The embodiments described herein relate generally to an injector, and more particularly to a medicament delivery device for mixing a medicament and delivering the medicament into a body of a patient.
Exposure to certain substances, such as, for example, peanuts, shellfish, bee venom, certain drugs, toxins, and the like, can cause allergic reactions in some individuals. Such allergic reactions can, at times, lead to anaphylactic shock, which can cause a sharp drop in blood pressure, hives, and/or severe airway constriction. Accordingly, responding rapidly to mitigate the effects from such exposures can prevent injury and/or death. For example, in certain situations, an injection of epinephrine (i.e., adrenaline) can provide substantial and/or complete relief from the allergic reaction. In other situations, for example, an injection of an antidote to a toxin can greatly reduce and/or eliminate the harm potentially caused by the exposure. Similarly, an injection of glucagon can reduce and/or eliminate the harm potentially caused by reduced blood glucose levels in individuals who suffer from hypoglycemia.
Because emergency medical facilities are not always available when an individual is suffering from a medical condition, some individuals carry an auto-injector to rapidly self-administer a medicament in response to such medical conditions. Some known auto-injectors include a vial containing a liquid medicament and a spring loaded needle to automatically penetrate the user's skin and inject the medicament. The storage of certain medicaments in a liquid form, however, can result in a shorter shelf life and/or an unstable medicament. Accordingly, some known auto-injectors include a vial containing a first medicament that is separated from a second medicament. Such auto-injectors are often referred to as “wet/dry” auto-injectors, because one medicament is often a liquid (e.g., water or another diluent) and the other medicament can be substantially solid or dry (e.g., glucagon powder). In use, the first medicament and the second medicament must be mixed prior to injection.
Some known wet/dry injectors, however, require that the user manually actuate a mixing mechanism prior to injection (e.g., by twisting a portion of the device to complete the mixing step). Such configurations can, however, result in incomplete mixing and/or an injection occurring without mixing. In addition, the operation of some known wet/dry delivery systems includes manually inserting the needle into the skin prior to activation and subsequent medicament delivery. The operation of such configurations may also include separately attaching a needle to prepare the device for injection, resulting in a delay in delivery of the medicament. Moreover, such configurations can be complicated, making them difficult for a user to operate during an emergency situation or by an individual without medical training.
Some known wet/dry injectors employ a single mechanism to automatically mix and inject the medicaments contained therein. Because the mixing operation is not independent from the injection operation in such configurations, however, the medicament can be injected prior to the completion of the mixing operation and/or prior to the injector being properly positioned for the injection operation.
Some known wet/dry injectors are configured such that a user can manually vent and/or purge a portion of air included in the medicament container (e.g., mixed with or a part of the glucagon powder). In some embodiments, such known injectors are generally oriented in a predetermined manner (e.g., with the needle end facing upward) to facilitate the venting process. Therefore, the venting process can be performed incorrectly or incompletely.
Thus, a need exists for an improved auto-injector that can separately store two or more medicaments and that can vent, mix and inject the medicaments in distinct operations. A need also exists for improved methods of filling medicament containers used in such devices.
Medicament delivery devices for mixing a medicament and delivering the medicament and/or multi-stages of actuation are described herein. In some embodiments, an apparatus includes a medicament container, a first elastomeric member, a second elastomeric member and a stopper. The medicament container is configured to be movably coupled to a carrier of a medicament delivery device. The carrier includes a needle. The first elastomeric member is disposed within a proximal end portion of the medicament container. The second elastomeric member is disposed within the medicament container. The first elastomeric member, a first portion of the medicament container and the second elastomeric member collectively define, at least in part, a medicament volume. The stopper is coupled to a distal end portion of the medicament container. The second elastomeric member, a second portion of the medicament container and the stopper collectively define, at least in part, a vent volume. The stopper has a first retention portion and a second retention portion. The first retention portion is configured to engage a first portion of the carrier to limit movement of the medicament container relative to the carrier when the medicament container is in a first position relative to the carrier. The second retention portion is configured to engage a second portion of the carrier to limit movement of the medicament container relative to the carrier when the medicament container is in a second position relative to the carrier.
Medicament delivery devices for mixing and/or delivering a medicament are described herein. In some embodiments, an apparatus includes a medicament container, a first elastomeric member, a second elastomeric member and a stopper. The medicament container is configured to be movably coupled to a carrier of a medicament delivery device. The carrier includes a needle. The first elastomeric member is disposed within a proximal end portion of the medicament container. The second elastomeric member is disposed within the medicament container. The first elastomeric member, a first portion of the medicament container and the second elastomeric member collectively define, at least in part, a medicament volume. The stopper is coupled to a distal end portion of the medicament container. The second elastomeric member, a second portion of the medicament container and the stopper collectively define, at least in part, a vent volume. The stopper has a first retention portion and a second retention portion. The first retention portion is configured to engage a first portion of the carrier to limit movement of the medicament container relative to the carrier when the medicament container is in a first position relative to the carrier. The second retention portion is configured to engage a second portion of the carrier to limit movement of the medicament container relative to the carrier when the medicament container is in a second position relative to the carrier.
In some embodiments, an apparatus includes a housing, a medicament container, and a movable assembly. The movable assembly includes a first movable member and a second movable member. The second movable member is configured to move relative to the first movable member to change the movable assembly from a first configuration to a second configuration. A distal end portion of the second movable member is configured to move a plunger disposed within the medicament container in a distal direction when the movable assembly is changed to the second configuration. The movable assembly is configured to move between a first position and a second position to move the medicament container within the housing between a first container position and a second container position.
In some embodiments, a medicament delivery device includes a housing, a medicament container, and a movable assembly. The movable assembly is configured to increase in length when moved from a first configuration to a second configuration to move a plunger disposed within the medicament container a first distance. The movable assembly is configured to move between a first position and a second position within the housing to move the plunger a second distance.
In some embodiments, a medicament delivery device includes a housing, a medicament container, a movable member, and a release member. The movable member is configured to move a plunger disposed within the medicament container. The release member includes a first end portion and a second end portion. The second end portion is configured to move between a first position and a second position. In the first position, the second end portion of the release member is configured to limit the movement of the movable member. The second end portion is configured such that when the first end portion is moved in a first direction, the second end portion is moved in a second direction, substantially different from the first, from the first position to the second position.
As used in this specification and the appended claims, the term “medicament” includes any constituent of a therapeutic substance. A medicament can include such constituents regardless of their state of matter (e.g., solid, liquid or gas). Moreover, a medicament can include the multiple constituents that can be included in a therapeutic substance in a mixed state, in an unmixed state and/or in a partially mixed state. A medicament can include both the active constituents and inert constituents of a therapeutic substance. Accordingly, as used herein, a medicament can include non-active constituents such as, water, colorant or the like.
As used herein, the words “proximal” and “distal” refer to direction closer to and away from, respectively, an operator of the medical device. Thus, for example, the end of the medicament delivery device contacting the patient's body would be the distal end of the medicament delivery device, while the end opposite the distal end would be the proximal end of the medicament delivery device.
The medicament container 1210 is disposed within the housing 1100, and contains (i.e., is filled or partially filled with) a medicament. The medicament container 1210 includes a proximal end portion and a distal end portion that can be coupled to a delivery member, such as a tube, a needle or the like (not shown in
The movable assembly 1300 includes a first movable member 1301 and a second movable member 1370 and is movable between a first configuration and a second configuration. The first movable member 1301 and the second movable member 1370 are movably coupled together such that the second movable member 1370 can move with and/or relative to the first movable member 1301. For example, in some embodiments, the second movable member 1370 can include a channel that receives a protrusion included in the first movable member 1301. In this manner, the protrusion of the first movable member 1301 can move within the channel of the second movable member 1370 such that the second movable member 1370 can move relative to the first movable member 1301 while remaining coupled to the first movable member 1370.
As shown in
In some embodiments, the second movable member 1370 can be configured to move in the direction AA (e.g., the distal direction) in response to a force exerted by a user (e.g., via direct contact, a pull tab, a slider, and/or the like). In some embodiments, the second movable member 1370 can be configured to move in the direction AA (e.g., the distal direction) in response to a force exerted by an energy storage member (not shown in
The movable assembly 1300 is configured to move from a first position (e.g.,
The distal movement of the movable assembly 1300 is configured to move the medicament container 1210 within the housing 1100 from a first container position (e.g.,
Although the length of the movable assembly 1300, as measured along a longitudinal axis thereof, is substantially constant when the movable assembly 1300 is changed from the first configuration (
The medicament container 2210 is disposed within the housing 2100, and includes a first plunger 2221, a second plunger 2225, and a bypass 2220. The medicament container 2210 defines a first volume 2236, and a second volume 2237. Expanding further, the first volume 2236 is defined between a distal end surface of the first plunger 2221, a portion of the medicament container 2120 and a proximal end surface of the second plunger 2225. The first volume 2236 can contain a first substance, such as any suitable diluent, as described in further detail herein. Similarly, the second volume 2237 is defined between a distal end surface of the second plunger and a distal end portion of the medicament container 2210. The second volume 2237 can contain a second substance, such as any suitable medicament (e.g., a lyophilized medicament). In this manner, the diluent contained within the first volume 2236 can be stored separately from with the medicament within the second volume 2237. Upon actuation the diluent can be mixed with the medicament such that the combination of the diluents and the medicament reconstitute the medicament for delivery into, for example, the body of a patient.
The movable assembly 2300 includes a first movable member 2301 and a second movable member 2370, and is movable between a first configuration, a second configuration, and a third configuration. The first movable member 2301 and the second movable member 2370 are movably coupled such that the second movable member 2370 can move with and/or relative to the first movable member 2301. As shown, in some embodiments, the second movable member 2370 can substantially surround the first movable member 2301. In some embodiments, the second movable member 2370 can define a substantially annular and/or cylindrical shape such that at least a portion of the first movable member 2301 is disposed therein.
As shown in
The bypass 2220 can be any suitable bypass (external or internal) configured to define a pathway between the first volume 2236 and the second volume 2237. In some embodiments, the bypass 2220 can include a one way valve such that when a pressure within the first volume 2236 increases (e.g., as induced by the distal movement of the first plunger 2221), the one way valve opens to allow a flow of the diluent through the bypass 2220 to the mixing volume 2237. In other embodiments, the bypass 2220 can include a frangible seal configured to break under the increase pressure. In this manner, when first plunger 2221 is moved, the first volume 2236 is reduced and the distal end surface of the first plunger 2221 can contact the proximal end surface of the second plunger 2255. Accordingly, as the volume defined by the first volume 2236 is reduced, the volume of the second volume 2237 increases. In this manner, the distal end surface of the first plunger 2221 contacts the proximal end surface of the second plunger 2225 at a position within the medicament container 2210 such that the first plunger 2221 of the second plunger 2225 substantially seals an opening of the bypass 2220, thereby preventing potential backflow.
The movable assembly 2300 is configured to move from a first position (e.g.,
When the medicament container 2210 is in the second container position within the housing 2100, the first movable member 2301 moves distally to engage the second movable member 2370. In this manner, the first movable member 2301 and the second movable member 2370 can move together in the distal direction, as shown by the arrow FF in
In some embodiments, the medicament delivery device can be a medical injector configured to automatically vent, mix and deliver a medicament contained within a medicament container. For example,
The housing 3100 has a proximal end portion 3101 and a distal end portion 3102. The proximal end portion 3102 includes an end cap configured to substantially enclose the proximal end. The distal end portion 3103 can include any suitable feature to engage and/or otherwise receive at least a portion of the system actuator 3500 (e.g., a base 3510). For example, the distal end portion 3103 can include recesses, grooves, slots, notches, openings, protrusions and/or any other suitable feature. The housing 3100 is configured to substantially enclose and/or otherwise house at least a portion of the system actuator assembly 3500, the medicament container assembly 3200, the movable assembly 3300, the transfer assembly 3600, and the safety lock 3700. In some embodiments, the housing 3100 can be configured to further house an electronic system (not shown herein). For example, in some embodiments, the housing can enclose an electric system substantially similar to any of the electronic systems described in the '936 application.
The distal end portion 3100 of the housing 3100 is configured to receive an activator 3530 (also referred to herein as “release member 3530,” and/or “rod 3530” included in the base 3510 of the system actuator assembly 3500. As described in more detail herein, the release member 3530 of the base 3510 is configured to engage a portion of the movable assembly 3300 (also referred to herein as “medicament delivery mechanism 3300”) when the base 3510 is moved with respect to the housing 3100 to actuate the medical injector 3000. The housing 3100 includes an inner surface 3116 that can include any suitable feature configured to limit, guide, contact, separate, and/or otherwise engage a portion of the medicament container assembly 3200, the system actuator assembly 3500, the movable assembly 3300, the transfer assembly 3600, and the safety lock 3700. For example, the inner surface 3116 can include guides (not shown herein) configured to engage at least a portion of the medicament container assembly 3200 as the medicament container assembly 3200 moves from a proximal position, relative to the housing 3100, to a distal position, relative to the housing 3100. Furthermore, the housing 3100 define an opening (not shown herein) that receives a portion of a needle 3216 of the medicament container assembly 3200 such that the needle 3216 is disposed substantially outside the housing 3100 when the medicament container assembly 3200 is in the distal position, as described in further detail herein.
As shown in
As shown in
The proximal end portion 3212 of the medicament container 3210 receives a first elastomeric member 3221, a second elastomeric member 3225, and a third elastomeric member 3229. In some embodiments, the first elastomeric member 3221, the second elastomeric member 3225, and the third elastomeric member 3229 are placed within the medicament container 3210 during the fill process, as further described herein, to define a diluent volume 3236, a dry medicament volume 3237, and a void volume 3238 (see, e.g.,
As shown in
As shown in
The medicament container 3210 can have any suitable size (e.g., length and/or diameter). Moreover, the medicament container 3210, the piston portion 3330, and/or the mixing piston 3370 can be collectively configured such that the piston portion 3330 and/or the mixing piston 3370 travels a desired distance within the medicament container 3210 (i.e., the “stroke”) during an injection event. In this manner, the medicament container 3210, the diluent contained within the diluent volume 3236, the lyophilized medicament contained within the dry medicament volume 3237, the void volume 3238, the piston portion 3330, and the mixing piston 3370 can be collectively configured to provide a desired fill volume and delivery volume.
The length of the medicament container 3210 and the length of the piston portion 3330 and/or the mixing piston 3370 can be configured such that the medicament delivery mechanism 3300 can fit in the same housing 3100 regardless of the fill volume, the delivery volume and/or the ratio of the fill volume to the delivery volume. In this manner, the same housing and production tooling can be used to produce devices having various dosages of the medicament. For example, in a first embodiment (e.g., having a fill volume to delivery volume ratio of 0.4), the medicament container has a first length and the second movable member has a first length. In a second embodiment (e.g., having a fill volume to delivery volume ratio of 0.6), the medicament container has a second length shorter than the first length, and the second movable member has a second length longer than the first length. In this manner, the stroke of the device of the second embodiment is longer than that of the device of the first embodiment, thereby allowing a greater dosage. The medicament container of the device of the second embodiment, however, is shorter than the medicament container of the device of the first embodiment, thereby allowing the components of both embodiments to be disposed within the same housing and/or a housing having the same length.
