which corresponds with U.S. Appl. No. 14/871,227, 1 page.
Notice of Allowance, dated Oct. 1, 2018, received in Korean Patent Application No. 2016-7019816, which corresponds with U.S. Appl. No. 14/871,227, 6 pages.
Patent, dated Dec. 28, 2018, received in Korean Patent Application No. 2016-7019816, which corresponds with U.S. Appl. No. 14/871,227, 8 pages.
Office Action, dated Nov. 5, 2018, received in U.S. Appl. No. 14/871,336, 24 pages.
Notice of Allowance, dated Feb. 5, 2019, received in U.S. Appl. No. 14/871,336, 10 pages.
Office Action, dated Feb. 12, 2019, received in European Patent Application No. 17172266.3, which corresponds with U.S. Appl. No. 14/871,336, 6 pages.
Notice of Allowance, dated Oct. 12, 2018, received in Japanese Patent Application No. 2018-020324, which corresponds with U.S. Appl. No. 14/871,336, 5 pages.
Patent, dated Nov. 16, 2018, received in Japanese Patent Application No. 2018-020324, which corresponds with U.S. Appl. No. 14/871,336, 4 pages.
Final Office Action, dated Oct. 17, 2018, received in U.S. Appl. No. 14/867,892, 48 pages.
Final Office Action, dated Oct. 4, 2018, received in U.S. Appl. No. 14/869,361, 28 pages.
Office Action, dated Feb. 27. 2019, received in U.S. Appl. No. 14/869,361, 28 pages.
Office Action, dated Sep. 7, 2018, received in U.S. Appl. No. 14/869,997, 23 pages.
Notice of Allowance, dated Apr. 4, 2019, received in U.S. Appl. No. 14/869,997, 9 pages.
Final Office Action, dated Oct. 26, 2018, received in U.S. Appl. No. 14/869,703, 19 pages.
Notice of Allowance, dated Mar. 12, 2019, received in U.S. Appl. No. 14/869,703, 6 pages.
Office Action, dated Jan. 10, 2019, received in U.S. Appl. No. 15/009,668, 17 pages.
Notice of Allowance, dated May 1, 2019, received in U.S. Appl. No. 15/009,668, 12 pages.
Notice of Acceptance, dated Jan. 24, 2019, received in Australian Patent Application No. 2017202058, which corresponds with U.S. Appl. No. 15/081,771, 3 pages.
Notice of Allowance, dated Oct. 12, 2018, received in Japanese Patent Application No. 2017-086460, which corresponds with U.S. Appl. No. 15/081,771, 5 pages.
Patent, dated Sep. 28, 2018, received in Korean Patent Application No. 2017-7014536, which corresponds with U.S. Appl. No. 15/081,771, 3 pages.
Notice of Acceptance, dated Sep. 10, 2018, received in Australian Patent Application No. 2018202855, which corresponds with U.S. Appl. No. 15/136,782, 3 pages.
Certificate of Grant, dated Jan. 17, 2019, received in Australian Patent Application No. 2018202855, which corresponds with U.S. Appl. No. 15/136,782, 4 pages.
Office Action, dated Apr. 17, 2019, received in European Patent Application No. 18171453.6, which corresponds with U.S. Appl. No. 15/136,782, 4 pages.
Office Action, dated Nov. 12, 2018, received in Japanese Patent Application No. 2018-062161, which corresponds with U.S. Appl. No. 15/136,782, 5 pages.
Notice of Allowance, dated Feb. 18, 2019, received in Japanese Patent Application No. 2018-062161, which corresponds with U.S. Appl. No. 15/136,782, 5 pages.
Patent, dated Mar. 22, 2019, received in Japanese Patent Application No. 2018-062161, which corresponds with U.S. Appl. No. 15/136,782, 5 pages.
Office Action, dated Oct. 31, 2018, received in Korean Patent Application No. 2018-7020659, which corresponds with U.S. Appl. No. 15/136,782, 5 pages.
Notice of Allowance, dated Feb. 25, 2019, received in Korean Patent Application No. 2018-7020659, which corresponds with U.S. Appl. No. 15/136,782, 5 pages.
Patent, dated Apr. 3, 2019, received in Korean Patent Application No. 2018-7020659, which corresponds with U.S. Appl. No. 15/136,782, 5 pages.
Office Action, dated Dec. 18, 2018, received in Danish Patent Application No. 201670587, which corresponds with U.S. Appl. No. 15/231,745, 4 pages.
Office Action, dated Nov. 23, 2018, received in Danish Patent Application No. 201670591, which corresponds with U.S. Appl. No. 15/231,745, 7 pages.
Notice of Allowance, dated Oct. 4, 2018, received in U.S. Appl. No. 15/272,327, 46 pages.
Office Action, dated Mar. 22, 2019, received in Australian Patent Application No. 2018204234, which corresponds with U.S. Appl. No. 15/272,327, 7 pages.
Office Action, dated Sep. 14, 2018, received in European Patent Application No. 15155939.4, which corresponds with U.S. Appl. No. 15/272,327, 5 pages.
Intention to Grant, dated Mar. 19, 2019, received in European Patent Application No. 15155939.4, which corresponds with U.S. Appl. No. 15/272,327, 6 pages.
Decision to Grant, dated Apr. 26, 2019, received in European Patent Application No. 15155939.4, which corresponds with U.S. Appl. No. 15/272,327, 2 pages.
Patent, dated Aug. 31, 2018, received in Japanese Patent Application No. 2018-506989, which corresponds with U.S. Appl. No. 15/272,327, 3 pages.
Office Action, dated Oct. 26, 2018, received in U.S. Appl. No. 15/272,341, 22 pages.
Final Office Action, dated Mar. 25, 2019, received in U.S. Appl. No. 15/272,341, 25 pages.
Notice of Allowance, dated Sep. 20, 2018, received in U.S. Appl. No. 15/272,343, 44 pages.
Office Action, dated Jan. 8, 2019, received in European Patent Application No. 17206374.5, which corresponds with U.S. Appl. No. 15/272,343, 5 pages.
Office Action, dated Oct. 15, 2018, received in U.S. Appl. No. 15/272,345. 31 pages.
Final Office Action, dated Apr. 2, 2019, received in U.S. Appl. No. 15/272,345. 28 pages.
Office Action, dated Nov. 13, 2018, received in European Patent Application No. 16756862.5, which corresponds with U.S. Appl. No. 15/272,345, 5 pages.
Decision to Grant, dated Jan. 31, 2019, received in European Patent Application No. 16756862.5, which corresponds with U.S. Appl. No. 15/272,345, 5 pages.
Patent, dated Feb. 27, 2019, received in European Patent Application No. 16756862.5, which corresponds with U.S. Appl. No. 15/272,345, 3 pages.
Notice of Allowance, dated Aug. 15, 2018, received in U.S. Appl. No. 15/482,618, 7 pages.
Notice of Allowance, dated Oct. 12, 2018, received in U.S. Appl. No. 15/499,693, 8 pages.
Office Action, dated Jan. 24, 2019, received in U.S. Appl. No. 15/655,749, 25 pages.
Notice of Allowance, dated Apr. 18, 2019, received in Korean Patent Application No. 2017-7034248, which corresponds with U.S. Appl. No. 15/655,749, 5 pages.
Office Action, dated Apr. 11, 2019, received in U.S. Appl. No. 15/889,115, 9 pages.
Notice of Allowance, dated Apr. 19, 2019, received in U.S. Appl. No. 16/252,478, 11 pages.
Extended European Search Report, dated Dec. 5, 2018, received in European Patent Application No. 18194127.9, which corresponds with U.S. Appl. No. 14/608,942, 8 pages.
Extended European Search Report, dated Oct. 30, 2018, received in European Patent Application No. 18183789.9, which corresponds with U.S. Appl. No. 14/536,267, 11 pages.
Extended European Search Report, dated Mar. 8, 2019, received in European Patent Application No. 18205283.7, which corresponds with U.S. Appl. No. 15/081,771, 15 pages.
Extended European Search Report, dated Aug. 24, 2018, received in European Patent Application No. 18171453.6, which corresponds with U.S. Appl. No. 15/136,782, 9 pages.
Anonymous, “Android—What Should Status Bar Toggle Button Behavior Be?”, https://ux.stackechang.com/questions/34814, Jan. 15, 2015, 2 pages.
Anonymous, “How Do I Add Contextual Menu to My Apple Watch App?”, http://www.tech-recipes.com/rx/52578/how-do-i-add-contextual-menu-to-my-apple-watch-app, Jan. 13, 2015, 3 pages.
Bilibili, “Android 5.0 Lollipop”, https://www.bilibili.com/video/av1636064?from=search&seid=3128140235778895126, Oct. 1, 19, 2014, 3 pages.
Kleinman, “iPhone 6s Said to Sport Force Touch Display, 2GB of RAM”, https://www.technobuffalo.com/2015/01/15/iphone-6s-said-to-sport-force-touch-display-2gb-of-ram, Jan. 15, 2015, 2 pages.
McGarry, “Everything You Can Do With Force Touch on Apple Watch”, Macworld, www.macworld.com May 6, 2015, 4 pages.
Oh, et al., “Moving Objects with 2D Input Devices in CAD Systems and Destop Virtual Environments”, Proceedings of Graphies Interface 2005, 8 pages, May 2005.
Stewart, et al., “Characteristics of Pressure-Based Input for Mobile Devices”, Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, Apr. 2010, 10 pages.
YouTube, “How to Use 3D Touch Multitasking on iPhone”, https://www.youtube.com/watch?v=kDq05uRdrCg, Sep. 29, 2015, 1 page.
Notice of Allowance, dated Sep. 5, 2018, received in U.S. Appl. No. 14/535,671, 5 pages.
Notice of Allowance, dated Jun. 26, 2018, received in U.S. Appl. No. 14/608,895, 9 pages.
Intention to Grant, dated Jul. 6, 2018, received in European Patent Application No. 13795391.5, which corresponds with U.S. Appl. No. 14/536,426, 5 pages.
Notice of Allowance, dated Aug. 15, 2018, received in U.S. Appl. No. 14/536,235, 5 pages.
Certificate of Grant, dated Sep. 13, 2018, received in Australian Patent Application No. 2016216580, which corresponds with U.S. Appl. No. 14/536,426, 1 page.
Patent, dated Aug. 17, 2018, received in Chinese Patent Application No. 201380035982.1, which corresponds with U.S. Appl. No. 14/536,426, 4 pages.
Notice of Allowance, dated Aug. 8, 2018, received in Chinese Patent Application No. 201510566550.4, which corresponds with U.S. Appl. No. 14/536,426, 3 pages.
Intention to Grant, dated Aug. 14, 2018, received in European Patent Application No. 15183980.0, which corresponds with U.S. Appl. No. 14/536,426, 5 pages.
Final Office Action, dated Jun. 22, 2018, received in U.S. Appl. No. 14/536,464, 32 pages.
Notice of Allowance, dated Aug. 9, 2018, received in U.S. Appl. No. 14/536,646, 5 pages.
Notice of Acceptance, dated Jul. 19, 2018, received in Australian Patent Application No. 2016262773, which corresponds with U.S. Appl. No. 14/536,141, 3 pages.
Notice of Allowance, dated Aug. 31, 2018, received in Chinese Patent Application No. 201380035893.7, which corresponds with U.S. Appl. No. 14/536,141 6 pages.
Office Action, dated Aug. 13, 2018, received in Japanese Patent Application No. 2017-141953, which corresponds with U.S. Appl. No. 14/536,141, 6 pages.
Certificate of Grant, dated Jul. 5, 2018, received in Australian patent Application No. 2016201303, which corresponds with U.S. Appl. No. 14/608,942, 4 pages.
Decision to Grant, dated Sep. 13, 2018, received in European Patent Application No. 13798464.7, which corresponds with U.S. Appl. No. 14/608,942, 2 pages.
Notice of Acceptance, dated Jul. 19, 2018, received in Australian Patent Application No. 2016238917, which corresponds with U.S. Appl. No. 14/536,203, 3 pages.
Patent, dated Jul. 6, 2018, received in Chinese Patent Application No. 201380035977.0, which corresponds with U.S. Appl. No. 14/536,203, 4 pages.
Office Action, dated Jul. 2, 2018, received in U.S. Appl. No. 14/608,965, 16 pages.
Office action, dated Aug. 1, 2018, received in Chinese Patent Application No. 201380074060.1, which corresponds with U.S. Appl. No. 14/608,965, 5 pages.
Decision to Grant, dated Sep. 6, 2018, received in European Office Action No. 13798465.4, which corresponds with U.S. Appl. No. 14/608,965, 2 pages.
Certificate of Grant, dated Jun. 28, 2018, received in Australian Patent Application No. 2016204411, which corresponds with U.S. Appl. No. 14/536,267, 4 pages.
Office Action, dated Jun. 13, 2018, received in Chinese Patent Application No. 201810332044.2, which corresponds with U.S. Appl. No. 14/536,267, 2 pages.
Intention to Grant, dated Jun. 27, 2018, received in European Patent Application No. 13724106.3, which corresponds with U.S. Appl. No. 14/536,267, 5 pages.
Notice of Acceptance, dated Jul. 19, 2018, received in Australian Patent Application No. 2016216658, which corresponds with U.S. Appl. No. 14/536,291, 3 pages.
Office Action, dated Jun. 29, 2018, received in Japanese Patent Application No. 2017-083027, which corresponds with U.S. Appl. No. 14/536,291, 5 pages.
Notice of Allowance, dated Apr. 20, 2018, received in U.S. Appl. No. 13/608,985, 5 pages.
Certificate of Grant, dated Jun. 29, 2018, received in Hong Kong Patent Application No. 15112851.6, which corresponds with U.S. Appl. No. 14/608,985, 2 pages.
Final Office Action, dated Aug. 7, 2018, received in U.S. Appl. No. 14/536,648, 14 pages.
Notice of Acceptance, dated Jul. 19, 2018, received in Australian Patent Application No. 2016247194, which corresponds with U.S. Appl. No. 14/536,648, 3 pages.
Office Action, dated Aug. 24, 2018, received in Japanese Patent Application No. 2017-113598, which corresponds with U.S. Appl. No. 14/609,042, 6 pages.
Office Action, dated Sep. 11, 2018, received in Chinese Patent Application No. 201610159295.6, which corresponds with U.S. Appl. No. 14/864,737, 6 pages.
Office Action, dated Jun. 5, 2018, received in Chinese Patent Application No. 201610137839.9, which corresponds with U.S. Appl. No. 14/866,159, 11 pages.
Office Action, dated Aug. 20, 2018, received in Chinese Patent Application No. 01610130348.1, which corresponds with U.S. Appl. No. 14/868,078, 6 pages.
Notice of Acceptance, dated Aug. 23, 2018, received in Australian Patent Application No. 2018204611, which corresponds with U.S. Appl. No. 14/869,899, 3 pages.
Office Action, dated Sep. 21, 2018, received in Japanese Patent Application No. 2018-100827, which corresponds with U.S. Appl. No. 14/869,899, 4 pages.
Final Office Action, dated Aug. 28, 2018, received in U.S. Appl. No. 14/866,992, 52 pages.
Final Office Action, dated Sep. 19, 2018, received in U.S. Appl. No. 15/009,661, 28 pages.
Notice of Allowance, dated Aug. 3, 2018, received in U.S. Appl. No. 15/009,676, 6 pages.
Notice of Allowance, dated Jun. 29, 2018, received in U.S. Appl. No. 14/856,517, 11 pages.
Office Action, dated Jun. 25, 2018, received in Japanese Patent Application No. 2017-029201, which corresponds with U.S. Appl. No. 14/857,636, 4 pages.
Final Office Action, dated Jul. 3, 2018, received in U.S. Appl. No. 14/866,989, 17 pages.
Patent, dated Jun. 18, 2018, received in Danish Patent Application No. 201500595, which corresponds with U.S. Appl. No. 14/871,236, 3 pages.
Office Action, dated Jul. 19, 2018, received in Russian Patent Application No. 2017131408, which corresponds with U.S. Appl. No. 14/871,236, 8 pages.
Notice of Allowance, dated Jul. 2, 2018, received in U.S. Appl. No. 14/870,754, 9 pages.
Notice of Allowance, dated Jul. 12, 2018, received in U.S. Appl. No. 14/870,882, 5 pages.
Notice of Allowance, dated Aug. 7, 2018, received in U.S. Appl. No. 14/867,823, 8 pages.
Final Office Action, dated Oct. 4, 2018, received in U.S. Appl. No. 14/869,261, 28 pages.
Notice of Allowance, dated Jul. 30, 2018, received in U.S. Appl. No. 14/869,873, 8 pages.
Final Office Action, dated Jul. 3, 2018, received in U.S. Appl. No. 15/009,668, 19 pages.
Notice of Allowance, dated Jun. 28, 2018, received in Korean Patent Application No. 2017-7014536, which corresponds with U.S. Appl. No. 15/081,771, 4 pages.
Certificate of Grant, dated Jun. 28, 2018, received in Australian Patent Application No. 2018200705, which corresponds with U.S. Appl. No. 15/272,327, 4 pages.
Notice of Allowance, dated Jul. 30, 2018, received in Japanese Patent Application No. 2018-506989, which corresponds with U.S. Appl. No. 15/272,327, 4 pages.
Certificate of Grant, dated Jun. 28, 2018, received in Australian Patent Application No. 2016304832, which corresponds with U.S. Appl. No. 15/272,345, 4 pages.
Extended European Search Report, dated Jul. 30, 2018, received in European Patent Application No. 18180503.7, which corresponds with U.S. Appl. No. 14/536,426, 7 pages.
Extended European Search Report, dated Aug. 17, 2018, received in European Patent Application No. 18175195.9, which corresponds with U.S. Appl. No. 14/869,899, 13 pages.
International Preliminary Report on Patentability, dated Sep. 12, 2017, received in International Patent Application No. PCT/US2016/021400, which corresponds with U.S. Appl. No. 14/869,899, 39 pages.
International Preliminary Report on Patentability, dated Feb. 13, 2018, received in International Patent Application No. PCT/US2016/046407, which corresponds with U.S. Appl. No. 15/009,688, 20 pages.
Extended European Search Report, dated Aug. 2, 2018, received in European Patent Application No. 18168941.5, which corresponds with U.S. Appl. No. 14/871,236, 11 pages.
Office Action, dated Sep. 6, 2019, received in European Patent Application No. 18180503.7, which corresponds with U.S. Appl. No. 14/536,426, 5 pages.
Notice of Acceptance, dated Aug. 1, 2019, received in Australian Patent Application No. 2018256626, which corresponds with U.S. Appl. No. 14/536,646, 3 pages.
Intention to Grant, dated Sep. 6, 2019, received in European Patent Application No. 13726053.5, which corresponds with U.S. Appl. No. 14/536,141, 7 pages.
Certificate of Grant, dated Jul. 26, 2019, received in Hong Kong, which corresponds with U.S. Appl. No. 14/608,942, 4 pages.
