The present disclosure pertains to devices and methods for the endolumenal treatment of obesity. More particularly, the present disclosure relates to devices and methods for endolumenally manipulating stomach tissue, forming and securing tissue folds, forming and securing tissue invaginations, altering stomach tissue configuration, restricting the ability of stomach tissue to distend, altering the function of nerves located in or near stomach tissue, and/or altering hormone production from cells associated with stomach tissue.
The National Institutes of Health (NIH) estimate that about two-thirds of adults—133.6 million people—in the U.S. are overweight or obese, while almost 5% of adults—15 million Americans—are considered extremely obese. Obese adults are at increased risk of type II diabetes, hypertension, stroke, certain cancers, and other dangerous conditions.
The NIH estimates that being overweight or obese leads to $117 billion in medical spending a year, with $61 billion in direct costs and $56 billion in indirect costs.
As obesity rates continue to rise, patients are increasingly seeking surgical weight loss options. Bariatric surgery aids weight loss by restricting food intake and, in some operations, altering the digestive process. The Roux-en-Y Gastric Bypass Procedure (RYGBP) is the most commonly performed bariatric procedure, estimated to account for approximately 65% of weight loss surgeries performed in the U.S.
A study from the Agency for Healthcare Research and Quality (AHRQ) found that the number of bariatric surgeries grew by 400 percent between 1998 and 2002. In 2007, an estimated 205,000 people with morbid obesity in the U.S. will have undergone bariatric surgery and these numbers are expected to grow. Only 1% of the clinically eligible population is currently being treated for morbid obesity through bariatric surgery.
A major retrospective study published in the New England Journal of Medicine showed that gastric bypass reduced the risk of death in extremely obese patients by over 40% by lowering the incidence of diabetes, coronary artery disease and cancer.
The Roux-en-Y gastric bypass procedure involves creating a small stomach pouch out of a portion of the stomach and attaching it directly to the jejunum, bypassing a large part of the stomach and duodenum. The stomach is made very small to restrict the amount of food that can be consumed. The opening between the stomach pouch and the small intestine (called the stoma) is also made very small to slow the passage of food from the stomach. These restrictions help the patient feel full and limit the amount of food that can be eaten. In addition, by altering the path of the intestines, consumed food bypasses the duodenum so fat absorption is substantially reduced.
The RYGB procedure is performed either laparoscopically or in an open surgery. Alternative procedures for obtaining some or all of the benefits of bariatric surgery without requiring an open surgical or laparoscopic procedure would be preferred.
The stomach is a muscular hollow part of the human alimentary system, and it plays a vital role in the digestive process. It serves many purposes, including the role of reservoir for food, a role in chemical and mechanical grinding/digesting of food, and as a precursor and catalyst for a wide variety of chemical and hormonal changes before, during and after a meal. The stomach has distinct anatomical regions generally known as the fundus, corpus, (body) gastric antrum and pylorus. The stomach has a sphincter muscle at both ends which serves to manage the passage of nutrients during eating and digestion.
The stomach is surrounded by parasympathetic (stimulant) and orthosympathetic (inhibitor) plexuses, which are networks of blood vessels and nerves in the anterior gastric, posterior, superior and inferior, celiac and myenteric sections of the stomach. These regulate both the secretions activity and the motor (motion) activity of stomach muscles.
Stomach functions are controlled by both the autonomic nervous system and by the various digestive system hormones. As a reservoir, the fundus and to a lesser extent, the antrum, serve to dilate during ingestion of a meal, providing the space for short-term accommodation of the food to be digested, and for partially digested food.
The stomach has various states of activity, corresponding to pre-, intra- and post-meal functions. At the ingestion of a meal, the proximal stomach relaxes, creating a space for meal storage. The stomach begins the movement of food to the antrum, where it is mixed with digestive chemicals and is ground into chyme by muscular contractions. Once the antrum has milled the food, the pylorus opens reflexively, permitting passage to the duodenum. This partially-digested material is then passed through the pylorus and into the small bowel where further digestion and the absorption of nutrients takes place. In healthy humans, the amount of time it takes for the stomach to completely empty (gastric emptying time) is regulated very carefully to match the capacity of the duodenum to take on material and the body's ability to digest the nutrients.
Using a variety of methods, this “gastric emptying” time can be measured and used to determine if a patient has normal or abnormal characteristics. In normal patients, the presence of food in the stomach and later, in the small bowel, sets off a wide range of chemical responses that tell the brain when to eat, how much to eat, and when to stop eating. Further, scientist and clinicians are discovering that the presence and passage of nutrients through the alimentary system triggers a number of chemical processes that effect eating behavior, digestion, blood sugar, the autonomic nervous system, and the immune system. A “brain gut” link has been described in the literature and is the focus on a great deal of current research, especially as it relates to obesity, diabetes, hyperlipidemia, cardiovascular risk profile and dementia.