The first elastomeric member 3221, the second elastomeric member 3225, and the third elastomeric member 3229 can be of any design or formulation suitable for contact with the medicament (e.g., the diluent contained in the diluent volume 3236 and/or a lyophilized medicament contained in the dry medicament volume 3237). For example, the elastomeric members 3221, 3225, and 3229 can be formulated to minimize any reduction in the efficacy of the medicament that may result from contact (either direct or indirect) between the elastomeric members 3221, 3225, and 3229 and the medicament. For example, in some embodiments, the first elastomeric member 3221, the second elastomeric member 3225, and the third elastomeric member 3229 can be formulated to minimize any leaching or out-gassing of compositions that may have an undesired effect on the medicament. In other embodiments, the elastomeric members 3221, 3225, and 3229 can be formulated to maintain its chemical stability, flexibility and/or sealing properties when in contact (either direct or indirect) with the medicament over a long period of time (e.g., for up to six months, one year, two years, five years or longer). In some embodiments, the first elastomeric member 3221, the second elastomeric member 3225, and the third elastomeric member 3229 are substantially similar to the first elastomeric member, the second elastomeric member, and the third elastomeric member, respectively, described in the '936 application
In some embodiments a first elastomeric member, a second elastomeric member, and/or a third elastomeric member of an injector can be similar to first elastomeric member 3221 or third elastomeric member 3229. Said another way, in some embodiments, a medicament container can include three elastomeric members similar to the first elastomeric member 3221. In other embodiments, a medicament container can include three elastomeric members similar to the third elastomeric member 3229. For example, in such embodiments, the first elastomeric member and the second elastomeric member can define a proximal counter bore and a distal counter bore and can further control the fill volume and/or delivery volume of a diluent and/or lyophilized medicament disposed within the medicament container.
As described above, the medicament container 3210 is configured to engage and/or be coupled to the carrier 3260. Referring to
The needle hub 3264 includes a base portion 3265, an upper portion 3267, and a lower needle port 3268. The base portion 3265 includes a proximal surface 3266 from which the upper portion (or first retention portion) 3267 extends in the proximal direction. The lower needle port 3268 is configured to extend from the base portion 3265 in the distal direction. The needle hub 3264 defines a needle passageway that receives a proximal end portion 3217 of the needle 3216. Expanding further, the needle passageway can include an inner surface (not shown) that includes any suitable feature to couple the needle 3216 within the needle hub 3264. For example, in some embodiments, the inner surface defining the needle passageway can include a set of protrusions configured to define a friction fit with the needle 3216. In other embodiments, an adhesive can be applied to the inner surface defining the needle passageway to couple the needle 3216 to the needle hub 3264. The needle hub 3264 is configured to selectively engage a portion of the stopper 3254 when the stopper 3254 is disposed within the medicament container 3210. More specifically, when the medicament container assembly 3200 is in the proximal position relative to the housing 3100, the upper (or first retention) portion 3267 of the needle hub 3264 is disposed within the inner volume 3259 of the stopper 3254 such that the first retention portion of the inner walls 3258 engages the upper (or first retention) portion 3267 and/or the proximal surface 3266 of the base portion 3265. As described in further detail herein, during a portion of an injection event the medicament container 3210 can move relative to the carrier 3260 such that the base portion 3265 is disposed within the inner volume 3259 of the stopper 3254.
The first retention arm 3280 defines a channel 3283 and includes a retraction spring surface 3284. The channel 3283 receives a retraction spring 3440 such that a proximal end portion of the retraction spring 3440 is in contact with the retraction spring surface 3284. In this manner, the retraction spring 3440 can exert a retraction force on the retraction spring surface 3284 to facilitate a retraction event, as described in further detail herein. Similar to the first retention arm 3280, the second retention arm 3290 engages the medicament container 3210 when the medicament container 3210 is disposed within and/or is coupled to the container-mounting portion 3263. In this manner, the container-mounting portion 3263, the first retention arm 3280, and the second retention arm 3290 act to couple the medicament container 3210 to the carrier 3260.
As shown in
The mixing actuator assembly 3540 includes the mixing actuator member 3550 and the safety lock 3700. As shown in
The mixing actuator member 3550 includes a retention portion 3558 movably disposed within a portion of the first movable member 3301. The retention portion 3558 is configured to move within the portion of the first movable member 3301 between a first position (e.g., the locked position) and a second position (e.g., the mixing position). The mixing piston 3370 is disposed within the piston portion 3330 of the first movable member 3301 such that a portion of the mixing piston 3370 selectively engages the retention portion 3558 of the mixing actuator 3550. In this manner, when the mixing actuator 3550 is in the first position, the mixing piston 3370 is maintained in the first configuration. Furthermore, when the safety lock 3700 is moved in the distal direction (e.g., removed from the medical injector 3000), the retention portion 3558 is moved to the second position such that the mixing piston 3370 is actuated to urge a venting, air purging and/or mixing event, as described in further detail herein.
The medicament delivery mechanism 3300 (all or portions of which can also be referred to as a “movable assembly”) includes the first movable member 3301, the second movable member 3370 (the mixing piston 3370), and a mixing spring 3390. The arrangement of the first movable member 3301, the second movable member 3370, and the mixing spring 3390 is such that the mixing spring 3390 can be actuated to move the second movable member 3370 relative to the first movable member 3301 to urge a venting and/or mixing event.
The first movable member 3310 includes a latch portion 3310 and a piston portion 3330. The latch portion 3310 of the first movable member 3301 extends in the distal direction and is configured to selectively engage a portion of the housing 3100 and the release member 3530. The latch portion 3310 is further configured to engage a latch 3620 of the transfer member 3600. More particularly, when the medical injector 3000 is in the first configuration (i.e., prior to actuation), the latch portion 3310 of the first movable member 3301 is in contact with the latch 3620 of the transfer member 3600. In this manner, the transfer member 3600 can transfer a force produced by the spring 3420 to the latch portion 3310 of the first movable member 3300 to move the medicament delivery mechanism 3300 in the distal direction when the medical injector 3000 is actuated. Similarly stated, this arrangement allows the medicament delivery mechanism 3300 and/or the first movable member 3301 to move with and/or remain coupled to the transfer member 3600 during the insertion and/or injection operation.
The piston portion 3330 is configured to receive at least a portion of the mixing spring 3390 and the mixing piston 3370. More specifically, the medicament delivery mechanism 3300 is configured such that when the medical injector 3000 is in the first configuration (e.g., the storage configuration), the mixing spring 3390 is disposed within the piston portion 3330 and the mixing piston 3370 in a first (e.g., compressed) configuration (see e.g.,
The transfer member 3600 includes the latch and can receive and/or engage a portion of the spring 3420. The latch 3620 is configured to engage the latch portion 3310 of the first movable member 3301. In this manner, the transfer member 3600 transfers a force from the actuation of the spring 3420 to the first movable member 3301 and/or the medicament delivery mechanism 3300 to move the medicament delivery mechanism 3300 in the distal direction within the housing 3100. In this manner, the force produced by the spring 3420, which is offset from the medicament delivery mechanism 3300 and/or the medicament container 3210, results in both the insertion of the needle 3216 and injection of the medicament within the medicament container 3210. Although, as described below, the mixing spring 3390 produces a force to vent and/or mix a diluent and a lyophilized medicament, in other embodiments, a portion of the force produced by the spring 3420 can be used to facilitate the mixing process.
Furthermore, when the transfer member 3600 has moved a desired distance in the distal direction in response to the force produced by the actuation of the spring 3420 (e.g., upon completion of the medicament injection), the transfer member 3600 can be moved to a second configuration (see e.g.,
As described above, the safety lock 3700 can be configured to selectively engage a portion of the housing 3100 to maintain the medical injector 3000 in the first configuration. Furthermore, the safety lock can be coupled to a needle sheath 3820 configured to be disposed about a portion of the needle 3216. When the medical injector 3000 is in the first configuration, the needle sheath 3820 can further be configured to receive the lower needle port 3268 of the carrier 3260 such that the lower needle port 3268 and the needle sheath 3820 define a substantially fluid tight and/or hermetic seal. Thus, the arrangement of the needle sheath 3820 and the lower needle port 3268 can maintain the sterility of the needle 3216 prior to actuation of the medical injector 3000 (e.g., during storage).
As shown in
As shown in
With the mixing spring 3390 in the second configuration (e.g., the expanded configuration), much of the mixing piston 3370 is disposed outside the piston portion 3330 of the first movable member 3301. Similarly stated, the mixing piston 3370 is disposed in a distal position relative to the piston portion 3330 of the first movable member 3301.
The distal movement of the mixing piston 3370 begins the venting and mixing event, as shown in
Concurrently with the initial movement of the medicament container 3210, a portion of the mixing force moves the first elastomeric member 3221, the second elastomeric member 3225, and the third elastomeric member 3229 in the direction of the arrow II. The movement of the second elastomeric member 3225 compresses the lyophilized medicament disposed within the dry volume 3237 (i.e., the volume of the lyophilized medicament volume 3237 is reduced). Moreover, because the third elastomeric member 3229 is initially positioned aligned with the bypass 3220, trapped air that is released during the compression of the lyophilized medicament is conveyed into the void volume 3238 via the bypass 3220. More particularly, the lyophilized medicament can be formulated to include air (e.g., as much as 50% air by volume, as much as 60% air by volume, as much as 70% air by volume, as much as 80% air by volume, as much as 90% air by volume, approximately 93% air by volume). As shown in
As shown in
In some embodiments, the mixing force, the geometry of the bypass 3220 and/or the elastomeric members can be collectively configured to produce a turbulent flow of the diluent within the dry medicament volume 3237. For example, in some embodiments, the mixing spring 3390 can be configured to have a variable spring rate such that the force exerted by the first elastomeric member 3221 is maintained during the expansion of the spring 3390, thus resulting in a high velocity of the diluent through the bypass 3220. In some embodiments, the portion the medicament container 3200 that defines the bypass 3220 can include a helical structure to impart a swirling motion to the diluent.
After the mixing event, the medical injector 3000 can be moved from the third configuration (
When the base 3510 is moved from the first position to the second position, the system actuator assembly 3500 actuates the medicament delivery mechanism 3300, thereby placing the medical injector 3000 in its fourth configuration (i.e., the needle insertion configuration). More specifically, the proximal movement of the system actuator assembly 3500 and/or the base 3510 moves the release member 3530 in the proximal direction within the housing 3100, thereby allowing the latch portion 3310 to be disengaged from the release member 3530. Thus, the spring 3420 is allowed to expand in the direction shown by the arrow LL in
When the medicament delivery mechanism 3300 is moving distally, the piston portion 3330 of the first movable member 3301 applies a portion of the force to the medicament container 3210. More specifically, the portion of the force exerted by the piston portion 3330 and/or the mixing piston 3370 moves the medicament container assembly 3200 in the distal direction. As shown in
As shown in
The medical injector 3000 is placed in the fifth configuration when the proximal end portion 3217 of the needle 3216 is disposed within the mixing volume 3237 (e.g., the dry medicament volume 3237) and a portion of the insertion force is exerted on the first elastomeric member 3221. With the medicament container 3210 and the carrier 3260 in the second position within the housing 3100 (e.g., moved in the distal direction), the portion of the force exerted on the first elastomeric member 3221 can move the first elastomeric member 3221 and the second elastomeric member 3225 from the second position to a third position within the medicament container 3210. More specifically, the mixing piston 3370 and/or piston portion 3330 exerts the portion of the force on the first elastomeric member 3221 as indicated by arrow MM in
When the spring 3420 fully expands, the medicament delivery mechanism 3300 moves in the distal direction to fully inject the medicament within the medicament container 3210. Additionally, when the spring 3420 is fully expanded and/or when the medicament delivery mechanism 3300 has moved a desired distance within the housing 3100, the transfer member 3600 can be placed in the second configuration. In this manner, the latch 3620 can be disengaged from the latch portion 3310. Similarly stated, the spring 3420 and/or the transfer member 3600 are decoupled from the medicament delivery mechanism 3300. With the latch 3620 disengaged from the latch portion 3310, the medical injector 3000 can be moved from the fifth configuration to the sixth configuration (i.e., the retraction configuration).
With the transfer member 3600 disengaged from the medicament delivery mechanism 3300, the medicament container assembly 3200 and the medicament delivery mechanism 3300 are configured to move within the housing 3100 in the direction shown by the arrow NN in
During the retraction operation, the retraction spring 3440 exerts a retraction force on the retraction spring surface 3284 to move the carrier 3260 in the direction NN. With the medicament container 3210 coupled to the carrier 3260 a portion of the retraction force moves the medicament container 3210 in the proximal direction. This motion, removes the needle 3216 from the target location of the patient and retracts the needle into the housing 3100, as shown in
While specific components are discussed above with respect to the medical injector 3000, in other embodiments, any of the medicament delivery devices and/or medical injectors described herein can include components that are modified and/or removed from those shown and described above with respect to the medical injector 3000. Similarly stated, in other embodiments, a medical injector can include different, more or fewer components than are shown in the medical injector 3000 without substantially changing the venting, mixing and/or medicament injection event. For example,
The housing 4100 has a proximal end portion 4101 and a distal end portion 4102. The proximal end portion 4102 includes an end cap configured to substantially enclose the proximal end. The distal end portion 4103 can include any suitable feature to engage and/or otherwise receive at least a portion of the system actuator 4500 (e.g., a base 4510). For example, the distal end portion 4103 can include recesses, grooves, slots, notches, openings, protrusions and/or any other suitable feature. The housing 4100 is configured to substantially enclose and/or otherwise house at least a portion of the system actuator assembly 4500, the medicament container assembly 4200, the movable assembly 4300, the transfer assembly 4600, and the safety lock 4700.
The distal end portion 4100 of the housing 4100 is configured to receive an activator 4530 (also referred to herein as “release member 4530,” and/or “rod 4530” included in the base 4510 of the system actuator assembly 4500. As described in more detail herein, the release member 4530 of the base 4510 is configured to engage a portion of the movable assembly 4300 (also referred to herein as “medicament delivery mechanism 4300”) when the base 4510 is moved with respect to the housing 4100 to actuate the medical injector 4000. The housing 4100 includes an inner surface 4116 that can include any suitable feature configured to limit, guide, contact, separate, and/or otherwise engage a portion of the medicament container assembly 4200, the system actuator assembly 4500, the movable assembly 4300, the transfer assembly 4600, and the safety lock 4700. For example, the inner surface 4116 can include guides (not shown herein) configured to engage at least a portion of the medicament container assembly 4200 as the medicament container assembly 4200 moves from a proximal position, relative to the housing 4100, to a distal position, relative to the housing 4100. Furthermore, the housing 4100 define an opening (not shown herein) that receives a portion of a needle 4216 of the medicament container assembly 4200 such that the needle 4216 is disposed substantially outside the housing 4100 when the medicament container assembly 4200 is in the distal position, as described in further detail herein.
As shown in
The medicament container assembly 4200 includes a medicament container 4210, the needle 4216, and the carrier 4260. The medicament container 4210 includes a proximal end portion 4212, a distal end portion 4213, and a bypass 4220. The medicament container 4210 can be substantially similar to the medicament container 3210 described above. Therefore, the medicament container 4210 is not described in detail herein.
