Devices and methods for delivering energy to body lumens

Information

  • Patent Grant
  • 10492859
  • Patent Number
    10,492,859
  • Date Filed
    Wednesday, April 18, 2018
    6 years ago
  • Date Issued
    Tuesday, December 3, 2019
    4 years ago
Abstract
A medical device is disclosed for delivering energy to a body lumen. The device includes an elongate member including a proximal portion and a distal portion adapted for insertion into a body lumen; and an energy delivery device disposed adjacent the distal portion of the elongate member, the energy delivery device including at least one elongate electrode arm, wherein the elongate electrode arm is configured to transition between a first configuration and a second configuration different than the first configuration. The at least one elongate electrode arm includes an active region configured to contact and deliver energy to the body lumen. When the elongate electrode arm is in the first configuration, at least a portion of the active region of the elongate electrode arm extends radially inward toward a longitudinal axis of the energy delivery device.
Description
TECHNICAL FIELD

Various embodiments of the present disclosure relate generally to medical devices and related methods. More specifically, particular embodiments of the present disclosure relate to devices and methods for delivering energy to a body lumen.


BACKGROUND

Asthma is a disease in which (i) bronchoconstriction, (ii) excessive mucus production, and/or (iii) inflammation and swelling of airways can occur, potentially causing widespread but variable airflow obstruction, thereby making it difficult for the asthma sufferer to breathe. Asthma is a chronic disorder, primarily characterized by persistent airway inflammation. However, asthma is further characterized by acute episodes of additional airway narrowing via contraction of hyper-responsive airway smooth muscle.


Asthma may be managed pharmacologically by, among other things: (1) long-term control through use of anti-inflammatories and long-acting bronchodilators, and (2) short-term management of acute exacerbations through use of short-acting bronchodilators. Both of these approaches can require repeated and regular use of the prescribed drugs. High doses of corticosteroid anti-inflammatory drugs can have serious side effects that require careful management. In addition, some patients are resistant to steroid treatment. The difficulty involved in patient compliance with pharmacologic management and the difficulty of avoiding stimulus that triggers asthma are common barriers to successful asthma management.


Current management techniques are neither completely successful nor free from side effects. Presently, a new treatment for asthma is showing promise. This treatment comprises the application of energy to the airway smooth muscle tissue. Additional information about this treatment may be found in commonly assigned patents and applications, including U.S. Pat. Nos. 6,411,852 and 6,634,363, and U.S. Published Application Nos. US-2005-0010270-A1 and US-2002-0091379-A1, the entirety of each of which is incorporated herein by reference.


The application of energy to airway smooth muscle tissue, when performed via insertion of a treatment device into the bronchial passageways, requires, among other things, navigation through tortuous anatomy (e.g., curved lung passages) as well as the ability to treat a variety of sizes of bronchial passageways. As discussed in the above referenced patents and applications, use of an RF energy delivery device is one means of treating smooth muscle tissue within the bronchial passageways.



FIG. 1 illustrates an exemplary bronchial tree 90. As noted herein, devices treating areas of the lungs must have a construction that enables navigation through the tortuous airway passages. As shown, the various bronchioles 92 extend from right and left bronchi 94, and decrease in size and have many branches 96. Accordingly, an efficient treatment requires devices that are able to treat airways of varying sizes as well as function properly when repeatedly deployed after navigating through the tortuous anatomy.


Tortuous anatomy also poses challenges when the treatment device requires mechanical actuation of the treatment portion (e.g., expansion of a treatment element at a remote site). In particular, attempting to actuate a member may be difficult in view of the fact that the force applied at the operator's hand-piece must translate to the distal end of the device. The strain on the operator is further intensified given that the operator must actuate the distal end of the device many times to treat various portions of the anatomy. When a typical device is contorted after being advanced to a remote site in the lungs, the resistance within the device may be amplified given that internal components are forced together.


In addition to basic considerations of navigation and site access, there exists the matter of device orientation and tissue contact at the treatment site. Many treatment devices make contact or are placed in close proximity to the target tissue. Yet, variances in the construction of the treatment device may hinder proper alignment or orientation of the device. For example, in the case of a device having an expandable basket-type energy delivery element that is deployed intralumenally, the treatment area may benefit from uniform contact of basket elements around the perimeter of the lumen. However, in this case, design or manufacturing variances may tend to produce a device where the angle between basket elements may not be uniform. This problem tends to be exacerbated after repeated actuation of the device and/or navigating the device through tortuous anatomy when the imperfections of the device become worsened through plastic deformation of the individual components.


For many treatment devices, the distortion of the energy delivery elements might cause variability in the treatment effect. For example, many RF devices heat tissue based on the tissue's resistive properties. Increasing or decreasing the surface contact between the electrode and tissue often increases or decreases the amount of current flowing through the tissue at the point of contact. This directly affects the extent to which the tissue is heated. Similar concerns may also arise with resistive heating elements, devices used to cool the airway wall by removing heat, or any energy delivery device. In any number of cases, variability of the energy delivery/tissue interface may cause variability in treatment results. The consequential risks range from an ineffective treatment to the possibility of patient injury.


Furthermore, most medical practitioners recognize the importance of establishing acceptable contact between the energy delivery element and tissue. Therefore, distortion of the energy delivery element or elements increases the procedure time when the practitioner spends an inordinate amount of time adjusting a device to compensate for or avoid such distortion. Such action becomes increasingly problematic in those cases where proper patient management limits the time available for the procedure.


For example, if a patient requires an increasing amount of medication (e.g., sedatives or anesthesia) to remain under continued control for performance of the procedure, then a medical practitioner may limit the procedure time rather than risk overmedicating the patient. As a result, rather than treating the patient continuously to complete the procedure, the practitioner may plan to break the procedure in two or more sessions. Subsequently, increasing the number of sessions poses additional consequences on the part of the patient in cost, the residual effects of any medication, adverse effects of the non-therapeutic portion of the procedure, etc.


In view of the above, the present methods and devices described herein provide an improved means for treating tortuous anatomy such as the bronchial passages. It is noted that the improvements of the present device may be beneficial for use in other parts of the anatomy as well as the lungs.


SUMMARY

In accordance with certain embodiments of the present disclosure, a medical device is disclosed for delivering energy to a body lumen. The device includes an elongate member including a proximal portion and a distal portion adapted for insertion into a body lumen; and an energy delivery device disposed adjacent the distal portion of the elongate member, the energy delivery device including at least one elongate electrode arm, wherein the elongate electrode arm is configured to transition between a first configuration and a second configuration different than the first configuration. The at least one elongate electrode arm includes an active region configured to contact and deliver energy to the body lumen, wherein the active region is disposed between a proximal end region and a distal end region of the elongate electrode arm. When the elongate electrode arm is in the first configuration, at least a portion of the active region of the elongate electrode arm extends radially inward toward a longitudinal axis of the energy delivery device.


In accordance with certain embodiments of the present disclosure, a medical device is disclosed for delivering energy to a passageway of a patient's lung. The device includes an elongate member having a proximal end, a distal end, and a lumen extending therebetween; and a basket assembly adjacent the distal end and configured to transition between a collapsed state and an expanded state, wherein the basket assembly includes a plurality of expandable legs, wherein at least one of the expandable legs includes an active region configured to contact and deliver energy to a wall of the passageway when the basket assembly is in the expanded state. When the basket assembly is in the collapsed state, at least a portion of the active region of the at least one of the expandable legs includes an inwardly concave configuration.


In accordance with certain embodiments of the present disclosure, a medical device is disclosed for delivering energy to a body lumen. The device includes a flexible elongate member comprising a proximal portion and a distal portion adapted for insertion into a body lumen; and an energy delivery device disposed adjacent the distal portion of the elongate member, the energy delivery device comprising at least one elongate electrode and being configured to move between an expanded state and a collapsed state. The at least one elongate electrode comprises an active region configured to contact and deliver energy to the body lumen when the energy delivery device is in the expanded state. When the energy delivery device is in the collapsed state, at least a portion of the active region of the elongate electrode bows radially inward toward a longitudinal axis of the energy delivery device, such that at least a portion of the active region is closer to the longitudinal axis than at least a portion of the proximal adjoining region and at least a portion of the distal adjoining region. Upon the application of axial compressive forces to the elongate electrode, the elongate electrode is configured to bow outward away from the longitudinal axis of the energy delivery device.


The disclosed embodiments may include one or more of the following features: the at least one elongate electrode arm may include a plurality of elongate electrode arms; the plurality of elongate electrode arms may be secured together to form a basket assembly; the basket assembly may be self-expandable; the elongate electrode arm may be configured to transition from the first configuration to the second configuration when an axially compressive force is applied to the elongate electrode arm; when the elongate electrode arm is in the first configuration, the elongate electrode arm may include a substantially concave configuration; when the elongate electrode arm is in the second configuration, the active region of the elongate electrode arm may include a substantially planar configuration; a member configured to apply an axially compressive force to the at least one elongate electrode; the at least one elongate electrode arm may be formed of a shape memory material; the proximal end region and the distal end region of the elongate electrode arm may include an insulating coating; the active region may include an electrode secured to the elongate electrode arm; the active region may include an electrode secured to the at least one expandable leg; when the basket assembly is in the expanded configuration, the active region of the at least one of the expandable legs may include a substantially planar configuration; the active region of the at least one of the expandable legs may be disposed between a proximal leg portion and a distal leg portion; the proximal and distal leg portions may include an insulating coating; the proximal adjoining region and the distal adjoining region are either substantially flat or bow radially inward toward the longitudinal axis of the energy delivery device; when the energy delivery device is in the expanded state, the active area becomes substantially planar, and at least a portion of the active region becomes positioned farther from the longitudinal axis than at least the portion of the proximal adjoining region and at least the portion of the distal adjoining region: the at least one elongate electrode comprises a plurality of elongate electrodes that form an expandable basket assembly.