One area of intensive medical research focuses on the relationship between gastric emptying time and disease. It has been discovered that disordered gastric emptying (either too fast or too slow) is prevalent in patients with both Type 1 and Type 2 diabetes, and problems associated with gastric emptying result from and contribute to the symptoms and morbidities associated with the disease. In some patients, particularly those with recently-diagnosed type 2 diabetes, emptying may be accelerated, leading to a variety of serious clinical problems, and in others it is delayed, also leading to a variety of serious clinical problems. Problems include pain, nausea, vomiting, hypo- and hyper-glycemia, dumping syndrome, hyperlipidemia and hypertension. Current treatments are lacking and have significant limitations and side effects, and the prognosis of patients with disordered gastric emptying is poor.
Many patients with longstanding diabetes mellitus suffer from a condition known as gastroparesis, or severely delayed gastric emptying. Although diabetes is thought to be the cause, there are many patients with gastroparesis of unknown origin. In total, up to 75% of diabetic patients suffer from some degree of gastroparesis. Gastroparesis results from and also contributes to poor glycemic control thereby creating a cycle that increases the morbidity associated with diabetes. Patients with delayed gastric emptying could benefit from interventions that increase gastric emptying speed. Similarly, patients that suffer from accelerated emptying could benefit from therapeutic interventions that slow down gastric emptying. In either case, beyond just alleviating the immediate physical symptoms of disordered gastric emptying, therapeutic modulation of emptying can improve glycemic control and increase insulin sensitivity, thereby lessening the problems associated with diabetes. In some studies, when gastric emptying is normalized, insulin requirements post-meal have been shown to lessen.
There is a strong relationship between gastric emptying time and appetite, as well as emptying time and food intake. Gastric distension from the swallowed food, as well as nutrient stimulation of alimentary tract receptors and the release of gut peptides have a strong influence on meal size (satiation) and the amount of time before hunger returns (satiety). The effect of gastric emptying speed on obesity is just now being understood, but it is clear that the rate of gastric emptying can have an effect on a patient's body weight. Some researchers have proposed that speeding up gastric emptying time can trigger earlier responses to a meal, thus lessening food intake, while others propose that delaying or prolonging the total emptying time of a meal might reduce hunger between meals.
The mechanisms of action of these effects are not completely understood, but a leading hypothesis is that the rapid entry of partially-digested nutrients into the distal gut causes the release of GLP-1 (glucagon-like peptide 1) and peptide YY, both of which have a role in appetite and energy intake. Further, prolonging total emptying time may enhance this effect by prolonging the release of these peptides, while delaying the elevation of ghrelin and other triggers of hunger and eating behavior.
Hypertension or high blood pressure is a common chronic medical condition where the blood pressure on arteries is elevated beyond normal ranges. In the United States, almost 25% of the adult population has hypertension. Hypertension generally has no symptoms. Hypertensive patients consequently may go indefinitely without knowing of their condition. While symptom-free, hypertension is a serious condition because it is a primary risk factor for stroke, heart attack, aneurysms, and peripheral arterial disease, among others. Even at lower levels of severity, hypertension tends to shorten life expectancy.
Hypertension can sometimes be treated using only changes in lifestyle, such as changes in diet, weight loss and physical exercise. However, these steps alone often are not sufficient. Various drugs can then be used for hypertension treatment, typically indefinitely, and on a daily basis. Unfortunately, in some patients, drugs have limited effect. Improved techniques are therefore needed for treating hypertension.
Heart disease, heart failure, and disorders of the circulatory system are often related to hypertension. These diseases or conditions may include or be associated with atherosclerosis, cardiac arrhythmias, congestive heart failure, and others. Treating these conditions is also a challenge for medical science.
Although the stomach may be conventionally thought off as unrelated to the circulatory system and the heart, there is substantial evidence showing direct interaction between them. the stomach is known to be involved in the regulation of other physiologic processes. For example, bariatric surgery has a significant impact on long-term cardiovascular events. Specifically, it has been found that bariatric surgery is associated with a not only a reduced number of cardiovascular deaths, but also reductions in strokes and myocardial infarctions.
It is also known from scientific literature that in addition to its functions in the digestive process, the human stomach also acts as an initiator or catalyst for a wide variety of chemical and hormonal changes before, during and after a meal. The stomach is surrounded by parasympathetic (stimulant) and orthosympathetic (inhibitor) plexuses. These are networks of blood vessels and nerves in the anterior gastric, posterior, superior and inferior, celiac and myenteric, which regulate both the secretions activity and the motion activity of stomach muscles. The movement and the flow of chemicals into the stomach are controlled by both the autonomic nervous system and by the various digestive system hormones. With recognition of the interactions between the stomach and other body systems and organs, the inventive methods described below provide treatments for hypertension and heart disease via surgery of the stomach.