The distal end portion 4213 of the medicament container 4210 is configured to engage at least a portion of the carrier 4260 and the needle 4216, as described below. The distal end portion 4213 of the medicament container 4210 receives a stopper 4254. More specifically, the stopper 4254 is configured to be disposed within the medicament container 4210 to define a substantially fluid tight and/or hermetic seal. Furthermore, the stopper 4254 includes a flange 4257 that engages a distal surface of the medicament container 4210. The flange 4257 is further configured to define a friction fit with a portion of the carrier 3260 such that the medicament container 4210 is selectively retained relative to the carrier 3260, as further described herein. The stopper 4254 further includes a set of inner walls 4258 defining a recess configured to receive a proximal end portion 4217 of the needle 4216, a portion of the carrier 4260, and a deformable sheath 4850. The deformable sheath 4850 can be any suitable shape, size, or configuration and is configured to substantially enclose at least a portion of the needle 3216. In this manner, the deformable sheath can be configured to substantially maintain the sterility of the needle 3216 prior to an injection event.
The proximal end portion 4212 of the medicament container 4210 receives a first elastomeric member 4221, a second elastomeric member 4225, and a third elastomeric member 4229. In some embodiments, the first elastomeric member 4221, the second elastomeric member 4225, and the third elastomeric member 4229 are placed within the medicament container 4210 during the fill process, as further described herein, to define a diluent volume 4236, a dry medicament volume 4237, and a void volume 4238 (see, e.g.,
The diluent volume 4236, the dry medicament volume 4237, and the void volume 4238 are defined by the positions of the first elastomeric member 4221, the second elastomeric member 4225, and the third elastomeric member 4229, relative to and/or within the medicament container 4210. In some embodiments, the diluent volume 4236 can contain a medicament diluent, such as, for example, water. In some embodiments, the dry medicament volume 4237 can contain a lyophilized medicament (e.g., any suitable medicament produced via any suitable lyophilizing process) including any of the formulations and/or compositions described herein.
As shown in
As described above, the medicament container 4210 is configured to engage and/or be coupled to the carrier 4260. The carrier 4260 includes a proximal end portion 4261, a distal end portion 4262, and a needle hub 4264. In some embodiments, the carrier 4260 can be substantially similar to the carrier 3260 described above. Therefore, details of the carrier 4260 are not described herein. The carrier 4260 can differ from the carrier 3260, however, in the length and/or configuration of the needle hub 4264. For example, as shown in
The system actuator assembly 4500 includes the base 4510, the release member 4530, and a mixing actuator assembly 4540. The release member 4530 is configured to engage a latch portion 4310 of the medicament delivery mechanism 4300 when the medical injector 4000 is in its first (or storage) configuration (
The mixing actuator assembly 4540 includes the mixing actuator member 4550 and the safety lock 4700. As shown in
The mixing actuator member 4550 includes a retention portion 4558 movably disposed within a portion of the first movable member 4301. The retention portion 4558 is configured to move within the portion of the first movable member 4301 between a first position (e.g., the locked position) and a second position (e.g., the mixing position). The mixing piston 4370 is disposed within the piston portion 4330 of the first movable member 4301 such that a portion of the mixing piston 4370 selectively engages the retention portion 4558 of the mixing actuator 4550. In this manner, when the mixing actuator 4550 is in the first position, the mixing piston 4370 is maintained in the first configuration. Furthermore, when the safety lock 4700 is moved in the distal direction (e.g., removed from the medical injector 4000), the retention portion 4558 is moved to the second position such that the mixing piston 4370 is actuated to urge a mixing event, as described in further detail herein.
The medicament delivery mechanism 4300 (all or portions of which can also be referred to as a “movable assembly”) includes the first movable member 4301, the second movable member 4370 (the mixing piston 4370), and a mixing spring 4390. The arrangement of the first movable member 4301, the second movable member 4370, and the mixing spring 4390 is such that the mixing spring 4390 can be actuated to move the second movable member 4370 relative to the first movable member 4301 to urge a venting and/or mixing event.
The first movable member 4301 includes a latch portion 4310 and a piston portion 4330. The latch portion 4310 of the first movable member 4301 extends in the distal direction and is configured to selectively engage a portion of the housing 4100 and the release member 4530. The latch portion 4310 is further configured to engage a latch 4620 of the transfer member 4600. More particularly, when the medical injector 4000 is in the first configuration (i.e., prior to actuation), the latch portion 4310 of the first movable member 4301 is in contact with the latch 4620 of the transfer member 4600. In this manner, the transfer member 4600 can transfer a force produced by the spring 4420 to the latch portion 4310 of the first movable member 4300 to move the medicament delivery mechanism 4300 in the distal direction when the medical injector 4000 is actuated. Similarly stated, this arrangement allows the medicament delivery mechanism 4300 and/or the first movable member 4301 to move with and/or remain coupled to the transfer member 4600 during the insertion and/or injection operation.
The piston portion 4330 is configured to receive at least a portion of the mixing spring 4390 and the mixing piston 4370. More specifically, the medicament delivery mechanism 4300 is configured such that when the medical injector 4000 is in the first configuration (e.g., the storage configuration), the mixing spring 4390 is disposed within the piston portion 4330 and the mixing piston 4370 in a first (e.g., compressed) configuration (see e.g.,
The transfer member 4600 includes the latch and can receive and/or engage a portion of the spring 4420. The latch 4620 is configured to engage the latch portion 4310 of the first movable member 4301. In this manner, the transfer member 4600 transfers a force from the actuation of the spring 4420 to the first movable member 4301 and/or the medicament delivery mechanism 4300 to move the medicament delivery mechanism 4300 in the distal direction within the housing 4100. In this manner, the force produced by the spring 4420, which is offset from the medicament delivery mechanism 4300 and/or the medicament container 4210, results in both the insertion of the needle 4216 and injection of the medicament within the medicament container 4210. Although, as described below, the mixing spring 4390 produces a force to vent and/or mix a diluent and a lyophilized medicament, in other embodiments, a portion of the force produced by the spring 4420 can be used to facilitate the mixing process.
Furthermore, when the transfer member 4600 has moved a desired distance in the distal direction in response to the force produced by the actuation of the spring 4420 (e.g., upon completion of the medicament injection), the transfer member 4600 can be moved to a second configuration (see e.g.,
As described above, the safety lock 4700 can be configured to selectively engage a portion of the housing 4100 to maintain the medical injector 4000 in the first configuration. Furthermore, the safety lock can be coupled to a needle sheath 4820 configured to be disposed about a portion of the needle 4216. When the medical injector 4000 is in the first configuration, the needle sheath 4820 can further be configured to receive the lower needle port 4268 of the carrier 4260 such that the lower needle port 4268 and the needle sheath 4820 define a substantially fluid tight and/or hermetic seal. Thus, the arrangement of the needle sheath 4820 and the lower needle port 4268 can maintain the sterility of the needle 4216 prior to actuation of the medical injector 4000 (e.g., during storage).
As shown in
As shown in
With the mixing spring 4390 in the second configuration (e.g., the expanded configuration), much of the mixing piston 4370 is disposed outside the piston portion 4330 of the first movable member 4301. Similarly stated, the mixing piston 4370 is disposed in a distal position relative to the piston portion 4330 of the first movable member 4301.
The distal movement of the mixing piston 4370 begins the venting and mixing event, as shown in
Concurrently, a portion of the mixing force moves the first elastomeric member 4221, the second elastomeric member 4225, and the third elastomeric member 4229 in the direction of the arrow QQ. The lyophilized medicament disposed within the dry volume 4237 is configured to compress such that the volume of the lyophilized medicament is reduced. More specifically, the lyophilized medicament can be configured to include approximately 93% air. As shown in
As shown in
After the mixing event, the medical injector 4000 can be moved from the third configuration (
When the base 4510 is moved from the first position to the second position, the system actuator assembly 4500 actuates the medicament delivery mechanism 4300, thereby placing the medical injector 4000 in its fourth configuration (i.e., the needle insertion configuration). More specifically, the proximal movement of the system actuator assembly 4500 and/or the base 4510 moves the release member 4530 in the proximal direction within the housing 4100, thereby allowing the latch portion 4310 to be disengaged from the release member 4530. Thus, the spring 4420 is allowed to expand in the direction shown by the arrow TT in
When the medicament delivery mechanism 4300 is moving distally, the piston portion 4330 of the first movable member 4301 applies a portion of the force to the medicament container 4210. More specifically, the portion of the force exerted by the piston portion 4330 and/or the mixing piston 4370 moves the medicament container assembly 4200 in the distal direction. As shown in
As shown in
The medical injector 4000 is placed in the fifth configuration when the proximal end portion 4217 of the needle 4216 is disposed within the mixing volume 4237 (e.g., the dry medicament volume 4237) and a portion of the insertion force is exerted on the first elastomeric member 4221. With the medicament container 4210 and the carrier 4260 in the second position within the housing 4100 (e.g., moved in the distal direction), the portion of the force exerted on the first elastomeric member 4221 can move the first elastomeric member 4221 and the second elastomeric member 4225 from the second position to a third position within the medicament container 4210. More specifically, the mixing piston 4370 and/or piston portion 4330 exerts the portion of the force on the first elastomeric member 4221 as indicated by arrow UU in
When the spring 4420 fully expands, the medicament delivery mechanism 4300 moves in the distal direction to fully inject the medicament within the medicament container 4210. Additionally, when the spring 4420 is fully expanded and/or when the medicament delivery mechanism 4300 has moved a desired distance within the housing 4100, the transfer member 4600 can be placed in the second configuration. In this manner, the latch 4620 can be disengaged from the latch portion 4310. Similarly stated, the spring 4420 and/or the transfer member 4600 are decoupled from the medicament delivery mechanism 4300. With the latch 4620 disengaged from the latch portion 4310, the medical injector 4000 can be moved from the fifth configuration to the sixth configuration (i.e., the retraction configuration).
With the transfer member 4600 disengaged from the medicament delivery mechanism 4300, the medicament container assembly 4200 and the medicament delivery mechanism 4300 are configured to move within the housing 4100 in the direction shown by the arrow VV in
During the retraction operation, the retraction spring 4440 exerts a retraction force on the retraction spring surface 4284 to move the carrier 4260 in the direction VV. With the medicament container 4210 coupled to the carrier 4260 a portion of the retraction force moves the medicament container 4210 in the proximal direction. This motion, removes the needle 4216 from the target location of the patient and retracts the needle into the housing 4100, as shown in
While the medicament container 5210 is shown and described above in
The housing 5100 has a proximal end portion 5101 and a distal end portion 5102. The proximal end portion 5102 includes an end cap configured to substantially enclose the proximal end. The distal end portion 5103 can include any suitable feature to engage and/or otherwise receive at least a portion of the system actuator 5500 (e.g., a base 5510). For example, the distal end portion 5103 can include recesses, grooves, slots, notches, openings, protrusions and/or any other suitable feature. The housing 5100 is configured to substantially enclose and/or otherwise house at least a portion of the system actuator assembly 5500, the medicament container assembly 5200, the movable assembly 5300, the transfer assembly 5600, and the safety lock 5700.
The distal end portion 5100 of the housing 5100 is configured to receive an activator 5530 (also referred to herein as “release member 5530,” and/or “rod 5530” included in the base 5510 of the system actuator assembly 5500. As described in more detail herein, the release member 5530 of the base 5510 is configured to engage a portion of the movable assembly 5300 (also referred to herein as “medicament delivery mechanism 5300”) when the base 5510 is moved with respect to the housing 5100 to actuate the medical injector 5000. The housing 5100 includes an inner surface 5116 that can include any suitable feature configured to limit, guide, contact, separate, and/or otherwise engage a portion of the medicament container assembly 5200, the system actuator assembly 5500, the movable assembly 5300, the transfer assembly 5600, and the safety lock 5700. For example, the inner surface 5116 can include guides (not shown herein) configured to engage at least a portion of the medicament container assembly 5200 as the medicament container assembly 5200 moves from a proximal position, relative to the housing 5100, to a distal position, relative to the housing 5100. Furthermore, the housing 5100 define an opening (not shown herein) that receives a portion of a needle 5216 of the medicament container assembly 5200 such that the needle 5216 is disposed substantially outside the housing 5100 when the medicament container assembly 5200 is in the distal position, as described in further detail herein.
As shown in
The medicament container assembly 5200 includes a medicament container 5210, the needle 5216, and the carrier 5260. The medicament container 5210 includes a proximal end portion 5212, a distal end portion 5213, and a bypass 5220. The medicament container 5210 can be substantially similar to the medicament container 53210 described above. Therefore, the medicament container 5210 is not described in detail herein.
The distal end portion 5213 of the medicament container 5210 is configured to engage at least a portion of the carrier 5260 and the needle 5216, as described below. The distal end portion 5213 of the medicament container 5210 receives a stopper 5254. More specifically, the stopper 5254 is configured to be disposed within the medicament container 5210 to define a substantially fluid tight and/or hermetic seal. Furthermore, the stopper 5254 includes a flange 5257 that engages a distal surface of the medicament container 5210. The flange 5257 is further configured to define a friction fit with a portion of the carrier 53260 such that the medicament container 5210 is selectively retained relative to the carrier 53260, as further described herein. The stopper 5254 further includes a set of inner walls 5258 (e.g., the stopper 3254 is substantially annular) configured to receive a proximal end portion 5217 of the needle 5216 and a portion of the carrier 5260. In this manner, the proximal end portion 5217 of the needle 5216 and a portion of the needle hub 5264 are disposed within the void volume 5238.
The proximal end portion 5212 of the medicament container 5210 receives a first elastomeric member 5221, a second elastomeric member 5225, and a third elastomeric member 5229. In some embodiments, the first elastomeric member 5221, the second elastomeric member 5225, and the third elastomeric member 5229 are placed within the medicament container 5210 during the fill process, as further described herein, to define a diluent volume 5236, a dry medicament volume 5237, and the void volume 5238. The dry medicament volume 5237 is a volume disposed within medicament container 5210 defined between a distal surface 5227 of second elastomeric member 5225 and a proximal surface 5230 of third elastomeric member 5229 and the void volume 5238 is a volume disposed within the medicament container 5210 defined between a distal surface 5231 of the third elastomeric member 5229 and the distal end portion 5213 of the medicament container 5210.
While third elastomeric member 4229 is shown and described above as being disposed substantially distal to the bypass 4220, the medicament container 5200 shown in
The diluent volume 5236, the dry medicament volume 5237, and the void volume 5238 are defined by the positions of the first elastomeric member 5221, the second elastomeric member 5225, and the third elastomeric member 5229, relative to and/or within the medicament container 5210. In some embodiments, the diluent volume 5236 can contain a medicament diluent, such as, for example, water. In some embodiments, the dry medicament volume 5237 can contain a lyophilized medicament (e.g., any suitable medicament produced via any suitable lyophilizing process) including any of the formulations and/or compositions described herein.
As shown in
As described above, the medicament container 5210 is configured to engage and/or be coupled to the carrier 5260. The carrier 5260 includes a proximal end portion 5261, a distal end portion 5262, and a needle hub 5264. In some embodiments, the carrier 5260 can be substantially similar to the carrier 53260 described above. Therefore, details of the carrier 5260 are not described herein. The carrier 5260 can differ from the carrier 3260, however, in that the needle hub 5264 is configured to include a single upper portion (e.g., the upper portion 3267 and the base portion 3265 of the needle hub 3264 are of a substantially similar diameter). Although, the needle hub 5264 includes a single portion, the needle hub 5264 can be similar in function to the needle hub 3264; thus the needle hub 5264 is not described in further detail herein.