The present disclosure describes devices configured to treat the airways or other anatomical structures, and may be especially useful in tortuous anatomy. The devices described herein are configured to treat with uniform or predictable contact (or near contact) between an active element and tissue. Typically, the disclosed devices allow this result with little or no effort by a physician. Accordingly, aspects of the disclosed embodiments offer increased effectiveness and efficiency in carrying out a medical procedure. The increases in effectiveness and efficiency may be especially apparent in using devices having relatively longer active end members.


In view of the above, a variation of the disclosed device includes a catheter for use with a power supply, the catheter comprising a flexible elongate shaft coupled to at least one energy delivery element that is adapted to apply energy to the body lumen. The shaft will have a flexibility to accommodate navigation through tortuous anatomy. The energy delivery elements are described below and include basket type design, or other expandable designs that permit reduction in size or profile to aid in advancing the device to a particular treatment site and then may be expanded to properly treat the target site. The basket type designs may be combined with expandable balloon or other similar structures.


Variations of the device can include an elongate sheath having a near end, a far end adapted for insertion into the body, and having a flexibility to accommodate navigation through tortuous anatomy, the sheath having a passageway extending therethrough, the passageway having a lubricious layer extending from at least a portion of the near end to the far end of the sheath, where the shaft is slidably located within the passageway of the sheath.


Variations of devices described herein can include a connector for coupling the energy delivery element to the power supply. The connector may be any type of connector commonly used in such applications. Furthermore, the connector may include a cable that is hard-wired to the catheter and connects to a remote power supply. Alternatively, the connector may be an interface that connects to a cable from the power supply.


Variations of the device allow for reduced friction between the shaft and sheath to allow relatively low force advancement of a distal end of the shaft out of the far end of the sheath for advancement the energy delivery element. Additional variations of the disclosed embodiments include devices allowing for repeatable deployment of the expandable energy delivery element while maintaining the orientation and/or profile of the components of the energy delivery element. One such example includes an energy delivery basket comprising a plurality of arms, each arm having a distal end and a proximal end, each arm having a flexure length that is less than a full length of the arm.


An additional variation of the device includes a catheter for use in tortuous anatomy to deliver energy from a power supply to a body passageway. Such a catheter includes an expandable energy delivery element having a reduced profile for advancement and an expanded profile to contact a surface of the body passageway and an elongate shaft having a near end, a far end adapted for insertion into the body, the expandable energy delivery element coupled to the far end of the shaft, the shaft having a length sufficient to access remote areas in the anatomy. The design of this shaft includes column strength sufficient to advance the expandable energy delivery element within the anatomy, and a flexibility that permits self-centering of the energy delivery element when expanded to contact the surface of the body passageway.


Additional objects and advantages of the disclosed embodiments will be set forth in part in the description that follows, and in part will be apparent from the description, or may be learned by practice of the disclosed embodiments. The objects and advantages of the disclosed embodiments will be realized and attained by means of the elements and combinations particularly pointed out in the appended claims.


It is to be understood that both the foregoing general description and the following detailed description are exemplary and explanatory only and are not restrictive of the disclosed embodiments, as claimed.





BRIEF DESCRIPTION OF THE DRAWINGS

The accompanying drawings, which are incorporated in and constitute a part of this specification, illustrate various exemplary embodiments and together with the description, serve to explain the principles of the disclosed embodiments.



FIG. 1 is an illustration of a person's bronchial passageways;



FIG. 2 is a diagram of an exemplary energy delivery system consistent with embodiments of the present disclosure;



FIG. 3 is a diagram of an exemplary energy delivery device consistent with embodiments of the present disclosure;



FIG. 4 is a diagram of an exemplary energy delivery device disposed in a person's bronchial passageway;



FIG. 5 is a cross-sectional diagram of an exemplary energy delivery device;



FIGS. 6A-6B depict exemplary pre-shaped energy delivery electrode wires;



FIGS. 7A-7B depict exemplary pre-shaped energy delivery electrode wires consistent with embodiments of the present disclosure;



FIGS. 8A-8B depict exemplary pre-shaped energy delivery electrode wires consistent with embodiments of the present disclosure;



FIG. 9 depicts a fixture for molding a pre-shaped enemy delivery electrode, consistent with embodiments of the present disclosure; and



FIG. 10 depicts a cross-sectional diagram of an exemplary energy delivery device consistent with embodiments of the present disclosure.





DETAILED DESCRIPTION

Reference will now be made in detail to the exemplary embodiments of the disclosure, examples of which are illustrated in the accompanying drawings. Wherever possible, the same reference numbers will be used throughout the drawings to refer to the same or like parts.


It is understood that the examples below discuss uses in the airways of the lungs. However, unless specifically noted, the disclosed embodiments are not limited to use in the lung. Instead, the disclosed embodiments may have applicability in various parts of the body, including, but not limited to, urological, biliary, and gastrointestinal applications. Moreover, the disclosed embodiments may be used in various procedures where the benefits of the device are desired.



FIG. 2 shows a schematic diagram of one example of a system 10 for delivering therapeutic energy to tissue of a patient for use with the device described herein. The illustrated variation shows the system 10 having a power supply (e.g., consisting of an energy generator 12), a controller 14 coupled to the energy generator, and a user interface surface 16 in communication with the controller 14. It is noted that the device may be used with a variety of systems (having the same or different components). For example, although variations of the device shall be described as RF energy delivery devices, some embodiments of the device may include resistive heating systems, infrared heating elements, microwave energy systems, focused ultrasound, cryo-ablation, or any other energy system. It is noted that the devices described should have sufficient length to access the tissue targeted for treatment. For example, it is presently believed necessary to treat airways as small as 3 mm in diameter to treat enough airways for the patient to benefit from the described treatment (however, it is noted that the disclosed embodiments are not limited to any particular size of airways and airways smaller or larger than 3 mm may be treated with the embodiments disclosed herein). Accordingly, devices for treating the lungs must be sufficiently long to reach deep enough into the lungs to treat these airways. Accordingly, the length of the sheath/shaft of the device that is designed for use in the lungs may be between 1.5-3 ft. long in order to reach the targeted airways.


The particular system 10 depicted in FIG. 2 is one having a user interface as well as safety algorithms that are useful for the asthma treatment discussed above. Additional information on such a system may be found in U.S. Provisional application No. 60/674,106, filed Apr. 21, 2005, entitled CONTROL METHODS AND DEVICES FOR ENERGY DELIVERY, the entirety of which is incorporated by reference herein.


Referring again to FIG. 2, a variation of a device 100 described herein includes a flexible sheath 102, an elongate shaft 104 (in this example, the shaft extends out from the distal end of the sheath 102), and a handle or other operator interface 106 (optional) secured to a proximal end of the sheath 102. The distal portion of the device 100 includes an energy delivery element 108 (e.g., an electrode, a basket electrode, a resistive heating element, cyroprobe, etc.). Additionally, the device 100 includes a connector 110 common to such energy delivery devices. The connector 110 may be integral to the end of a cable 112 as shown, or the connector 110 may be fitted to receive a separate cable 112. In any case, the device may be configured for attachment to the power supply via some type connector 110. The elongate portions 102, 104 of the device 100 may also be configured and sized to permit passage through the working lumen of a commercially available bronchoscope or endoscope. As discussed herein, the device 100 is often used within an endoscope, bronchoscope, or similar device. However, the device 100 may also be advanced into the body with or without a steerable catheter, in a minimally invasive procedure or in an open surgical procedure, and with or without the guidance of various vision or imaging systems.



FIG. 2 also illustrates additional components used in variations of the system 10. Although the depicted systems are shown as RF-type energy delivery systems, it is noted that the disclosed embodiments are not limited as such. Other energy delivery configurations contemplated may include or not require some of the elements described below. The power supply (usually the user interface portion 16) shah have connections 20, 28, 30 for the device 100, return electrode 24 (if the system 10 employs a monopolar RF configuration), and actuation pedal(s) 26 (optional). The power supply and controller may also be configured to deliver RF energy to an energy delivery element configured for bipolar RF energy delivery. The user interface 16 may also include visual prompts 32, 60, 68, 74 for user feedback regarding setup or operation of the system. The user interface 16 may also employ graphical representations of components of the system, audio tone generators, as well as other features to assist the user with system use.


In many variations of the system, the controller 14 may include a processor 22 that is generally configured to accept information from the system and system components, and process the information according to various algorithms to produce control signals for controlling the energy generator 12. The processor 22 may also accept information from the system 10 and system components, process the information according to various algorithms and produce information signals that may be directed to the visual indicators, digital display or audio tone generator of the user interface in order to inform the user of the system status, component status, procedure status or any other useful information that is being monitored by the system. The processor 22 of the controller 14 may be a digital IC processor, analog processor, or any other suitable logic or control system that carries out the control algorithms, such as those described in U.S. Provisional application No. 60/674,106, filed Apr. 21, 2005, entitled CONTROL METHODS AND DEVICES FOR ENERGY DELIVERY, the entirety of which is incorporated by reference herein.