Office Action, dated Aug. 20, 2018, received in Australian Patent Application No. 2018250481, which corresponds with U.S. Appl. No. 14/536,203, 2 pages.
Decision to Grant, dated Aug. 8, 2019, received in European Patent Application No. 13724104.8, which corresponds with U.S. Appl. No. 14/536,203, 1 page.
Office Action, dated Aug. 29, 2019, received in European Patent Application No. 18183789.9, which corresponds with U.S. Appl. No. 16/262,800, 9 pages.
Notice of Allowance, dated Sep. 9, 2019, received in Japanese Patent Application No. 2017-237035, which corresponds with U.S. Appl. No. 14/536,267, 5 pages.
Decision Grant, dated Aug. 1, 2019, received in European Patent Application No. 13811032.5, which corresponds with U.S. Appl. No. 14/608,985, 2 pages.
Decision to Grant, dated Aug. 16, 2019, received in European Patent Application No. 17153418.3, which corresponds with U.S. Appl. No. 14/536,648, 1 page.
Patent, dated Jul. 26, 2019, received in Japanese Patent Application No. 2018-506425, which corresponds with U.S. Appl. No. 14/866,992, 3 pages.
Patent, dated Jul. 30, 2019, received in Chinese Patent Application No. 201610342151.4, which corresponds with U.S. Appl. No. 14/864,580, 3 pages.
Notice of Allowance, dated Aug. 14, 2019, received in Korean Patent Application No. 2019-7018317, which corresponds with U.S. Appl. No. 14/864,580, 6 pages.
Patent, dated Jul. 23, 2019, received in Chinese Patent Application No. 201610189298.4, which corresponds with U.S. Appl. No. 14/866,361, 7 pages.
Office Action, dated Aug. 15, 2019, received in Chinese Patent Application No. 201610342336.5, which corresponds with U.S. Appl. No. 14/866,987, 3 pages.
Patent, dated Aug. 9, 2019, received in Chinese Patent Application No. 201680000466.9, which corresponds with U.S. Appl. No. 14/871,227, 8 pages.
Patent, dated Jul. 19, 2019, received in Chinese Patent Application No. 201610131507.X, which corresponds with U.S. Appl. No. 14/867,990, 6 pages.
Office Action, dated Aug. 2, 2019, received in Korean Patent Application No. 2019-7009439, which corresponds with U.S. Appl. No. 15/499,693, 3 pages.
Office Action, dated Aug. 20, 2019, received in Korean Patent Application No. 2019-7019946, which corresponds with U.S. Appl. No. 16/154,591, 6 pages.
Notice of Allowance, dated Sep. 11, 2019, received in U.S. Appl. No. 16/230,743, 5 pages.
Office Action, dated Aug. 30, 2019, received in Korean Patent Application No. 2019-7019100, 2 pages.
Agarwal, “How to Copy and Paste on Windows Phone 8,” Guiding Tech, http://web.archive.org/web20130709204246/http://www.guidingtech.com/20280/copy-paste-text-windows-phone-8/, Jul. 9, 2013, 10 pages,
Angelov, “Sponsor Flip Wall With Jquery & CSS”, Tutorialzine, N.p., Mar. 24, 2010, Web. http://tutorialzine.com/2010/03/sponsor-wall-slip-jquery-css/, Mar. 24, 2010, 8 pages.
Anonymous, “1-Click Installer for Windows Media Taskbar Mini-Player for Windows 7, 8, 8.1 10”, http://metadataconsulting.blogspot.de/2014/05/installer-for-windows-media-taskbar.htm, May 5, 2014, 6 pages.
Anonymous, “Google Android 5.0 Release Date, Specs and Editors Hands on Review—CNET”, http://www.cnet.com/products/google-an-android-5-0-lollipop/, Mar. 12, 2015, 10 pages.
Anonymous, “[new] WMP12 with Taskbar Toolbar for Windows 7—Windows Customization—WinMatrix”, http://www.winmatrix.com/forums/index/php?/topic/25528-new-wmp12-with-taskbar-toolbar-for-windows-7, Jan. 27, 2013, 6 pages.
Anonymous, “Nokia 808 PureView Screenshots”, retrieved from Internet; no URL, Nov. 12, 2012, 8 pages.
Anonymous, “Nokia 808 PureView User Guide,” http://download-fds.webapps.microsoft.com/supportFiles/phones/files/pdf_guides/devices/808/Nokia_808_UG_en_APAC.pdf, Jan. 1, 2012, 144 pages.
Anonymous, “Notifications, Android 4.4 and Lower”, Android Developers, https://developer.android.com/design/patterns/notifications_k.html, May 24, 2015, 9 pages.
Anonymous, “Taskbar Extensions”, https://web.archive.org/web/20141228124434/http://msdn.microsoft.com:80/en-us/library/windows/desktop/dd378460(v=vs.85).aspx. Dec. 28, 2014, 8 pages.
Azundris, “A Fire in the Pie,” http://web.archive.org/web/20140722062639/http://blog.azundrix.com/archives/168-A-fire-in-the-sky.html, Jul. 22, 2014, 8 pages.
B-log—betriebsraum weblog, “Extremely Efficient Menu Selection: Marking Menus for the Flash Platform,” http://www.betriebsraum.de/blog/2009/12/11/extremely-efficient-menu-selection-marking-for-the-flash-platform, Dec. 11, 2009, 9 pages.
Bolluyt, “5 Apple Watch Revelations from Apple's New WatchKit”, http://www.cheatsheet.com/technology/5-apple-watch-revelations-from-apples-new-watchkit.html?a=viewall, Nov. 22, 2014, 3 pages.
Brownlee, “Andoid 5.0 Lollipop Feature Review!”, https://www.youtube.com/blog/watch?v=pEDQ1z1-PvU, Oct. 27, 2014, 5 pages.
Clark, “Global Moxie, Touch Means a Renaissance for Radial Menus,” http://globalmoxie.com/blog/radial-menus-for-touch-ui-print.shtml, Jul. 17, 2012, 7 pages.
Cohen, Cinemagraphs are Animated Gifs for Adults, http://www.tubefilter.com2011/07/10/cinemagraph, Jul. 10, 2011, 3 pages.
CrackBerry Forums, Windows 8 Bezel Control and Gestures, http://wwwforums.crackberry.com/blackberry-playbook-f222/windows-8-bezel-control-gestures-705129/, Mar. 1, 2012, 8 pages.
Crook, “Microsoft Patenting Multi-Screen, Milti-Touch Gestures,” http://techncrunch.com/2011/08/25/microsoft-awarded-patents-for-multi-screen-touch-gestures/, Aug. 25, 2011, 8 pages.
cvil.ly—a design blog, Interesting Touch Interactions on Windows 8, http://cvil.ly/2011/06/04/interesting-touch-interactions-on-windows-8/, Jun. 4, 2011, 3 pages.
Davidson, et al., “Extending 2D Object Arrangment with Pressure-Sensitive Layering Cues”, Proceedings of the 21st Annual ACM Sysmposium on User Interface Software and Tehcnology, Oct. 19, 2008, 4 pages.
Dinwiddie, et al., “Combined-User Interface for Computers, Television, Video Recorders, and Telephone, Etc”, ip.com Journal, Aug. 1, 1990,3 Pages.
Drinkwater, “Glossary: Pre/Post Alarm Image Buffer,” http://www.networkwebcams.com/ip-camera-learning-center/2008/07/17/glossary-prepost-alarm-image-buffer/, Jul. 17, 2008, 1 page.
Dzyre, “10 Android Notification Features You Can Fiddle With”, http://www.hongkiat.com/blog/android-notification-features, Mar. 10, 2014, 10 pages.
Easton-Ellett, “Three Free Cydia Utilities to Remove iOS Notification Badges”, http://www.ijailbreak.com/cydia/three-free-cydia-utilities-to-remove-ios-notification-badge, Apr. 14, 2012, 2 pages.
Elliot, “Mac System 7”, YouTube. Web. Mar. 8, 2017, http://www.youtube.com/watch?v=XLv22hfuuik, Aug. 3, 2011, 1 page.
Farshad, “SageThumbs—Preview and Convert Pictures From Windows Context Menu”, https://web.addictivetips.com/windows-tips/sagethumbs-preview-and-convert-photos-from-windows-context-menu, Aug. 8, 2011, 5 pages.
Fenlon, “The Case for Bezel Touch Gestures on Apple's iPad,” http://www.tested.com/tech/tablets/3104-the-case-for-bezel-touch-gestures-on-apples-ipad/, Nov. 2, 2011, 6 pages.
Flaherty, “Is Apple Watch's Pressure-Sensitive Screen a Bigger Deal Than The Gadget Itself?”, http://www.wired.com/2014/09/apple-watchs-pressure-sensitive-screen-bigger-deal-gadget, Sep. 15, 2014, 3 pages.
Flixel, “Cinemagraph Pro for Mac”, https://flixel.com/products/mac/cinemagraph-pro, 2014, 7 pages.
Flowplayer, “Slowmotion: Flowplayer,” https://web.archive.org/web/20150226191526/http://flash.flowplayer.org/plugins/streaming/slowmotion.html, Feb. 26, 2015, 4 pages.
Forlines, et al., “Glimpse: a Novel Input Moidel for Multi-level Devices”, Chi '05 Extended Abstracts on Human Factors in Computing Systems, Apr. 2, 2005, 4 pages.
Gardner, “Recenz—Recent Apps in One Tap”, You Tube, https://www.youtube.com/watch?v=qailSHRgsTo, May 15, 2015, 1 page.
Gonzalo et al., “Zliding: Fluid Zooming and Sliding for High Precision Parameter Manipulation”, Department of Computer Science, University of Toronto, Seattle, Washington, Oct. 23, 2005, 10 pages.
Google-Chrome, “Android 5.0 Lollipop”, http://androidlover.net/android-os/android-5-0-lollipop/android-5-0-lollipop-recent-apps-card-google-search.html, Oct. 19, 2014, 10 pages.
Grant, “Android's Notification Center”, https://www.objc.io/issues/11-android/android-notifications, Apr. 30, 2014, 26 pages.
IBM et al., “Pressure-Sensitive Icons”, IBM Technical Disclosure Bulletin, vol. 33, No. 1B, Jun. 1, 1990, 3 pages.
ICIMS Recruiting Software, “Blackberry Playbook Review,” http://www.tested.com/tech.tablets/5749-blackberry-playbook-review/, 2015, 11 pages.
IPhoneHacksTV, “Confero allows you to easily manage your Badge notifications—iPhone Hacks”, youtube, https://www.youtube.com/watch?v=JCk61pnL4SU, Dec. 26, 2014, 3 pages.
IPhoneOperator, “Wasser Liveeffekt fur Homescreen & Lockscreen—Aquaboard (Cydia)”, http://www.youtube.com/watch?v=fG9YMF-mB0Q, Sep. 22, 2012, 3 pages.
IPodHacks 142: “Water Ripple Effects on the Home and Lock Screen: AguaBoard Cydia Tweak Review”, YouTube, https://www.youtube.comwatch?v-Auu_uRaYHJs, Sep. 24, 2012, 3 pages.
Kaaresoja, “Snap-Crackle-Pop: Tactile Feedback for Mobile Touch Screens,” Nokia Research Center, Helsinki, Finland, Proceedings of Eurohaptics vol. 2006, Jul. 3, 2006, 2 pages.
Kiener, “Force Touch on iPhone”, htips://www.youtube.com/watch?v=CEMmnsU5fC8, Aug. 4, 2015, 4 pages.
Kost, “LR3—Deselect All Images But One”, Julieanne Kost's Blog, blogs.adobe.com/jkost/2011/12/Ir3-deselect-all-images-but-one.html, Dec. 22, 2011, 1 page.
Kronfli, “HTC Zoe Comes to Google Play, Here's Everything You Need to Know,” Know Your Mobile, http://www.knowyourmobile.com/htc/htc-one/19550/what-htc-zoe, Aug. 14, 2014, 5 pages.
Kumar, “How to Enable Ripple Effect on Lock Screen of Galaxy S2”, YouTube, http, http://www.youtube.com/watch?v+B9-4M5abLXA, Feb. 12, 2013, 3 pages.
Kurdi, “XnView Shell Extension: A Powerful Image Utility Inside the Context Menu”, http://www.freewaregenius.com/xnview-shell-extension-a-powerful-image-utility-inside-the-context-menu, Jul. 30, 2008, 4 pages.
Laurie, “The Power of the Right Click,” http://vlaurie.com/right-click/customize-context-menu.html, 2002-2016, 3 pages.
MacKenzie et al., “The Tactile Touchpad”, Chi '97 Extended Abstracts on Human Factors in Computing Systems Looking to the Future, Chi '97, Mar. 22, 1997, 5 pages.
Mahdi, Confero now available in Cydia, brings a new way to manage Notification badges [Jailbreak Tweak], http://www.iphonehacks.com/2015/01/confero/tweak-manage-notification-badges.html, Jan. 1, 2015, 2 pages.
Matthew, “How to Preview Photos and Images From Right-Click Context Menue in Windows [Tip]”, http://www.dottech.org/159009/add-image-preview-in-windows-context-menu-tip, Jul. 4, 2014, 5 pages.
McRitchie, “Internet Explorer Right-Click Menus,” http://web.archive.org/web-201405020/http:/dmcritchie.mvps.org/ie/rightie6.htm, May 2, 2014, 10 pages.
Microsoft, “Lumia—How to Personalize Your Start Screen”, https://www.youtube.com/watch?v=6GI5Z3TrSEs, Nov. 11, 2014, 3 pages.
Microsoft, “Use Radial Menus to Display Commands in OneNote for Windows 8,” http://support.office.com/en-us/article/Use-radial-menues-to-display-OneNote-commands-Od75f03f-cde7-493a-a8a0b2ed6f99fbe2, 2016, 5 pages.
Minsky, “Computational Haptics The Sandpaper System for Synthesizing Texture for a Force-Feedback Display,” Massachusetts Institute of Technology, Jun. 1978, 217 pages.
Mitroff, “Google Android 5.0 Lollipop,” http://www.cnet.com/products/google-android-5-0-lollipop, Mar. 12, 2015, 5 pages.
Mohr, “Do Not Disturb—The iPhone Feature You Should Be Using”, http.www.wonderoftech.com/do-not-disturb-iphone, Jul. 14, 2014, 30 pages.
Nacca, “NiLS Lock Screen Notifications / Floating Panel—Revuew”, https://www.youtube.com/watch?v=McT4QnS9TDY, Feb. 3, 2014, 4 pages.
Nikon, “Scene Recognition System and Advanced SRS,” http://www.nikonusa.com/en.Learn-And-Explore/Article/ftlzi4rr/Scene-Recognition-System.html, Jul. 22, 2015, 2 pages.
O'Hara, et al., “Pressure-Sensitive Icons”, ip.com Journal, ip.com Inc., West Henrietta, NY, US, Jun. 1, 1990, 2 Pages.
Pallenberg, “Wow, the new iPad had gestures.” https://plus.google.com/+SaschaPallenberg/post/aaJtJogu8ac, Mar. 7, 2012, 2 pages.
Phonebruff, “How to Pair Bluetooth on The iPhone”, https://youtube.com/watch?v=LudNwEar9A8, Feb. 8, 2013, 3 pages.
PoliceOne.com, “COBAN Technologies Pre-Event Buffer & Fall Safe Feature,” http://www.policeone.com/police-products/police-technology/mobile-computures/videos/5955587-COBAN-Technologies-Pre-Event, Nov. 11, 2010, 2 pages.
Pradeep, “Android App Development—Microsoft Awarded With Patents on Gestures Supported on Windows 8,” http://mspoweruser.com/microsoft-awarded-with-patents-on-gestures-supported-on-windows-8/, Aug. 25, 2011, 16 pages.
“Quickly Preview Songs in Windows Media Player 12 in Windows 7,” Quickly Preview Songs in Windows Media Player 12 in Windows 7. How-to Geek, Apr. 28, 2010, Web. May 8, 2010, http://web.archive.org/web/20100502013134/http://www.howtogeek.com/howto/16157/quickly-preview-songs-in-windows-media-center-12-in-windows-7>, 6 pages.
Quinn, et al., “Zoofing! Faster List Selections with Pressure-Zoom-Flick-Scrolling”, Proceedings of the 21st Annual Conference of the Australian Computer-Human Interaction Special Interest Group on Design, Nov. 23, 2009, ACM Press, vol. 411, 8 pages.
Rekimoto, et al., “PreSense: Interaction Techniques for Finger Sensing Input Devices”, Proceedings of the 16th Annual ACM Symposium on User Interface Software and Technology, Nov. 30, 2003, 10 pages.
Rekimoto, et al., “PreSensell: Bi-directional Touch and Pressure Sensing Interactions with Tactile Feedback”, Conference on Human Factors in Computing Systems Archive, ACM, Apr. 22, 2006, 6 pages.
Ritchie, “How to see all the unread message notifications on your iPhone, all at once, all in the same place | iMore”, https://www.imore.com/how-see-all-unread-message-notifications-your-iphone-all-once-all-same-place, Feb. 22, 2014, 2 pages.
Roth et al., “Bezel Swipe: Conflict-Free Scrolling and Miltiple Selection on Mobile Touch Screen Devices,” Chi 2009, Boston, Massachusetts, USA, Apr. 4-9, 2009, 4 pages.
Sony, “Intelligent Scene Recognition,” https://www.sony-asia.com/article/252999/section/product/product/dsc-t77, downloaded on May 20, 2016, 5 pages.
Sood, “MultitaskingGestures”, http://cydia.saurik.com/package/org.thebigboxx.multitaskinggestures/, Mar. 3, 2014, 2 pages.
Stross, “Wearing A Badge, and A Video Camera,” The New York Times, http://www.nytimes.com/2013/04/07/business/wearable-video-cameras-for-police-offers.html? R=0, Apr. 6, 2013, 4 pages.
Taser, “Taser Axon Body Camera User Manual,” https://www.taser.com/images/support/downloads/product-resourses/axon_body_product_manual.pdf, Oct. 1, 2013, 24 pages.
Tidwell, “Designing Interfaces,” O'Reilly Media, Inc., USA, Nov. 2005, 348 pages.
VGJFeliz, “How to Master Android Lollipop Notifications in Four Minutes!”, https://www.youtube.com/watch?v=S-zBRG7GJgs, Feb. 8, 2015, 5 pages.
VisioGuy, “Getting a Handle on Selecting and Subselecting Visio Shapes”, http://www.visguy.com/2009/10/13/getting-a-handle-on-selecting-and-subselecting-visio-shapes/, Oct. 13, 2009, 18 pages.
Wikipedia, “AirDrop,”, Wikipedia, the free encyclopedia, http://en.wikipedia.org/wiki/AirDrop, May 17, 2016, 5 pages.
Wikipedia, “Cinemagraph,” Wikipedia the free encyclopedia, http://en.wikipedia.org/wiki/Cinemagraph, Last Modified Mar. 16, 2016, 2 pages.