The carrier 5260 includes a set of tabs 5271 that include a container shoulder 5272. The set of tabs 5271 are configured to selectively engage a portion of the housing 5100 as the medicament container assembly 5200 is moved in the proximal direction during an injection event. The arrangement of the tabs 5271, the housing 5100, and the container shoulders 5272 are such that the flange 5257 of the stopper 5254 can selectively engage the container shoulder 5272 when the medicament container assembly 5200 is moved between the first container position and the second container position, as described in further detail herein.
The system actuator assembly 5500 includes the base 5510, the release member 5530, and a mixing actuator assembly 5540. The release member 5530 is configured to engage a latch portion 5310 of the medicament delivery mechanism 5300 when the medical injector 5000 is in its first (or storage) configuration (
The mixing actuator assembly 5540 includes the mixing actuator member 5550 and the safety lock 5700. As shown in
The mixing actuator member 5550 includes a retention portion 5558 movably disposed within a portion of the first movable member 5301. The retention portion 5558 is configured to move within the portion of the first movable member 5301 between a first position (e.g., the locked position) and a second position (e.g., the mixing position). The mixing piston 5370 is disposed within the piston portion 5330 of the first movable member 5301 such that a portion of the mixing piston 5370 selectively engages the retention portion 5558 of the mixing actuator 5550. In this manner, when the mixing actuator 5550 is in the first position, the mixing piston 5370 is maintained in the first configuration. Furthermore, when the safety lock 5700 is moved in the distal direction (e.g., removed from the medical injector 5000), the retention portion 5558 is moved to the second position such that the mixing piston 5370 is actuated to urge a mixing event, as described in further detail herein.
The medicament delivery mechanism 5300 (all or portions of which can also be referred to as a “movable assembly”) includes the first movable member 5301, the second movable member 5370 (the mixing piston 5370), and a mixing spring 5390. The arrangement of the first movable member 5301, the second movable member 5370, and the mixing spring 5390 is such that the mixing spring 5390 can be actuated to move the second movable member 5370 relative to the first movable member 5301 to urge a venting and/or mixing event.
The first movable member 5301 includes a latch portion 5310 and a piston portion 5330. The latch portion 5310 of the first movable member 5301 extends in the distal direction and is configured to selectively engage a portion of the housing 5100 and the release member 5530. The latch portion 5310 is further configured to engage a latch 5620 of the transfer member 5600. More particularly, when the medical injector 5000 is in the first configuration (i.e., prior to actuation), the latch portion 5310 of the first movable member 5301 is in contact with the latch 5620 of the transfer member 5600. In this manner, the transfer member 5600 can transfer a force produced by the spring 5420 to the latch portion 5310 of the first movable member 5300 to move the medicament delivery mechanism 5300 in the distal direction when the medical injector 5000 is actuated. Similarly stated, this arrangement allows the medicament delivery mechanism 5300 and/or the first movable member 5301 to move with and/or remain coupled to the transfer member 5600 during the insertion and/or injection operation.
The piston portion 5330 is configured to receive at least a portion of the mixing spring 5390 and the mixing piston 5370. More specifically, the medicament delivery mechanism 5300 is configured such that when the medical injector 5000 is in the first configuration (e.g., the storage configuration), the mixing spring 5390 is disposed within the piston portion 5330 and the mixing piston 5370 in a first (e.g., compressed) configuration (see e.g.,
The transfer member 5600 includes the latch and can receive and/or engage a portion of the spring 5420. The latch 5620 is configured to engage the latch portion 5310 of the first movable member 5301. In this manner, the transfer member 5600 transfers a force from the actuation of the spring 5420 to the first movable member 5301 and/or the medicament delivery mechanism 5300 to move the medicament delivery mechanism 5300 in the distal direction within the housing 5100. In this manner, the force produced by the spring 5420, which is offset from the medicament delivery mechanism 5300 and/or the medicament container 5210, results in both the insertion of the needle 5216 and injection of the medicament within the medicament container 5210. Although, as described below, the mixing spring 5390 produces a force to vent and/or mix a diluent and a lyophilized medicament, in other embodiments, a portion of the force produced by the spring 5420 can be used to facilitate the mixing process.
Furthermore, when the transfer member 5600 has moved a desired distance in the distal direction in response to the force produced by the actuation of the spring 5420 (e.g., upon completion of the medicament injection), the transfer member 5600 can be moved to a second configuration (see e.g.,
As described above, the safety lock 5700 can be configured to selectively engage a portion of the housing 5100 to maintain the medical injector 5000 in the first configuration. Furthermore, the safety lock can be coupled to a needle sheath 5820 configured to be disposed about a portion of the needle 5216. When the medical injector 5000 is in the first configuration, the needle sheath 5820 can further be configured to receive the lower needle port 5268 of the carrier 5260 such that the lower needle port 5268 and the needle sheath 5820 define a substantially fluid tight and/or hermetic seal. Thus, the arrangement of the needle sheath 5820 and the lower needle port 5268 can maintain the sterility of the needle 5216 prior to actuation of the medical injector 5000 (e.g., during storage).
As shown in
As shown in
With the mixing spring 5390 in the second configuration (e.g., the expanded configuration), much of the mixing piston 5370 is disposed outside the piston portion 5330 of the first movable member 5301. Similarly stated, the mixing piston 5370 is disposed in a distal position relative to the piston portion 5330 of the first movable member 5301.
The distal movement of the mixing piston 5370 begins the venting and mixing event, as shown in
The lyophilized medicament disposed within the dry volume 5237 is configured to compress such that the volume of the lyophilized medicament is reduced. More specifically, the lyophilized medicament can be configured to include approximately 93% air. In this manner, as the elastomeric members begin to move within the medicament container 5210, the lyophilized medicament is placed under pressure. Thus, when the third elastomeric member 5229 is sufficiently moved to place the dry medicament volume 5237 in fluid communication with the void volume 5238 via the bypass 5220, the air contained in the lyophilized medicament flows through the bypass and into the void volume 5238. Therefore, the air contained in the lyophilized medicament can be vented via the needle 5216.
As shown in
After the mixing event, the medical injector 5000 can be moved from the third configuration (
When the base 5510 is moved from the first position to the second position, the system actuator assembly 5500 actuates the medicament delivery mechanism 5300, thereby placing the medical injector 5000 in its fourth configuration (i.e., the needle insertion configuration). More specifically, the proximal movement of the system actuator assembly 5500 and/or the base 5510 moves the release member 5530 in the proximal direction within the housing 5100, thereby allowing the latch portion 5310 to be disengaged from the release member 5530. Thus, the spring 5420 is allowed to expand in the direction shown by the arrow BBB in
When the medicament delivery mechanism 5300 is moving distally, the piston portion 5330 of the first movable member 5301 applies a portion of the force to the medicament container 5210. More specifically, the portion of the force exerted by the piston portion 5330 and/or the mixing piston 5370 moves the medicament container assembly 5200 in the distal direction. As shown in
As shown in
The medical injector 5000 is placed in the fifth configuration when the proximal end portion 5217 of the needle 5216 is disposed within the mixing volume 5237 (e.g., the dry medicament volume 5237) and a portion of the insertion force is exerted on the first elastomeric member 5221. With the medicament container 5210 and the carrier 5260 in the second position within the housing 5100 (e.g., moved in the distal direction), the portion of the force exerted on the first elastomeric member 5221 can move the first elastomeric member 5221 and the second elastomeric member 5225 from the second position to a third position within the medicament container 5210. More specifically, the mixing piston 5370 and/or piston portion 5330 exerts the portion of the force on the first elastomeric member 5221 as indicated by arrow CCC in
When the spring 5420 fully expands, the medicament delivery mechanism 5300 moves in the distal direction to fully inject the medicament within the medicament container 5210. Additionally, when the spring 5420 is fully expanded and/or when the medicament delivery mechanism 5300 has moved a desired distance within the housing 5100, the transfer member 5600 can be placed in the second configuration. In this manner, the latch 5620 can be disengaged from the latch portion 5310. Similarly stated, the spring 5420 and/or the transfer member 5600 are decoupled from the medicament delivery mechanism 5300. With the latch 5620 disengaged from the latch portion 5310, the medical injector 5000 can be moved from the fifth configuration to the sixth configuration (i.e., the retraction configuration).
With the transfer member 5600 disengaged from the medicament delivery mechanism 5300, the medicament container assembly 5200 and the medicament delivery mechanism 5300 are configured to move within the housing 5100 in the direction shown by the arrow DDD in
During the retraction operation, the retraction spring 5440 exerts a retraction force on the refraction spring surface 5284 to move the carrier 5260 in the direction DDD. With the medicament container 5210 coupled to the carrier 5260 a portion of the retraction force moves the medicament container 5210 in the proximal direction. This motion, removes the needle 5216 from the target location of the patient and retracts the needle into the housing 5100, as shown in
The medicament container 6210 can be any of the medicament containers described herein, and upon completion of the fill/finish operation includes a first elastomeric member 6221, a second elastomeric member 6225, a third elastomeric member 6229, a stopper (or fourth elastomeric member) 6254, a bypass 6220, a distal end portion 6213, and a proximal end portion 6212. As described above, in some embodiments, the proximal end portion 6212 of the medicament container 6210 can be inserted into a tray such that the medicament container 6210 is secured relative to other components of the system (not shown). With the medicament container 6210 secured a component of the filling system 6250 is configured to insert the second elastomeric member 6225 into the medicament container 6210 and moving the second elastomeric member 6225 toward the proximal end portion 6212 of the medicament container 6210. In some embodiments, the second elastomeric 6225 can be moved in the proximal direction such that a distal surface of the second elastomeric member 6225 is proximal to the bypass 6220. Similarly stated, the second elastomeric member 6225 is disposed within the medicament container 6210 such that the entire second elastomeric member 6225 is proximal of the bypass.
With the second elastomeric member 6225 disposed within the medicament container 6210 in the desired position, a portion of the fill system 6250 can deliver a solution containing the desired dosage of medicament 6240 via the distal end portion 6213. The filling system and/or method 6250 can include a lyophilizing machine (not shown), and, with the medicament 6240 disposed within the medicament container 6210, the medicament container 6210 can be inserted into the lyophilizing machine. In this manner, the medicament 6240 is lyophilized (the lyophilized medicament is designated as 6241).
As shown in
The filling system 6250 can be configured to insert the stopper 6254 into the distal end portion 6213 of the medicament container 6210 when the third elastomeric member 6229 is disposed at the desired location within the medicament container 6210. In some embodiments, the stopper 6254 can include a flange configured to engage a distal surface of the medicament container 6210, thereby maintaining the stopper 6254 in the desired position relative to the medicament container 6210. In some embodiments, the stopper 6254 is substantially similar to the stopper 3254 described above with respect to
With the stopper 6254 in place, the filling system 6250 can be configured to flip the medicament container 6210. With the medicament container 6210 flipped, a portion of the filling system 6250 can be configured to deliver a desired quantity and/or volume of diluent 6244 via the proximal end portion 6212. With the diluent 6244 disposed within the medicament container 6210, a portion of the filling system 6250 can insert the first elastomeric member 6221 into the medicament container 6210 via the proximal end portion 6212. Although not shown in
Although the filling system 6250 is described as including an operation of lyophilizing a medicament within the medicament container 6210, in other embodiments, the lyophilized medicament 6241 can be added to the medicament container 6210.
In some embodiments, the filling process for the medicament solution 6240 can result in a portion of the medicament solution 6240 being disposed on an inner surface of the medicament container 6210. In such embodiments, it is can be desirable to substantially fluidically isolate the inner volumes of the medicament container 6210 from contact with humid air; thus, reducing the likelihood of reconstituting or otherwise contaminating the residual lyophilized medicament. Expanding further, while fluidically isolating the lyophilized medicament 6241 from humid air (and/or a liquid) is desirable, it can also be desirable to fluidically isolate the void volume, which can contain a residual amount of the medicament on the sidewall therein. Therefore, as described above with respect to the medical injector 3000 of
As shown in
The medicament container 7210 defines a medicament volume 7236 (e.g., a first volume) and a vent volume 7238 (e.g., a second volume). Expanding further, the medicament volume 7236 is defined between a distal end surface of the first elastomeric member 7221, a portion of the medicament container 7210, and a proximal end surface of the second elastomeric member 7229. In some embodiments, the medicament volume 7236 can contain, for example, a first substance, such as any suitable medicament. In some embodiments, the medicament volume 7236 can contain only a portion of a medicament such as, for example, a substantially solid portion of a medicament and a portion of air disposed between particles of the substantially solid medicament (e.g., a lyophilized medicament that can be formulated to include as much as 50% air by volume, as much as 60% air by volume, as much as 70% air by volume, as much as 80% air by volume, as much as 90% air by volume, approximately 93% air by volume). In other embodiments, the medicament volume 7236 can contain a partially aqueous medicament. In some embodiments, the medicament volume 7236 can contain any medicament specifically listed herein (e.g., listed below).
In a similar manner, the vent volume 7238 is defined between a distal end surface of the second elastomeric member 7229 a proximal surface of the stopper 7201 coupled to the distal end portion 7213 of the medicament container 7210. The vent volume 7238 can be, for example, a void volume or the like. In some embodiments, a medicament containing substantially solid particles (e.g., a lyophilized medicament) disposed within the medicament volume 7236 can be mixed with an aqueous solution such that a gas (i.e., air) within the medicament volume 7236 is vented into the vent volume 7238 (this process can also be referred to as “priming” the device for delivery). For example, in some embodiments, the medicament container 7210 can define a diluent volume (not shown in
As described above, the medicament container 7210 is movably coupled to the carrier 7260. The carrier 7260 includes a first retention portion 7280, a second retention portion 7290, and a needle 7216. As shown in
The first retention portion 7280 and the second retention portion 7290 of the carrier 7260 can be, for example, shoulders that can be selectively placed in contact with the first retention portion 7202 and second retention portion 7203, respectively, of the stopper 7201. For example, as shown in
Although not shown in
As shown in
In some embodiments, the device and/or movable assembly can actuate a mixing event substantially concurrently with moving the medicament container 7210 from the first position to the second position relative to the carrier 7260. For example, in some embodiments, the movable assembly can exert a force on a diluent volume (not shown in
As shown in
As shown in
In this manner, the movement of the medicament container 7210 relative to the carrier 7260 and the movement of the elastomeric members 7221 and 7229 moves at least the second elastomeric member 7229 relative to the needle 7216. Thus, the proximal end portion 7217 of the needle 7216 can pierce the second elastomeric member 7229 to place the needle 7126 in fluid communication with the medicament volume 7236. Moreover, a surface of the stopper 7201 can be placed in contact with a surface of carrier 7260 (e.g., the medicament container 7210 “bottoms out”). Therefore, any subsequent force exerted on the medicament container 7210 can be operable in moving the first elastomeric member 7221 relative to the second elastomeric member 7229 to expel at least a portion of the medicament disposed therein through the needle 7216. Although not shown in
The second elastomeric member is moved within the medicament container to convey a gas from the solid medicament volume to the vent volume, at 102. For example, in some embodiments, a medicament delivery device can include an actuator (e.g., a movable member or the like) that can be operable in moving the medicament container from the first position to the second position. In some embodiments, the actuator can exert a force on the medicament container (e.g., via a side wall of the container, an elastomeric member within the container of the like) that is operable in moving the medicament container relative to the carrier. In some embodiments, the medicament container and/or the carrier can include a retention portion configured to limit movement of the medicament container relative to the carrier. In such embodiments, the force exerted on the medicament contain can be sufficient to deform the retention portion of the medicament container and/or the carrier such to allow the medicament container to move relative to the carrier. In some embodiments, at least a portion of the force exerted on the medicament container to move the medicament container from the first position to the second position can be operable in moving the second elastomeric member within the medicament container. In some embodiments, at least a portion of the movement of the second elastomeric member can be concurrent with the movement of the medicament container from the first position to the second position relative to the carrier.