In a first aspect, endolumenal treatment of obesity in a minimally invasive manner includes a number of methods and devices. The devices are introduced endolumenally (e.g., transorally, transanally, etc.) into the patient's body and into or around the gastrointestinal (“GI”) tract. Once the instruments are positioned within the stomach, tissue within the stomach is temporarily engaged or grasped and the engaged tissue is manipulated by a surgeon or practitioner from outside the patient's body.
In engaging, manipulating, and/or securing the tissue, various methods and devices may be implemented. For instance, tissue securement devices may be delivered and positioned via an endoscopic apparatus for contacting a tissue wall of the pouch lumen, creating one or more tissue folds, and deploying one or more tissue anchors through the tissue fold(s). The tissue anchor(s) may be disposed through the muscularis and/or serosa layers of the pouch lumen. An endoscopic access assembly having an elongate body, a steerable distal portion, and multiple lumens defined therethrough may be advanced into a pouch per-orally and through the esophagus. A tissue manipulation assembly positioned at the distal end of a tubular body may be passed through the endoscopic assembly for engaging and securing the tissue.
Utilizing one or more of the instruments, the endoscopic access device may be used to pass the flexible body therethrough and into the stomach where it may be used to engage tissue and form folds, invaginations, or other reconfigurations of tissue which are secured via expandable tissue anchors expelled from the tissue manipulation assembly. Any number of tissue folds and/or invaginations, i.e., one or more, may be created in a uniform pattern or randomly throughout the stomach interior such that the stomach volume is reduced, stomach tissue is inhibited from distention, and stomach nerve function and/or hormone production are altered.
In an embodiment, a delivery catheter is advanced through a patient's mouth and esophagus and into the patient's stomach, with the delivery catheter including a flexible tube having a needle at its distal end and with a first tissue anchor assembly being contained within the flexible tube of the delivery catheter. One or more instruments associated with the delivery catheter are used to form a first tissue fold in the tissue of the stomach fundus, the tissue fold including a serosa-to-serosa contact of tissue on the peritoneal surface of the stomach fundus. The needle of the delivery catheter is passed through the first tissue fold, and a first tissue anchor assembly is deployed from the delivery catheter through the first tissue fold to thereby secure the first tissue fold. A first plurality of additional tissue folds is also secured in the tissue of the stomach fundus. A first elongated invagination of tissue is then formed in the body region of the stomach extending generally from the fundus toward the antrum, with the first elongated invagination including a serosa-to-serosa contact of tissue on the peritoneal surface of the stomach body region. A plurality of tissue anchor assemblies from the delivery catheter is deployed through the first elongated invagination of tissue to thereby secure the tissue.
In some embodiments, the first elongated invagination is located substantially on the anterior wall of the stomach body region. In other embodiments, the first elongated invagination is located substantially on the lateral wall of the stomach body region. In still other embodiments, a second elongated invagination is formed in the body region.
In alternative embodiments, various combinations of tissue folds, tissue invaginations, and other tissue reconfigurations are formed and secured at selected regions of the fundus and body of the stomach. The tissue folds, invaginations, and other reconfigurations have the effects of reducing stomach volume, inhibiting distention of stomach tissue, more effectively and more quickly force food down to the antrum, and/or favorably altering the nerve function and/or hormone production of stomach tissue to thereby creating signals of satiety.
Interventions that normalize gastric emptying can alleviate symptoms and provide a treatment for diabetes, both Type 1 and Type 2, and other conditions. For treatment of patients with accelerated gastric emptying, plications can be used in a variety of ways to slow gastric emptying. Plication of the corpus and/or antrum may create a valve or other obstacle to the rapid passage of food (i.e. speed bump). Plication of the corpus and/or antrum may be used to make normal motor function (peristalsis) inefficient or slower, thus slowing the propulsion of food to the small bowel. Plicating the pylorus may be used to tighten this valve and/or limit its opening diameter, thus slowing the passage of food.
Slowing gastric emptying by surgery of the stomach may provide an effective treatment for disorders associated with accelerated gastric emptying. By slowing emptying, release of gut hormones may be delayed, thereby prolonging satiety. This can cause weight loss by lengthening the time between meals. Surgically slowing emptying can provide a treatment for postparandial hypotension dumping syndrome. It may also improve glycemic control, providing a treatment for diabetes or its symptoms.
As a treatment for delayed gastric emptying and/or gastroparesis, plications can be used to accelerate emptying. Plication of the fundus may limit the stomach's function as a reservoir of food, or shrink its volume, thus forcing food to move to the distal stomach faster. Plicating the fundus and/or the corpus may prevent storage of food in the proximal stomach and thereby speed its delivery to the antrum. It may also propel food faster in to the duodenum.