Wikipedia, “Context Menu,” Wikipedia, the free encyclopedia https://en.wikipedia.org/wiki/Context menu, Last Modified May 15, 2016, 4 pages.
Wikipedia, “HTC One (M7),” Wikipedia, the free encyclopedia, https://en.wikipedia.org/wiki/HTC_One_(M7), Mar. 2013, 20 pages.
Wikipedia, “Mobile Ad Hoc Network,” Wikipedia, the free encyclopedia, http://en.wikipedia.org/wiki/Mobile_ad_hoc_network, May 20, 2016, 4 pages.
Wikipedia, “Pie Menu,” Wikipedia, the free encyclopedia, http://en.wikipedia.org/wiki/Pie_menu, Last Modified Jun. 4, 2016, 3 pages.
Wikipedia, “Quick Look,” from Wikipedia, the free encyclopedia, https://en.wikipedia.org/wiki/Quick_Look, Last Modified Jan. 15, 2016, 3 pages.
Wikipedia, “Sony Xperia Z1”, Wikipedia, the free encyclopedia, https://enwikipedia.org/wiki/Sony_Experia_Z1, Sep. 2013, 10 pages.
YouTube, “Android Lollipop Lock-Screen Notification Tips”, http://www.youtube.com/watch?v=LZTxHBOwzIU, Nov. 13, 2014, 3 pages.
YouTube, “Blackberry Playbook bezel interaction,” https://www.youtube.com/watch?v=YGkzFqnOwXI, Jan. 10, 2011, 2 pages.
YouTube, “How to Master Android Lollipop Notifications in Four Minutes!”, Video Gadgets Journal (VGJFelix), https://www.youtube.com/watch?v=S-zBRG7GGJgs, Feb. 8, 2015, 4 pages.
YouTube, “HTC One Favorite Camera Features”, http://www.youtube.com/watch?v=sUYHfcjI4RU, Apr. 28, 2013, 3 pages.
YouTube, “Multitasking Gestures: Zephyr Like Gestures on iOS”, https://www.youtube.com/watch?v=Jcod-f7Lw0I, Jan. 27, 2014, 3 pages.
YouTube, “Recentz—Recent Apps in a Tap”, https://www.youtube.com/watch?v=qailSHRgsTo, May 15, 2015, 1 page.
Office Action, dated Mar. 15, 2017, received in U.S. Appl. No. 14/535,671, 13 pages.
Office Action, dated Nov. 30, 2017, received in U.S. Appl. No. 14/535,671, 21 pages.
Office Action, dated Jun. 29, 2017, received in U.S. Appl. No. 14/608,895, 30 pages.
Final Office Action, dated Feb. 22, 2018, received in U.S. Appl. No. 14/608,895, 20 pages.
Office Action, dated Dec. 18, 2015, received in Australian Patent Application No. 2013368440, which corresponds with U.S. Appl. No. 14/536,426, 3 pages.
Office Action, dated Oct. 18, 2016, received in Australian Patent Application No. 2013368440, which corresponds with U.S. Appl. No. 14/536,426, 3 pages.
Notice of Allowance, dated Dec. 20, 2016, received in Australian Patent Application No. 2013368440, which corresponds with U.S. Appl. No. 14/536,426, 3 pages.
Certificate of Grant, dated Apr. 29, 2017, received in Australian Patent Application No. 2013368440, which corresponds with U.S. Appl. No. 14/536,426, 3 pages.
Office Action, dated Nov. 6, 2017, received in Chinese Patent Application No. 201380068493.6, which corresponds with U.S. Appl. No. 14/608,895, 5 pages.
Office Action, dated Jul. 21, 2016, received in European Patent Application No. 13795391.5, which corresponds with U.S. Appl. No. 14/536,426, 9 pages.
Office Action, dated Mar. 9, 2018, received in European Patent Application No. 13795391.5, which corresponds with U.S. Appl. No. 14/536,426, 4 pages.
Office Action, dated Sep. 13, 2016, received in Japanese Patent Application No. 2015-547948, which corresponds with U.S. Appl. No. 14/536,426, 5 pages.
Patent, dated May 12, 2017, received in Japanese Patent Application No. 2015-547948, which corresponds with U.S. Appl. No. 14/536,426, 3 pages
Office Action, dated Apr. 5, 2016, received in Korean Patent Appliation No. 10-2015-7018851, which corresponds with U.S. Appl. No. 14/536,426, 7 pages
Office Action, dated Feb. 24, 2017, received in Korean Patent Application No. 10-2015-7018851, which corresponds with U.S. Appl. No. 14/536,426, 3 pages
Patent, dated May 26, 2017, received in Korean Patent Application No. 2015-7018851, which corresponds with U.S. Appl. No. 14/536,426, 3 pages
Office Action, dated Jul. 26, 2017, received in U.S. Appl. No. 14/536,235, 14 pages.
Final Office Action, dated Feb. 26, 2018, received in U.S. Appl. No. 14/536,235, 13 pages.
Office Action, dated Apr. 5, 2017, received in U.S. Appl. No. 14/536,367, 16 pages.
Notice of Allowance, dated Nov. 30, 2017, received in U.S. Appl. No. 14/536,367, 9 pages.
Notice of Allowance, dated May 16, 2018, received in U.S. Appl. No. 14/536,367, 5 pages.
Office Action, dated Dec. 17, 2015, received in U.S. Appl. No. 14/536,426, 5 pages.
Final Office Action, dated May 6, 2016, received in U.S. Appl. No. 14/536,426, 23 pages.
Office Action, dated Aug. 3, 2017, received in U.S. Appl. No. 14/536,426, 10 pages
Office action, dated Jul. 15, 2015, received in Australian Patent Application No. 2013259606, which corresponds with U.S. Appl. No. 14/536,426, 3 pages.
Notice of Allowance, dated May 23, 2016, received in Australian Patent Application No. 2013259606, which corresponds with U.S. Appl. No. 14/536,426, 3 pages.
Certificate of Grant, dated Sep. 15, 2016, received in Australian Patent Australian Patent Application No. 2013259606, which corresponds with U.S. Appl. No. 14/536,426, 1 page.
Office Action, dated Nov. 18, 2015, received in Austalian Patent Application No. 2015101231, which corresponds with U.S. Appl. No. 14/536,426, 3 pages.
Office Action, dated May 15, 2017, received in Australian Patent Application No. 2016216580, which corresponds with U.S. Appl. No. 14/536,426, 3 pages.
Office Action, dated May 8, 2018, received in Austalian Patent Application No. 2016216580, which corresponds with U.S. Appl. No. 14/536,426, 5 pages.
Notice of Allowance, dated May 17, 2018, received in Australian Patent Application No. 20162016580, which corresponds with U.S. Appl. No. 14/536,426, 3 pages.
Office Action, dated Sep. 19, 2017, recieved in Chinese Patent Application No. 201380035982.1, which corresponds with U.S. Appl. No. 14/536,426, 5 ages.
Notice of Allowance, dated May 10, 2018, received in Chinese Patent Application No. 201380035982.1, which corresponds with U.S. Appl. No. 14/536,426, 2 pages.
Office Action, dated Sep. 20. 2017, received in Chinese Patent Application No. 201510566550.4, which corresponds with U.S. Appl. No. 14/536,426, 11 pages.
Decision to Grant, dated Jul. 14, 2016, received in European Patent Application No. 13724100.6, which corresponds with U.S. Appl. No. 14/536,426 1 page.
Letters Patent, dated Aug. 10, 2016, received in European Patent Application No. 13724100.6, which corresponds with U.S. Appl. No. 14/536,426, 1 page.
Office Action, dated Jan. 20, 2017, received in European Patent Application No. 15183980.0, which corresponds with U.S. Appl. No. 14/536,426, 5 pages.
Office Action, dated Aug. 21, 2017, received in European Patent Application No. 15183980.0, which corresponds with U.S. Appl. No. 14/536,426, 3 pages.
Intention to Grant, dated Mar. 9, 2018, received in European Patent Application No. 15183980.0 which corresponds with U.S. Appl. No. 14/536,426, 5 pages.
Certificate of Grant, dated Nov. 10, 2017, received in Hong Kong Patent Application No. 15107535.0, which corresponds with U.S. Appl. No. 14/536,426, 2 pages.
Office Action, dated Mar. 4, 2016, received in Japanese Patent Application No. 2015-511644, which corresponds with U.S. Appl. No. 14/536,426, 3 pages.
Office Action, dated Feb. 6, 2017, received in Japanese Patent Application No. 2015-511644, which corresponds with U.S. Appl. No. 14/536,426, 6 pages.
Notice of Allowance, dated Dec. 8, 2017, received in Japanese Patent Application No. 2015-511644, which corresponds with U.S. Appl. No. 14/536,426, 6 pages.
Patent, dated Jan. 12, 2018, received in Japanese Patent Application No. 2015-511644, which corresponds with U.S. Appl. No. 14/536,426, 3 pages.
Office Action, dated Mar. 9, 2017, received in U.S. Appl. No. 14/536,464, 21 pages.
Final Office Action, dated Aug. 25, 2017, received in U.S. Appl. No. 14/536,464, 30 pages.
Office Action, dated Feb. 12, 2018, received in U.S. Appl. No. 14/536,464, 33 pages.
Office Action, dated Sep. 25, 2017, received in U.S. Appl. No. 14/536,464, 29 pages.
Final Office Action, dated May 3, 2018, received in U.S. Appl. No. 14/536,464, 28 pages.
Office Action, dated Oct. 19, 2017, received in U.S. Appl. No. 14/608,926, 14 pages.
Final Office Action, dated Jun. 6, 2018, received in U.S. Appl. No. 14/608,926, 19 pages.
Office Action, dated Feb. 1, 2016, received in Australian Patent Application No. 2013368441, which corresponds with U.S. Appl. No. 14/608,926, 3 pages.
Notice of Allowance, dated Mar. 30, 2016, received in Australian Patent Application No. 2013368441, which corresponds with U.S. Appl. No. 14/608,926, 1 page.
Certificate of Grant, dated Jul. 29, 2016, received in Australian Patent Application No. 2013368441, which corresponds with U.S. Appl. No. 14/608,926, 1 page.
Office Action, dated Jan. 3, 2017, received in Australian Patent Application No. 2016201451, which corresponds with U.S. Appl. No. 14/608,926, 3 pages.
Notice of Acceptance, dated Dec. 20, 2017, received in Australian Patent Application No. 2016201451, which corresponds with U.S. Appl. No. 14/608,926, 3 pages.
Certificate of Grant, dated May 3, 2018, received in Australian Patent Application No. 2016201451, which corresponds with U.S. Appl. No. 14/608,926, 1 page.
Office Action, dated May 4, 2017, received in Chinese Patent Application No. 201380068414.1, which corresponds with U.S. Appl. No. 14/608,926, 5 pages.
Notice of Allowance dated Feb. 8, 2018, received in Chinese Patent Application Nov. 201380068414.1, which corresponds with U.S. Appl. No. 14/608,926, 2 pages.
Patent, dated May 4, 2018, received in Chinese Patent Application No. 201380068414.1, which corresponds with U.S. Appl. No. 14/608,926, 4 pages.
Office Action, dated Apr. 21, 2016, received in European Application No. 13795392.3, which corresponds with U.S. Appl. No. 14/608,926, 6 pages.
Office Action, dated May 6, 2016, received in European Patent Application No. 13795392.3, which corresponds with U.S. Appl. No. 14/608,926, 6 pages.
Office Action, dated Nov. 11, 2016, received in European Patent Application No. 13795392.3, which corresponds with U.S. Appl. No. 14/608,926, 6 pages.
Office Action, dated Jul. 4, 2017, received in European Patent Application No. 13795392.3, which corresponds with U.S. Appl. No. 14/608,926, 4 pages.
Oral Summons, dated Feb. 13, 2017, received in European Patent Application No. 13795392.3, which corresponds with U.S. Appl. No. 14/608,926, 11 pages.
Office Action, dated Mar. 14, 2016, received in Japanese Patent Application No. 2015-549392, which corresponds with U.S. Appl. No. 14/608,926, 4 pages.
Notice of Allowance, dated Jan. 17, 2017, received in Japanese Patent Application No. 2015-549392, which corresponds with U.S. Appl. No. 14/608,926, 2 pages.
Patent, dated Feb. 17, 2017, received in Japanese Patent Application No. 2015-549392, which corresponds with U.S. Appl. No. 14/608,926, 3 pages.
Patent, dated Apr. 27, 2018, received in Japanese Patent Application No. 2017-024234, which corresponds with U.S. Appl. No. 14/608,926, 3 pages.
Office Action, dated May 12, 2016, received in Korean Patent Application No. 10-2015-7018853, which corresponds with U.S. Appl. No. 14/608,926, 4 pages.
Notice of Allowance, dated Mar. 31, 2017, received in Korean Patent Application No. 2015-7018853, which corresponds with U.S. Appl. No. 14/608,926, 4 pages.
Patent, dated Jun. 30, 2017, received in Korean Patent Application No. 2015-7018853, which corresponds with U.S. Appl. No. 14/608,926, 3 pages.
Office Action, dated Aug. 22, 2017, received in Korean Patent Application No. 2017-7018250, which corresponds with U.S. Appl. No. 14/608,926, 2 pages.
Notice of Allowance, dated Dec. 29, 2017, received in Korean Patent Application No. 2017-7018250, which corresponds with U.S. Appl. No. 14/608,926, 3 pages.
Office Action, dated Jul. 17, 2015, received in Australian Patent Application No. 2013259613, which corresponds with U.S. Appl. No. 14/536,646, 5 pages.
Office Action, dated May 31, 2016, received in Australian Patent Application No. 2013259613, which corresponds with U.S. Appl. No. 14/536,646, 4 pages.
Notice of Allowance, dated Jul. 5, 2016, received in Australian Paent Application No. 2013259613, which corresponds with U.S. Appl. No. 14/536,646, 3 pages.
Office Action, dated Dec. 1, 2016, received in Chinese Patent Application No. 2013800362059, which corresponds with U.S. Appl. No. 14/536,646, 3 pages.
Notice of Allowance, dated Oct. 9, 2017, received in Chinese Patent Application No. 2013800362059, which corresponds with U.S. Appl. No. 14/536,646, 3 pages.
Office Action, dated Oct. 19, 2017, received in U.S. Appl. No. 14/536,646, 21 pages.
Office Action, dated Nov. 12, 2015, received in European Patent Application No. 13724102.2, which corresponds with U.S. Appl. No. 14/536,646, 6 pages.
Office Action, dated May 31, 2016, received in European Patent Application No. 13724102.2, which corresponds with U.S. Appl. No. 14/536,646, 5 pages.
Notice of Allowance, dated Jan. 4, 2017, received in European Patent Application No. 13724102.2, which corresponds with U.S. Appl. No. 14/536,646, 5 pages.
Patent, dated May 26, 2017, received in European Patent Application No. 13724102.2, which corresponds with U.S. Appl. No. 14/536,646, 1 page.
Office Action, dated Feb. 29, 2016, received in Japanese Patent Application No. 2015-511645, which corresponds with U.S. Appl. No. 14/536,646, 5 pages.
Notice of Allowance, dated Dec. 22, 2016, received in Japanese Patent Application No. 2015-511645, which corresponds with U.S. Appl. No. 14/536,646, 2 pages.
Office Action, dated Apr. 3, 2017, received in U.S. Appl. No. 14/536,141, 11 pages.
Notice of Allowance, dated Sep. 20, 2017, received in U.S. Appl. No. 14/536,141, 10 pages.
Office Action, dated Aug. 27, 2015, received in Australian Patent Application No. 2013259614, which corresponds with U.S. Appl. No. 14/536,141, 4 pages.
Notice of Allowance, dated Aug. 15, 2016, received in Australian Patent Application No. 2013259614, which corresponds with U.S. Appl. No. 14/536,141, 4 pages.
Office Action, dated Jul. 21, 2017, received in Australian Patent Application No. 2016262773, which corresponds with U.S. Appl. No. 14/536,141, 3 pages.
Office Action, dated Mar. 3, 2018, received in Chinese Patent Application No. 201380035893.7, which corresponds with U.S. Appl. No. 14/536,141, 8 pages.
Office Action, dated Feb. 2, 2018, received in Chinese Patent Application No. 201380035893.7, which corresponds with U.S. Appl. No. 14/536,141, 5 pages.
Office Action, dated Jan. 7, 2016, received in European Patent Application No. 13726053.5, which corresponds with U.S. Appl. No. 14/536,141, 10 pages.
Office Action, dated Aug. 31, 2016, received in European Patent Application No. 13726053.5, which corresponds with U.S. Appl. No. 14/536,141, 10 pages.
Office Action, dated Apr. 9, 2018, received in European Patent Application No. 13726053.5, which corresponds with U.S. Appl. No. 14/536,141, 9 pages.
Office Action, dated Feb. 29, 2016, received in Japanese Patent Application No. 2015-511646, which corresponds with U.S. Appl. No. 14/536,141, 3 pages.
Office Action, dated Oct. 25, 2016, received in Japanese Patent Application No. 2015-511646, which corresponds with U.S. Appl. No. 14/536,141, 6 pages.
Notice of Allowance, dated Jun. 30, 2017, received in Japanese Patent Application No. 2015-511646, which corresponds with U.S. Appl. No. 14/536,141, 5 pages.
Patent, dated Jul. 28, 2017, received in Japanese Patent Application No. 2015-511646, which corresponds with U.S. Appl. No. 14/536,141, 3 pages.
Office Action, dated Dec. 8, 2016, received in U.S. Appl. No. 14/608,942, 9 pages.
Notice of Allowance, dated May 12, 2017, received in U.S. Appl. No. 14/608,942, 10 pages.
Office Action, dated Jan. 29, 2016, received in Australian Patent Application No. 2013368443, which corresponds with U.S. Appl. No. 14/608,942, 3 pages.
Notice of Allowance, dated Mar. 11, 2016, received in Australian Patent Application No. 2013368443, which corresponds with U.S. Appl. No. 14/608,942, 2 pages.
Certificate of Grant, dated Jul. 7, 2016, received in Australian Patent Application No. 2013368443, which corresponds with U.S. Appl. No. 14/608,942, 3 pages.
Office Action, dated Mar. 29, 2017, received in Australian patent Application No. 2016201303, which corresponds with U.S. Appl. No. 14/608,942, 3 pages.
Notice of Acceptance, dated Mar. 7, 2018, received in Australian patent Application No. 2016201303, which corresponds with U.S. Appl. No. 14/608,942, 3 pages.
Office Action, dated Jun. 16, 2017, received in Chinese Patent Application No. 201380068295.X, which corresponds with U.S. Appl. No. 14/608,942, 6 pages.
Office Action, dated Mar. 28, 2018, received in Chinese Patent Application No. 201380068295.X, which corresponds with U.S. Appl. No. 14/608,942, 5 pages.
Ofice Action, dated Oct. 7, 2016, received in European Patent Application No. 13798464.7, which corresponds with U.S. Appl. No. 14/608,942, 7 pages.