In some embodiments, the movement of the medicament container and/or the movement of the second elastomeric member can be operable in actuating a mixing event such that a medicament having substantially solid particles is mixed with, for example, a diluent. For example, in some embodiments, the medicament container can define a diluent volume defined between the second elastomeric member and the first elastomeric member. In some embodiments, the mixing of the medicament urges the gas within the solid medicament volume to vent into the vent volume (e.g., via a bypass, a valve, a port, a selectively permeable membrane, and/or the like).
The medicament container is moved to a third position relative to the carrier such that the needle of the carrier pierces the third elastomeric member to place the solid medicament volume in fluid communication with the needle, at 103. In some embodiments, the movement of the medicament container to the third position relative to the carrier can be such that the stopper is placed in contact with the carrier (e.g., the medicament container “bottoms out” on the carrier as described above with reference to
The embodiments, described herein can be configured such that the medicament disposed therein can be vented without having to substantially reorient the medical injector relative to the patient. For example, a distal end portion of the medical injector need not be specifically oriented (e.g., point upward) to perform a venting event.
Although the medicament container assembly 7200 is shown and described above as being used in conjunction with a venting or purge process, in other embodiments, a container assembly, such as the container assembly 7200, can be used in conjunction with a variable-dose delivery device and/or a device containing multiple doses. For example, in some embodiments, a medicament container can include two elastomeric members (e.g., plungers) and can define two volumes: a first volume and a second volume. The first volume and the second volume can, for example, correspond to the void volume 7238 and the medicament volume 7236, respectively. The first volume and the second volume can contain any suitable medicament (e.g., any liquid medicament described herein). In some embodiments, the first volume and the second volume can contain the same medicament. In other embodiments, the first volume and the second volume can contain different medicaments.
In use, the medicament container assembly can be moved into contact with a target site to insert the needle when the medicament container assembly is in the first configuration (similar to the first configuration shown in
Multi-stage delivery and/or delivery of a second dose, which is contained within the second volume (corresponding to the medicament volume 7236 shown above) can be accomplished by moving the medicament container assembly into a third configuration, similar to the configuration as shown in
In this manner, a device can be configured to sequentially inject multiple doses. For example, in some embodiments, a device can include a child dose in the first volume and the incremental amount of medicament to constitute an adult dose in the second volume. The device can include a first actuator (e.g., the child dose actuator) to actuate the device to deliver the medicament from the first volume only. The device can also include a second actuator (e.g., the adult dose actuator) to sequentially deliver the medicament from within the second volume, as described above.
Although the medicament container assembly 7200 has been shown and described as including two or more elastomeric members, and being used in the context with container venting and/or multiple-dose dispensing, in other embodiments, a container assembly can include a single elastomeric member and can be used to facilitate automatic retraction of the needle and/or the medicament container. For example, in some embodiments, a container assembly can include a carrier that is similar to the carrier 7260 shown and described above, except that the needle can be releaseably coupled to the carrier (e.g., via a snap fit, threaded lock or the like). In use, the container assembly can be actuated in a similar manner as described above with reference to the delivery of a first dose from a first volume. Accordingly, after placing a medicament volume in communication with a needle by piercing the stopper, the medicament can be delivered by continued movement of the elastomeric member. When the elastomeric member “bottoms” out near the stopper, the medicament container can be moved into its third configuration, in which the needle pierces the elastomeric member (similar to the configuration shown in
While various embodiments of the invention have been described above, it should be understood that they have been presented by way of example only, and not limitation. Where methods described above indicate certain events occurring in certain order, the ordering of certain events may be modified. Additionally, certain of the events may be performed concurrently in a parallel process when possible, as well as performed sequentially as described above.
Although many of the medicament delivery devices are shown and described herein as being medical injectors having a medicament container divided into three portions (see e.g., the medical injector 3000), in other embodiments, any of the components, methods and/or formulations described herein can be used in any suitable medicament delivery device, such as, for example, an auto-injector, a pen injector, an inhaler, a nasal delivery system or the like. In some embodiments, the medicament delivery device can include a medicament container having any number of plungers and/or defining any number of volumes therein.
Although the components and methods described herein are shown and described as being included in devices that include a medicament, in other embodiments, any of the components and/or methods described herein can be used in either an actual medicament delivery device or a simulated medicament delivery device. A simulated medicament delivery device can, for example, correspond to an actual medicament delivery device and can be used, for example, to train a user in the operation of the corresponding actual medicament delivery device. A simulated medicament delivery device or trainer can be similar to the simulated medicament delivery devices or trainers described in U.S. Patent Publication Number 2008/0059133, entitled “Medical Injector Simulation Device,” filed Feb. 27, 2007, which is incorporated herein by reference in its entirety.
In such embodiments, the simulated medicament delivery device can simulate the actual medicament delivery device in any number of ways. For example, in some embodiments, the simulated medicament delivery device can have a shape corresponding to a shape of the actual medicament delivery device, a size corresponding to a size of the actual medicament delivery device and/or a weight corresponding to a weight of the actual medicament delivery device. Moreover, in some embodiments, the simulated medicament delivery device can include components that correspond to the components of the actual medicament delivery device. In this manner, the simulated medicament delivery device can simulate the look, feel and sounds of the actual medicament delivery device. For example, in some embodiments, the simulated medicament delivery device can include external components (e.g., a housing, a needle guard, a sterile cover, a safety lock or the like) that correspond to external components of the actual medicament delivery device. In some embodiments, the simulated medicament delivery device can include internal components (e.g., an actuation mechanism, a compressed gas source, a medicament container or the like) that correspond to internal components of the actual medicament delivery device.
In some embodiments, however, the simulated medicament delivery device can be devoid of a medicament and/or those components that cause the medicament to be delivered (e.g., a needle, a nozzle or the like). In this manner, the simulated medicament delivery device can be used to train a user in the use of the actual medicament delivery device without exposing the user to a needle and/or a medicament. Moreover, the simulated medicament delivery device can have features to identify it as a training device to prevent a user from mistakenly believing that the simulated medicament delivery device can be used to deliver a medicament. For example, in some embodiments, the simulated medicament delivery device can be of a different color than a corresponding actual medicament delivery device. Similarly, in some embodiments, the simulated medicament delivery device can include a label clearly identifying it as a training device.
Any of the stoppers described herein can be any suitable device and/or mechanism for sealing a container and/or performing the functions described herein. A stopper can include, for example an elastomeric member, a crimp seal or the like.
Although the mixing actuator member 3550 is shown and described above as being actuated by the safety lock 3700, in other embodiments, a mixing actuator can be actuated by any suitable mechanism. For example, in some embodiments, a mixing actuator member can be actuated by the needle sheath. In such embodiments, the mixing actuator member can be coupled to the needle sheath such that as the needle sheath is moved in the distal direction the needle sheath moves the mixing actuator in the distal direction. In other embodiments, the mixing actuator can be operably coupled to the needle sheath (e.g., via an intervening structure). In other embodiments, the mixing actuator member can be monolithically formed with the needle sheath and/or the safety lock.
Although the needle hub 3264 is shown and described as being configured to receive and to be coupled to the needle 3216, in other embodiments, a device can include a container hub that is devoid of a needle. For example, in some embodiments, the medical injector 3000 can be a needleless injector and the hub can define a pathway and/or otherwise be coupled to a delivery member through which the medicament is conveyed upon actuation.
Any of the medicament containers described herein can be any container suitable for storing the compositions disclosed herein. In some embodiments, the medicament container can be a pre-filled syringe, a pre-filled cartridge, a vial, an ampule or the like. In some embodiments, for example, any of the devices shown and described herein can include components and/or mechanisms to accommodate a pre-filled syringe, similar to the embodiments shown and described in U.S. Patent Application Publication No. 2013/0023825, entitled “Medicament Delivery Devices for Administration of Medicament within a Prefilled Syringe,” filed on Jan. 25, 2012, which is incorporated herein by reference in its entirety. In other embodiments, the medicament container 1400 can be a container having a flexible wall, such as, for example, a bladder.
Any of the devices and/or medicament containers shown and described herein can be constructed from any suitable material. Such materials include glass, plastic (including thermoplastics such as cyclic olefin copolymers), or any other material used in the manufacture of prefilled syringes containing medications.
Any of the devices and/or medicament containers shown and described herein can include any suitable medicament or therapeutic agent. For example, although the medical injectors described above are shown and described is including a multi-chamber medicament container (e.g., medicament container 3210) that includes a substantially dry medicament (e.g., contained within the dry medicament volume 3237) and a diluent (e.g., contained within the diluent volume 3237), in other embodiments, any of the medicament delivery devices disclosed herein can include a multi-chamber container that is filled with any suitable substances. For example, in some embodiments, any of the medicament delivery devices disclosed herein can include a medicament container (e.g., a cartridge) that separately stores and mixes, upon actuation, two liquid substances. For example in some embodiments, any of the devices shown and described herein can include a medicament container filled with (in separate chambers) epinephrine and at least one antihistamine (e.g., epinephrine and diphenhydramine, epinephrine and hydroxyzine, epinephrine and cetirizine); an antipsychotic medicament and a benzodiazepine (e.g. haloperidol and diazepam, haloperidol and midazolam, haloperidol and lorazepam); insulin and a GLP-1 analog or incretin mimetic (e.g. insulin and exenatide, insulin and lixisenatide); an NSAID and an opioid (e.g., ketorolac and buprenorphine). Other suitable compositions that can be included in any of the medicament containers and/or devices described herein include pralidoxime chloride and atropine; obidoxime chloride and atropine; epinephrine and atropine; methotrexate and etanercept; methotrexate and adalimumab; and methotrexate and certolizumab. Other suitable compositions that can be included in any of the medicament containers and/or devices described herein include antipsychotic and antiparkinson anticholinergics (ex. risperidone and benztropine).
In some embodiments, a composition can include glucagon and/or any pharmaceutically acceptable constituents for use in the medicament delivery devices disclosed herein. In some embodiments, the glucagon formulation can be prepared and/or filled according to any of the methods described herein (e.g., the method associated with the filling system 6250). A composition according to an embodiment can be formulated such that the target concentration of glucagon in the solution, either before lyophilization and/or after being reconstituted upon actuation of the device, is approximately 1 mg/mL. In other embodiments, the target concentration of glucagon in the solution, either before lyophilization and/or after being reconstituted, can be approximately 2 mg/mL, approximately 1.5 mg/mL, approximately 0.5 mg/mL (e.g., a pediatric dose) or approximately 0.25 mg/mL. In other embodiments a composition can be formulated such that the target concentration of glucagon in the solution, either before lyophilization and/or after being reconstituted upon actuation of the device, is between approximately 0.25 mg/mL and 2 mg/mL, between approximately 0.5 mg/mL and 1 mg/mL, or between approximately 0.8 mg/mL and 1.2 mg/mL.
In certain embodiments, the concentration (either before lyophilization or upon reconstitution) of glucagon in a glucagon formulation is about 1 mg/mL and the total solute concentration is within a range of about 25 mg/mL to approximately 100 mg/mL (e.g., about 50 mg/mL). For example, in some embodiments, a composition can include glucagon and any suitable bulking agents to increase the total solute concentration in the glucagon formulation. In this manner, the glucagon formulation can be more effectively lyophilized and/or reconstituted. For example, in some embodiments, as described below, certain bulking agents can be used to improve the stability, solubility and/or efficacy of the composition when reconstituted in any of the devices shown and described herein. In some embodiments, certain bulking agents can be used to produce a visual indicia when the composition is reconstituted (e.g., such agents can allow the reconstituted medicament to be more easily detected by the user).
In some embodiments, a composition can include a peptide, such as, for example, glucagon and a carbohydrate. In this manner, the stability of the peptide (e.g., glucagon) can be increased during lyophilization and subsequent storage. In particular, the stability of peptides, such as glucagon, may be increased in an amorphous (i.e. non-crystalline) environment. It is believed that carbohydrates undergoing dehydration create a solid-state environment that is amorphous and exhibits high viscosity when maintained below the glass transition temperature. In addition, carbohydrates contain multiple hydroxyl groups that may form hydrogen bonds with polar groups on a protein or peptide surface in an amorphous solid-state environment. Without being bound by any particular mechanism, when water is removed during lyophilization, such carbohydrates may maintain the hydrogen bonds and preserve the native-like solid state of the polypeptide structure. In certain embodiments, therefore, the glucagon formulations include other excipients, such as, but not limited to carbohydrates. Suitable carbohydrates include, but are not limited to, lactose, trehalose, mannitol, and combinations thereof.
Additionally, the solubility of glucagon increases below a pH of 4. In certain embodiments, the glucagon formulations, prior to lyophilization and/or after reconstitution, have a pH of less than about pH 5.0, including less than about pH 4.5, less than about pH 4.0, less than about pH 3.5, less than about pH 3.0, less than about pH 2.5, less than about pH 2.0. In other embodiments of the invention, the glucagon formulations, prior to lyophilization and/or after reconstitution, have a pH range of about pH 1.5 to about pH 5.0, inclusive of all ranges and subranges therebetween, e.g., about pH 2.0 to about pH 4.5, about pH 2.0 to about pH 4.0, about pH 2.0 to about pH 3.5, about pH 2.0 to about pH 3.0, about pH 2.0 to about pH 2.5, about pH 2.5 to about pH 4.5, about pH 2.5 to about pH 4.0, about pH 2.5 to about pH 3.5, about pH 2.5 to about pH 3.0, about pH 3.0 to about pH 4.5, about pH 3.0 to about pH 4.0, about pH 3.0 to about pH 3.5, about pH 3.5 to about pH 4.5, and about pH 3.5 to about pH 4.0. In certain embodiments, the pH of the glucagon formulation is adjusted prior to lyophilization by the addition of a suitable acid, such as hydrochloric acid or citric acid.
The lyophilized formulations of the present invention may be reconstituted by any suitable diluent or combination of diluents, including, but not limited to, water, sterile water, glycerin, or hydrochloric acid.
As described above, in some embodiments, a glucagon formulation can include any suitable bulking agents and/or excipients. Table 1 lists the formulations investigated for lyophilization. The formulations set for the below include a concentration of glucagon in the solution, either before lyophilization and/or after being reconstituted, of approximately 1 mg/mL.