FIG. 2 illustrates one example of an energy delivery element 108. In this example, the energy delivery element 108 includes a “basket”-like configuration that implements actuation for expansion of the basket in diameter via a slide mechanism 114 on the handle 106. For example, an operator may manipulate slide mechanism 114, which, through some type of linkage, causes electrode wires of energy delivery element 108 to expand radially outward or otherwise mechanically deploy. Alternatively, the basket may be configured to expand as soon as it is exposed by a sheath, due to its own resilient forces (i.e., making it “self-expandable”). Such features may be useful when the device is operated intralumenally or in anatomy such as the lungs due to the varying size of the bronchial passageways that may require treatment.



FIG. 3 illustrates an embodiment in which device 100 may be advanced through a working channel 33 of a bronchoscope 18. While a bronchoscope 18 may assist in the procedure, the device 100 may be used through direct insertion or other insertion means as well. In addition, FIG. 3 illustrates an embodiment of energy delivery element 108 in a basket configuration and including a number of arms 120 that carry electrodes (not shown). In this embodiment, the arms 120 are attached to the elongated shaft 104 at a proximal end while the distal end of the arms 120 are affixed to a distal tip 122. In one embodiment, the arms 120 may be “tipless”, whereby the arms 120 do not terminate in distal tip 120 but instead “double back” on themselves, forming one or more loops within distal tip 122. To actuate the energy delivery element 108, a wire or tether 124 may be affixed to the distal tip 122 to enable compression of the arms 120 between the distal tip 122 and elongate shaft 104. When the energy delivery element 108 is actuated, i.e., expanded, the arms 120 may bow outward, away from a longitudinal axis of the energy delivery element 108.



FIG. 4 depicts an example of device 100, including energy delivery element 108, being advanced thorough a body lumen 92, e.g., a bronchial passageway. In one embodiment, as shown in FIG. 4, device 100 may also incorporate a junction 176 that adjusts for misalignment between the branching airways or other body passages, thereby allowing alignment of the device to closely match the alignment of the airway. It is noted that the present feature also benefits those cases in which the pathway and target site are offset as opposed to having an angular difference. The junction 176 helps to eliminate the need for alignment of the axis of the active element 108 with the remainder of the device in order to provide substantially even tissue contact. The junction may be a joint, a flexure, or equivalent means. FIG. 4 illustrates an example of where the access passageway and passageway to be treated are misaligned by an angle alpha (α). Yet, the energy delivery element 108 of the treatment device 100 remains substantially aligned with the target area.



FIG. 5 depicts an embodiment of energy delivery element 108 in a collapsed configuration (electrode arms 120A) and expanded configuration (electrode arms 1208). Specifically, the electrode arms of energy delivery element 108 may be originally shaped like electrode arms 120A, as shown in FIG. 5, when energy delivery element 108 is in a collapsed configuration. The electrode arms may be deformed to the shape of electrode arms 120B.



FIG. 5 depicts an embodiment of energy delivery element 108 including a representation of an active region 50. Active region 50 of electrode arms 120A/120B may be a conductive region of electrode arms 120A/120B. For example, the electrodes may be generally metallic or otherwise conductive, and have an insulator disposed around the electrodes in all areas other than the active region 50. Alternatively, electrode arms 120A/120B may have a special metallic coating or other conductive material applied to electrode arms 120A/120B around the active region 50. As discussed above, the active region 50 may be configured to contact and apply energy to the tissue of a body lumen. In the energy delivery element 108 of FIG. 5, the initial shape of collapsed electrode arms 120A, and therefore the resulting shape of expanded electrode arms 120B, may cause only a subset of active region 50 to contact and apply energy to the body lumen tissue. In other words, the “contact area” may be generally shorter than desired, and/or less of the active region 50 than desired.


Electrode arms 120A/B of the energy delivery element 108 may have various cross-sectional shapes. For example, the shapes may be round, rounded or polygonal in cross section. Additionally, each electrode arm may change cross section along its axis, providing for, for example, electrodes that are smaller or larger in cross section than the distal and proximal portions of each electrode arm. This would provide a variety of energy delivery characteristics and bending profiles, allowing the design to be improved such that longer or wider electrode configurations can be employed. For example, if the cross-sectional thickness of the active portion of the electrode arm is greater than the cross-sectional thickness of the distal and proximal (i.e., inactive) portions of the electrode arm, the electrode arm would be predisposed to bow outward in the distal and proximal sections, while remaining flatter in the active area of the electrode arm, potentially providing improved tissue contact.


One objective of the present disclosure involves increasing the amount of active region 50 that contacts a body lumen, e.g., to promote more uniform contact between the energy delivery elements 108 and a treated body lumen. Another objective of the present disclosure involves increasing the ratio of the contact area to the active region 50; and/or a ratio of the contact area to the electrode length 55. Traditionally, the active region 50 may be substantially curved along its entire length, causing only around 5 mm of the active region 50 to constitute “contact area” with the body lumen. For example, traditional energy delivery elements 108 may form a shape that is naturally formed by a straight wire that is compressed or otherwise urged to bow outwardly near its midpoint. Accordingly, in one exemplary embodiment, electrode arms 120 of energy delivery element 108 may be pre-bent or pre-shaped before being expanded into a basket configuration.


Referring now to FIGS. 6A-8B, the electrode arms of energy delivery element 108 may be pre-shaped as already described herein. In particular, the electrode arms 120 may be pre-shaped to control the direction in which the arms deflect upon basket deployment 108 to prevent electrode inversion, provide controlled buckling of the basket electrode 108, and improve tissue contact.



FIG. 6A illustrates a pre-bent electrode arm 600, which is pre-bent according to existing techniques. For example, the electrodes may be constructed of a suitable current conducting metal or alloys such as, for example, copper, steel, and platinum. The electrodes may also be constructed of a shape memory alloy which is capable of assuming a predetermined, i.e., programmed, shape upon reaching a predetermined, i.e., activation, temperature. Such metals are known in the art as described, for example, in U.S. Pat. Nos. 4,621,882 and 4,772,112, which are incorporated herein. For the presently disclosed embodiments, the shape memory metal used may have the characteristic of assuming a deflection away (i.e., expands) from a device longitudinal axis when activated, i.e., heated in excess of the normal body temperature and preferably between 60° C. and 95° C. One suitable shape memory alloy is available as NITINOL from Raychem Corp., Menlo Park, Calif.


As shown in FIG. 6B, when axial compressive loads are applied to the electrode 600 during deployment, the pre-shaped arm is predisposed to buckle or deflect in a predictable, desired outwards direction into electrode arm 600′, to make contact with the airway wall. Hence, the pre-shaped arm 600 provides for preferential buckling in the outward direction, thereby forming expanded electrode arm 600′, which is of use in tortuous airways where orthogonal or side loads commonly cause arm inversions. At all points along its length, the pre-shaped arm 600 is either straight or bows outward from a longitudinal axis of an energy delivery element. However, as described above, the configuration of FIG. 6A-6B may result in a tissue contact area of expanded electrode arm 600′ that is shorter and less uniform than desired, and/or a smaller proportion of active area 50 than desired.


Accordingly, several alternative pre-shaped electrode arms are disclosed, which may be employed to induce more desirable bowing or buckling upon the application of axial compression, so that an entire active area may make contact with a patient's tissue. FIG. 7A depicts an embodiment of a pre-shaped electrode arm 700 having an active area 702 that bows inward toward a longitudinal axis of the energy delivery device, when in a collapsed configuration. In other words, the active area 702 is pre-shaped to be convex from a perspective of the longitudinal axis of the energy delivery device, and concave from a perspective away from the energy delivery device. As a result of the concavity, or inward bowing, of active area 702, axial compressive forces on electrode arm 700 cause electrode arm 700 to deform to the shape depicted as electrode arm 700′ of FIG. 7B. Specifically, as depicted in FIG. 7B, axial compressive forces on electrode arm 700 cause the electrode arm 700, including concave active area 702, to form an expanded electrode arm 700′ having a desirable active area 702′. Concave active area 702 may flatten to form a substantially flat active area 702′ by virtue of torque transferred from end portions of electrode arm 700 to the concave active area 702, upon the application of axial forces (e.g., from wire or tether 124 applying tension, as described above).


By comparison between FIGS. 6B and 7B, it can be seen that expanded electrode arm 700′ may form a longer and more uniform contact area as compared to the contact area of expanded electrode arm 600′. In addition, expanded electrode arm 700′ may form a flatter active area 700′ than the active area of expanded electrode arm 600′, thereby also causing longer, and more uniform contact area. In one embodiment, the contact area of expanded electrode arm 700′ may be approximately 5-15 mm in length. Because of the pre-formed concavity in electrode arm 700, the shape of active area 702′ on expanded electrode arm 700′, and resulting lengthened contact area, may promote more uniform contact between the device active area 702′ and the tissue targeted for energy delivery. For example, the shape of expanded electrode arm 700′ may provide desirable and consistent tissue contact over a substantial entirety of active area 702′.