Office Action, dated Jul. 4, 2016, received in Japanese Patent Application No. 2015-549393, which corresponds with U.S. Appl. No. 14/608,942, 4 pages.
Notice of Allowance, dated May 12, 2017, received in Japanese Patent Application No. 2015-549393, which corresponds with U.S. Appl. No. 14/608,942, 5 pages.
Patent, dated Jun. 16, 2017, received in Japanese Patent Application No. 2015-549393, which corresponds with U.S. Appl. No. 14/608,942, 3 pages.
Office Action, dated Apr. 5, 2016, received in Korean Patent Application No. 2015-7018448, which corresponds with U.S. Appl. No. 14/608,942, 6 pages.
Office Action, dated Feb. 24, 2017, received in Korean Patent Application No. 2015-7018448, which corresponds with U.S. Appl. No. 14/608,942, 4 pages.
Office Action, dated Jul. 17, 2017, received in U.S. Appl. No. 14/536,166, 19 pages.
Notice of Allowance, dated Feb. 28, 2018, received in U.S. Appl. No. 14/536,166, 5 pages.
Office Action, dated Aug. 1, 2016, received in U.S. Appl. No. 14/536,203, 14 pages.
Notice of Allowance, dated Feb. 1, 2017, received in U.S. Appl. No. 14/536,203, 9 pages.
Office Action, dated Jul. 9, 2015, received in Australian Patent Application No. 2013259630, which corresponds with U.S. Appl. No. 14/536,203, 3 pages.
Notice of Allowance, dated Jun. 15, 2016, received in Australian Patent Application No. 2013259630, which corresponds with U.S. Appl. No. 14/536,203, 3 pages.
Certificate of Grant, dated Oct. 21, 2016, received in Australian Patent Application No. 2013259630, which corresponds with U.S. Appl. No. 14/536,203, 3 pages.
Office Action, dated Jul. 4, 2017, received in Australian Patent Application No. 2016238917, which corresponds with U.S. Appl. No. 14/536,203, 5 pages.
Office Action, dated Oct. 25, 2017, received in Chinese Patent Application No. 201380035977.0, which corresponds with U.S. Appl. No. 14/536,203, 5 pages.
Notice of Allowance, dated Apr. 4, 2018, received in Chinese Patent Application No. 201380035977.0, which corresponds with U.S. Appl. No. 14/536,203, 3 pages.
Office Action, dated Nov. 11, 2015, received in European Patent Application No. 13724104.8, which corresponds with U.S. Appl. No. 14/536,203, 5 pages.
Office Action, dated May 31, 2016, received in European Patent Application No. 13724104.8, which corresponds with U.S. Appl. No. 14/536,203, 5 pages.
Office Action, dated Dec. 6, 2017, received in European Patent Application No. 13724104.8, which corresponds with U.S. Appl. No. 14/536,203, 9 pages.
Office Action, dated Feb. 15, 2016, received in Japanese Patent Application No. 2015-511650, which corresponds with U.S. Appl. No. 14/536,203, 5 pages.
Notice of Allowance, dated Aug. 5, 2016, received in Japanese Patent Application No. 2015-511650, which corresponds with U.S. Appl. No. 14/536,203, 4 pages.
Certificate of Patent, dated Sep. 9, 2016, received in Japanese Patent Application No. 2015-511650, which corresponds with U.S. Appl. No. 14/536,203, 3 pages.
Office Action, dated Jun. 23, 2017, received in Japanese Patent Application No. 2016173113, which corresponds with U.S. Appl. No. 14/536,203, 5 pages.
Notice of Allowance, dated Jan. 12, 2018, received in Japanese Patent Application No. 2016173113, which corresponds with U.S. Appl. No. 14/536,203, 5 pages.
Patent, dated Feb. 16, 2018, received in Japanese Patent Application No. 2016173113, which corresponds with U.S. Appl. No. 14/536,203, 3 pages.
Office Action, dated Dec. 4, 2015, received in Korean Patent Application No. 2014-7034520, which corresponds with U.S. Appl. No. 14/536,203, 4 pages.
Notice of Allowance, dated Sep. 1, 2016, received in Korean Patent Application No. 2014-7034520, which corresponds with U.S. Appl. No. 14/536,203, 5 pages.
Office Action, dated Feb. 6, 2017, received in Korean Patent Application No. 2016-7033834, which corresponds with U.S. Appl. No. 14/536,203, 4 pages.
Notice of Allowance, dated Oct. 30, 2017, received in Korean Patent Application No. 2016-7033834, which corresponds with U.S. Appl. No. 14/536,203, 5 pages.
Patent, dated Jan. 23, 2018, received in Korean Paent Application No. 2016-7033834, which corresponds with U.S. Appl. No. 14/536,203, 4 pages.
Office Action, dated Oct. 20, 2017, received in U.S. Appl. No. 14/608,965, 4 pages.
Office action, dated Oct. 11, 2017, received in Chinese Patent Application No. 201380074060.1, which corresponds with U.S. Appl. No. 14/608,965, 5 pages.
Office Action, dated Jul. 22, 2016, received in European Office Action No. 13798465.4, which corresponds with U.S. Appl. No. 14/608,965, 8 pages.
Oral Proceedings, dated Mar. 7, 2018, received in European Office Action No. 13798465.4, which corresponds with U.S. Appl. No. 14/608,965, 5 pages.
Office Action, dated Oct. 20, 2017, received in U.S. Appl. No. 14/536,247, 10 pages.
Final Office Action, dated Mar. 24, 2017, received in U.S. Appl. No. 14/536,247, 14 pages.
Notice of Allowance, dated Nov. 22, 2017, received in U.S. Appl. No. 14/536,247, 6 pages.
Office Action, dated Mar. 24, 2017, received in U.S. Appl. No. 14/536,267, 12 pages.
Notice of Allowance, dated Nov. 9, 2017, received in U.S. Appl. No. 14/536,267, 8 pages.
Notice of Allowance, dated Jun. 1, 2018, received in U.S. Appl. No. 14/536,267, 5 pages.
Office Action, dated Aug. 10, 2015, received in Australian Patent Application No. 2013259637, which corresponds with U.S. Appl. No. 14/536,267, 3 pages.
Notice of Allowance, dated Jun. 28, 2016, received in Australian Patent Application No. 2013259637, which corresponds with U.S. Appl. No. 14/536,267, 3 pages.
Certificate of Grant, dated Oct. 21, 2016, received in Australian Patent Application No. 2013259637, which corresponds with U.S. Appl. No. 14/536,267, 3 pages.
Office Action, dated Mar. 24, 2017, received in Australian Patent Application No. 2016204411, which corresponds with U.S. Appl. No. 14/536,267, 3 pages.
Notice of Acceptance, dated Feb. 27, 2018, received in Australian Patent Appliation No. 2016204411, which corresponds with U.S. Appl. No. 14/536,267, 3 pages.
Office Action, datee Dec. 9, 2016, received in Chinese Patent Application No. 2016120601564130, which corresponds with U.S. Appl. No. 14/536,267, 4 pages.
Notice of Allowance, dated Jan. 29, 2018, received in Chinese Patent Application No. 201380035968.1, which corresponds with U.S. Appl. No. 14/536,267, 3 pages.
Patent, dated Apr. 20, 2018, received in Chinese Patent Application No. 201380035968.1, which corresponds with U.S. Appl. No. 14/536,267, 4 pages.
Office Action, dated Jan. 25, 2018, received in European Patent Application No. 13724106.3, which corresponds with U.S. Appl. No. 14/536,267, 5 pages.
Office Action, dated Sep. 13, 2017, received in received in European Patent Application No. 16177863.4, which corresponds U.S. Appl. No. 14/536,267, 6 pages.
Office Action, dated Jan. 29, 2016, received in Japanese Patent Application No. 2015-511652, which corresponds U.S. Appl. No. 14/536,267, 3 pages.
Notice of Allowance, dated Sep. 26, 2016, received in Japanese Patent Application No. 2015-511652, which corresponds with U.S. Appl. No. 14/536,267, 5 pages.
Office Action, dated Mar. 3, 2017, received in Japanese Patent Application No. 2016-125839, which corresponds with U.S. Appl. No. 14/536,267, 6 pages.
Notice of Allowance, dated Nov. 17, 2017, received in Japanese Patent Application No. 2016-125839, which corresponds with U.S. Appl. No. 14/536,267, 5 pages.
Office Action, dated Dec. 4, 2015, received in Korean Patent Application No. 2014-7034530, which corresponds with U.S. Appl. No. 14/536,267, 3 pages.
Notice of Allowance, dated Sep. 1, 2016, received in Korean Patent Application No. 2014-7034530, which corresponds with U.S. Appl. No. 14/536,267, 3 pages.
Office Action, dated Jan. 5, 2017, received in Korean Patent Application No. 2016-729533, which corresponds with U.S. Appl. No. 14/536,267, 2 pages.
Notice of Allowance, dated Sep. 1, 2017, received in Korean Patent Application No. 2016-7029533, which corresponds with U.S. Appl. No. 14/536,267, 4 pages.
Patent, dated Dec. 1, 2017, received in Korean Patent Application No. 2016-7029533, which corresponds with U.S. Appl. No. 14/536,267, 2 pages.
Office Action, dated Apr. 7, 2017, received in U.S. Appl. No. 14/536,291, 11 pages.
Notice of Allowance, dated Dec. 1, 2017, received in U.S. Appl. No. 14/536,291, 19 pages.
Notice of Allowance, dated Mar. 20, 2018, received in U.S. Appl. No. 14/536,291, 5 pages.
Office Action, dated Aug. 18, 2015, received in Australian Patent Application No. 2013259642, which corresponds with U.S. Appl. No. 14/536,291, 3 pages.
Office Action, dated Jul. 25, 2016, received in Australian Patent Application No. 2013259642, which corresponds with U.S. Appl. No. 14/536,291, 3 pages.
Office Action, dated Aug. 10, 2016, received in Australian Patent Application No. 2013259642, which corresponds with U.S. Appl. No. 14/536,291, 4 pages.
Office Action, dated Jul. 21, 2017, received in Australian Patent Application No. 2016216658, which corresponds with U.S. Appl. No. 14/536,291, 3 pages.
Innovation Patent, dated Sep. 1, 2016, received in Australian Patent Application No. 2016101481, which corresponds with U.S. Appl. No. 14/536,291, 1 page.
Office Action, dated Sep. 29, 2016, received in Australian Patent Application No. 2016101481, which corresponds with U.S. Appl. No. 14/536,291, 3 pages.
Office Action, dated Oct. 23, 2017, received in Chinese Patent Application No. 201380035986.X, which corresponds with U.S. Appl. No. 14/536,291, 9 pages.
Office Action, dated Jan. 7, 2016, received in European Patent Application No. 13724107.1, which corresponds with U.S. Appl. No. 14/536,291, 11 pages.
Office Action, dated Aug. 22, 2016, received in European Patent Application No. 13724107.1, which corresponds with U.S. Appl. No. 14/536,291, 7 pages.
Office Action, dated Mar. 23, 2017, received in European Patent Application No. 13724107.1, which corresponds with U.S. Appl. No. 14/536,291, 8 pages.
Office Action, dated Mar. 8, 2016, received in Japanese Patent Application No. 2015-511655, which corresponds with U.S. Appl. No. 14/536,291, 4 pages.
Final Office Action, dated Dec. 22, 2016, received in Japanese Patent Application No. 2015-511655, which corresponds with U.S. Appl. No. 14/536,291, 3 pages.
Office Action, dated Oct. 19, 2017, received in U.S. Appl. No. 14/608,985, 13 pages.
Office Action, dated Jan. 15, 2016, received in Australian Patent Application No. 2013368445, which corresponds with U.S. Appl. No. 14/608,985, 3 pages.
Notice of Allowance, dated Jan. 18, 2017, received in Australian Patent Application No. 2013368442, which corresponds with U.S. Appl. No. 14/608,985, 3 pages.
Patent, dated May 18, 2017, received in Australian Patent Application No. 2013368445, which corresponds with U.S. Appl. No. 14/608,985, 1 page.
Office Action, dated May 19, 2017, received in Chinses Patent Application No. 201380068399.0, which corresponds with U.S. Appl. No. 14/608,985, 5 pages.
Notice of Allowance, dated Sep. 19, 2017, received in Chinese Patent Application No. 201380068399.0, which corresponds with U.S. Appl. No. 14/608,985, 3 pages.
Patent, dated Dec. 8, 2017, received in Chinese Patent Application No. 201380068399.0, which corresponds with U.S. Appl. No. 14/608,985, 4 pages.
Office Action, dated Jul. 25, 2016, received in European Patent Application No. 13811032.5, which corresponds with U.S. Appl. No. 14/608,985, 8 pages.
Office Action, dated Feb. 27, 2017, received in European Patent Application No. 13811032.5, which corresponds with U.S. Appl. No. 14/608,985, 6 pages.
Summons, dated Oct. 6, 2017, received in European Patent Application No. 13811032.5, which corresponds with U.S. Appl. No. 14/608,985, 6 pages.
Office Action, dated Apr. 25, 2016, received in Japanese Patent Application No. 2015-550384, which corresponds with U.S. Appl. No. 14/608,985, 4 pages.
Notice of Allowance, dated Jan. 24, 2017, received in Japanese Patent Application No. 2015-550384, which corresponds with U.S. Appl. No. 14/608,985, 5 pages.
Patent, dated Feb. 24, 2017, received in Japanese Patent Application No. 2015-550384, which corresponds with U.S. Appl. No. 14/608,985, 2 pages.
Office Action, dated Nov. 4, 2016, received in Korean Patent Application No. 2015-7019984, which corresponds with U.S. Appl. No. 14/608,985, 8 pages.
Notice of Allowance, dated Sep. 19, 2017, received in Korean Patent Application No. 2015-7019984, which corresponds with U.S. Appl. No. 14/608,985, 4 pages.
Patent, dated Dec. 19, 2017, received in Korean Patent Application No. 20157019984, which corresponds with U.S. Appl. No. 14/608,985, 3 pages.
Office Action, dated Mar. 24, 2017, received in U.S. Appl. No. 14/609,006, 13 pages.
Final Office Action, dated Sep. 21, 2017, received in U.S. Appl. No. 14/609,006, 17 pages.
Office Action, dated Mar. 20, 2018, received in U.S. Appl. No. 14/609,006, 13 pages.
Office Action, dated Apr. 19, 2017, received in U.S. Appl. No. 14/536,296, 12 pages.
Final Office Action, dated Nov. 2, 2017, received in U.S. Appl. No. 14/536,296, 13 pages.
Notice of Allowance, dated Mar. 14, 2018, received in U.S. Appl. No. 14/536,296, 8 pages.
Office Action, dated Nov. 1, 2017, received in U.S. Appl. No. 14/536,648, 22 pages.
Office Action, dated Apr. 27, 2018, received in Japanese Patent Application No. 2017-008764, which corresponds with U.S. Appl. No. 14/536,648, 5 pages.
Office Action, dated Jan. 19, 2017, received in U.S. Appl. No. 14/609,042, 12 pages.
Notice of Allowance, dated Jul. 10, 2017, received in U.S. Appl. No. 14/609,042, 8 pages.
Office Action, dated Mar. 31, 2016, received in U.S. Appl. No. 14/864,737, 17 pages.
Notice of Allowance, dated Feb. 27, 2017, received in U.S. Appl. No. 14/864,737, 9 pages.
Notice of Allowance, dated Jun. 19, 2017, received in U.S. Appl. No. 14/864,737, 8 pages.
Office Action, dated Apr. 16, 2018, received in Australian Patent Application No. 2016233792, which corresponds with U.S. Appl. No. 14/864,737, 2 pages.
Notice of Allowance, dated Jul. 1, 2016, received in Chinese Patent Application No. 201620214376.7, which corresponds with U.S. Appl. No. 14/864,737, 3 pages.
Patent, dated Aug. 3, 2016, received iin Chinese Patent Application No. 201620214376.7, which corresponds with U.S. Appl. No. 14/864,737, 5 pages.
Certificate of Registration, dated Jun. 20, 2016, received in German Patent Application No. 202016001845.1, which corresponds with U.S. Appl. No. 14/864,737, 3 pages.
Office Action, dated Apr. 5, 2016, received in Danish Patent Application No. 201500577, which corresponds with U.S. Appl. No. 14/864,737, 7 pages.
Intention to Grant, dated Aug. 2, 2016, received in Danish Patent Application No. 201500577, which corresponds with U.S. Appl. No. 14/864,737, 2 pages.
Decision to grant, dated Mar. 29, 2018, received in European Patent Application No. 16710871.1, which corresponds with U.S. Appl. No. 14/864,737, 2 pages.
Grant Certificate, dated Apr. 25, 2018, received in European Patent Application No. 16710871.1, which corresponds with U.S. Appl. No. 14/864,737, 2 pages.
Office Action, dated May 15, 2017, received in Japanese Patent Application No. 2016-558331, which corresponds with U.S. Appl. No. 14/864,737, 5 pages.
Notice of Allowance, dated Jun. 23, 2017, received in Japanese Patent Application No. 2016-558331, which corresponds with U.S. Appl. No. 14/864,737, 5 pages.
Patent, dated Jul. 28, 2017, received in Japanese Patent Application No. 2016-558331, which corresponds with U.S. Appl. No. 14/864,737, 3 pages.
Office Action, dated Feb. 14, 2018, received in Korean Patent Application No. 2017-7030129, which corresponds with U.S. Appl. No. 14/864,737, 17 pages.
Patent, dated Jul. 12, 2017, received in Dutch Patent Application No. 2016452, which corresponds with U.S. Appl. No. 14/864,737, 2 pages.
Office Action, dated Jun. 27, 2016, received in U.S. Appl. No. 14/866,981, 22 pages.
Notice of Allowance, dated Oct. 24, 2016, received in U.S. Appl. No. 14/866,981, 7 pages.
Notice of Allowance, dated Feb. 10, 2017, received in U.S. Appl. No. 14/866,981, 5 pages.
Office Action, dated May 10, 2016, received in Australian Patent Application No. 2016100254, which corresponds with U.S. Appl. No. 14/866,981, 6 pages.
Patent, dated Nov. 2, 2016, received in Australian Patent Application No. 2016100254, which corresponds with U.S. Appl. No. 14/866,981, 1 page.
Notice of Allowance, dated Jul. 27, 2016, received in Chinese Patent Application No. 201620176169.7, which corresponds with U.S. Appl. No. 14/866,981, 3 pages.
Patent, dated Sep. 28, 2016, received in Chinese Patent Application No. 201620176169.7, which corresponds with U.S. Appl. No. 14/866,981, 4 pages.
Certificate of Registration, dated Jun. 20, 2016, received in German Patent Application No. 202016001514.2, which corresponds with U.S. Appl. No. 14/864,737, 3 pages.
Office Action, dated Mar. 18, 2016, received in Danish Patent Application No. 201500575, which corresponds with U.S. Appl. No. 14/866,981, 9 pages.