Formulation 1 included lactose, which is a known animal-derived excipient. Lactose, which is used in the commercially available glucagon formulations, is a reducing sugar that may destabilize glucagon. Accordingly, Formulations 2 through 5 are lactose-free formulations. Formulation 2 utilized trehalose and mannitol as carbohydrate bulking agents. Formulation 3 included a buffer system of citric acid and sodium citrate, in addition to the carbohydrate bulking agents. Formulation 4 was carbohydrate free, containing only glycine as the bulking agent. Formulation 5 utilized only mannitol as a bulking agent and included ascorbic acid. All formulations except Formulation 3 employed hydrochloric acid to reduce the solution pH to approximately 3 before lyophilization. In some embodiments, any of the formulations described herein can include hydrochloric acid to reduce the solution pH to within any suitable range, such as, a range between approximately 2.0 and approximately 3.5 before lyophilization.
Trehalose, however, is a non-reducing sugar, and without being bound by any particular mechanism, may potentially increase the stability of glucagon, prior to lyophilization, during lyophilization, in storage, and/or after reconstitution. In addition to the improved properties of Formulation 3, the absence of any animal-based excipients, such as lactose, make it particularly appealing from a regulatory standpoint, as the FDA has strict guidelines regarding animal-based excipients.
All five formulations listed in Table 1 were successfully reconstituted with water and resulted in solutions suitable for use in the multi-chambered container closure system of the present invention.
In some embodiments, the medicament contained within any of the medicament containers shown herein can be a vaccine, such as, for example, an influenza A vaccine, an influenza B vaccine, an influenza A (H1N1) vaccine, a hepatitis A vaccine, a hepatitis B vaccine, a haemophilus influenza Type B (HiB) vaccine, a measles vaccine, a mumps vaccine, a rubella vaccine, a polio vaccine, a human papilloma virus (HPV) vaccine, a tetanus vaccine, a diphtheria vaccine, a pertussis vaccine, a bubonic plague vaccine, a yellow fever vaccine, a cholera vaccine, a malaria vaccine, a smallpox vaccine, a pneumococcal vaccine, a rotavirus vaccine, a varicella vaccine and/or a meningococcus vaccine. In other embodiments, the medicament contained within any of the medicament containers shown herein can be epinephrine. In other embodiments, the medicament contained within any of the medicament containers shown herein can be naloxone, including any of the naloxone formulations described in U.S. patent application Ser. No. 13/036,720, entitled “Medicament Delivery Device for Administration of Opioid Antagonists Including Formulation for Naloxone,” filed on Feb. 28, 2011.
In other embodiments, the medicament contained within any of the medicament containers shown herein can include insulin, glucagon, human growth hormone (HGH), erythropoiesis-stimulating agents (ESA), DeMab, Interferon and other chronic therapies, or the like. In some embodiments, such formulations can be produced using a general lyophilization process with glucagon (of recombinant origin) using bulking agents, stabilizers, buffers, pH modifying agents or other excipients comprising of, but not limited to, one or more of the following combinations: lactose, hydrochloric acid; glucose, histidine, hydrochloric acid; trehalose, mannitol, citrate; trehalose, mannitol, hydrochloric acid; trehalose, glycine, hydrochloric acid; Mannitol, ascorbic acid; and Glycine, hydrochloric acid.
In other embodiments any of the injectors described herein can be filled with and/or used to inject medicament formulations, including lyophilized biologics and/or biopharmaceuticals, such as, for example, canakinumab, certolizumab, golimumab, and/or interleukins, for the treatment of crypyrin associated periodic syndromes, hereditary andioedema, and other auto-immune diseases. In yet other embodiments any of the injectors described herein can be filled with and/or used to inject intranasal biologics, such as glucagon or human growth hormone, formulated for use in an auto injector, for the treatment of musculoskeletal diseases, growth disorders, diabetes & treatment related disorders.
In other embodiments, any of the injectors described herein can be filled with and/or used to inject an anti-thrombotics, such as LMWH, ULMWH, Xa Inhibitors, biotinylated idraparinux, etc., for either the acute management and/or surgical prophylaxis of deep vein thrombosis and/or pulmonary embolism or for the management of other conditions which may require anticoagulation to prevent thromboembolism, such as its use in cardiovascular diseases including atrial fibrillation and ischemic stroke. In another example, in some embodiments an injector according to an embodiment can be filled with and/or used to inject formulations for the treatment of asthma and/or chronic obstructive pulmonary disease.
In other embodiments, any of the injectors described herein can be filled with and/or used to inject hyaluronidase.
In other embodiments, any of the injectors described herein can be filled with and/or used to inject depot medroxyprogesterone acetate for the treatment of infertility.
In other embodiments, any of the injectors described herein can be filled with and/or used to inject Midazolam, Loxapine, Anticoagulant, Hematopoietic, Adrenocortical steroid, Antidiabetic, Sex hormones, Somatostatin Analogs, Monoclonal Antibodies, Agents for Migraine, Antianxiety Agents, Antiemetic/Antivertigo Agents, Antipychotic Agents, General Anesthetics, NSAIDs, Opioid Agonist-Antagonist, Opioid Analgesics, Skeletal Muscle Relaxants. Aminoglycosides, Antiprotozoals, Antiretroviral Agents, Antituberculosis Agents, Bacitracin, Cephalosporin and Related Antibiotics, Colistimethate sodium, Lincosamides, Monobactams, Penicillins, Polymixin B Sulfate, Antirheumatic Agents, Antimetabolites, Immune Globulins, Immulogic Agents, Monoclonal antibodies, Antimetabolites, Hematopoietic, and/or Hemin.
In other embodiments, any of the injectors described herein can be filled with and/or used to inject environmental, food, and household allergen formulations for the treatment of allergic disease, specifically for use in immunotherapy.
In still other embodiments, the medicament contained within any of the medicament containers shown herein can be a placebo substance (i.e., a substance with no active ingredients), such as water.
The medicament containers and/or medicament delivery devices disclosed herein can contain any suitable amount of any medicament. For example, in some embodiments, a medicament delivery device as shown herein can be a single-dose device containing an amount medicament to be delivered of approximately 0.4 mg, 0.8 mg, 1 mg, 1.6 mg or 2 mg. As described above, the fill volume can be such that the ratio of the delivery volume to the fill volume is any suitable value (e.g., 0.4, 0.6 or the like).
Although various embodiments have been described as having particular features and/or combinations of components, other embodiments are possible having a combination of any features and/or components from any of embodiments where appropriate. For example, any of the devices shown and described herein can include an electronic circuit system as described in the '936 application.
In some embodiments, a method includes moving a first elastomeric member within a medicament container such that a medicament within a first chamber is compressed. The medicament can be, for example, a substantially solid medicament, such as a lyophilized medicament that that contains air therein. In other embodiments, the medicament within the first chamber can include a liquid component, and the first chamber can include air. In this manner, a portion of the air within the first chamber can be conveyed (or purged) from the first chamber. As described herein, in some embodiments, the air from the first chamber can be conveyed into a second chamber of the medicament container. In some embodiments, the method includes puncturing a second elastomeric member, the second elastomeric member defining a boundary of the second chamber, such that a portion of the air within the second chamber is conveyed via the needle to volume outside of the medicament container. In other embodiments, the air from the first chamber can be conveyed to a volume outside of the medicament container.
Although the medicament containers, fill methods and methods of air venting and/or purging have been described herein as being associated with an autoinjector, in other embodiments, any of the medicament containers, fill methods and methods of air venting and/or purging described herein can be used in any suitable medicament delivery device. For example, in some embodiments, a medicament container similar to the medicament container 3200 described above can be included in a pen injector, an inhaler, an infusion device or a transdermal delivery device.
In some embodiments, a method includes actuating an energy storage member configured to produce a force on a portion of a medicament container. The portion can be, for example, a plunger (or elastomeric member) that is movable within the medicament container. In other embodiments, the force can be exerted on a portion of the medicament container such that the portion deforms to reduce a volume within which a medicament is stored. The application of the force is such that the volume is reduced, thereby compressing and/or conveying air from the volume to a volume outside of the medicament container. In this manner, any residual air within the medicament volume can be purged without the need for the user to manually apply a purge force and/or independent from the orientation of the medicament container.
This application claims priority to U.S. Provisional Application Ser. No. 61/650,196, entitled “Devices and Methods for Delivering Medicaments from a Multi-Chamber Container,” filed May, 22, 2012, which is incorporated herein by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
2960087 | Uytenbogaart | Nov 1960 | A |
3055362 | Uytenbogaart | Sep 1962 | A |
3115133 | Morando | Dec 1963 | A |
3426448 | Samoff | Feb 1969 | A |
3563373 | Paulson | Feb 1971 | A |
3688765 | Gasaway | Sep 1972 | A |
3768472 | Hodosh et al. | Oct 1973 | A |
3795061 | Sarnoff et al. | Mar 1974 | A |
3945379 | Pritz et al. | Mar 1976 | A |
4108177 | Pistor | Aug 1978 | A |
4124024 | Schwebel et al. | Nov 1978 | A |
4226235 | Sarnoff et al. | Oct 1980 | A |
4258713 | Wardlaw | Mar 1981 | A |
4360019 | Portner et al. | Nov 1982 | A |
4394863 | Bartner | Jul 1983 | A |
4424057 | House | Jan 1984 | A |
4441629 | Mackal | Apr 1984 | A |
4484910 | Sarnoff | Nov 1984 | A |
4573976 | Sampson et al. | Mar 1986 | A |
4596556 | Morrow et al. | Jun 1986 | A |
4610666 | Pizzino | Sep 1986 | A |
4617557 | Gordon | Oct 1986 | A |
4624660 | Mijers et al. | Nov 1986 | A |
4640686 | Dalling et al. | Feb 1987 | A |
4643721 | Brunet | Feb 1987 | A |
4666430 | Brown et al. | May 1987 | A |
4673657 | Christian | Jun 1987 | A |
4689042 | Sarnoff et al. | Aug 1987 | A |
4693708 | Wanderer et al. | Sep 1987 | A |
4755169 | Sarnoff et al. | Jul 1988 | A |
4781697 | Slaughter | Nov 1988 | A |
4782841 | Lopez | Nov 1988 | A |
4784652 | Wikström | Nov 1988 | A |
4795433 | Sarnoff | Jan 1989 | A |
4820286 | van der Wal | Apr 1989 | A |
4822340 | Kamstra | Apr 1989 | A |
4826489 | Haber | May 1989 | A |
4853521 | Claeys et al. | Aug 1989 | A |
4874381 | Vetter | Oct 1989 | A |
4874382 | Lindemann et al. | Oct 1989 | A |
4894054 | Miskinyar | Jan 1990 | A |
4906235 | Roberts | Mar 1990 | A |
4915695 | Koobs | Apr 1990 | A |
4941880 | Burns | Jul 1990 | A |
4959056 | Dombrowski et al. | Sep 1990 | A |
4968302 | Schluter et al. | Nov 1990 | A |
4983164 | Hook et al. | Jan 1991 | A |
5000736 | Kaufhold, Jr. et al. | Mar 1991 | A |
5024656 | Gasaway et al. | Jun 1991 | A |
5037306 | van Schoonhoven | Aug 1991 | A |
5038023 | Saliga | Aug 1991 | A |
5041088 | Ritson et al. | Aug 1991 | A |
5042977 | Bechtold et al. | Aug 1991 | A |
5062603 | Smith et al. | Nov 1991 | A |
5064413 | McKinnon et al. | Nov 1991 | A |