FIG. 8A depicts an electrode arm 800 having a flat active area 802 and concave adjoining portions 804. As a result of the concavity, or inward bowing, of adjoining portions 804, axial compressive forces on electrode arm 800 may cause electrode arm 800 to deform to the shape depicted as electrode arm 800′, as shown in FIG. 8B. Specifically, as depicted in FIG. 8B, axial compressive forces on electrode arm 800 causes the electrode arm 800; including concave adjoining portions 804, to form an expanded electrode arm 800′ having an active area 802′. Concave adjoining portions 804 may expand to form longer active area 802′ by virtue of torque transferred from end portions of electrode arm 800 to active area 802 and adjoining portions 804, upon the application of axial forces (e.g., from wire or tether 124 applying compression, as described above).


By comparison between FIGS. 6B and 8B, it can be seen that expanded electrode arm 800′ may form a longer and more uniform contact area as compared to the contact area of expanded electrode arm 600′. In addition, expanded electrode arm 800′ may form a flatter active area 800′ than the active area of expanded electrode arm 600′, thereby also causing longer, and more uniform contact area. In one embodiment, the contact area of expanded electrode arm 800′ may be approximately 5-15 mm in length. Because of the pre-formed concavity in adjoining portions of electrode arm 800, the shape of active area 802′ on expanded electrode arm 800′, and resulting lengthened contact area, may promote more uniform contact between the device active area 802′ and the tissue targeted for energy delivery. For example, the shape of expanded electrode arm 800′ may provide desirable and consistent tissue contact over a substantial entirety of active area 802′.



FIG. 9 depicts a fixture 900 for making an electrode wire consistent with the embodiments of the present disclosure, including the pre-shaped electrode wires of FIGS. 7A and 8A. Specifically, fixture 900 contains a plurality of contours 902 into which a wire may be disposed for deformation. Contours 902 may contain a concaved portion 904, which may impart a concaved feature, e.g., concave portion 702, onto an electrode wire. In one embodiment, a Nitinol ribbon, or other shape memory material, may be set into the contours 902 of fixture 900. A press plate may be used to press the Nitinol ribbon or other wire against the desired contours formed in the fixture 900. Heat may be applied to the wire to aid in deforming the wire against the contours 902 of fixture 900, thereby pre-setting the shape of the wire.



FIG. 10 depicts an embodiment of energy delivery device 108 including electrode arms 120A/120B consistent with electrode arm 700/700′ depicted in FIGS. 7A and 7B. FIG. 10 also depicts an embodiment of energy delivery element 108 including a representation of an active region 50. Specifically, the electrode arms of energy delivery element 108 may be originally shaped like electrode arms 120A, as shown in FIG. 10, when energy delivery element 108 is in a collapsed configuration. The electrode arms may be deformed to the shape of electrode arms 120B, by the application of axial compressive forces. Because the electrode arms 120A have concave portions consistent with concave portions 702 of FIG. 7A, a larger portion of active region 50 may be in contact with body lumen tissue, than of the active region depicted in FIG. 5. Moreover, contact area of the active region 50 of FIG. 10 may be a larger proportion of the active region 50 and/or of the overall electrode length 55, as compared to that of the electrode disclosed in FIG. 5.


Other embodiments of the invention will be apparent to those skilled in the art from consideration of the specification and practice of the invention disclosed herein. It is intended that the specification and examples be considered as exemplary only, with a true scope and spirit of the invention being indicated by the following claims.

Claims
  • 1. A medical device, comprising: a basket assembly configured to transition between a collapsed state and an expanded state, a central longitudinal axis extending through a radial center of the basket assembly, wherein the basket assembly includes a plurality of expandable legs, and a first expandable leg of the plurality of expandable legs includes an active region, wherein: the first expandable leg is pre-shaped such that in the collapsed state and while the basket assembly is unconstrained by an outer sheath, the active region is convex when viewed from the central longitudinal axis;the active region is configured to contact and deliver energy to tissue when the basket assembly is in the expanded state; andwhen the basket assembly is in the expanded state, distal ends of the plurality of expandable legs converge toward one another.
  • 2. The medical device of claim 1, wherein the active region extends distally (i) in a radially inward curve toward the central longitudinal axis and toward a radially innermost point, and (ii) from the radially innermost point in a radially outward curve toward a distal end of the first expandable leg.
  • 3. The medical device of claim 1, further including a first region proximal of the active region, the first region extending distally and radially outward away from the central longitudinal axis in the collapsed state and while the basket assembly is unconstrained by an outer sheath.
  • 4. The medical device of claim 3, wherein the first region is substantially flat in the collapsed state and while the basket assembly is unconstrained by an outer sheath.
  • 5. The medical device of claim 3, further including a second region distal to the active region, wherein the second region extends distally from the active region and radially inward toward the central longitudinal axis in the collapsed state and while the basket assembly is unconstrained by an outer sheath.
  • 6. The medical device of claim 5, wherein the second region is substantially flat in the collapsed state and while the basket assembly is unconstrained by an outer sheath.
  • 7. The medical device of 5, further including a third region disposed proximal to the first region, wherein the third region is substantially parallel to the central longitudinal axis in both the collapsed and expanded states.
  • 8. The medical device of claim 7, further including a fourth region disposed distal to the second region, wherein the fourth region is substantially parallel to the central longitudinal axis in both the collapsed and expanded states.
  • 9. The medical device of claim 1, further including a member having a proximal end, a distal end, and a lumen extending therebetween, wherein the basket assembly is disposed at or adjacent the distal end of the member.
  • 10. The medical device of claim 9, further including a distal tip, wherein the distal end of each of the plurality of expandable legs is coupled to the distal tip.
  • 11. The medical device of claim 10, further including an actuating member that extends from the distal end of the member, through a volume defined by the plurality of expandable legs, to the distal tip.
  • 12. The medical device of claim 1, wherein the first expandable leg includes an electrode in the active region.
  • 13. The medical device of claim 1, wherein, when the basket assembly is in the expanded state, the active region of the first expandable leg is substantially flat.
  • 14. The medical device of claim 1, wherein portions of the first expandable leg proximal and distal to the active region include an insulating coating.
  • 15. The medical device of claim 1, wherein the plurality of expandable legs are configured to deliver RF energy.
  • 16. A medical device, comprising: a basket assembly configured to transition between a collapsed state and an expanded state, a central longitudinal axis extending through a radial center of the basket assembly, wherein the basket assembly includes a plurality of expandable legs, and a first expandable leg of the plurality of expandable legs includes an active region, wherein: the first expandable leg is pre-shaped such that in the collapsed state and while the basket assembly is unconstrained by an outer sheath, the active region is curved;the active region is substantially flat when the basket assembly is in the expanded state; andthe active region is concave when viewed from a perspective exterior to the medical device, while the basket is in the collapsed state and while the basket assembly is unconstrained by an outer sheath.
  • 17. The medical device of claim 16, wherein distal ends of the plurality of expandable legs converge toward one another.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application is a continuation of U.S. Nonprovisional patent application Ser. No. 15/012,966, filed Feb. 2, 2016, which is a continuation of U.S. Nonprovisional application Ser. No. 14/072,230, filed on Nov. 5, 2013, now U.S. Pat. No. 9,283,374, which claims the benefit of priority from U.S. Provisional Application No. 61/722,499, filed on Nov. 5, 2012, the entireties of each of which are incorporated by reference herein.