Office Action, dated Dec. 5, 2016, received in Danish Patent Application No. 201500575, which corresponds with U.S. Appl. No. 14/866,981, 3 pages.
Office Action, dated Jul. 7, 2017, received in Danish Patent Application No. 201500575, 4 pages.
Patent, Nov. 16, 2017, received in Dutch Patent Application No. 2016375, which corresponds with U.S. Appl. No. 14/866,981, 2 pages.
Office Action, dated Dec. 15, 2017, received in U.S. Appl. No. 14/866,159, 35 pages.
Notice of Allowance, dated May 18, 2018, received in U.S. Appl. No. 14/866,159, 8 pages.
Office Action, dated May 19, 2016, received in Australian Patent Application No. 2016100251, which corresponds with U.S. Appl. No. 14/866,159, 5 pages.
Office Action, dated Jul. 5, 2016, received in Chinese Patent Application No. 201620186008.6, which corresponds with U.S. Appl. No. 14/866,159, 3 pages.
Certificate of Registration, dated Jun. 16, 2016, received in German Patent Application No. 202016001483.9, which corresponds with U.S. Appl. No. 14/866,159, 3 pages.
Office Action, dated Mar. 9, 2016, received in Danish Patent Application No. 201500574, which corresponds with U.S. Appl. No. 14/866,159, 11 pages.
Office Action, dated Sep. 27, 2016, received in Danish Patent Application No. 201500574, which corresponds with U.S. Appl. No. 14/866,159, 4 pages.
Office Action, dated Mar. 14, 2017, received in Danish Patent Application No. 201500574, which corresponds with U.S. Appl. No. 14/866,159, 5 pages.
Office Action, dated Jul. 6, 2017, received in Danish Patent Application No. 201500574, which corresponds with U.S. Appl. No. 14/866,159, 3 pages.
Office Action, dated Jan. 10, 2018, received in Danish Patent Application No. 201500574, which corresponds with U.S. Appl. No. 14/866,159, 2 pages.
Notice of Allowance, dated Mar. 21, 2018, received in Danish Patent Application No. 201500574, which corresponds with U.S. Appl. No. 14/866,159, 2 pages.
Patent, dated May 22, 2018, received in Danish Patent Application No. 201500574, which corresponds with U.S. Appl. No. 14/866,159, 2 pages.
Patent, dated Sep. 7, 2017, received in Danish Patent Application No. 2016377, which corresponds with U.S. Appl. No. 14/866,159, 4 pages.
Office Action, dated Oct. 6, 2017, received in U.S. Appl. No. 14/868,078, 40 pages.
Notice of Allowance, dated May 24, 2018, received in U.S. Appl. No. 14/868,078, 6 pages.
Innovatioon Patent, dated Aug. 4, 2016, received in Australian Patent Application No. 2016101201, which corresponds with U.S. Appl. No. 14/868,078, 1 page.
Office Action, dated Oct. 12, 2016, received in Australian Patent Application No. 2016101201, which corresponds with U.S. Appl. No. 14/868,078, 3 pages.
Notice of Allowance, dated Sep. 1, 2017, received in Australian Patent Application No. 2016229421, which corresponds with U.S. Appl. No. 14/868,078, 3 pages.
Certificate of Grant, dated Jan. 3, 2018, received in Australian Patent Application No. 2016229421, which corresponds with U.S. Appl. No. 14/868,078, 1 page.
Notice of Allowance, dated Oct. 1, 2016, received in Chinese Patent Application No. 201620175847.8, which corresponds with U.S. Appl. No. 14/868,078, 1 page.
Certificate of Registration, dated Jun. 30, 2016, received in German Patent Application No. 20201600156.9, which corresponds with U.S. Appl. No. 14/868,078, 3 pages.
OPffice Action, dated Mar. 30, 2016, received in Danish Patent Application No. 201500588, which corresponds with U.S. Appl. No. 14/868,078, 9 pages.
Office Action, dated Sep. 2, 2016, received in Danish Patent Application No. 201500588, which corresponds with U.S. Appl. No. 14/868,078, 4 pages.
Notice of Allowance, dated Jan. 30, 2017, received in Danish Patent Application No. 201500588, which corresponds with U.S. Appl. No. 14/868,078, 2 pages.
Notice of Allowance, dated May 2, 2017, received in Danish Patent Application No. 201500588, which corresponds with U.S. Appl. No. 14/868,078, 2 pages.
Patent, dated Sep. 11, 2017, received in Danish Patent Application No. 201500588, which corresponds with U.S. Appl. No. 14/868,078, 5 pages.
Office Action, dated Apr. 25, 2018, received in European Patent Application No. 16708916.8, which corresponds with U.S. Appl. No. 14/868,078, 6 pages.
Patent, dated Jul. 12, 2017, received in Dutch Patent Application No. 2016376, which corresponds with U.S. Appl. No. 14/868,078, 2 pages.
Office Action, dated May 9, 2018, received in U.S. Appl. No. 14/863,432, 26 pages.
Notice of Allowance, dated Nov. 14, 2016, received in U.S. Appl. No. 14/863,432, 7 pages.
Notice of Allowance, dated Apr. 27, 2017, received in U.S. Appl. No. 14/863,432, 7 pages.
Notice of Allowance, dated Sep. 18, 2017, received in U.S. Appl. No. 14/863,432, 8 pages.
Office Action, dated Aug. 19, 2016, received in Australian Patent Application No. 2016100647, which corresponds with U.S. Appl. No. 14/863,432, 5 pages.
Notice of Allowance, dated Jan. 12, 2017, received in Chinese Patent Application No. 201620470063.8, which corresponds with U.S. Appl. No. 14/863,432, 1 page.
Office Action, dated Apr. 4, 2016, received in Danish Patent Application No. 201500582, which corresponds with U.S. Appl. No. 14/863,432, 10 pages.
Office Action, dated Oct. 7, 2016, received in Danish Patent Application No. 201500582, which corresponds with U.S. Appl. No. 14/863,432, 6 pages.
Office Action, dated Jun. 12, 2017, received in Danish Patent Application No. 201500582, which corresponds with U.S. Appl. No. 14/863,432, 5 pages.
Grant, dated Jul. 21, 2017, received in Dutch Patent Application No. 2016801, which corresponds with U.S. Appl. No. 14/863,432, 8 pages.
Office Action, dated Oct. 13, 2016, received in U.S. Appl. No. 14/866,511, 27 pages.
Final Office Action, dated Jan. 27, 2017, received in U.S. Appl. No. 14/866,511, 26 pages.
Notice of Allowance, dated Oct. 4, 2017, received in U.S. Appl. No. 14/866,511, 37 pages.
Office Action, dated Aug. 19, 2016, received in U.S. Appl. No. 14/291,880, 19 pages.
Notice of Allowance, dated Jan. 10, 2017, received in U.S. Appl. No. 14/291,880, 8 pages.
Patent, dated Aug. 18, 2016, received in Australian Patent Application 2016100653, which corresponds with U.S. Appl. No. 14/866,511, 1 page.
Notice of Allowance, dated Jan. 12, 2017, received in Chinese Patent Application No. 201620470281.1, which corresponds with U.S. Appl. No. 14/866,511, 1 page.
Office Action, dated Mar. 22, 2016, received in Danish Patent Application No. 201500576, which corresponds with U.S. Appl. No. 14/866,511, 10 pages.
Intention to Grant, dated Jun. 8, 2016, received in Danish Patent Application No. 201500576, which corresponds with U.S. Appl. No. 14/866,511, 2 pages.
Grant, dated Aug. 26, 2016, received in Danish Patent Application No. 201500576, which corresponds with U.S. Appl. No. 14/866,511, 2 pages.
Patent, dated Jan. 23, 2017, received in Danish Patent Application No. 201500576, which corresponds with U.S. Appl. No. 14/866,511, 3 pages.
Office Action, dated Nov. 24, 2017, received in European Patent Application No. 16727900.9, which corresponds with U.S. Appl. No. 14/866,511, 5 pages.
Office Action, dated May 24, 2018, received in European Patent Application No. 16727900.9, which corresponds with U.S. Appl. No. 14/866,511, 7 pages.
Office Action, dated Jun. 9, 2017, received in Japanese Patent Application No. 2016-558214, which corresponds with U.S. Appl. No. 14/866,511, 6 pages.
Notice of Allowance, dated Jul. 14, 2017, received in Japanese Patent Application No. 2016558214, which corresponds with U.S. Appl. No. 14/866,511, 5 pages.
Patent, dated Aug. 18, 2017, received in Japanese Patent Application No. 2016558214, which corresponds with U.S. Appl. No. 14/866,511, 3 pages.
Office Action, dated May 10, 2016, received in U.S. Appl. No. 14/866,489, 15 pages.
Final Office Action, dated Sep. 16, 2016, received in U.S. Appl. No. 14/866,489, 4 pages.
Notice of Allowance, dated Apr. 27, 2017, received in U.S. Appl. No. 14/866,489, 27 pages.
Notice of Allowance, dated Jul. 6, 2017, received in U.S. Appl. No. 14/866,489, 12 pages.
Office Action, dated Mar. 28, 2016, received in U.S. Appl. No. 14/869,899, 17 pages.
Office Action, dated Jun. 28, 2016, received in U.S. Appl. No. 14/869,899, 5 pages.
Final Office Action, dated Sep. 2, 2016, received in U.S. Appl. No. 14/869,899, 22 pages.
Notice of Allowance, dated Feb. 28, 2017, received in U.S. Appl. No. 14/869,899, 9 pages.
Innovation Patent, dated Aug. 25, 2016, received in Australian Patent Application No. 2016101438, which corresponds with U.S. Appl. No. 14/869,899, 1 page.
Certificate of Examination, dated Oct. 11, 2016, received in Australian Patent Application No. 2016101438, which corresponds with U.S. Appl. No. 14/869,899, 1 page.
Office Action, dated Feb. 3, 2616, received in Danish Patent Application No. 201500592, which corresponds with U.S. Appl. No. 14/869,899, 9 pages.
Office Action, dated Oct. 7, 2016, received in Danish Patent Application No. 201500592, which corresponds with U.S. Appl. No. 14/869,899, 6 pages.
Office Action, dated Jul. 3, 2017, received in Danish Patent Application No. 201500592, which corresponds with U.S. Appl. No. 14/869,899, 5 pages.
Office Action, dated Jan. 29, 2018, received in Danish Patent Application No. 201500592, which corresponds with U.S. Appl. No. 14/869,899, 2 pages.
Notice of Allowance, dated Apr. 24, 2018, received in Danish Patent Application No. 201500592, which corresponds with U.S. Appl. No. 14/869,899, 2 pages.
Patent, dated May 28, 2018, received in Danish Patent Application No. 201500592, which corresponds with U.S. Appl. No. 14/869,899, 2 pages.
Office Action, dated Nov. 22, 2016, received in Danish Patent Application No. 201670594, which corresponds with U.S. Appl. No. 14/869,899, 9 pages.
Office Action, dated Dec. 14, 2017, received in Danish Patent Application No. 201670594, which corresponds with U.S. Appl. No. 14/869,899, 3 pages.
Office Action, dated May 1, 2018, reeviced in Danish Patent Application No. 201670594, which corresponds with U.S. Appl. No. 14/869,899, 2 pages.
Office Action, dated Mar. 4, 2016, received in U.S. Appl. No. 14/866,992, 30 pages.
Final Office Action, dated Jul. 29, 2016, received in U.S. Appl. No. 14/866,992, 35 pages.
Office Action, dated Apr. 13, 2017, received in U.S. Appl. No. 14/866,992, 34 pages.
Final Office Action, dated Oct. 3, 2017, received in U.S. Appl. No. 14/866,992, 37 pages.
Office Action, dated Jan. 29, 2018, received in U.S. Appl. No. 14/866,992, 44 pages.
Innovation Patent, dated Sep. 22, 2016, received in Australian Patent Application No. 2016101418, which corresponds with U.S. Appl. No. 14/866,9921, 1 page.
Office Action, dated Nov. 22, 2016, received in Australian Patent Application No. 2016101418, which corresponds with U.S. Appl. No. 14/866,992, 7 pages.
Office Action, dated Feb. 7, 2017, received in Australian Patent Application No, 2016101418, which corresponds with U.S. Appl. No. 14/866,992, 5 pages.
Office Action, dated Mar. 26, 2018, received in Australian Patent Application No. 2016304890, which corresponds with U.S. Appl. No. 14/866,992, 3 pages.
Office Action, dated Jan. 19, 2018, received in Australian Patent Application No. 201761478, which corresponds with U.S. Appl. No. 14/866,992, 6 pages.
Office Action, dated Mar. 18, 2016, received in Danish Patent Application No. 201500593, which corresponds with U.S. Appl. No. 14/866,992, 10 pages.
Office Action, dated Jun. 27, 2016, received in Danish Patent Application No. 201500593, which corresponds with U.S. Appl. No. 14/866,992, 7 pages.
Office Action, dated Feb. 6, 2017, received in Danish Patent Application No. 201500593, which corresponds with U.S. Appl. No. 14/866,992, 4 pages.
Office Action, dated Sep. 5, 2017, received in Danish Patent Application No. 201500593, which corresponds with U.S. Appl. No. 14/866,992, 6 pages.
Office Action, dated Feb. 12, 2018, received in U.S. Appl. No. 15/009,661, 36 pages.
Office Action, dated Jan. 18, 2018, received in U.S. Appl. No. 15/009,676, 21 pages.
Office Action, dated Mar. 13, 2018, received in U.S. Appl. No. 15/009,688, 10 pages.
Office Action, dated Nov. 30, 2015, received in U.S. Appl. No. 14/845,217, 24 pages.
Final Office Action, dated Apr. 22, 2016, received in U.S. Appl. No. 14/845,217, 36 pages.
Notice of Allowance, dated Aug. 26, 2016, received in U.S. Appl. No. 14/845,217, 5 pages.
Notice of Allowance, dated Jan. 4, 2017, received in U.S. Appl. No. 14/845,217, 5 pages.
Office Action, dated Feb. 3, 2016, received in U.S. Appl. No. 14/856,517, 36 pages.
Final Office Action, dated Jul. 13, 2016, received in U.S. Appl. No. 14/856,517, 30 pages.
Office Action, dated May 2, 2017, received in U.S. Appl. No. 14/856,517, 34 pages.
Final Office Action, dated Oct. 4, 2017, received in U.S. Appl. No. 14/856,517, 33 pages.
Office Action, dated Feb. 11, 2016, received in U.S. Appl. No. 14/856,519, 34 pages.
Final Office Action, dated Jul. 15, 2016, received in U.S. Appl. No. 14/856,519, 31 pages.
Office Action, dated May 18, 2017, received in U.S. Appl. No. 14/856,519, 35 pages.
Final Office Action, dated Nov. 15, 2017, received in U.S. Appl. No. 14/856,519, 31 pages.
Notice of Allowance, dated Jan. 31, 2018, received in U.S. Appl. No. 14/856,519, 9 pages.
Notice of Allowance, dated May 2, 2018, received in U.S. Appl. No. 14/856,519, 10 pages.
Office Action, dated Jun. 9, 2017, received in U.S. Appl. No. 14/856,520, 36 pages.
Final Office Action, dated Nov. 16, 2017, received in U.S. Appl. No. 14/856,520, 41 pages.
Office Action, dated Jun. 30, 2017, received in U.S. Appl. No. 14/856,522, 22 pages.
Notice of Allowance, dated Feb. 9, 2018, received in U.S. Appl. No. 14/856,522, 9 pages.
Office Action, dated Feb. 1, 2016, received in U.S. Appl. No. 14/857,645, 15 pages.
Final Office Action, dated Jun. 16, 2016, received in U.S. Appl. No. 14/856,645, 12 pages.
Notice of Allowance, dated Oct. 24, 2016, received in U.S. Appl. No. 14/857,645, 6 pages.
Notice of Allowance, dated Jun. 16, 2017, received in U.S. Appl. No. 14/857,645, 5 pages.
Office Action, dated Nov. 30, 2017, received in U.S. Appl. No. 14/857,636, 19 pages.
Office Action, dated Jan. 17, 2018, received in Australian Patent Application No. 2017202816, which corresponds with U.S. Appl. No. 14/857,636, 3 pages.
Office Action, dated Sep. 22, 2017, received in Japanese Patent Application No. 2017-029201, which corresponds with U.S. Appl. No. 14/857,636, 8 pages.
Office Action, dated Dec. 1, 2017, received in U.S. Appl. No. 14/857,663, 15 pages.
Office Action, dated Mar. 31, 2017, received in U.S. Appl. No. 14/857,700, 14 pages.
Final Office Action, dated Oct. 11, 2017, received in U.S. Appl. No. 14/857,700, 13 pages.
Notice of Allowance, dated Feb. 12, 2018, received in U.S. Appl. No. 14/857,700, 13 pages.
Notice of Allowance, dated Apr. 9, 2018, received in received in U.S. Appl. No. 14/857,700, 7 pages.
Notice of Allowance, dated Apr. 19, 2018, received in U.S. Appl. No. 14/864,529, 11 pages.
Grant of Patent, dated Apr. 16, 2018, received in Dutch Patent Application No. 2019215, 2 pages.
Office Action, dated Jan. 25, 2016, received in U.S. Appl. No. 14,864,580, 29 pages.
Notice of Allowance, dated May 23, 2016, received in U.S. Appl. No. 14/864,580, 9 pages.
Notice of Allowance, dated Aug. 4, 2016, received in U.S. Appl. No. 14/864,580, 9 pages.
Notice of Allowance, dated Dec. 28, 2016, received in U.S. Appl. No. 14/864,580, 8 pages.
Office Action, dated Aug. 19, 2016, received in Australian Patent Application No. 2016100648, which corresponds with U.S. Appl. No. 14/864,580, 6 pages.
Notice of Allowance, dated Nov. 8, 2016, received in Chinese Patent Application No. 201620470247.4, which corresponds with U.S. Appl. No. 14/864,580, 3 pages.
Certificate of Registration, dated Oct. 14, 2016, received in German Patent Application No. 20201600003234.9, which corresponds with U.S. Appl. No. 14/864,580, 3 pages.
Office Action, dated Apr. 8, 2016, received in Danish Patent Application No. 201500584, which corresponds with U.S. Appl. No. 14/864,580, 9 pages.
Office Action, dated Oct. 7, 2016, received in Danish Patent Application No. 201500584, which corresponds with U.S. Appl. No. 14/864,580, 3 pages.
Office Action, dated May 5, 2017, received in Danish Patent Application No. 201500584, which corresponds with U.S. Appl. No. 14/864,580, 3 pages.
Office Action, dated Dec. 15, 2017, received in Danish Patent Application No. 201500584, which corresponds with U.S. Appl. No. 14/864,580, 4 pages.
Notice of Allowance, dated Nov. 23, 2016, received in U.S. Appl. No. 14/864,601, 12 pages. Notice of Allowance, dated Apr. 20, 2017, received in U.S. Appl. No. 14/864,601, 13 pages.