5071353 | van der Wal | Dec 1991 | A |
5080649 | Vetter | Jan 1992 | A |
5085642 | Sarnoff et al. | Feb 1992 | A |
5092843 | Monroe et al. | Mar 1992 | A |
5104380 | Holman et al. | Apr 1992 | A |
5125898 | Kaufhold, Jr. et al. | Jun 1992 | A |
5139490 | Vetter et al. | Aug 1992 | A |
5167641 | Schmitz | Dec 1992 | A |
5199949 | Haber et al. | Apr 1993 | A |
5224936 | Gallagher | Jul 1993 | A |
5240146 | Smedley et al. | Aug 1993 | A |
5244465 | Michel | Sep 1993 | A |
5271527 | Haber et al. | Dec 1993 | A |
5281198 | Haber et al. | Jan 1994 | A |
5286258 | Haber et al. | Feb 1994 | A |
5298023 | Haber et al. | Mar 1994 | A |
5298024 | Richmond | Mar 1994 | A |
5312326 | Myers et al. | May 1994 | A |
5314412 | Rex | May 1994 | A |
5320603 | Vetter et al. | Jun 1994 | A |
5343519 | Feldman | Aug 1994 | A |
5344407 | Ryan | Sep 1994 | A |
5354284 | Haber et al. | Oct 1994 | A |
5356376 | Milijasevic et al. | Oct 1994 | A |
5363842 | Mishelevich et al. | Nov 1994 | A |
5380281 | Tomellini et al. | Jan 1995 | A |
5383851 | McKinnon, Jr. et al. | Jan 1995 | A |
5383864 | van den Heuvel | Jan 1995 | A |
5394866 | Ritson et al. | Mar 1995 | A |
5399163 | Peterson et al. | Mar 1995 | A |
5417660 | Martin | May 1995 | A |
5466217 | Myers et al. | Nov 1995 | A |
5514097 | Knauer | May 1996 | A |
5514135 | Earle | May 1996 | A |
5558679 | Tuttle | Sep 1996 | A |
5567160 | Massino | Oct 1996 | A |
5568555 | Shamir | Oct 1996 | A |
5569192 | van der Wal | Oct 1996 | A |
5584815 | Pawelka et al. | Dec 1996 | A |
5615771 | Hollister | Apr 1997 | A |
5616132 | Newman | Apr 1997 | A |
5645534 | Chanoch | Jul 1997 | A |
5662612 | Niehoff | Sep 1997 | A |
5681291 | Galli | Oct 1997 | A |
5692492 | Bruna et al. | Dec 1997 | A |
5695476 | Harris | Dec 1997 | A |
5697916 | Schraga | Dec 1997 | A |
5716338 | Hjertman et al. | Feb 1998 | A |
5728074 | Castellano et al. | Mar 1998 | A |
5743886 | Lynn et al. | Apr 1998 | A |
5772635 | Dastur et al. | Jun 1998 | A |
5792190 | Olson et al. | Aug 1998 | A |
5800397 | Wilson et al. | Sep 1998 | A |
5805423 | Wever et al. | Sep 1998 | A |
5809997 | Wolf | Sep 1998 | A |
5813397 | Goodman et al. | Sep 1998 | A |
5814020 | Gross | Sep 1998 | A |
5823346 | Weiner | Oct 1998 | A |
5832488 | Eberhardt | Nov 1998 | A |
5837546 | Allen et al. | Nov 1998 | A |
RE35986 | Ritson et al. | Dec 1998 | E |
5846089 | Weiss et al. | Dec 1998 | A |
5848988 | Davis | Dec 1998 | A |
5852590 | de la Huerga | Dec 1998 | A |
5853292 | Eggert et al. | Dec 1998 | A |
5858001 | Tsals et al. | Jan 1999 | A |
5865795 | Schiff et al. | Feb 1999 | A |
5868713 | Klippenstein | Feb 1999 | A |
5868721 | Marinacci | Feb 1999 | A |
D407487 | Greubel et al. | Mar 1999 | S |
5925021 | Castellano et al. | Jul 1999 | A |
5928195 | Malamud | Jul 1999 | A |
5941857 | Nguyen et al. | Aug 1999 | A |
5964739 | Champ | Oct 1999 | A |
5970457 | Brant et al. | Oct 1999 | A |
5971953 | Bachynsky | Oct 1999 | A |
6015438 | Shaw | Jan 2000 | A |
6030363 | Kriesel | Feb 2000 | A |
6039713 | Botich et al. | Mar 2000 | A |
6045534 | Jacobsen et al. | Apr 2000 | A |
6056728 | von Schuckmann | May 2000 | A |
6062901 | Liu et al. | May 2000 | A |
6063053 | Castellano et al. | May 2000 | A |
6074213 | Hon | Jun 2000 | A |
6077106 | Mish | Jun 2000 | A |
6083199 | Thorley et al. | Jul 2000 | A |
6084526 | Blotky et al. | Jul 2000 | A |
6086562 | Jacobsen et al. | Jul 2000 | A |
6096002 | Landau | Aug 2000 | A |
6099504 | Gross et al. | Aug 2000 | A |
6102896 | Roser | Aug 2000 | A |
6119684 | Nöhl et al. | Sep 2000 | A |
6149626 | Rachynsky et al. | Nov 2000 | A |
6158613 | Novosel et al. | Dec 2000 | A |
6161281 | Dando et al. | Dec 2000 | A |
6165155 | Jacobsen et al. | Dec 2000 | A |
6179812 | Botich et al. | Jan 2001 | B1 |
6192891 | Gravel et al. | Feb 2001 | B1 |
6193695 | Rippstein, Jr. | Feb 2001 | B1 |
6202642 | McKinnon et al. | Mar 2001 | B1 |
6210359 | Patel et al. | Apr 2001 | B1 |
6210369 | Wilmot et al. | Apr 2001 | B1 |
6219587 | Ahlin et al. | Apr 2001 | B1 |
6221045 | Duchon et al. | Apr 2001 | B1 |
6221055 | Shaw et al. | Apr 2001 | B1 |
6245046 | Sibbitt | Jun 2001 | B1 |
6258063 | Haar et al. | Jul 2001 | B1 |
6259654 | de la Huerga | Jul 2001 | B1 |
6264629 | Landau | Jul 2001 | B1 |
6312412 | Saied et al. | Nov 2001 | B1 |
6317630 | Gross et al. | Nov 2001 | B1 |
6334070 | Nova et al. | Dec 2001 | B1 |
6364866 | Furr et al. | Apr 2002 | B1 |
6371939 | Bergens et al. | Apr 2002 | B2 |
6387078 | Gillespie, III | May 2002 | B1 |
6405912 | Giannou | Jun 2002 | B2 |
6406455 | Willis et al. | Jun 2002 | B1 |
6411567 | Niemiec et al. | Jun 2002 | B1 |
6413236 | Van Dyke | Jul 2002 | B1 |
6419656 | Vetter et al. | Jul 2002 | B1 |
6425897 | Overes et al. | Jul 2002 | B2 |
6428517 | Hochman et al. | Aug 2002 | B1 |
6428528 | Sadowski | Aug 2002 | B2 |
6454746 | Bydlon et al. | Sep 2002 | B1 |
6475181 | Potter et al. | Nov 2002 | B1 |
6478769 | Parker | Nov 2002 | B1 |
6478771 | Lavi et al. | Nov 2002 | B1 |
6482185 | Hartmann | Nov 2002 | B1 |
6482186 | Douglas et al. | Nov 2002 | B1 |
6494863 | Shaw et al. | Dec 2002 | B1 |
6500150 | Gross et al. | Dec 2002 | B1 |
6514230 | Munk et al. | Feb 2003 | B1 |
6529446 | de la Huerga | Mar 2003 | B1 |
6530900 | Dailey et al. | Mar 2003 | B1 |
6530904 | Edwards et al. | Mar 2003 | B1 |
6535714 | Melker et al. | Mar 2003 | B2 |
6540672 | Simonsen et al. | Apr 2003 | B1 |
6540675 | Aceti et al. | Apr 2003 | B2 |
6544233 | Fukui et al. | Apr 2003 | B1 |
6544234 | Gabriel | Apr 2003 | B1 |
6551276 | Mann et al. | Apr 2003 | B1 |
6551298 | Zhang | Apr 2003 | B1 |
6554798 | Mann et al. | Apr 2003 | B1 |
6558320 | Causey, III et al. | May 2003 | B1 |
6560471 | Heller | May 2003 | B1 |
6565533 | Smith et al. | May 2003 | B1 |
6569123 | Alchas | May 2003 | B2 |
6572584 | Shaw et al. | Jun 2003 | B1 |
6574166 | Niemiec | Jun 2003 | B2 |
6575939 | Brunel | Jun 2003 | B1 |
RE38189 | Walker et al. | Jul 2003 | E |
6585685 | Staylor et al. | Jul 2003 | B2 |
6585698 | Packman et al. | Jul 2003 | B1 |
6589158 | Winkler | Jul 2003 | B2 |
6595956 | Gross et al. | Jul 2003 | B1 |
6599272 | Hjertman et al. | Jul 2003 | B1 |
6616627 | Willis et al. | Sep 2003 | B2 |
6633796 | Pool et al. | Oct 2003 | B1 |
6641566 | Douglas et al. | Nov 2003 | B2 |
6645171 | Robinson et al. | Nov 2003 | B1 |
6645181 | Lavi et al. | Nov 2003 | B1 |
6648850 | Landau | Nov 2003 | B2 |
6656150 | Hill et al. | Dec 2003 | B2 |
6659980 | Moberg et al. | Dec 2003 | B2 |
6676630 | Landau et al. | Jan 2004 | B2 |
6679862 | Diaz et al. | Jan 2004 | B2 |
6689093 | Landau | Feb 2004 | B2 |
6702778 | Hill et al. | Mar 2004 | B2 |
6707763 | Osberg et al. | Mar 2004 | B2 |
6708050 | Carim | Mar 2004 | B2 |
6722916 | Buccinna et al. | Apr 2004 | B2 |
6723077 | Pickup et al. | Apr 2004 | B2 |
6726661 | Munk et al. | Apr 2004 | B2 |
6736796 | Shekalim | May 2004 | B2 |
6743635 | Neel et al. | Jun 2004 | B2 |
6749437 | Chan | Jun 2004 | B2 |
6752781 | Landau et al. | Jun 2004 | B2 |
6764469 | Broselow | Jul 2004 | B2 |
6767336 | Kaplan | Jul 2004 | B1 |
6770052 | Hill et al. | Aug 2004 | B2 |
6770056 | Price et al. | Aug 2004 | B2 |
6783509 | Landau et al. | Aug 2004 | B1 |
6786875 | Barker et al. | Sep 2004 | B2 |
6786885 | Hochman et al. | Sep 2004 | B2 |
6793646 | Giambattista et al. | Sep 2004 | B1 |
6803856 | Murphy et al. | Oct 2004 | B1 |
6808514 | Schneider et al. | Oct 2004 | B2 |
6809653 | Mann et al. | Oct 2004 | B1 |
6817986 | Slate et al. | Nov 2004 | B2 |
6817987 | Vetter et al. | Nov 2004 | B2 |
6830560 | Gross et al. | Dec 2004 | B1 |
6839304 | Niemiec et al. | Jan 2005 | B2 |
6872200 | Mann et al. | Mar 2005 | B2 |
6875195 | Choi | Apr 2005 | B2 |
6883222 | Landau | Apr 2005 | B2 |
6893420 | Arnisolle | May 2005 | B2 |
6923764 | Aceti et al. | Aug 2005 | B2 |
6936029 | Mann et al. | Aug 2005 | B2 |
6936032 | Bush, Jr. et al. | Aug 2005 | B1 |
6937150 | Medema et al. | Aug 2005 | B2 |
6942646 | Langley et al. | Sep 2005 | B2 |
6946299 | Neel et al. | Sep 2005 | B2 |
6949082 | Langley et al. | Sep 2005 | B2 |
6952604 | DeNuzzio et al. | Oct 2005 | B2 |
6953445 | Wilmot et al. | Oct 2005 | B2 |
6953693 | Neel et al. | Oct 2005 | B2 |
6958691 | Anderson et al. | Oct 2005 | B1 |
6959247 | Neel et al. | Oct 2005 | B2 |
6961285 | Niemiec et al. | Nov 2005 | B2 |
6964650 | Alexandre et al. | Nov 2005 | B2 |
6969259 | Pastrick et al. | Nov 2005 | B2 |
6979316 | Rubin et al. | Dec 2005 | B1 |
6979326 | Mann et al. | Dec 2005 | B2 |
6985870 | Martucci et al. | Jan 2006 | B2 |
6997911 | Klitmose | Feb 2006 | B2 |
7014470 | Vann | Mar 2006 | B2 |
7077835 | Robinson et al. | Jul 2006 | B2 |
7104972 | Moller et al. | Sep 2006 | B2 |
7113101 | Peterson et al. | Sep 2006 | B2 |
7116233 | Zhurin | Oct 2006 | B2 |
7118553 | Scherer | Oct 2006 | B2 |
7126879 | Snyder | Oct 2006 | B2 |
7158011 | Brue | Jan 2007 | B2 |
7191916 | Clifford et al. | Mar 2007 | B2 |
7278983 | Ireland et al. | Oct 2007 | B2 |
7299981 | Hickle et al. | Nov 2007 | B2 |
7351223 | Call | Apr 2008 | B2 |
7416540 | Edwards et al. | Aug 2008 | B2 |
7500963 | Westbye et al. | Mar 2009 | B2 |
7500967 | Thorley et al. | Mar 2009 | B2 |
7503907 | Lesch, Jr. | Mar 2009 | B1 |
7544188 | Edwards et al. | Jun 2009 | B2 |
7648482 | Edwards et al. | Jan 2010 | B2 |
7648483 | Edwards et al. | Jan 2010 | B2 |
7678073 | Griffiths et al. | Mar 2010 | B2 |
7708719 | Wilmot et al. | May 2010 | B2 |
7731686 | Edwards et al. | Jun 2010 | B2 |
7749194 | Edwards et al. | Jul 2010 | B2 |
7758550 | Bollenbach et al. | Jul 2010 | B2 |
7806866 | Hommann et al. | Oct 2010 | B2 |
7850662 | Veasey et al. | Dec 2010 | B2 |
7871393 | Monroe | Jan 2011 | B2 |
7918823 | Edwards et al. | Apr 2011 | B2 |
7918832 | Veasey et al. | Apr 2011 | B2 |
7938802 | Bicknell et al. | May 2011 | B2 |
7947017 | Edwards et al. | May 2011 | B2 |
8016788 | Edwards et al. | Sep 2011 | B2 |
8021335 | Lesch, Jr. | Sep 2011 | B2 |
8105281 | Edwards et al. | Jan 2012 | B2 |
8123719 | Edwards et al. | Feb 2012 | B2 |
8162886 | Sadowski et al. | Apr 2012 | B2 |
8172082 | Edwards et al. | May 2012 | B2 |
8177749 | Slate et al. | May 2012 | B2 |
8206360 | Edwards et al. | Jun 2012 | B2 |
8231573 | Edwards et al. | Jul 2012 | B2 |
8251947 | Kramer et al. | Aug 2012 | B2 |
8276583 | Farieta et al. | Oct 2012 | B2 |
8313466 | Edwards et al. | Nov 2012 | B2 |
8361029 | Edwards et al. | Jan 2013 | B2 |
8361035 | Thorley et al. | Jan 2013 | B2 |
8425462 | Edwards et al. | Apr 2013 | B2 |
8574214 | Kühn et al. | Nov 2013 | B2 |
8608698 | Edwards et al. | Dec 2013 | B2 |
8613720 | Bendek et al. | Dec 2013 | B2 |
8627816 | Edwards et al. | Jan 2014 | B2 |
8708968 | Julian et al. | Apr 2014 | B2 |
8734394 | Adams et al. | May 2014 | B2 |
8920377 | Edwards et al. | Dec 2014 | B2 |
8939943 | Edwards et al. | Jan 2015 | B2 |
8961455 | Holmqvist et al. | Feb 2015 | B2 |
9056170 | Edwards et al. | Jun 2015 | B2 |
20020016567 | Hochman et al. | Feb 2002 | A1 |
20020042596 | Hartlaub et al. | Apr 2002 | A1 |
20020074345 | Schneider et al. | Jun 2002 | A1 |
20020076679 | Aman | Jun 2002 | A1 |
20020090601 | Strupat et al. | Jul 2002 | A1 |
20020096543 | Juselius | Jul 2002 | A1 |
20030028145 | Duchon et al. | Feb 2003 | A1 |
20030040717 | Saulenas et al. | Feb 2003 | A1 |
20030105430 | Lavi et al. | Jun 2003 | A1 |
20030106824 | Wilmot et al. | Jun 2003 | A1 |
20030120222 | Vaillancourt | Jun 2003 | A1 |
20030135388 | Martucci et al. | Jul 2003 | A1 |
20040015125 | Alexandre et al. | Jan 2004 | A1 |
20040019326 | Gilbert et al. | Jan 2004 | A1 |
20040024361 | Fago et al. | Feb 2004 | A1 |
20040039336 | Amark et al. | Feb 2004 | A1 |
20040039337 | Letzing | Feb 2004 | A1 |
20040039368 | Reilly et al. | Feb 2004 | A1 |
20040054327 | Gillespie, III | Mar 2004 | A1 |
20040092874 | Mazidji | May 2004 | A1 |
20040116854 | Abulhaj et al. | Jun 2004 | A1 |
20040138611 | Griffiths et al. | Jul 2004 | A1 |
20040143298 | Nova et al. | Jul 2004 | A1 |
20040159364 | Landau et al. | Aug 2004 | A1 |
20040210199 | Atterbury et al. | Oct 2004 | A1 |
20040220524 | Sadowski et al. | Nov 2004 | A1 |
20040249358 | McWethy et al. | Dec 2004 | A1 |
20040267204 | Brustowicz | Dec 2004 | A1 |
20050027255 | Lavi et al. | Feb 2005 | A1 |
20050033234 | Sadowski et al. | Feb 2005 | A1 |
20050033386 | Osborn et al. | Feb 2005 | A1 |