US Referenced Citations (564)
Number Name Date Kind
612724 Hamilton Oct 1898 A
1155169 Starkweather Sep 1915 A
1207479 Bisgaard Dec 1916 A
1216183 Swingle Feb 1917 A
2072346 Smith Mar 1937 A
3320957 Sokolik May 1967 A
3568659 Karnegis Mar 1971 A
3667476 Muller Jun 1972 A
3692029 Adair Sep 1972 A
3995617 Watkins et al. Dec 1976 A
4095602 Leveen Jun 1978 A
4116589 Rishton Sep 1978 A
4129129 Amrine Dec 1978 A
4154246 Leveen May 1979 A
4461283 Doi Jul 1984 A
4502490 Evans et al. Mar 1985 A
4503855 Maslanka Mar 1985 A
4512762 Spears Apr 1985 A
4522212 Gelinas et al. Jun 1985 A
4557272 Carr Dec 1985 A
4565200 Cosman Jan 1986 A
4567882 Heller Feb 1986 A
4584998 McGrail Apr 1986 A
4612934 Borkan Sep 1986 A
4621642 Chen Nov 1986 A
4621882 Krumme Nov 1986 A
4625712 Wampler Dec 1986 A
4643186 Rosen et al. Feb 1987 A
4646737 Hussein et al. Mar 1987 A
4674497 Ogasawara Jun 1987 A
4683890 Hewson Aug 1987 A
4704121 Moise Nov 1987 A
4706688 Don Michael et al. Nov 1987 A
4709698 Johnston et al. Dec 1987 A
4739759 Rexroth et al. Apr 1988 A
4754065 Levenson et al. Jun 1988 A
4754752 Ginsburg et al. Jul 1988 A
4765959 Fukasawa Aug 1988 A
4772112 Zider et al. Sep 1988 A
4773899 Spears Sep 1988 A
4779614 Moise Oct 1988 A
4784135 Blum et al. Nov 1988 A
4790305 Zoltan et al. Dec 1988 A
4799479 Spears Jan 1989 A
4802492 Grunstein Feb 1989 A
4817586 Wampler Apr 1989 A
4825871 Cansell May 1989 A
4827935 Geddes et al. May 1989 A
4846152 Wampler et al. Jul 1989 A
4862886 Clarke et al. Sep 1989 A
4895557 Moise et al. Jan 1990 A
4906229 Wampler Mar 1990 A
4907589 Cosman Mar 1990 A
4908012 Moise et al. Mar 1990 A
4920978 Colvin May 1990 A
4944722 Carriker et al. Jul 1990 A
4955377 Lennox et al. Sep 1990 A
4967765 Turner et al. Nov 1990 A
4969865 Hwang et al. Nov 1990 A
4976709 Sand Dec 1990 A
4985014 Orejola Jan 1991 A
4991603 Cohen et al. Feb 1991 A
5009636 Wortley et al. Apr 1991 A
5009936 Yamanaka et al. Apr 1991 A
5010892 Colvin et al. Apr 1991 A
5019075 Spears et al. May 1991 A
5027829 Larsen Jul 1991 A
5030645 Kollonitsch Jul 1991 A
5036848 Hewson Aug 1991 A
5053033 Clarke Oct 1991 A
5056519 Vince Oct 1991 A
5074860 Gregory et al. Dec 1991 A
5078716 Doll Jan 1992 A
5084044 Quint Jan 1992 A
5096916 Skupin Mar 1992 A
5100388 Behl et al. Mar 1992 A
5100423 Fearnot Mar 1992 A
5103804 Abele et al. Apr 1992 A
5105826 Smits et al. Apr 1992 A
5106360 Ishiwara et al. Apr 1992 A
5107830 Younes Apr 1992 A
5114423 Kasprzyk et al. May 1992 A
5116864 March et al. May 1992 A
5117828 Metzger et al. Jun 1992 A
5135517 McCoy Aug 1992 A
5152286 Sitko et al. Oct 1992 A
5165420 Strickland Nov 1992 A
5167223 Koros et al. Dec 1992 A
5170803 Hewson et al. Dec 1992 A
5174288 Bardy et al. Dec 1992 A
5188602 Nichols Feb 1993 A
5191883 Lennox et al. Mar 1993 A
5213576 Abiuso et al. May 1993 A
5215103 Desai Jun 1993 A
5231996 Bardy et al. Aug 1993 A
5232444 Just et al. Aug 1993 A
5234456 Silvestrini Aug 1993 A
5254088 Lundquist et al. Oct 1993 A
5255678 Deslauriers et al. Oct 1993 A
5255679 Imran Oct 1993 A
5265604 Vince Nov 1993 A
5269758 Taheri Dec 1993 A
5281218 Imran Jan 1994 A
5292331 Boneau Mar 1994 A
5293869 Edwards et al. Mar 1994 A
5309910 Edwards et al. May 1994 A
5311866 Kagan et al. May 1994 A
5313943 Houser et al. May 1994 A
5324284 Imran Jun 1994 A
5343936 Beatenbough et al. Sep 1994 A
5345936 Pomeranz et al. Sep 1994 A
5366443 Eggers et al. Nov 1994 A
5368591 Lennox et al. Nov 1994 A
5370644 Langberg Dec 1994 A
5370679 Atlee, III Dec 1994 A
5374287 Rubin Dec 1994 A
5383917 Desai et al. Jan 1995 A
5393207 Maher et al. Feb 1995 A
5394880 Atlee, III Mar 1995 A
5396887 Imran Mar 1995 A
5400778 Jonson et al. Mar 1995 A
5400783 Pomeranz et al. Mar 1995 A
5411025 Webster May 1995 A
5415166 Imran May 1995 A
5415656 Tihon et al. May 1995 A
5417687 Nardella et al. May 1995 A
5422362 Vincent et al. Jun 1995 A
5423744 Gencheff et al. Jun 1995 A
5423811 Imran et al. Jun 1995 A
5425023 Haraguchi et al. Jun 1995 A
5425703 Feiring Jun 1995 A
5425811 Mashita Jun 1995 A
5431696 Atlee, III Jul 1995 A
5433730 Alt Jul 1995 A
5437665 Munro Aug 1995 A
5443470 Stern et al. Aug 1995 A
5454782 Perkins Oct 1995 A
5456667 Ham et al. Oct 1995 A
5458596 Lax et al. Oct 1995 A
5465717 Imran et al. Nov 1995 A
5471982 Edwards et al. Dec 1995 A
5474530 Passafaro et al. Dec 1995 A
5478309 Sweezer et al. Dec 1995 A
5496271 Burton et al. Mar 1996 A
5496311 Abele et al. Mar 1996 A
5496312 Klicek Mar 1996 A
5500011 Desai Mar 1996 A
5505728 Ellman et al. Apr 1996 A
5505730 Edwards Apr 1996 A
5507791 Sit'Ko Apr 1996 A
5509419 Edwards et al. Apr 1996 A
5522862 Testerman et al. Jun 1996 A
5531779 Dahl et al. Jul 1996 A
5540681 Strul et al. Jul 1996 A
5545161 Imran Aug 1996 A
5545193 Fleischman et al. Aug 1996 A
5547469 Rowland et al. Aug 1996 A
5549559 Eshel Aug 1996 A
5549655 Erickson Aug 1996 A
5549661 Kordis et al. Aug 1996 A
RE35330 Malone et al. Sep 1996 E
5558073 Pomeranz et al. Sep 1996 A
5562608 Sekins et al. Oct 1996 A
5571074 Buckman et al. Nov 1996 A
5571088 Lennox et al. Nov 1996 A
5574059 Regunathan et al. Nov 1996 A
5575810 Swanson et al. Nov 1996 A
5578072 Barone et al. Nov 1996 A
5582609 Swanson et al. Dec 1996 A
5588432 Crowley Dec 1996 A
5588812 Taylor et al. Dec 1996 A
5595183 Swanson et al. Jan 1997 A
5598848 Swanson et al. Feb 1997 A
5599345 Edwards et al. Feb 1997 A
5601088 Swanson et al. Feb 1997 A
5605157 Panescu et al. Feb 1997 A
5607419 Amplatz et al. Mar 1997 A
5607462 Imran Mar 1997 A
5620438 Amplatz et al. Apr 1997 A
5623940 Daikuzono Apr 1997 A
5624439 Edwards et al. Apr 1997 A
5626618 Ward et al. May 1997 A
5630425 Panescu et al. May 1997 A
5630794 Lax et al. May 1997 A
5634471 Fairfax et al. Jun 1997 A
5641326 Adams Jun 1997 A
5647870 Kordis et al. Jul 1997 A
5660175 Dayal Aug 1997 A
5678535 Dimarco Oct 1997 A
5680860 Imran Oct 1997 A
5681280 Rusk et al. Oct 1997 A
5681308 Edwards et al. Oct 1997 A
5687723 Avitall Nov 1997 A
5688267 Panescu et al. Nov 1997 A
5693078 Desai et al. Dec 1997 A
5694934 Edelman Dec 1997 A
5695471 Wampler Dec 1997 A
5699799 Xu et al. Dec 1997 A
5702386 Stern et al. Dec 1997 A
5707218 Maher et al. Jan 1998 A
5707336 Rubin Jan 1998 A
5707352 Sekins et al. Jan 1998 A
5722401 Pietroski et al. Mar 1998 A
5722403 McGee et al. Mar 1998 A
5722416 Swanson et al. Mar 1998 A
5725525 Kordis Mar 1998 A
5727569 Benetti et al. Mar 1998 A
5728094 Edwards Mar 1998 A
5730128 Pomeranz et al. Mar 1998 A
5730704 Avitall Mar 1998 A
5730726 Klingenstein Mar 1998 A
5730741 Horzewski et al. Mar 1998 A
5735846 Panescu et al. Apr 1998 A
5740808 Panescu et al. Apr 1998 A
5741248 Stern et al. Apr 1998 A
5752518 McGee et al. May 1998 A
5755714 Murphy-Chutorian May 1998 A
5755715 Stern et al. May 1998 A
5755753 Knowlton May 1998 A
5759158 Swanson Jun 1998 A
5765568 Sweezer et al. Jun 1998 A
5769846 Edwards et al. Jun 1998 A
5772590 Webster Jun 1998 A
5779669 Haissaguerre et al. Jul 1998 A
5779698 Clayman et al. Jul 1998 A
5782239 Webster Jul 1998 A
5782797 Schweich et al. Jul 1998 A
5782827 Gough et al. Jul 1998 A
5782848 Lennox Jul 1998 A