Notice of Allowance, dated Apr. 20, 2017, received in U.S. Appl. No. 14/864,601, 13 pages.
Office Action, dated Apr. 19, 2016, received in U.S. Appl. No. 14/864,627, 9 pages.
Notice of Allowance, dated Jan. 31, 2017, received in U.S. Appl. No. 14/864,627, 7 pages.
Office Action, dated Apr. 8, 2016, received in banish Patent Application No. 201500585, which corresponds with U.S. Appl. No. 14/864,627, 9 pages.
Office Action dated Oct. 7, 2016, received in Danish Patent Application No, 201500585, which corresponds with U.S. Appl. No. 14/864,627, 3 pages.
Office Action, dated May 5, 2017, received in Danish Patent Application No. 201500585, which corresponds with U.S. Appl. No. 14/864,627, 4 pages.
Office Action, dated Dec. 15, 2017, received in Danish Patent Application No. 201500585, which corresponds with U.S. Appl. No. 14/864,627, 5 pages.
Office Action, dated Mar. 29, 2016, received in U.S. Appl. No. 14/866,361, 22 pages.
Notice of Allowance, dated Jul. 19, 2016, received in U.S. Appl. No. 14/866,361, 8 pages.
Office Action, dated Jun. 10, 2016, received in Australian Patent Application No. 2016100292, which corresponds with U.S. Appl. No. 14/866,361, 4 pages.
Certificate of Examination, dated Dec. 8, 2016, received in Australian Patent Application No. 2016100292, which corresponds with U.S. Appl. No. 14/866,361, 1 page.
Notice of Allowance/Grant, dated Jul. 1, 2016, received in Chinese Patent Application No. 201620251706.X, which corresponds with U.S. Appl. No. 14/866,361, 3 pages.
Letters Patent, dated Aug. 3, 2016, received in Chinese Patent Application No. 201620251706.X, which corresponds with U.S. Appl. No. 14/866,361, 3 pages.
Certifiate of Registration, dated Jun. 24, 2016, received in German Patent Application No. 202016001819.2, which corresponds with U.S. Appl. No. 14/866,361, 3 pages.
Office Action, dated Apr. 7, 2016, received in Danish Patent Application No. 201500579, which corresponds with U.S. Appl. No. 14/866,361, 10 pages.
Office Action, dated Oct. 28, 2016, received in Danish Patent Application No. 201500579, which corresponds with U.S. Appl. No. 14/866,361, 3 pages.
Office Action, dated Jun. 15, 2017, received in Danish Patent Application No. 201500579, which corresponds with U.S. Appl. No. 14/866,361, 2 pages.
Office Action, dated Jan. 4, 2018, received in Danish Patent Application No. 201500579, which corresponds with U.S. Appl. No. 14/866,361, 2 pages.
Notice of Allowance, dated Mar. 16, 2018, received in Danish Patent Application No. 201500579, which corresponds with U.S. Appl. No. 14/866,361, 2 pages.
Patent, dated May 22, 2018, received in Danish Patent Application No. 201500579, which corresponds with U.S. Appl. No. 14/866,361, 2 pages.
Office Action, dated Jun. 11, 2018, received in European Patent Application No. 17188507.2, which corresponds with U.S. Appl. No. 14/866,361, 10 pages.
Office Actiuon, dated Jan. 22, 2018, received in U.S. Appl. No. 148/866,987, 22 pages.
Patent, dated Aug. 8, 2016, received in Australian Patent Application No. 2016100649, which corresponds with U.S. Appl. No. 148/866,987, 1 page.
Office Action, dated Oct. 19, 2016, received in Chinese Patent Application No. 2016201470246.X, which corresponds with U.S. Appl. No. 148/866,987, 4 pages.
Patent, dated May 3, 2017, received in Chinese Patent Application No. 2016201470246.X, which corresponds with U.S. Appl. No. 148/866,987, 2 pages.
Patent, dated Sep. 19, 2016, received in German Patent Application No. 202016002908.9, which corresponds with U.S. Appl. No. 148/866,987, 3 pages.
Office Action, dated Mar. 22, 2016, received in Danish Patent Application No. 201500587, which corresponds with U.S. Appl. No. 14/866,987, 8 pages.
Intention to Grant, dated Jun. 10, 2016, received in Danish Patent Application No. 201500587, which corresponds with U.S. Appl. No. 14/866,987, 2 pages.
Notice of Allowance, dated Nov. 1, 2016, received in Danish Patent Application No. 201500587, which corresponds with U.S. Appl. No. 14/866,987, 2 pages.
Office Action, dated Sep. 9, 2016, received in Danish Patent Application No. 201670463, which corresponds with U.S. Appl. No. 14/866,987, 7 pages.
Notice of Allowance, dated Jan. 31, 2017, received in Danish Patent Application No. 201670463, which corresponds with U.S. Appl. No. 14/866,987, 3 pages.
Office Action, dated Apr. 19, 2017, received in Danish Patent Application No. 201670463, which corresponds with U.S. Appl. No. 14/866,987, 3 pages.
Notice of Allowance, dated Sep. 29, 2017, received in Danish Patent Application No. 201670463, which corresponds with U.S. Appl. No. 14/866,987, 2 pages.
Patent, dated Nov. 6, 2017, received in Danish Patent Application No. 201670463, which corresponds with U.S. Appl. No. 14/866,987, 6 pages.
Office Action, dated May 7, 2018, received in European Patent Application No. 16189421.7, which corresponds with U.S. Appl. No. 14/866,987, 5 pages.
Notice of Allowance, dated Sep. 22, 2017, received in Japanese Patent Application No. 2016-233449, which corresponds with U.S. Appl. No. 14/866,987, 5 pages.
Patent, dated Oct. 27, 2017, received in Japanese Patent Application No. 2016-233449, which corresponds with U.S. Appl. No. 14/866,987, 3 pages.
Office Action, dated Jul. 31, 2017, received in Japanese Patent Application No. 2017126445, which corresponds with U.S. Appl. No. 14/866,987, 6 pages.
Notice of Allowance, dated Mar. 6, 2016, received in Japanese Patent Application No. 2017-126445, which corresponds with U.S. Appl. No. 14/866,987, 5 pages.
Patent, dated Apr. 6, 2018, received in Japanese Patent Application No. 2017-126445, which corresponds with U.S. Appl. No. 14/866,987, 3 pages.
Office Action, dated Nov. 29, 2017, received in U.S. Appl. No. 14/866,989, 31 pages.
Certificate of Exam, dated Jul. 21, 2016, received in Australian Patent Application No. 2016100652, which corresponds with U.S. Appl. No. 14/866,989, 1 page.
Office Action, dated Feb. 26, 2018, received in Australian Patent Application No. 2017201079, which corresponds with U.S. Appl. No. 14/866,989, 6 pages.
Office Action, dated Jun. 16, 2017, received in Japanese Patent Application No. 2016-233450, which corresponds with U.S. Appl. No. 14/866,989, 6 pages.
Patent, dated Mar. 9, 2018, received in Japanese Patent Application No. 2016-233450, which corresponds with U.S. Appl. No. 14/866,989, 4 pages.
Office Action, dated Apr. 1, 2016, received in Danish Patent Application No. 201500589, which corresponds with U.S. Appl. No. 14/866,989, 8 pages.
Intentioin to Grant, dated Jun. 10, 2016, received in Danish Patent Application No. 201500589, which corresponds with U.S. Appl. No. 14/866,989, 2 pages.
Notice of Allowance, dated Nov. 1, 2016, received in Danish Patent Application No. 201500589, which corresponds with U.S. Appl. No. 14/866,989, 2 pages.
Notice of Allowance, dated Feb. 5, 2018, received in Japanese Patent Application No. 2016-233450, which corresponds with U.S. Appl. No. 14/866,989, 5 pages.
Office Action, dated Apr. 11, 2016, received in U.S. Appl. No. 14/871,236, 23 pages.
Office Action, dated Jun. 28, 2016, received in U.S. Appl. No. 14/871,236, 21 pages.
Final Office Action, dated Nov. 4, 2016, received in U.S. Appl. No. 14/871,236, 24 pages.
Notice of Allowance, dated Feb. 28, 2017, received in U.S. Appl. No. 14/871,236, 9 pages.
Innovation Patent, dated Aug. 25, 2018, received in Australian Patent Application No. 2016101433, which corresponds with U.S. Appl. No. 14/871,236, 1 page.
Office Action, dated Oct. 4, 2016, received in Australian Patent Application No. 2016101433, which corresponds with U.S. Appl. No. 14/871,236, 3 pages.
Office Action, dated Apr. 8, 2016, received in Danish Patent Application No. 201500595, which corresponds with U.S. Appl. No. 14/871,236, 12 pages.
Office Action, dated May 26, 2016, received in Danish Patent Application No. 201500595, which corresponds with U.S. Appl. No. 14/871,236, 14 pages.
Office Action, dated Sep. 30, 2016, received in Danish Patent Application No. 201500595, which corresponds with U.S. Appl. No. 14/871,236, 10 pages.
Office Action, dated Jun. 15, 2017, received in Danish Patent Application No. 201500595, which corresponds with U.S. Appl. No. 14/871,236, 4 pages.
Office Action, dated Jan. 29, 2018, received in Danish Patent Application No. 201500595, which corresponds with U.S. Appl. No. 14/871,236, 2 pages.
Notice of Allowance, dated Apr. 26, 2018, received in Danish Patent Application No. 201500595, which corresponds with U.S. Appl. No. 14/871,236, 2 pages.
Office Action, dated Sep. 1, 2017, received in U.S. Appl. No. 14/870,754, 22 pages.
Final Office Action, dated Mar. 9, 2018, received in U.S. Appl. No. 14/870,754, 19 pages.
Office Action, dated Nov. 14, 2017, received in U.S. Appl. No. 14/870,882, 25 pages.
Final Office Action, dated Apr. 20, 2018, received in U.S. Appl. No. 14/870,882, 7 pages.
Innovation Patent, dated Aug. 25, 2016, received in Australian Patent Application No. 2016101436, which corresponds with U.S. Appl. No. 14/871,236, 1 pages.
Office Action, dated Oct. 31, 2016, received in Australian Patent Application No. 2016101438, which corresponds with U.S. Appl. No. 14/871,236, 6 pages.
Office Action, dated Apr. 6, 2016, received in Danish Patent Application No. 201500596, which corresponds with U.S. Appl. No. 14/870,882, 7 pages.
Office Action, dated Jun. 9, 2016, received in Danish Patent Application No. 201500596, which corresponds with U.S. Appl. No. 14/870,882, 9 pages.
Notice of Allowance, dated Oct. 31, 2017, received in Danish Patent Application No. 201500596, which corresponds with U.S. Appl. No. 14/870,882, 2 pages.
Patent, dated Jan. 29, 2018, received in Danish Patent Application No. 201500596, which corresponds with U.S. Appl. No. 14/870,882, 4 pages.
Office Action, dated Sep. 1, 2017, received in U.S. Appl. No. 14/870,988, 14 pages.
Final Office Action, dated Feb. 16, 2018, received in U.S. Appl. No. 14/870,988, 18 pages.
Office Action, dated Nov. 22, 2017, received in U.S. Appl. No. 14/871,227, 24 pages.
Notice of Allowance, dated Jun. 11, 2018, received in U.S. Appl. No. 14/871,227, 11 pages.
Office Action, dated Oct. 17, 2016, received in Australian Patent Application No. 2016203040, which corresponds with U.S. Appl. No. 14/871,227, 7 pages.
Office Action, dated Oct. 16, 2017, received in Australian Patent Application No. 2016203040, which corresponds with U.S. Appl. No. 14/871,227, 5 pages.
Office Action, dated Oct. 18, 2016, received in Australian Patent Application No. 2016101431, which corresponds with U.S. Appl. No. 14/871,227, 3 pages.
Office Action, dated Apr. 13, 2017, received in Australian Patent Application No. 2016101431, which corresponds with U.S. Appl. No. 14/871,227, 4 pages.
Intention to Grant, dated Apr. 7, 2016, received in Danish Patent Application No. 201500597, which corresponds with U.S. Appl. No. 14/871,227, 7 pages.
Grant, dated Jun. 21, 2016, received in Danish Patent Application No. 201500597, which corresponds with U.S. Appl. No. 14/871,227, 2 pages.
Patent, dated Sep. 26, 2016, received in Danish Patent Application No. 201500597, which corresponds with U.S. Appl. No. 14/871,227, 7 pages.
Office Action, dated Mar. 24, 2017, received in Japanese Patent Application No. 2016-533201, which corresponds with U.S. Appl. No. 14/871,227, 6 pages.
Office Action, dated Aug. 4, 2017, received in Japanese Patent Application No. 2016-533201, which corresponds with U.S. Appl. No. 14/871,227, 6 pages.
Notice of Allowance, dated Jan. 4, 2018, received in Japanese Patent Application No. 2016-533201, which corresponds with U.S. Appl. No. 14/871,227, 4 pages.
Patent, dated Feb. 9, 2018, received in Japanese Patent Application No. 2016-533201, which corresponds with U.S. Appl. No. 14/871,227, 4 pages.
Office Action, dated Feb. 20, 2018, received in Korean Patent Application No. 2016-7019816, which corresponds with U.S. Appl. No. 14/871,227, 8 pages.
Office Action, dated Oct. 26, 2017, received in U.S. Appl. No. 14/871,336, 22 pages.
Final Office Action, dated Mar. 15, 2018, received in U.S. Appl. No. 14/871,336, 23 pages.
Office Action, dated Oct. 14, 2016, received in Australian Patent Application No. 2016101437, which corresponds with U.S. Appl. No. 14/871,336, 2 pages.
Office Action, dated Apr. 11, 2017, received in Australian Patent Application No. 2016101437, which corresponds with U.S. Appl. No. 14/871,336, 4 pages.
Office Action, dated Apr. 18, 2016, received in Danish Patent Application No. 201500601, which corresponds with U.S. Appl. No. 14/871,336, 8 pages.
Office Action, dated Oct. 18, 2016, received in Danish Patent Application No. 201500601, which corresponds with U.S. Appl. No. 14/871,336, 3 pages.
Notice of Allowance, dated Mar. 23, 2017, received in Danish Patent Application No. 201500601, which corresponds with U.S. Appl. No. 14/871,336, 2 pages.
Patent, dated Oct. 30, 2017, received in Danish Patent Application No. 201500601, which corresponds with U.S. Appl. No. 14/871,336, 5 pages.
Office Action, dated Apr. 2, 2018, received in Japanese Patent Application No. 2018-020324, which corresponds with U.S. Appl. No. 14/874,336, 4 pages.
Offcie Action, dated Oct. 16, 2017, received in U.S. Appl. No. 14/871,462, 26 pages.
Innovation Patent, dated Aug. 25, 2016, received in Australian Patent Application No. 2016101435, which corresponds with U.S. Appl. No. 14/871,462, 1 page.
Office Action, dated Oct. 4, 2016, received in Australian Patent Application No. 2016101435, which corresponds with U.S. Appl. No. 14/871,462, 3 pages.
Office Action, dated Oct. 4, 2016, received in Australian Patent Application No. 2016231505, which corresponds with U.S. Appl. No. 14/871,462, 3 pages.
Office Action, dated Sep. 29, 2017, received in Australian Patent Application No. 2016231505, which corresponds with U.S. Appl. No. 14/871,462, 5 pages.
Innovation Patent, dated Oct. 11, 2017, received in Australian Patent Application No. 2016231505, which corresponds with U.S. Appl. No. 14/871,462, 1 page.
Office Action, dated Apr. 20, 2017, received in Chinese Patent Application No. 201621044346.2, which corresponds with U.S. Appl. No. 14/871,462, 3 pages.
Intention to Grant, dated Apr. 18, 2016, received in Danish Patent Application No. 201500600, which corresponds with U.S. Appl. No. 14/871,462, 7 pages.
Grant, dated Aug. 30, 2016, received in Danish Patent Application No. 201500600, which corresponds with U.S. Appl. No. 14/871,462, 2 pages.
Office Action, dated Mar. 13, 2017, received in Japanese Patent Application No. 2016-183289, which corresponds with U.S. Appl. No. 14/871,462, 5 pages.
Office Action, dated Nov. 13, 2017, received in Japanese Patent Application No. 2016-183289, which corresponds with U.S. Appl. No. 14/871,462, 5 pages.
Office Action, dated Apr. 29, 2016, received in U.S. Appl. No. 14/867,823, 28 pages.
Final Office Action, dated Sep. 28, 2016, received in U.S. Appl. No. 14/867,823, 31 pages.
Office Action, dated May 11, 2017, received in U.S. Appl. No. 14/867,823, 42 pages.
Final Office Action, dated Nov. 29, 2017, received in U.S. Appl. No. 14/867,823, 47 pages.
Notice of Allowance, dated Apr. 18, 2018, received in U.S. Appl. No. 14/867,823, 10 pages.
Office Action, dated Mar. 18, 2016, received in Danish Patent Application No. 201500594, which corresponds with U.S. Appl. No. 14/867,823, 10 pages.
Office Action, dated Sep. 7, 2016, received in Danish Patent Application No. 201500594, which corresponds with U.S. Appl. No. 14/867,823, 4 pages.
Office Action, dated May 15, 2017, received in Danish Patent Application No. 201500594, which corresponds with U.S. Appl. No. 14/867,823, 4 pages.
Office Action, dated Jan. 23, 2018, received in Danish Patent Application No. 201500594, which corresponds with U.S. Appl. No. 14/867,823, 8 pages.
Office Action, dated May 10, 2016, received in U.S. Appl. No. 14/867,892, 28 pages.
Final Office Action, dated Nov. 2, 2016, received in U.S. Appl. No. 14/867,892, 48 pages.
Office Action, dated Jul. 6, 2017, received in U.S. Appl. No. 14/867,892, 55 pages.
Final Office Action, dated Dec. 14, 2017, received in U.S. Appl. No. 14/867,892, 53 pages.
Office Action, dated Apr. 24, 2018, received in U.S. Appl. No. 14/867,892, 63 pages.
Office Action, dated Mar. 21, 2016, received in Danish Patent Application No. 201500598, which corresponds with U.S. Appl. No. 14/867,892, 9 pages.
Office Action, dated Sep. 14, 2016, received in Danish Patent Application No. 201500598, which corresponds with U.S. Appl. No. 14/867,892, 4 pages.
Office Action, dated May 4, 2017, received in Danish Patent Application No. 201500598, which corresponds with U.S. Appl. No. 14/867,892, 4 pages.
Office Action, daqted Oct. 31, 2017, received in Danish Patent Application No. 201500598, which corresponds with U.S. Appl. No. 14/867,892, 2 pages.
Notice of Allowance, dated Jan. 26, 2018, received in Danish Patent Application No. 201500598, which corresponds with U.S. Appl. No. 14/867,892, 2 pages.
Office Action, dated Feb. 28, 2018, received in U.S. Appl. No. 14/869,361, 26 pages.