20050062603 | Fuerst et al. | Mar 2005 | A1 |
20050090781 | Baba et al. | Apr 2005 | A1 |
20050090782 | Marshall et al. | Apr 2005 | A1 |
20050096588 | Hagmann et al. | May 2005 | A1 |
20050101912 | Faust et al. | May 2005 | A1 |
20050134433 | Sweeney, II | Jun 2005 | A1 |
20050148931 | Juhasz | Jul 2005 | A1 |
20050148945 | Chen | Jul 2005 | A1 |
20050159705 | Crawford et al. | Jul 2005 | A1 |
20050165360 | Stamp | Jul 2005 | A1 |
20050168337 | Mahoney | Aug 2005 | A1 |
20050171477 | Rubin et al. | Aug 2005 | A1 |
20050182358 | Veit et al. | Aug 2005 | A1 |
20050183982 | Giewercer | Aug 2005 | A1 |
20050186221 | Reynolds et al. | Aug 2005 | A1 |
20050192530 | Castellano | Sep 2005 | A1 |
20050197654 | Edman et al. | Sep 2005 | A1 |
20050203466 | Hommann et al. | Sep 2005 | A1 |
20050261742 | Nova et al. | Nov 2005 | A1 |
20050267403 | Landau et al. | Dec 2005 | A1 |
20050277891 | Sibbitt | Dec 2005 | A1 |
20060030819 | Young et al. | Feb 2006 | A1 |
20060053036 | Coffman et al. | Mar 2006 | A1 |
20060058848 | Piraino et al. | Mar 2006 | A1 |
20060069350 | Buenger et al. | Mar 2006 | A1 |
20060111666 | Hommann et al. | May 2006 | A1 |
20060111671 | Klippenstein | May 2006 | A1 |
20060116639 | Russell | Jun 2006 | A1 |
20060129089 | Stamp | Jun 2006 | A1 |
20060129090 | Moberg et al. | Jun 2006 | A1 |
20060189938 | Hommann et al. | Aug 2006 | A1 |
20060200077 | Righi et al. | Sep 2006 | A1 |
20060235354 | Kaal et al. | Oct 2006 | A1 |
20060247578 | Arguedas et al. | Nov 2006 | A1 |
20060247579 | Friedman | Nov 2006 | A1 |
20060265186 | Holland et al. | Nov 2006 | A1 |
20070008113 | Spoonhower et al. | Jan 2007 | A1 |
20070074722 | Giroux et al. | Apr 2007 | A1 |
20070100288 | Bozeman et al. | May 2007 | A1 |
20070129686 | Daily et al. | Jun 2007 | A1 |
20070173772 | Liversidge | Jul 2007 | A1 |
20070184847 | Hansen et al. | Aug 2007 | A1 |
20070203247 | Phillips et al. | Aug 2007 | A1 |
20070210147 | Morrone et al. | Sep 2007 | A1 |
20070213598 | Howard et al. | Sep 2007 | A1 |
20070233001 | Burroughs et al. | Oct 2007 | A1 |
20080059133 | Edwards et al. | Mar 2008 | A1 |
20080111685 | Olson et al. | May 2008 | A1 |
20080160492 | Campbell et al. | Jul 2008 | A1 |
20080171995 | Vitullo et al. | Jul 2008 | A1 |
20080188798 | Weber | Aug 2008 | A1 |
20080249468 | Edwards et al. | Oct 2008 | A1 |
20080255513 | Kaal et al. | Oct 2008 | A1 |
20090005735 | Wikner et al. | Jan 2009 | A1 |
20090093759 | Judd et al. | Apr 2009 | A1 |
20090221962 | Kaal et al. | Sep 2009 | A1 |
20090240200 | Heneveld et al. | Sep 2009 | A1 |
20100107783 | Maeda | May 2010 | A1 |
20100160894 | Julian et al. | Jun 2010 | A1 |
20100318035 | Edwards et al. | Dec 2010 | A1 |
20110060274 | Kuhn | Mar 2011 | A1 |
20110201999 | Cronenberg | Aug 2011 | A1 |
20120016296 | Charles | Jan 2012 | A1 |
20120046613 | Plumptre | Feb 2012 | A1 |
20120079718 | Singer et al. | Apr 2012 | A1 |
20120116318 | Edwards et al. | May 2012 | A1 |
20120125951 | Leak et al. | May 2012 | A1 |
20120136298 | Bendix et al. | May 2012 | A1 |
20120136316 | Davies et al. | May 2012 | A1 |
20120172804 | Plumptre | Jul 2012 | A1 |
20120172817 | Bruggemann et al. | Jul 2012 | A1 |
20120191049 | Harms et al. | Jul 2012 | A1 |
20120191066 | Schabbach et al. | Jul 2012 | A1 |
20120197210 | Kuhn et al. | Aug 2012 | A1 |
20120209200 | Jones et al. | Aug 2012 | A1 |
20120220949 | Davies et al. | Aug 2012 | A1 |
20120226238 | Davies et al. | Sep 2012 | A1 |
20120238960 | Smith et al. | Sep 2012 | A1 |
20120253288 | Dasbach et al. | Oct 2012 | A1 |
20120259285 | Schabbach et al. | Oct 2012 | A1 |
20120271243 | Plumptre et al. | Oct 2012 | A1 |
20120283648 | Veasey et al. | Nov 2012 | A1 |
20120283651 | Veasey et al. | Nov 2012 | A1 |
20120283662 | MacDonald et al. | Nov 2012 | A1 |
20120289906 | Jones et al. | Nov 2012 | A1 |
20120289929 | Boyd et al. | Nov 2012 | A1 |
20120310168 | Plumptre et al. | Dec 2012 | A1 |
20120310206 | Kouyoumjian et al. | Dec 2012 | A1 |
20120325865 | Forstreuter et al. | Dec 2012 | A1 |
20120330244 | Helmer et al. | Dec 2012 | A1 |
20130023822 | Edwards et al. | Jan 2013 | A1 |
20130023825 | Edwards et al. | Jan 2013 | A1 |
20130035664 | Mojdehbakhsh et al. | Feb 2013 | A1 |
20130060231 | Adlon et al. | Mar 2013 | A1 |
20130060232 | Adlon et al. | Mar 2013 | A1 |
20130090604 | Davies et al. | Apr 2013 | A1 |
20130102973 | Thorley et al. | Apr 2013 | A1 |
20130110050 | Boyd et al. | May 2013 | A1 |
20130178823 | Buchine et al. | Jul 2013 | A1 |
20130226084 | Samandi et al. | Aug 2013 | A1 |
20130226134 | Schabbach et al. | Aug 2013 | A1 |
20130237924 | Leak et al. | Sep 2013 | A1 |
20130237932 | Thueer et al. | Sep 2013 | A1 |
20130245562 | Kouyoumjian et al. | Sep 2013 | A1 |
20130266919 | Baker et al. | Oct 2013 | A1 |
20130274707 | Wilmot et al. | Oct 2013 | A1 |
20140031789 | Edwards et al. | Jan 2014 | A1 |
20140081234 | Eggert et al. | Mar 2014 | A1 |
20140114258 | Day | Apr 2014 | A1 |
20140188075 | Eggert et al. | Jul 2014 | A1 |
20140276414 | Baker et al. | Sep 2014 | A1 |
20140336586 | Bengtsson et al. | Nov 2014 | A1 |
20140336610 | Michel et al. | Nov 2014 | A1 |
20150174323 | Edwards et al. | Jun 2015 | A1 |
Number | Date | Country |
---|---|---|
20 2009 003 009 | Jul 2009 | DE |
1287840 | Mar 2003 | EP |
1462134 | Sep 2004 | EP |
1518575 | Mar 2005 | EP |
1712178 | Oct 2006 | EP |
1095668 | Apr 2007 | EP |
2506161 | Nov 1982 | FR |
2 509 615 | Jan 1983 | FR |
51-021295 | Feb 1976 | JP |
55-75335 | Aug 2014 | JP |
PA04009276 | Jan 2005 | MX |
WO 8606967 | Dec 1986 | WO |
WO 9104760 | Apr 1991 | WO |
WO 9218176 | Oct 1992 | WO |
WO9302720 | Feb 1993 | WO |
WO 9406487 | Mar 1994 | WO |
WO 9526009 | Sep 1995 | WO |
WO 9535126 | Dec 1995 | WO |
WO 9852632 | Nov 1998 | WO |
WO 9910031 | Mar 1999 | WO |
WO 0124690 | Apr 2001 | WO |
WO 0126020 | Apr 2001 | WO |
WO 0141849 | Jun 2001 | WO |
WO 0188828 | Nov 2001 | WO |
WO 0193926 | Dec 2001 | WO |
WO 03095001 | Nov 2003 | WO |
WO 03097133 | Nov 2003 | WO |
WO 2004054644 | Jul 2004 | WO |
WO 2005050526 | Jun 2005 | WO |
WO 2005077441 | Aug 2005 | WO |
WO 2006045525 | May 2006 | WO |
WO 2006109778 | Oct 2006 | WO |
WO 2006125692 | Nov 2006 | WO |
WO 2007075839 | Jul 2007 | WO |
WO 2008005315 | Jan 2008 | WO |
WO 2008082704 | Jul 2008 | WO |
WO 2008148864 | Dec 2008 | WO |
WO 2010033806 | Mar 2010 | WO |
WO2013044172 | Mar 2013 | WO |
WO 2013086292 | Jun 2013 | WO |
WO 2013119591 | Aug 2013 | WO |
WO 2014085118 | Jun 2014 | WO |
Entry |
---|
Office Action for Chinese Patent Application No. 201280015406.6, mailed Dec. 2, 2014. |
Supplementary Search Report for European Patent Application No. 12739882.4, mailed Aug. 5, 2014, 7 pages. |
“Solutions for Medical Devices,” 3M Brochure, © 3M 2006 80-6201-3490-0. |
Merle Tingelstad, “Revolutionary Medical Technology Increases Demand for Flexible Interconnects,” [online] May 15, 2006 [retrieved on Nov. 15, 2006] Retrieved from the Internet <URL: http://www.ecnmag.com/index.asp?layout=artielePrint&ArticleID=CA6332947 >. |
“Flexible circuits / Flex circuits / Flexible Technology Ltd.,” Flexible Technology Limited [online] [retrieved on Aug. 28, 2006] Retrieved from the Internet <URL: http://www.flexibletechnology.com/>. |
“Flexible circuits capabilities of Flexible Technology Limited,” Our Flexible Circuits Capabilities [online] [retrieved on Aug. 28, 2006] Retrieved from the Internet <URL: http://www.flexibletechnology.com/Flexible circuits Capability.htm >. |
“Flex Circuits/flexible circuits design guide,” [online] [retrieved on Aug. 28, 2006] Retrieved from the Internet <URL: http://flexiblecircuit.co.uk/Flex Circuits Design Guide.htm >. |
“Insect Stings Auto-injector Pouches and Carry Cases,” The Insect Stings On-Line Shop, [online] [retrieved on Jan. 24, 2007] Retrieved from the Internet <URL: http://www.insectstings.co.uk/acatalog/Auto Injector Pouches.html >. |
“Anaphylaxis Canada Product Catalogue,” Anaphylaxis Canada > Living with Anaphylaxis > Tools and Resources [online] [retrieved on Jan. 24, 2007] Retrieved from the Internet <URL: http://anaphylaxis.org/content/livingwith/productcatalogue.asp >. |
“Microfluidics Device Provides Programmed, Long-Term Drug Dosing,” nano techwire.com [online] [retrieved on Nov. 28, 2006] Retrieved from the Internet <URL: http://nanotechwire.com/news.asp?nid=3141&ntid-124&pg=1 >. |
Roger Allan, “Medical Electronics: Technology Advances Will Revolutionize Healthcare,” Sep. 30, 2002 [online] [retrieved on Nov. 28, 2006] Retrieved from the Internet <URL: http://www.elecdesign.com/Articles/Index.cfm?AD=1&ArticleID=2041>. |
RFID Gazette, “Smart Labels in Healthcare,” Sep. 29, 2005 [online] [retrieved on Nov. 28, 2006] Retrieved from the Internet <URL: http://www.rfidagazeete.org/2005/09/smart labels in.html >. |
“Merck Serono Launches easypod(R), First Electronic Growth Hormone Injection Device,” Jan. 30, 2007 [online] [retrieved on Feb. 5, 2007] Retrieved from the Internet <URL: http://www.biz.yahoo.com/prnews/070130/ukm028.html?.v=8. |
Dr. Oliver Scholz, “Drug depot in a tooth,” [online] [retrieved on Feb. 6, 2007] Retrieved from the Internet <URL: http://www.fraunhofer.de/fhg/EN/press/pi/2007/02Mediendienst22007Thema2.jsp?print=true. |
Heartsine Technology, samaritan™ PAD ACCESSORIES [online] [retrieved on Jun. 1, 2007] Retrieved from the Internet <URL: http://www.heartsine.com/aboutsam-accessories.htm>. |
CliniSense Corporation, “Drug delivery devices A potentially harsh environment for drugs,” Stability [online] [retrieved on Jun. 1, 2007] Retrieved from the Internet <URL: http://www.clinisense.com/devices.htm>. |
CliniSense Corporation, “LifeTrack Technology A new method to detect improper storage.” Stability [online] [retrieved on Jun. 1, 2007] Retrieved from the Internet <URL: http://www.clinisense.com/tech.htm>. |
AED Professionals™ Brochure [online] [retrieved on Jun. 1, 2007] Retrieved from the Internet <URL: http://www.aedprofessionals.com/>. |
Daniel Ruppar, “Implant Technologies Expected to Remain a Niche but Effective Method of Drug Delivery,” Drug Delivery Technology, Feb. 2007, vol. 7, No. 2 [online] [retrieved on Jun. 1, 2007] Retrieved from the Internet <URL: http://www.drugdeliverytech-online.com/drugdelivery/200702/templates/pageviewer—print?pg=44&pm=8 >. |
Search Report and Written Opinion for International Patent Application No. PCT/US06/03415 mailed Jul. 13, 2006, 10 pages. |
Search Report and Written Opinion for International Patent Application No. PCT/US07/84891 mailed Sep. 15, 2008, 7 pages. |
Search Report and Written Opinion for International Patent Application No. PCT/US07/007626 mailed Sep. 29, 2008. |
Examination Report for British Patent Application No. GB 0708523.6, mailed Dec. 8, 2008. |
Combined Search and Examination Report for British Patent Application No. GB 0713202.0, mailed Dec. 1, 2008. |
Examination Report for British Patent Application No. GB 0822532.8, mailed Jan. 21, 2009. |
Office Action for U.S. Appl. No. 11/562,061, mailed Feb. 3, 2009. |
Examination Report for British Patent Application No. GB 0822532.8, mailed May 21, 2009. |
Examination Report for New Zealand Patent Application No. NZ 589864, mailed Dec. 14, 2010. |
Search and Examination Report for British Patent Application No. 1105021.8, mailed May 18, 2011. |
Office Action for U.S. Appl. No. 11/692,359, mailed Jul. 18, 2011. |
International Search Report and Written Opinion for International Application No. PCT/US2012/022698, mailed May 25, 2012. |
Office Action for U.S. Appl. No. 13/053,451, mailed Nov. 15, 2012. |
English Translation of Office Action for Japanese Patent Application No. 2011-257810, mailed Mar. 13, 2013. |
Office Action for Canadian Patent Application No. 2,669,616 mailed Dec. 23, 2013. |
Office Action for Japanese Patent Application No. JP2007-553358, mailed Feb. 24, 2010. |
Examination Report for Australian Patent Application No. 2012211320, mailed Jan. 28, 2014. |
Office Action for Japanese Patent Application No. 2013-551328, mailed Jan. 13, 2016. |
Invitation to Pay Additional Fees and, Where Applicable, Protest Fee, PCT Application No. PCT/US2016/023995, dated May 17, 2016. |
Number | Date | Country | |
---|---|---|---|
20130317477 A1 | Nov 2013 | US |
Number | Date | Country | |
---|---|---|---|
61650196 | May 2012 | US |