5782899 Imran Jul 1998 A
5792064 Panescu et al. Aug 1998 A
5795303 Swanson et al. Aug 1998 A
5800375 Sweezer et al. Sep 1998 A
5807306 Shapland et al. Sep 1998 A
5810757 Sweezer et al. Sep 1998 A
5810807 Ganz et al. Sep 1998 A
5817028 Anderson Oct 1998 A
5817073 Krespi Oct 1998 A
5820554 Davis et al. Oct 1998 A
5823189 Kordis Oct 1998 A
5827277 Edwards Oct 1998 A
5833651 Donovan et al. Nov 1998 A
5836905 Lemelson et al. Nov 1998 A
5836947 Fleischman et al. Nov 1998 A
5837001 Mackey Nov 1998 A
5843075 Taylor Dec 1998 A
5843077 Edwards Dec 1998 A
5846238 Jackson et al. Dec 1998 A
5848969 Panescu et al. Dec 1998 A
5848972 Triedman et al. Dec 1998 A
5849026 Zhou et al. Dec 1998 A
5855577 Murphy-Chutorian et al. Jan 1999 A
5860974 Abele Jan 1999 A
5863291 Schaer Jan 1999 A
5865791 Whayne et al. Feb 1999 A
5868740 Leveen et al. Feb 1999 A
5871443 Edwards et al. Feb 1999 A
5871523 Fleischman et al. Feb 1999 A
5873852 Vigil et al. Feb 1999 A
5873865 Horzewski et al. Feb 1999 A
5876340 Tu et al. Mar 1999 A
5876399 Chia et al. Mar 1999 A
5881727 Edwards Mar 1999 A
5882346 Pomeranz et al. Mar 1999 A
5891135 Jackson et al. Apr 1999 A
5891136 McGee et al. Apr 1999 A
5891138 Tu et al. Apr 1999 A
5893847 Kordis Apr 1999 A
5897554 Chia et al. Apr 1999 A
5899882 Waksman et al. May 1999 A
5904651 Swanson et al. May 1999 A
5904680 Kordis et al. May 1999 A
5904711 Flom et al. May 1999 A
5906636 Casscells, III et al. May 1999 A
5908445 Whayne et al. Jun 1999 A
5908446 Imran Jun 1999 A
5908839 Levitt et al. Jun 1999 A
5911218 Dimarco Jun 1999 A
5911739 Kordis et al. Jun 1999 A
5916235 Guglielmi Jun 1999 A
5919147 Jain Jul 1999 A
5919172 Golba Jul 1999 A
5924424 Stevens et al. Jul 1999 A
5928228 Kordis et al. Jul 1999 A
5931835 Mackey Aug 1999 A
5935079 Swanson et al. Aug 1999 A
5941869 Patterson et al. Aug 1999 A
5944728 Bates Aug 1999 A
5951494 Wang et al. Sep 1999 A
5951546 Lorentzen Sep 1999 A
5954661 Greenspon et al. Sep 1999 A
5954662 Swanson et al. Sep 1999 A
5954717 Behl et al. Sep 1999 A
5957961 Maguire et al. Sep 1999 A
5964753 Edwards Oct 1999 A
5964796 Imran Oct 1999 A
5971983 Lesh Oct 1999 A
5972026 Laufer et al. Oct 1999 A
5976175 Hirano et al. Nov 1999 A
5976709 Kageyama et al. Nov 1999 A
5979456 Magovern Nov 1999 A
5980563 Tu et al. Nov 1999 A
5984917 Fleischman et al. Nov 1999 A
5984971 Faccioli et al. Nov 1999 A
5991650 Swanson et al. Nov 1999 A
5992419 Sterzer et al. Nov 1999 A
5993462 Pomeranz et al. Nov 1999 A
5997534 Tu et al. Dec 1999 A
5999855 Dimarco Dec 1999 A
6001054 Regulla et al. Dec 1999 A
6003517 Sheffield et al. Dec 1999 A
6004269 Crowley et al. Dec 1999 A
6006755 Edwards Dec 1999 A
6008211 Robinson et al. Dec 1999 A
6009877 Edwards Jan 2000 A
6010500 Sherman et al. Jan 2000 A
6014579 Pomeranz et al. Jan 2000 A
6016437 Tu et al. Jan 2000 A
6023638 Swanson Feb 2000 A
6024740 Lesh et al. Feb 2000 A
6029091 De La Rama et al. Feb 2000 A
6033397 Laufer et al. Mar 2000 A
6036687 Laufer et al. Mar 2000 A
6036689 Tu et al. Mar 2000 A
6039731 Taylor et al. Mar 2000 A
6042580 Simpson Mar 2000 A
6045549 Smethers et al. Apr 2000 A
6045550 Simpson et al. Apr 2000 A
6050992 Nichols Apr 2000 A
6053172 Hovda et al. Apr 2000 A
6053909 Shadduck Apr 2000 A
6056744 Edwards May 2000 A
6056769 Epstein et al. May 2000 A
6063078 Wittkampf May 2000 A
6071280 Edwards et al. Jun 2000 A
6071281 Burnside et al. Jun 2000 A
6071282 Fleischman Jun 2000 A
6083255 Laufer et al. Jul 2000 A
6090104 Webster Jul 2000 A
6092528 Edwards Jul 2000 A
6102886 Lundquist et al. Aug 2000 A
6106522 Fleischman et al. Aug 2000 A
6106524 Eggers et al. Aug 2000 A
6123702 Swanson et al. Sep 2000 A
6123703 Tu et al. Sep 2000 A
6129725 Tu et al. Oct 2000 A
6139527 Laufer et al. Oct 2000 A
6139571 Fuller et al. Oct 2000 A
6142993 Whayne et al. Nov 2000 A
6143013 Samson et al. Nov 2000 A
6149647 Tu et al. Nov 2000 A
6152143 Edwards Nov 2000 A
6152899 Farley et al. Nov 2000 A
6159194 Eggers et al. Dec 2000 A
6179833 Taylor Jan 2001 B1
6183468 Swanson et al. Feb 2001 B1
6198970 Freed et al. Mar 2001 B1
6200311 Danek et al. Mar 2001 B1
6200332 Del Giglio Mar 2001 B1
6200333 Laufer Mar 2001 B1
6210367 Carr Apr 2001 B1
6212433 Behl Apr 2001 B1
6214002 Fleischman et al. Apr 2001 B1
6216043 Swanson et al. Apr 2001 B1
6216044 Kordis Apr 2001 B1
6217576 Tu et al. Apr 2001 B1
6235024 Tu May 2001 B1
6241727 Tu et al. Jun 2001 B1
6245065 Panescu et al. Jun 2001 B1
6254598 Edwards et al. Jul 2001 B1
6258087 Edwards et al. Jul 2001 B1
6264653 Falwell Jul 2001 B1
6269813 Fitzgerald et al. Aug 2001 B1
6270476 Santoianni et al. Aug 2001 B1
6273907 Laufer Aug 2001 B1
6283988 Laufer et al. Sep 2001 B1
6283989 Laufer et al. Sep 2001 B1
6287304 Eggers et al. Sep 2001 B1
6296639 Truckai et al. Oct 2001 B1
6319251 Tu et al. Nov 2001 B1
6322559 Daulton et al. Nov 2001 B1
6322584 Ingle et al. Nov 2001 B2
6338727 Noda et al. Jan 2002 B1
6338836 Kuth et al. Jan 2002 B1
6346104 Daly et al. Feb 2002 B2
6355031 Edwards et al. Mar 2002 B1
6379352 Reynolds et al. Apr 2002 B1
6409723 Edwards Jun 2002 B1
6411852 Danek et al. Jun 2002 B1
6416511 Lesh et al. Jul 2002 B1
6416740 Unger Jul 2002 B1
6423105 Iijima et al. Jul 2002 B1
6425895 Swanson et al. Jul 2002 B1
6440129 Simpson Aug 2002 B1
6442435 King et al. Aug 2002 B2
6458121 Rosenstock et al. Oct 2002 B1
6460545 Kordis Oct 2002 B2
6488673 Laufer et al. Dec 2002 B1
6488679 Swanson et al. Dec 2002 B1
6493589 Medhkour et al. Dec 2002 B1
6494880 Swanson et al. Dec 2002 B1
6496738 Carr Dec 2002 B2
6514246 Swanson et al. Feb 2003 B1
6526320 Mitchell Feb 2003 B2
6529756 Phan et al. Mar 2003 B1
6544226 Gaiser et al. Apr 2003 B1
6544262 Fleischman Apr 2003 B2
6547788 Maguire et al. Apr 2003 B1
6558378 Sherman et al. May 2003 B2
6572612 Stewart et al. Jun 2003 B2
6575623 Werneth Jun 2003 B2
6575969 Rittman, III et al. Jun 2003 B1
6582427 Goble et al. Jun 2003 B1
6582430 Hall Jun 2003 B2
6589235 Wong et al. Jul 2003 B2
6610054 Edwards et al. Aug 2003 B1
6620159 Hegde Sep 2003 B2
6626903 McGuckin et al. Sep 2003 B2
6634363 Danek et al. Oct 2003 B1
6635056 Kadhiresan et al. Oct 2003 B2
6638273 Farley et al. Oct 2003 B1
6640120 Swanson et al. Oct 2003 B1
6645200 Koblish et al. Nov 2003 B1
6652548 Evans et al. Nov 2003 B2
6669687 Saadat Dec 2003 B1
6669693 Friedman Dec 2003 B2
6673068 Berube Jan 2004 B1
6692492 Simpson et al. Feb 2004 B2
6699243 West et al. Mar 2004 B2
6714822 King et al. Mar 2004 B2
6723091 Goble et al. Apr 2004 B2
6741878 Fuimaono May 2004 B2
6743197 Edwards Jun 2004 B1
6749604 Eggers et al. Jun 2004 B1
6749606 Keast et al. Jun 2004 B2
6767347 Sharkey et al. Jul 2004 B2
6770070 Balbierz Aug 2004 B1
6802843 Truckai et al. Oct 2004 B2
6805131 Kordis Oct 2004 B2
6837888 Ciarrocca et al. Jan 2005 B2
6840243 Deem et al. Jan 2005 B2
6849073 Hoey et al. Feb 2005 B2
6852091 Edwards et al. Feb 2005 B2
6852110 Roy et al. Feb 2005 B2
6866662 Fuimaono et al. Mar 2005 B2
6881213 Ryan et al. Apr 2005 B2
6893436 Woodard et al. May 2005 B2
6893439 Fleischman May 2005 B2
6895267 Panescu et al. May 2005 B2