Office Action, dated Mar. 1, 2017, received in U.S. Appl. No. 14/869,855, 14 pages.
Office Action, dated Oct. 10, 2017, received in U.S. Appl. No. 14/8679,855, 16 pages.
Notice of Allowance, dated May 31, 2018, received in U.S. Appl. No. 14/869,855, 10 pages.
Office Action, dated Feb. 9, 2017, received in U.S. Appl. No. 14/869,873, 17 pages.
Final Office Action, dated Aug. 18, 2017, received in U.S. Appl. No. 14/869,873, 20 pages.
Office Action, dated Jan. 18, 2018, received in U.S. Appl. No. 14/869,873, 25 pages.
Final Office Action, dated May 23, 2018, received in U.S. Appl. No. 14/869,873, 18 pages.
Office Action, dated Jan. 11, 2018, received in U.S. Appl. No. 14/869,997, 17 pages.
Notice of Allowance, dated Jan. 17, 2018, received in U.S. Appl. No. 14/867,990, 12 pages.
Notice of Allowance, dated Mar. 30, 3018, received in U.S. Appl. No. 14/867,990, 5 pages.
Office Action, dated May 23, 2016, received in Australian Patent Application No. 2016100253, which corresponds with U.S. Appl. No. 14/867,990, 5 pages.
Office Action, dated Jul. 5, 2016, received in Chinese Patent Application No. 201620176221.9, which corresponds with U.S. Appl. No. 14/867,990, 4 pages.
Office Action, dated Oct. 25, 2016, received in Chinese Patent Application No. 201620176221.9, which corresponds with U.S. Appl. No. 14/867,990, 7 pages.
Certificate of Registration, dated Jun. 16, 2016, received in German Patent No. 202016001489.8, which corresponds with U.S. Appl. No. 14/867,990, 3 pages.
Office Action, dated Mar. 18, 2016, received in Danish Patent Application No. 201500581, which corresponds with U.S. Appl. No. 14/867,990, 9 pages.
Office Action, dated Sep. 26, 2016, received in Danish Patent Application No. 201500581, which corresponds with U.S. Appl. No. 14/867,990, 5 pages.
Office Action, dated May 3, 2017, received in Danish Patent Application No. 201500581, which corresponds with U.S. Appl. No. 14/867,990, 5 pages.
Office Action, dated Feb. 19, 2018, received in Danish Patent Application No. 201500581, which corresponds with U.S. Appl. No. 14/867,990, 4 pages.
Office Action, dated Apr. 19, 2018, received in U.S. Appl. No. 14/869,703, 19 pages.
Office Action, dated Dec. 12, 2017, received in U.S. Appl. No. 15/009,668, 32 pages.
Office Action, dated Nov. 25, 2016, received in U.S. Appl. No. 15/081,771, 17 pages.
Final Office Action, dated Jun. 2, 2017, received in U.S. Appl. No. 15/081,771, 17 pages.
Notice of Allowance, dated Dec. 4, 2017, received in U.S. Appl. No. 15/081,771, 10 pages.
Office Action, dated Feb. 1, 2018, received in Australian Patent Application No. 2017202058, which corresponds with U.S. Appl. No. 15/081,771, 4 pages.
Office Action, dated Jan. 26, 2018, received in Japanese Patent Application No. 2017-086460, which corresponds with U.S. Appl. No. 15/081,771, 6 pages.
Office Action, dated Aug. 29, 2017, received in Korean Patent Application No. 2017-7014536, which corresponds with U.S. Appl. No. 15/081,771, 5 pages.
Final Office Action, dated May 1, 2017, received in U.S. Appl. No. 15/136,782, 18 pages.
Notice of Allowance, dated Oct. 20, 2017, received in U.S. Appl. No. 15/136,782, 9 pages.
Office Action, dated May 4, 2018, received in Australian Patent Application No. 2018202855, which corresponds with U.S. Appl. No. 15/136,782, 3 pages.
Office Action, dated May 23, 2017, received in Danish Patent Application No. 2011770190, which corresponds with U.S. Appl. No. 15/136,782, 7 pages.
Office Action, dated Jan. 8, 2018, received in Danish Patent Application No. 201770190, which corresponds with U.S. Appl. No. 15/136,782, 2 pages.
Notice of Allowance, dated Mar. 19, 2018, received in Danish Patent Application No. 201770190, which corresponds with U.S. Appl. No. 15/136,782, 2 pages.
Patent, dated May 22, 2018, received in Danish Patent Application No. 201770190, which corresponds with U.S. Appl. No. 15/136,782, 2 pages.
Office Action, dated Jun. 1, 2018, received in Japanese Patent Application No. 2018-062161, which corresponds with U.S. Appl. No. 15/136,782, 5 pages.
Office Action, dated Jan. 20, 2017, received in U.S. Appl. No. 15/231,745, 21 pages.
Notice of Allowance, dated Jul. 6, 2017, received in U.S. Appl. No. 15/231,745, 18 pages.
Office Action, dated Oct. 17, 2016, received in Danish Patent Application No. 201670587, which corresponds with U.S. Appl. No. 15/231,745, 9 pages.
Office Action, dated Jun. 29, 2017, received in Danish Patent Application No. 201670587, which corresponds with U.S. Appl. No. 15/231,745, 4 pages.
Office Action, dated Feb. 22, 2018, received in Danish Patent Application No. 201670587, which corresponds with U.S. Appl. No. 15/231,745, 4 pages.
Office Action, dated Dec. 14, 2016, received in Danish Patent Application No. 201670590, which corresponds with U.S. Appl. No. 15/231,745, 9 pages.
Office Action, dated Jul. 6, 2017, received in Danish Patent Application No. 201670590, which corresponds with U.S. Appl. No. 15/231,745, 3 pages.
Office Action, dated Jan. 10, 2018, received in Danish Patent Application No. 201670590, which corresponds with U.S. Appl. No. 15/231,745, 2 pages.
Patent, dated May 28, 2018, received in Danish Patent Application No. 201670590, which corresponds with U.S. Appl. No. 15/231,745, 2 pages.
Office Action, dated Nov. 10, 2016, received in Danish Patent Application No. 201670591, which corresponds with U.S. Appl. No. 15/231,745, 12 pages.
Office Action, dated Apr. 11, 2018, received in Danish Patent Application No. 201670591, which corresponds with U.S. Appl. No. 15/231,745, 3 pages.
Office Action, dated Oct. 26, 2016, received in Danish Patent Application No. 201670592, which corresponds with U.S. Appl. No. 15/231,745, 8 pages.
Office Action, dated Jan. 5, 2017, received in Danish Patent Application No. 201670592, which corresponds with U.S. Appl. No. 15/231,745, 3 pages.
Office Action, dated Jan. 30, 2018, received in Danish Patent Application No. 201670592, which corresponds with U.S. Appl. No. 15/231,745, 2 pages.
Notice of Allowance, dated Mar. 27, 2018, received in Danish Patent Application No. 201670592, which corresponds with U.S. Appl. No. 15/231,745, 2 pages.
Patent, dated May 28, 2018, received in Danish Patent Application No. 201670592, which corresponds with U.S. Appl. No. 15/231,745, 2 pages.
Notice of Acceptance, dated Mar. 2, 2018, received in Australian Patent Application No. 2018200705, which corresponds with U.S. Appl. No. 15/272,327, 3 pages.
Office Action, dated Oct. 12, 2016, received in Danish Patent Application No. 201670593, which corresponds with U.S. Appl. No. 15/231,745, 7 pages.
Patent, dated Oct. 30, 2017, received in Danish Patent Application No. 201670593, which corresponds with U.S. Appl. No. 15/231,745, 3 pages.
Office Action, dated Jul. 27, 2017, received in Australian Patent Application No. 2017100535, which corresponds with U.S. Appl. No. 15/272,341, 4 pages.
Notice of Acceptance, dated Mar. 2, 2018, received in Australian Patent Application No. 2016304832, which corresponds with U.S. Appl. No. 15/272,345, 3 pages.
Office Action, dated Apr. 20, 2018, received in European Patent Application No. I 16756862.5, which corresponds with U.S. Appl. No. 15/272,345, 15 pages.
Office Action, dated Mar. 7, 2018, received in U.S. Appl. No. 15/482,618, 7 pages.
Office Action, dated Apr. 23, 2018, received in U.S. Appl. No. 15/499,691, 29 pages.
Office Action, dated Aug. 30, 2017, received in U.S. Appl. No. 15/655,749, 22 pages.
Final Office Action, dated May 10, 2018, received in U.S. Appl. No. 15/655,749, 19 pages.
Office Action, dated Oct. 31, 2017, received in U.S. Appl. No. 15/723,069, 7 pages.
Notice of Allowance, dated Dec. 21, 2017, received in U.S. Appl. No. 15/723,069, 7 pages.
International Search Report and Written Opinion dated May 26, 2014, received in International Application No. PCT/US2013/040053, which corresponds to U.S. Appl. No. 14/535,671, 32 pages.
International Preliminary Report on Patentability dated Nov. 20, 2014, received in International Application No. PCT/US2013/040053, which corresponds to U.S. Appl. No. 14/535,671, 26 pages.
International Search Report and Written Opinion dated Apr. 7, 2014, received in International Application No. PCT/US2013/069472, which corresponds to U.S. Appl. No. 14/608,895, 24 pages.
International Preliminary Report on Patentability, dated Jun. 30, 2015, received in International Application No. PCT/US2013/069472, which corresponds to U.S. Appl. No. 14/608,895, 18 pages.
International Search Report and Written Opinion dated Aug. 7, 2013, received in International Application No. PCT/US2013/040054, which corresponds to U.S. Appl. No. 14/536,235, 12 pages.
International Preliminary Report on Patentability dated Nov. 20, 2014, received in International Application No. PCT/US2013/040054, which corresponds to U.S. Appl. No. 14/536,235, 11 pages.
International Search Report and Written Opinion dated Aug. 7, 2013, received in International Application No. PCT/US2013/040056, which corresponds to U.S. Appl. No. 14/536,367, 12 pages.
International Preliminary Report on Patentability dated Nov. 20, 2014, received in International Application No. PCT/US2013/040056, which corresponds to U.S. Appl. No. 14/536,367, 11 pages.
Extended European Serarch Report, dated Nov. 6, 2015, received in European Patent Application No.15183980.0, which corresponds to U.S. Appl. No. 14/536,426, 7 pages.
International Search Report and Written Opinion dated Aug. 6, 2013, received in International Application No. PCT/US2013/040058, which corresponds to U.S. Appl. No. 14/536,426, 12 pages.
International Preliminary Report on Patentability dated Nov. 20, 2014, received in International Application No. PCT/US2013/040058, which corresponds to U.S. Appl. No. 14/536,426, 11 pages.
International Search Report and Written Opinion dated Feb. 5, 2014, received in International Application No. PCT/US2013/040061, which corresponds to U.S. Appl. No. 14/536,464, 30 pages.
International Preliminary Report on Patentability dated Nov. 20, 2014, received in International Application No. PCT/US2013/040061, which corresponds to U.S. Appl. No. 14/536,464 26 pages.
International Search Report and Written Opinion dated May 8, 2014, received in International Application No. PCT/US2013/040067, which corresponds to U.S. Appl. No. 14/536,644, 45 pages.
International Preliminary Report on Patentability dated Nov. 20, 2014, received in International Application No. PCT/US2013/040067, which corresponds to U.S. Appl. No. 14/536,644, 36 pages.
International Search Report and Written Opinion dated Mar. 12, 2014, received in International Application No. PCT/US2013/069479, which corresponds with U.S. Appl. No. 14/608,926, 14 pages.
International Preliminary Report on Patentability, dated Jun. 30, 2015, received in International Patent Application No. PCT/US2013/069479, which corresponds with U.S. Appl. No. 14/608,926, 11 pages.
International Search Report and Written Opinion dated Aug. 7, 2013, received in International Application No. PCT/US2013/040070, which corresponds to U.S. Appl. No. 14/535,646, 12 pages.
International Preliminary Report on Patentability dated Nov. 20, 2014, received in International Application No. PCT/US2013/040070, which corresponds to U.S. Appl. No. 14/535,646, 10 pages.
International Search Report and Written Opinion dated Apr. 7,2014, received in International Application No. PCT/US2013040072, which corresponds to U.S. Appl. No. 14/536,141, 38 pages.
International Preliminary Report on Patentability dated Nov. 20, 2014, received in International Application No. PCT/US2013/040072, which corresponds to U.S. Appl. No. 14/536,141, 32 pages.
International Search Report and Written Opinion dated Apr. 7, 2014, received in International Application No. PCT/US2013/069483, which corresponds with U.S. Appl. No. 14/608,942, 18 pages.
International Preliminary Report on Patentability, dated Jun. 30, 2015, received in International Application No. PCT/2013/069483, which corresponds to U.S. Appl. No. 14/608,942, 13 pages.
International Search Report and Written Opinion dated Mar. 3, 2014, received in International Application No. PCT/US2013/040087, which corresponds to U.S. Appl. No. 14/536,166, 35 pages.
International Preliminary Report on Patentability dated Nov. 20, 2014, received in International Application No. PCT/2013/040087, which corresponds to U.S. Appl. No. 14/536,166. 29 pages.
International Search Report and Written Opinion dated Aug. 7, 2013, received in International Application No. PCT/US2013/040093, which corresponds to U.S. Appl. No. 14/536,203, 11 pages.
International Preliminary Report on Patentability dated Nov. 20, 2014, received in International Application No. PCT/2013040093, which corresponds to U.S. Appl. No. 14/536,203, 9 pages.
International Search Report and Written Opinion dated Jul. 9, 2014, received in International Application No. PCT/US2013/069484, which corresponds with U.S. Appl. No. 14/608,965, 17 pages.
International Preliminary Report on Patentability, dated Jun. 30, 2015, received in International Patent Application No. PCT/US2013/069484, which corresponds with U.S. Appl. No. 14/608,965, 12 pages.
International Search Report and Written Opinion dated Feb. 5, 2014, received in International Application No. PCT/US2013/040098, which corresponds to U.S. Appl. No. 14/536,247, 35 pages.
International Preliminary Report on Patentability dated Nov. 20, 2014, received in International Application No. PCT/2013/040098, which corresponds to U.S. Appl. No. 14/536,247, 27 pages.
Extended European Search Report, dated Oct. 7, 2016, received in European Patent Application No. 16177863.4, which corresponds with U.S. Appl. No. 14/536,267, 12 pages.
International Search Report and Written Opinion dated Jan. 27, 2014, received in International Application No. PCT/US2013/040101, which corresponds to U.S. Appl. No. 14/536,267, 30 pages.
International Preliminary Report on Patentability dated Nov. 20, 2014, received in International Application No. PCT/2013/040101, which corresponds to U.S. Appl. No. 14/536,267, 24 pages.
Extended European Search Report, dated Nov. 24, 2017, received in European Patent Application No. 17186744.3, which corresponds with U.S. Appl. No. 14/536,291, 10 pages.
International Search Report and Written Opinion dated Jan. 8, 2014, received in International Application No. PCT/US2013/040108, which corresponds to U.S. Appl. No. 14/536,291, 30 pages.
International Preliminary Report on Patentability dated Nov. 20, 2014, received in International Application No. PCT/2013/040108, which corresponds to U.S. Appl. No. 14/536,291, 25 pages.
International Search Report and Written Opinion dated Jun. 2, 2014, received in International Application No. PCT/US2013/069486, which corresponds with U.S. Appl. No. 14608,985, 7 pages.
International Preliminary Reort on Patentability, dated Jun. 30, 2015, received in International Patent Application No. PCT/US2013/069486, which corresponds with U.S. Appl. No. 14/608,985, 19 pages.
International Search Report and Written Opinion dated Mar. 6, 2014, received in International Application No. PCT/US2013/069489, which corresponds with U.S. Appl. No. 14/608,985, 12 pages.
International Preliminary Report on Patentability, dated Jun. 30, 2015, received in International Patent Application No. PCT/US2013/069489, which corresponds with U.S. Appl. No. 14/609,006, 10 pages.
Extended European Search Report, dated Mar. 15, 2017, received in European Patent Application No. 17153418.3, which corresponds with U.S. Appl. No. 14/536,648, 7 pages.
Search Report, dated Apr. 13, 2017, received in Dutch Patent Application No. 2016452, which corresponds with U.S. Appl. No. 14/864,737, 22 pages.
Search Report, dated Jun. 22, 2017, received in Dutch Patent Application No. 2016375, which corresponds with U.S. Appl. No. 14/866,981, 17 pages.
International Search Report and Written Opinion, dated Oct. 14, 2016, received in International Patent Applicatin No. PCT/US2016/020697, which corresponds with U.S. Appl. No. 14/866,981, 21 pages.
Search Report, dated Jun. 19, 2017, received iin Dutch Patent Application No. 2016377, which corresponds with U.S. Appl. No. 14/866,159, 13 pages.
International Search Report and Written Opinion dated Apr. 25, 2016, received in International Patent Application No. PCT/US2016/018758, which corresponds with U.S. Appl. No. 14/866,159, 15 pages.
Extended European Search Report, dated Oct. 17, 2017, received in European Patent Application No. 17184437.6, Which corresponds with U.S. Appl. No. 14/868,078, 8 pages.
Search Report, dated Apr. 13, 2017, received in Dutch Patent Application No. 2016376, which corresponds with U.S. Appl. No. 14/868,078, 15 pages.
International Search Report and Written Opinion, dated Jul. 21, 2016, received in International Patent Application No. PCT/US2016/019913, which corresponds with U.S. Appl. No. 14/868,078, 16 pages.
Search Report, dated Apr. 18, 2017, received in Dutch Patent Application No. 2016801, which corresponds with U.S. Appl. No. 14/863,432, 34 pages.
International Search Report and Written Opinion, dated Oct. 31, 2016, received in International Patent Application No. PCT/US2016/033578, which corresponds with U.S. Appl. No. 14/863,432, 36 pages.
International Search Report and Written Opinion, dated Nov. 14, 2016, received in International Patent Application No. PCT/US2016/033541, which corresponds with U.S. Appl. No. 14/866,511, 29 pages.
International Search Report and Written Opinion, dated Aug. 29, 2016, received in International Patent Application No. PCT/US2016/021400, which corresponds with U.S. Appl. No. 14/869,899, 48 pages.
International Search Report and Written Opinion, dated Jan. 12, 2017, received in International Patent No. PCT/US2016/046419, which corresponds with U.S. Appl. No. 14/866,992, 23 pages.
International Search Report and Written Opinion, dated Dec. 15, 2016, received in International Patent Application No. PCT/US2016/046403, which corresponds with U.S. Appl. No. 15/009,661, 17 pages.
International Search Report and Written Opinion, dated Feb. 27, 2017, received in International Patent Application No. PCT/US2016/046407, which corresponds with U.S. Appl. No. 15/009,688, 30 pages.
Search Report, dated Feb. 15, 2018, received in Dutch Patent Application No. 2019215, which corresponds with U.S. Appl. No. 14/864,529, 13 pages.
Search Report, dated Feb. 15, 2018, received in Dutch Patent Application No. 2019214, which corresponds with U.S. Appl. No. 14/864,601, 12 pages.
Extended European Search Report, dated Oct. 10, 2017, received in European Patent Application No. 17188507.2, which corresponds with U.S. Appl. No. 14/866,361, 9 pages.
Extended European Search Report, dated Jun. 22, 2017, received in European Patent Application No. 16189421.7, which corresponds with U.S. Appl. No. 14/866,987, 7 pages.
Extended European Search Report, dated Sep. 11, 2017, received in European Patent Application No. 17163309.2, which corresponds with U.S. Appl. No. 14/866,987, 8 pages.
Extended European Search Report, dated Jun. 8, 2017, received in European Patent Application No. 16189425.8, which corresponds with U.S. Appl. No. 14/866,988, 8 pages.
Extended European Search Report, dated Jul. 25, 2017, received in European Patent Application No. 17171972.7, which corresponds with U.S. Appl. No. 14/870,882, 12 pages.
Extended European Search Report, dated Jul. 25, 2017, received in European Patent Application No. 17172266.3, which corresponds with U.S. Appl. No. 14/871,336, 9 pages.
Extended European Search Report, dated Dec. 21, 2015, received in European Patent Application No. 16189790.5, which corresponds with U.S. Appl. No. 14/871,462, 8 pages.
International Search Report and Written Opinion, dated Jan. 3, 2017, received in International Patent Application No. PCT/US2016/046214, which corresponds with U.S. Appl. No. 15/231,745, 25 pages.
Extended European Search Report, dated May 30, 2018, received in European Patent Application No. 18155939.4, which corresponds with U.S. Appl. No. 15/272,327, 8 pages.
Extended European Search Report, dated Mar. 2, 2018, received in European Patent Application No. 17206374.5, which corresponds with U.S. Appl. No. 15/272,343, 11 pages.
Apple, “Apple—September Event 2014”, https://www.youtube.com/watch?v=38IqQpqwPe7s, Sep. 10, 2014, 5 pages.
Billibi, “Android 5.0 Lollipop”, https://www.bilibili.comvideo/av1636046?from=search&seid=3128140235778895126, Oct. 19, 2014, 6 pages.
Nickinson, “Inside Android 4.2: Notifications and Quick Settings”, https://www.andrloidcentral.com/inside-android-42-notifications-and-quick-settings, Nov. 3, 2012, 3 pages.
Viticci, “Apple Watch: Our Complete Overview—MacStories”, https://www.macstories.net, Sep. 10, 2014, 21 pages.
Notice of Allowance, dated May 24, 2019, received in Korean Patent Application No. 2018-7028236, which corresponds with U.S. Appl. No. 14/608,895, 4 pages.
Patent, dated Jul. 9, 2019, received in Korean Patent Application No. 2018-7028236, which corresponds with U.S. Appl. No. 14/608,895, 4 pages.
Certificate of Grant, dated Jul. 5, 2019, received in Hong Kong Patent Application No. 15108892.45, which corresponds with U.S. Appl. No. 14/536,426, 5 pages.
Notice of Allowance, dated Jul. 2, 2019, received in U.S. Appl. No. 14/536,644, 5 pages.
Notice of Allowance, dated Apr. 10, 2019, received in U.S. Appl. No. 14/608,926, 16 pages.
Notice of Allowance, dated May 21, received in U.S. Appl. No. 14/608,926, 5 pages.
Certificate of Grant, dated Jan. 25, 2019, received in Hong Kong Patent Application No. 2015-511645, which corresponds with U.S. Appl. No. 14/536,646, 4 pages.
Office Action, dated Jun. 5, 2019, received in Australian Patent Application No. 2018256616, which corresponds with U.S. Appl. No. 14/536,141, 3 pages.
Office Action, dated Jul. 5, 2019, received in Japanese Patent Application No. 2017-141953, which corresponds with U.S. Appl. No. 14/536,141, 6 pages.
Notice of Allowance, dated May 7, 2019, received in Chinese Patent Application No. 201380068295.X, which corresponds with U.S. Appl. No. 14/608,942, 3 pages.
Patent, dated Jul. 5, 2019, received in Chinese Patent Application No. 201380068295.X, which corresponds with U.S. Appl. No. 14/608,942, 8 pages.
Patent, dated May 17, 2019, received in Chinese Patent Application No. 201380074060.1, which corresponds with U.S. Appl. No. 14/608,965, 6 pages.
Notice of Acceptance, dated Apr. 29, 2019, received in Australian Patent Application No. 2018204236, which corresponds with U.S. Appl. No. 14/5326,267, 3 pages.
Office Action, dated Jul. 11, 2019, received in Chinese Patent Application No. 201610537334.1, which corresponds with U.S. Appl. No. 14/536,267, 3 pages.
Final Office Action, dated May 23, 2019, received in U.S. Appl. No. 14/609,006, 14 pages.
Notice of Allowance, dated Jul. 2, 2019, received in U.S. Appl. No. 14/536,648, 5 pages.
Patent, dated Apr. 19, 2019, received in Japanese Patent Application No. 2017-113598, which corresponds with U.S. Appl. No. 14/609,042, 2 pages.
Certificate of Grant, dated Jul. 4, 2019, received in Australian Patent Application No. 2016233792, which corresponds with U.S. Appl. No. 14/864,737, 1 page.
Patent, dated May 31, 2019, received in Chinese Patent Application No. 201610159295.6, which corresponds with U.S. Appl. No. 14/864,737, 7 pages.
Office Action, dated Jul. 16, 2019, received in Chinese Patent Application No. 201610131415.1, which corresponds with U.S. Appl. No. 14/866,981, 4 pages.
Notice of Acceptance, dated Jun. 21, 2019, received in Australian Patent Application No. 2017258967, which corresponds with U.S. Appl. No. 14/868,078, 3 page.
Notice of Allowance, dated May 6, 2019, received in Chinese Patent Application No. 01610130348.1, which corresponds with U.S. Appl. No. 14/868,078, 3 pages.
Patent, dated Jul. 5, 2019, received in Chinese Patent Application No. 201610130348.1, which corresponds with U.S. Appl. No. 14/868,078, 6 pages.
Intention to Grant, dated May 10, 2019, received in European Patent Application No. 16708916.8, which corresponds with U.S. Appl. No. 14/868,078, 5 pages.
Intention to Grant, dated May 22, 2019, received in European Patent Application No. 17184437.6, which corresponds with U.S. Appl. No. 14/868,078, 7 pages.
Office Action, dated Jun. 17, 2019, received in Chinese Patent Application No. 201610342313.4, which corresponds with U.S. Appl. No. 14/863,432, 4 pages.
Office Action, dated Jul. 11, 2019, received in Chinese Patent Application No. 201610342264.4, which corresponds with U.S. Appl. No. 14/866,511, 4 pages.
Intention to Grant, dated Jul. 5, 2019, received in European Patent Application No. 16727900.9, which corresponds with U.S. Appl. No. 14/866,511, 5 pages.
Office Action, dated May 8, 2019, received in European Patent Application No. 18168939.9, which corresponds with U.S. Appl. No. 14/869,899, 10 pages.
Office Action, dated May 23, 2019, received in European Patent Application No. 18175195.9, which corresponds with U.S. Appl. No. 14/869,899, 10 pages.
Patent, dated May 10, 2019, received in Korean Patent Application No. 2018-7017213, which corresponds with U.S. Appl. No. 14/869,899, 8 pages.
Examiner's Answer, dated May 9, 2019, received in U.S. Appl. No. 14/866,992, 26 pages.
Certificate of Grant, dated Jul. 4, 2019, received in Australian Patent Application No. 2016304890, which corresponds with U.S. Appl. No. 14/866,992, 1 page.
Certificate of Grant, dated May 9, 2019, received in Australian Patent Application No. 201761478, which corresponds with U.S. Appl. No. 14/866,992, 3 pages.
Summons, dated May 8, 2019, received in European Patent Application No. 16758008.3, which corresponds with U.S. Appl. No. 14/866,992, 14 pages.
Notice of Allowance, dated Jun. 18, 2019, received in Japanese Patent Application No. 2018-506425, which corresponds with U.S. Appl. No.14/866,992, 5 pages.
Office Action, dated Jun. 28, 2019, received in U.S. Appl. No. 15/009,661, 33 pages.
Certificate of Grant, dated May 16, 2019, received in Australian Patent Application No. 2017202816, which corresponds with U.S. Appl. No. 14/857,636, 4 pages.
Notice of Allowance, dated May 10, 2019, received in Korean Patent Application No. 20177036645, which corresponds with U.S. Appl. No. 14/857,636, 4 pages.
Patent, dated Jul. 11, 2019, received in Korean Patent Application No. 20177036645, which corresponds with U.S. Appl. No. 14/857,636, 8 pages.
Office Action, dated Jul. 1, 2019, received in Australian Patent Application No. 2019200872, which corresponds with U.S. Appl. No. 14/864,580, 6 pages.
Notice of Allowance, dated Jun. 14, 2019, received in Chinese Patent Application No. 201610342151.4, which corresponds with U.S. Appl. No. 14/864,580, 3 pages.
Intention to Grant, dated Jul. 18, 2019, received in European Patent Application No. 16730554.9, which corresponds with U.S. Appl. No. 14/864,601, 5 pages.
Notice of Allowance, dated May 29, 2019, received in Korean Patent Application No. 2017-7033756, which corresponds with U.S. Appl. No. 14/864,601, 6 pages.
Patent, dated Jun. 25, 2019, received in Korean Patent Application No. 2017-7033756, which corresponds with U.S. Appl. No. 14/864,601, 8 pages.
Notice of Allowance, dated May 23, 2019, received in Chinese Patent Application No. 201610189298.4, which corresponds with U.S. Appl. No. 14/866,361, 3 pages.
Office Action, dated Jun. 10, 2019, received in Japanese Patent Application No. 2017-141962, which corresponds with U.S. Appl. No. 14/866,361, 6 pages.
Rejection Decision, dated Apr. 28, 2019, received in Chinese Patent Application No. 201610342336.5, which corresponds with U.S. Appl. No. 14/866,987, 4 pages.
Intention to Grant, dated Jun. 14, 2019, received in European Patent Application no. 16189421.7, which corresponds with U.S. Appl. No. 14/866,987, 7 pages.
Certificate of Grant, dated Jun. 13, 2019, received in Australian Patent Application No. 2017201079, which corresponds with U.S. Appl. No. 14/866,989, 1 page.
Notice of Allowance, dated Jun. 5, 2019, received in Chinese Patent Application No. 201680000466.9, which corresponds with U.S. Appl. No. 14/871,227, 5 pages.
Examiner's Answer, dated Jul. 18, 2019, received in U.S. Appl. No. 14/867,892, 17 pages.
Notice of Allowance, dated May 21, 2019, received in Chinese Patent Application No. 201610131507.X, which corresponds with U.S. Appl. No. 14/867,990, 3 pages.
Certificate of Grant, dated May 23, 2019, received in Australian Patent Application No. 2017202058, which corresponds with U.S. Appl. No. 15/081,771, 1 page.
Patent, dated May 22, 2019, received in European Patent Application No. 15155939.4, which corresponds with U.S. Appl. No. 15/272,327,1 page.
Office Action, dated Jun. 5, 2019, received in Chinese Patent Application No. 201810071627.4, which corresponds with U.S. Appl. No. 15/272,343, 6 pages.
Intention to Grant, dated May 13, 2019, received in European Patent Application No. 17206374.5, which corresponds with U.S. Appl. No. 15/272,343, 7 pages.
Final Office Action, dated Jul. 1, 2019, received in U.S. Appl. No. 15/655,749, 24 pages.
Patent, dated Jul. 3, 2019, received in Korean Patent Application No. 2017-7034248, which corresponds with U.S. Appl. No. 15/655,749, 5 pages.
Office Action, dated Jul. 25, 2019, received in U.S. Appl. No. 15/979,347, 14 pages.
Office Action, dated May 31, 2019, received in Australian Patent Application No. 2018253539, which corresponds with U.S. Appl. No. 16/049,725, 3 pages.
Office Action, dated May 22, 2019, received in U.S. Appl. No. 16/230,743, 7 pages.
Office Action, dated Jul. 5, 2019, received in Korean Patent Application No. 2018-7037896, which corresponds with U.S. Appl. No. 16/243,834, 2 pages.
Office Action, dated Jul. 15, 2019, received in U.S. Appl. No. 16/258,394, 8 pages.
Office Action, dated Sep. 30, 2019, received in Japanese Patent Application No. 2018-079290, which corresponds with U.S. Appl. No. 14/608,926, 5 pages.
Certificate of Grant, dated Sep. 4, 2019, received in European Patent Application No. 13724104.8, which corresponds with U.S. Appl. No. 14/536,203, 4 pages.
Office Action, dated Sep. 30, 2019, received in Japanese Patent Application No. 2018-022394, which corresponds with U.S. Appl. No. 14/536,203, 5 pages.
Certificate of Grant, dated Aug. 28, 2019, received in Australian Patent Application No. 2018204236, which corresponds with U.S. Appl. No. 14/5326,267, 4 pages.
Certificate of Grant, dated Aug. 28, 2019, received in European Patent Application No. 13811032.5, which corresponds with U.S. Appl. No. 14/608,985, 4 pages.
Grant Certificate, dated Sep. 11, 2019, received in European Patent Application No. 17153418.3, which corresponds with U.S. Appl. No. 14/536,648, 1 page.
Decision to Grant, dated Sep. 12, 2019, received in European Patent Application No. 16708916.8, which corresponds with U.S. Appl. No. 14/868,078, 2 pages.
Decision to Grant, dated Sep. 19, 2019, received in European Patent Application No. 17184437.6, which corresponds with U.S. Appl. No. 14/868,078, 2 pages.
Office Action, dated Sep. 17, 2019, received in Chinese Patent Application No. 201610342264.4, which corresponds with U.S. Appl. No. 14/866,511, 3 pages.
Office Action, dated Sep. 12, 2019, received in Chinese Patent Application No. 201610658351.8, which corresponds with U.S. Appl. No. 14/866,992, 5 pages.
Notice of Allowance, dated Sep. 10, 2019, received in Korean Patent Application No. 2018-7003890, which corresponds with U.S. Appl. No. 14/866,992, 5 pages.
Notice of Acceptance, dated Sep. 19, 2019, received in Australian Patent Application No. 2019200872, which corresponds with U.S. Appl. No. 14/864,580, 3 pages.
Decision to Grant, dated Sep. 12, 2019, received in European Patent Application No. 16730554.9, which corresponds with U.S. Appl. No. 14/864,601, 2 pages.
Office Action, dated Sep. 27, 2019, received in Chinese Patent Application No. 201810119007.3, which corresponds with U.S. Appl. No. 15/136,782, 6 pages.
Office Action, dated Oct. 2, 2019, received in European Patent Application No. 18171453.6, which corresponds with U.S. Appl. No. 15/136,782, 5 pages.
Decision to Grant, dated Sep. 12, 2019, received in European Patent Application No. 17206374.5, which corresponds with U.S. Appl. No. 15/272,343, 3 pages.
Extended European Search Report, dated Oct. 9, 2019, received in European Patent Application No. 19181042.3, which corresponds with U.S. Appl. No. 15/272,343, 10 pages.
Office Action, dated Oct. 7, 2019, received in Japanese Patent Application No. 2018-000753, which corresponds with U.S. Appl. No. 14/536,426, 5 pages.
Patent, dated Sep. 27, 2019, received in Hong Kong Patent Application No. 15108904.1, which corresponds with U.S. Appl. No. 14/536,203, 6 pages.
Office Action, dated Sep. 30, 2019, received in Chinese Patent Application No. 201610537334.1, which corresponds with U.S. Appl. No. 14/536,267, 3 pages.
Patent, dated Aug. 30, 2019, received in Hong Kong Patent Application No. 15107537.8, which corresponds with U.S. Appl. No. 14/536,267, 9 pages.
Patent, dated Sep. 27, 2019, received in Japanese Patent Application No. 2017-237035, which corresponds with U.S. Appl. No. 14/536,267, 3 pages.
Decision to Grant, dated Oct. 31, 2019, received in European Patent Application No. 17186744.3, which corresponds with U.S. Appl. No. 14/536,291, 3 pages.
Intention to Grant, dated Oct. 28, 2019, received in European Patent Application No. 16707356.8, which corresponds with U.S. Appl. No. 14/866,159, 7 pages.
Certificated of Grant, dated Oct. 17, 2019, received in Australian Patent Application No. 2017258967, which corresponds with U.S. Appl. No. 14/868,078, 4 page.
Patent, dated Oct. 9, 2019, received in European Patent Application No. 16708916.8, which corresponds with U.S. Appl. No. 14/868,078, 3 pages.
Intention to Grant, dated Oct. 25, 2019, received in European Patent Application No. 18168939.9, which corresponds with U.S. Appl. No. 14/869,899, 8 pages.
Patent, dated Oct. 11, 2019, received in Korean Patent Application No. 2018-7003890, which corresponds with U.S. Appl. No. 14/866,992, 5 pages.
Patent, dated Oct. 9, 2019, received in European Patent Application No. 16730554.9, which corresponds with U.S. App. No. 14/864,601, 3 pages.
Office Action, dated Oct. 8, 2019, received in European Patent Application No. 17188507.5, which corresponds with U.S. Appl. No. 14/866,361, 6 pages.
Notice of Allowance, dated Oct. 7, 2019, received in Japanese Patent Application No. 2017-141962, which corresponds with U.S. Appl. No. 14/866,361, 5 pages.
Intention to Grant, dated Oct. 25, 2019, received in European Patent Application No.16189421.7, which corresponds with U.S. Appl. No. 14/866,987, 7 pages.
Office Action, dated Sep. 30, 2019, received in Chinese Patent Application No. 201610871466.8, which corresponds with U.S. Appl. No. 14/871,236, 4 pages.
Patent, dated Oct. 9, 2019, received in European Patent Application No. 17206374.5, which corresponds with U.S. Appl. No. 15/272,343, 3 pages.
Office Action, dated Oct. 22, 2019, received in Chinese Patent Application No. 201680022696.5, which corresponds with U.S. Appl. No. 15/272,345, 7 pages.
Office Action, dated Oct. 11, 2019, received in Australian Patent Application No. 2019202417, 4 pages.
Extended European Search Report, dated Oct. 28, 2019, received in European Patent Application No. 19195418.8, which corresponds with U.S. Appl. No. 16/240,672, 6 pages.
Final Office Action, dated Oct. 28, 2019, received in U.S. Appl. No. 15/889,115, 12 pages.
Related Publications (1)
Number Date Country
20190004605 A1 Jan 2019 US
Provisional Applications (1)
Number Date Country
62129941 Mar 2015 US
Continuations (1)
Number Date Country
Parent 14866159 Sep 2015 US
Child 16102409 US