6904303 Phan et al. Jun 2005 B2
6917834 Koblish et al. Jul 2005 B2
6939346 Kannenberg et al. Sep 2005 B2
6954977 Maguire et al. Oct 2005 B2
7027869 Danek et al. Apr 2006 B2
7043307 Zelickson et al. May 2006 B1
7104987 Biggs et al. Sep 2006 B2
7104990 Jenkins et al. Sep 2006 B2
7118568 Hassett et al. Oct 2006 B2
7122033 Wood Oct 2006 B2
7131445 Amoah Nov 2006 B2
7186251 Malecki et al. Mar 2007 B2
7198635 Danek et al. Apr 2007 B2
7200445 Dalbec et al. Apr 2007 B1
7241295 Maguire Jul 2007 B2
7255693 Johnston et al. Aug 2007 B1
7264002 Danek et al. Sep 2007 B2
7266414 Cornelius et al. Sep 2007 B2
7273055 Danek et al. Sep 2007 B2
7425212 Danek et al. Sep 2008 B1
7542802 Biggs et al. Jun 2009 B2
7556624 Laufer et al. Jul 2009 B2
7740017 Danek et al. Jun 2010 B2
8161978 Danek et al. Apr 2012 B2
8465486 Danek et al. Jun 2013 B2
8584681 Danek et al. Nov 2013 B2
20020091379 Danek et al. Jun 2002 A1
20020133150 Whayne et al. Sep 2002 A1
20020161422 Swanson et al. Oct 2002 A1
20030023287 Edwards et al. Jan 2003 A1
20030050631 Mody et al. Mar 2003 A1
20030060820 Maguire et al. Mar 2003 A1
20030065371 Satake Apr 2003 A1
20030069570 Witzel et al. Apr 2003 A1
20030074039 Puskas Apr 2003 A1
20030187430 Vorisek Oct 2003 A1
20030233099 Danaek Dec 2003 A1
20030236455 Swanson et al. Dec 2003 A1
20040133232 Rosenbluth Jul 2004 A1
20040153056 Muller et al. Aug 2004 A1
20040249401 Rabiner et al. Dec 2004 A1
20050010270 Laufer Jan 2005 A1
20050096644 Hall et al. May 2005 A1
20050165391 Maguire et al. Jul 2005 A1
20050171396 Pankratov et al. Aug 2005 A1
20050193279 Daners Sep 2005 A1
20050203503 Edwards et al. Sep 2005 A1
20050240176 Oral et al. Oct 2005 A1
20050251128 Amoah Nov 2005 A1
20060062808 Laufer et al. Mar 2006 A1
20060079887 Buysse et al. Apr 2006 A1
20060089637 Werneth et al. Apr 2006 A1
20060135953 Kania et al. Jun 2006 A1
20060137698 Danek et al. Jun 2006 A1
20060189975 Whayne et al. Aug 2006 A1
20060247617 Danek et al. Nov 2006 A1
20060247618 Kaplan et al. Nov 2006 A1
20060247619 Kaplan et al. Nov 2006 A1
20060247726 Biggs et al. Nov 2006 A1
20060247727 Biggs et al. Nov 2006 A1
20060247746 Danek et al. Nov 2006 A1
20060254600 Danek et al. Nov 2006 A1
20060278243 Danek et al. Dec 2006 A1
20060278244 Danek et al. Dec 2006 A1
20060282071 Utley et al. Dec 2006 A1
20070074719 Danek et al. Apr 2007 A1
20070083194 Kunis et al. Apr 2007 A1
20070083197 Danek et al. Apr 2007 A1
20070100390 Danaek May 2007 A1
20070102011 Danek et al. May 2007 A1
20070106292 Kaplan et al. May 2007 A1
20070106296 Laufer et al. May 2007 A1
20070106348 Laufer May 2007 A1
20070118184 Danek et al. May 2007 A1
20070118190 Danek et al. May 2007 A1
20070123958 Laufer May 2007 A1
20070123961 Danek et al. May 2007 A1
20070129720 Demarais et al. Jun 2007 A1
20080004596 Yun et al. Jan 2008 A1
20080097424 Wizeman et al. Apr 2008 A1
20080255642 Zarins et al. Oct 2008 A1
20080262489 Steinke Oct 2008 A1
20080312725 Penner Dec 2008 A1
20090018538 Webster et al. Jan 2009 A1
20090030477 Jarrard Jan 2009 A1
20090043301 Jarrard et al. Feb 2009 A1
20090069797 Danek et al. Mar 2009 A1
20090112203 Danek et al. Apr 2009 A1
20090143705 Danek et al. Jun 2009 A1
20090143776 Danek et al. Jun 2009 A1
20090192505 Askew et al. Jul 2009 A1
20090192508 Laufer et al. Jul 2009 A1
20090248005 Rusin et al. Oct 2009 A1
20090254079 Edwards et al. Oct 2009 A1
20090306644 Mayse et al. Dec 2009 A1
20100094376 Penner Apr 2010 A1
20100145371 Rosenbluth Jun 2010 A1
20100160906 Jarrard Jun 2010 A1
20110166569 Whayne et al. Jul 2011 A1
20120157985 Ballou et al. Jun 2012 A1
20120215278 Penner Aug 2012 A1
20120232326 Habib Sep 2012 A1
20120271139 Kordis et al. Oct 2012 A1
20130023968 Danaek Jan 2013 A1
20130204068 Gnanashanmugam et al. Aug 2013 A1
20130253623 Danek et al. Sep 2013 A1
20130282084 Mathur et al. Oct 2013 A1
20140018788 Engelman et al. Jan 2014 A1
20140128936 Laufer et al. May 2014 A1
20140135803 Rosenbluth May 2014 A9
20140180306 Grubac et al. Jun 2014 A1
20150080693 Solis Mar 2015 A1
20150133760 Kordis May 2015 A1
20150223879 Danek et al. Aug 2015 A1
20150289929 Toth et al. Oct 2015 A1
Foreign Referenced Citations (58)
Number Date Country
19529634 Feb 1997 DE
189329 Jun 1987 EP
286145 Oct 1988 EP
280225 Mar 1989 EP
286145 Oct 1990 EP
282225 Jun 1992 EP
908713 Apr 1999 EP
908150 May 2003 EP
768091 Jul 2003 EP
1297795 Aug 2005 EP
2659240 Jul 1997 FR
2233293 Jan 1991 GB
2233293 Feb 1994 GB
59167707 Sep 1984 JP
7289557 Nov 1995 JP
9047518 Feb 1997 JP
9243837 Sep 1997 JP
10026709 Jan 1998 JP
2053814 Feb 1996 RU
2091054 Sep 1997 RU
545358 Feb 1977 SU
WO-1989011311 Nov 1989 WO
WO-1993004734 Mar 1993 WO
WO 9412098 Jun 1994 WO
WO 9501751 Jan 1995 WO
WO-9502370 Mar 1995 WO
WO-1995010322 Apr 1995 WO
WO-1996004860 Feb 1996 WO
WO-1996010961 Apr 1996 WO
WO 9717905 May 1997 WO
WO-1997032532 Sep 1997 WO
WO-1997033715 Sep 1997 WO
WO-1997037715 Oct 1997 WO
WO-9740751 Nov 1997 WO
WO-1998044854 Oct 1998 WO
WO-1998052480 Nov 1998 WO
WO-9856234 Dec 1998 WO
WO-1998056324 Dec 1998 WO
WO 9903413 Jan 1999 WO
WO-1998058681 Mar 1999 WO
WO-1999013779 Mar 1999 WO
WO-9932040 Jul 1999 WO
WO-1999034741 Jul 1999 WO
WO-1999044506 Sep 1999 WO
WO-1999045855 Sep 1999 WO
WO-9964109 Dec 1999 WO
WO 0051513 Sep 2000 WO
WO-2000051510 Sep 2000 WO
WO 0062699 Oct 2000 WO
WO-2001003642 Jan 2001 WO
WO-0232333 Apr 2002 WO
WO-0232334 Apr 2002 WO
WO 2006058251 Jun 2006 WO
WO-2009082433 Jul 2009 WO
WO-2009137819 Nov 2009 WO
WO 2013010009 Jan 2013 WO
WO 2013055815 Apr 2013 WO
WO 2013055826 Apr 2013 WO
Non-Patent Literature Citations (60)
Entry
An S.S., et al., “Airway Smooth Muscle Dynamics: A Common Pathway of Airway Obstruction in Asthma,” European Respiratory Journal, 2007, 29 (5), 834-860.
Bel E.H., ““Hot stuff”: Bronchial Thermoplasty for Asthma,” American Journal of Respiratory and Critical Care Medicine, 2006, 173 (9), 941-943.
Brown R.H., et al., “Effect of Bronchial Thermoplasty on Airway Distensibility,” European Respiratory Journal, 2005, 26 (2), 277-282.
Brown R.H., et al., “In Vivo evaluation of the Effectiveness of Bronchial Thermoplasty with Computed Tomography,” Journal of Applied Physiology, 2005, 98 (5), 1603-1606.
Chhajed P.N., et al., “Will there be a Role for Bronchoscopic Radiofrequency Ablation”, Journal of Bronchology, 2005, 12 (3), 184-186.
Abandoned U.S. Appl. No. 09/095323, filed Jun. 10, 1998.
Abandoned U.S. Appl. No. 09/244,173, filed Feb. 4, 1999.
Co-pending U.S. Appl. No. 12/640,644, filed Dec. 17, 2009.
U.S. Appl. No. 12/727,156, filed Mar. 18, 2010.
U.S. Appl. No. 12/765,704, filed Apr. 22, 2010.
Cox G., et al., “Asthma Control during the Year after Bronchial Thermoplasty,” New England journal of medicine, 2007, 356 (13), 1327-1337.
Cox G., et al., “Asthma Intervention Research (AIR) Trial Evaluating Bronchial Thermoplasty: Early Results,” American Thoracic Society Annual Meeting, 2002, 1 page.
Cox G., et al., “Bronchial Thermoplasty for Asthma,” American Journal of Respiratory and Critical Care Medicine, 2006, 173 (9), 965-969.
Cox G., et al., “Bronchial Thermoplasty: Long-Term Follow-Up and Patient Satisfaction,” Chest, 2004, 126 (4), 822s.
Cox G., et al., “Bronchial Thermoplasty: One-Year Update, American Thoracic Society Annual Meeting,” American Journal of Respiratory and Critical Care Medicine, 2004, 169, A313.
Cox G., et al., “Clinical Experience with Bronchial Thermoplasty for the Treatment of Asthma,” Chest, 2003, 124, 106S.
Cox G., et al., “Development of a Novel Bronchoscopic Therapy for Asthma,” Journal of Allergy and Clinical Immunology, 2003, 113 (2), S33.
Cox G., et al., “Early Clinical Experience with Bronchial Thermoplasty for the Treatment of Asthma,” American Thoracic Society Annual Meeting, 2002, 1068.
Cox G., et al., “Impact of Bronchial Thermoplasty on Asthma Status: Interim Results from the AIR Trial,” 2006, 1 page.
Cox G., et al., “Radiofrequency Ablation of Airway Smooth Muscle for Sustained Treatment of Asthma: Preliminary Investigations,” European Respiratory Journal, 2004, 24 (4), 659-663.
Danek C.J., et al., “Bronchial Thermoplasty Reduces Canine Airway Responsiveness to Local Methacholine Challenge,” American Thoracic Society Annual Meeting, 2002, 1 page.
Danek C.J., et al., “Reduction in Airway Hyperresponsiveness to Methacholine by the Application of RF Energy in Dogs,” Journal of Applied Physiology, 2004, 97 (5), 1946-1953.
Dierkesmann R., “Indication and Results of Endobronchial Laser Therapy,” Lung, 1990, 168, 1095-1102.
Hogg J. C., “The Pathology of Asthma,” APMIS, 1997, 105 (10), 735-745.
International Search Report for Application No. PCT/US00/05412, dated Jun. 20, 2000, 2 pages.
International Search Report for Application No. PCT/US00/18197, dated Oct. 3, 2000, 1 page.
International Search Report for Application No. PCT/US00/28745, dated Mar. 28, 2001, 6 pages.
International Search Report for Application No. PCT/US01/32321, dated Jan. 18, 2002, 2 pages.
International Search Report for Application No. PCT/US98/03759, dated Jul. 30, 1998, 1 page.
International Search Report for Application No. PCT/US98/26227, dated Mar. 25, 1999, 1 page.
International Search Report for Application No. PCT/US99/00232, dated Mar. 4, 1999, 1 page.
International Search Report for Application No. PCT/US99/12986, dated Sep. 29, 1999, 1 page.
Ivanyuta O.M., et al., “Effect of Low-Power Laser Irradiation of Bronchial Mucosa on the State of Systemic and Local Immunity in Patients with Chronic Bronchitis,” Problemy Tuberkuleza, 1991, 6, 26-29.
James A.L., et al., “The Mechanics of Airway Narrowing in Asthma,” American Review of Respiratory Diseases, 1989, 139 (1), 242-246.
Johnson S. R., et al., “Synthetic Functions of Airway Smooth Muscle in Asthma,” Trends Pharmacol. Sci., 1997, 18 (8), 288-292.
Kitamura S., “Color Atlas of Clinical Application of Fiberoptic Bronchoscopy,” 1990, Year Book Medical Publishers, 2 pages.
Laviolette M., et al., “Asthma Intervention Research (Air) Trial: Early Safety Assessment of Bronchial Thermoplasty,” American Journal of Respiratory and Critical Care Medicine, 2004, 169, A314.
Leff A., et al., “Bronchial Thermoplasty Alters Airway Smooth Muscle and Reduces Responsiveness in Dogs: A Possible Procedure for the Treatment of Asthma,” American Thoracic Society Annual Meeting, 2002, 1 page.
Lim E.C., et al., “Botulinum Toxin: A Novel Therapeutic Option for Bronchial Asthma”, Medical Hypotheses, 2006, 66 (5), 915-919.
Lombard C.M., et al., “Histologic Effects of Bronchial Thermoplasty of Canine and Human Airways,” American Thoracic Society Annual Meeting, 2002, 1 page.
Macklem P. T., “Mechanical Factors Determining Maximum Bronchoconstriction,” European Respiratory Journal, 1989, 6, 516s-519s.
Mayse M.L., et al., “Clinical Pearls for Bronchial Thermoplasty,” Journal of Bronchology, 2007, 14 (2), 115-123.
Miller J.D., et al., “A Prospective Feasibility Study of Bronchial Thermoplasty in the Human Airway,” Chest, 2005, 127 (6), 1999-2006.
Miller J.D., et al., “Bronchial Thermoplasty is Well Tolerated by Non-Asthmatic Patients Requiring Lobectomy,” American Thoracic Society Annual Meeting, 2002, 1 page.
Mitzner W., “Airway Smooth Muscle the Appendix of the Lung,” American Journal of Respiratory and Critical Care Medicine, 2004, 169 (7), 787-790.
Netter F.H., “Respiratory System: A Compilation of Paintings Depicting Anatomy and Embryology, Physiology, Pathology, Pathophysiology, and Clinical Features and Treatment of Diseases,In the CIBA Collection of Medical Illustrations M.B. Divertie, ed., Summit: New Jerse,” 1979, 7, 119-135.
Notice of final Rejection, Japanese Patent Application No. 2000-553172, dated Sep. 2, 2008, 5 pages.
Provotorov V.M., et al., “The Clinical Efficacy of Treating Patients with Nonspecific Lung Diseases Using Low-energy Laser Irradiation and Intrapulmonary Drug Administration,” Terapevticheskii Arkhiv, 1991, 62 (12), 18-23.
Rubin A., et al., “Bronchial Thermoplasty Improves Asthma Status of Moderate to Severe Perisstent Asthmatics Over and Above Current Standard-of-Care,” American College of Chest Physicians, 2006, 2 pages.
Shesterina M.V., et al., “Effect of Laser Therapy on Immunity in Patients with Bronchial Asthma and Pulmonary Tuberculosis,” Problemy Tuberkuleza, 1994, 5, 23-26.
Solway J., et al., “Airway Smooth Muscle as a Target for Asthma Therapy,” New England Journal of medicine, 2007, 356 (13), 1367-1369.
Sterk P.J., et al., “Heterogeneity of Airway Hyperresponsiveness: Time for Unconventional, but Traditional, Studies,” Journal of Applied Physiology, 2004, 96 (6), 2017-2018.
Toma T.P., et al., “Brave New World for Interventional Bronchoscopy,” Thorax, 2005, 60 (3), 180-181.
Trow T.K., “Clinical Year in Review I: Diagnostic Imaging, Asthma, Lung Transplantation, and Interventional Pulmonology,” Proceedings of the American Thoracic Society, 2006, 3 (7), 553-556.
Vasilotta P.L., et al., “I-R Laser: A New Therapy in Rhino-Sino-Nasal Bronchial Syndrome with Asthmatic Component,” American Society for Laser Medicine and Surgery Abstracts, 74. 1993.
Vorotnev A.I., et al., “The Treatment of Patients with Chronic Obstructive Bronchitis by Using a Low-power Laser at a General Rehabilitation Center,” Terapevticheskii Arkhiv, 1997, 69 (3), 17-19.
Wiggs B.R., et al., “On the Mechanism of Mucosal Folding in Normal and Asthmatic Airways,” Journal of Applied Physiology, 1997, 83 (6), 1814-1821.
Wilson S.R., et al., “Global Assessment after Bronchial Thermoplasty: The Patients Perspective,” Journal of Outcomes Research, 2006, 10, 37-46.
Wizeman W., et al., “A Computer Model of Thermal Treatment of Airways by Radiofrequency (RF) Energy Delivery,” American Thoracic Society Annual Meeting, 2007, 1 page.
International Search Report and Written Opinion for corresponding International Application No. PCT/US2013/068502, dated Mar. 18, 2014, 13 pages.
Related Publications (1)
Number Date Country
20180228542 A1 Aug 2018 US
Provisional Applications (1)
Number Date Country
61722499 Nov 2012 US
Continuations (2)
Number Date Country
Parent 15012966 Feb 2016 US
Child 15956342 US
Parent 14072230 Nov 2013 US
Child 15012966 US