Surgery of the stomach that speeds up gastric emptying may be a treatment for disorders associated with delayed gastric emptying, or gastroparesis. By speeding emptying, the symptoms of gastroparesis, including nausea, vomiting and pain, may be reduced. Surgically speeding emptying may also initiate gut hormone response earlier, thus triggering fullness faster and limiting meal size. It may also increase the level of certain gut hormones that optimize/improve glycemic control, thereby treating some of the symptoms of diabetes.
By speeding emptying, the level of certain gut hormones that improve insulin resistance may be increased, thereby treating diabetes. Limiting time that food stays in the stomach may reduce the stomach's ability to contribute to the digestive process, thereby moving undigested or partially digested nutrients into the distal gut. This can trigger the metabolic benefits of a gastric bypass without intestinal reconfiguration. It has been shown that gastric bypass has metabolic effects that precede the weight loss normally associated with the procedure.
Plicating the stomach may speed the emptying of some of the nutrients into the small bowel, and prolong the total emptying cycle at the same time. In combination, this could provide a treatment for obesity and diabetes. Plicating the fundus and/or body and/or antrum and/or pylorus may speed the arrival of nutrients to the small bowel. Plicating these same areas may make the digestions process inefficient, therefore making total emptying time longer.
Early release of gut hormones may limit meal size and thus caloric intake, while the presence of food in the antrum for longer periods (longer total emptying time) may delay the release of hormones that promote hunger, therefore lengthening the time between meals. Modulating and prolonging gastric emptying may reverse the negative cycle of glucose insensitivity associated with diabetes, reduce its symptoms, and or lessen the disease itself.
Recent studies suggest that there is a direct relationship between the gastrointestinal and cardiovascular systems, with gastrointestinal function thought to have a direct influence on blood pressure. Some studies discuss gastric distension, or tensioning of stomach tissue, as causing an increase in blood pressure, while others find a decrease in blood pressure. It is also known that activation of the vagus nerve endings in the stomach typically leads to a reduction in heart rate, blood pressure, or both. The effectiveness, duration, underlying causes, and other factors concerning changes in blood pressure relative to a condition in the stomach appear to be the subject to ongoing research and are currently not fully understood.
At the same time, recently developed surgical techniques now enable the equivalent of essentially permanent gastric distension, specifically via endolumenal stomach surgery. The inventors of these endolumenal surgical techniques of the stomach have now in turn discovered that, surprisingly, hypertension and other diseases unrelated to the stomach may be treated via surgery of the stomach. Specifically, the inventors have discovered that hypertension may be treated by placing plications in the fundus of the stomach, leading to a substantially permanent reduction in blood pressure, and that use of plications can similarly be useful in treating heart disease.
This application is directed to devices and methods for endolumenally manipulating stomach tissue to alter the function of nerves located in or near stomach tissue. The altered function of the nerves interacts with the cardiopulmonary system to cause a substantially permanent reduction in blood pressure. The altered nerve function may also treat heart disease. This application also relates to devices and methods for endolumenally manipulating stomach tissue to alter hormone production from cells associated with stomach tissue, providing a therapeutic effect in treating conditions and diseases not conventionally associated with the stomach.
In one method, a delivery catheter is advanced through a patient's mouth and esophagus and into the patient's stomach. The delivery catheter includes a flexible tube having a needle at its distal end and with a first tissue anchor assembly contained within the flexible tube. A grasping/pulling instrument is used to form a first tissue fold in the tissue of the stomach fundus. The tissue fold may have a serosa-to-serosa contact of tissue on the peritoneal surface of the stomach fundus. A needle is passed through the tissue fold, typically while the grasper is holding the tissue the fold. A first tissue anchor assembly attached to suture is deployed from the delivery catheter on a first side of the tissue fold. The needle is then withdrawn from the tissue fold. A second tissue anchor assembly slidable along the suture is then deployed from the delivery catheter on the second or opposite side of the tissue fold.
The second tissue anchor assembly and a one-way cinch device are pushed up against the second side of the tissue fold. The cinch is designed to resist reverse movement along the suture. Accordingly, the cinch holds the second anchor assembly against the second side of the tissue fold. The suture passing through the tissue fold holds the anchor assemblies securely against the sides of the tissue fold. The suture leading back through the delivery catheter is then cut near the cinch, leaving the first and second tissue anchors in place to substantially permanently maintain the tissue fold. Additional tissue folds may be made by repeating these steps.
The tissue folds in the fundus change the way nerves located in or near stomach tissue interact with the cardiopulmonary system to cause a substantially permanent reduction in blood pressure.
Other objects, features and advantages will become apparent from the following detailed description. The invention resides as well in sub combinations of the method steps and apparatus elements described below.
Endolumenal surgical methods and devices are described herein. In several embodiments, the methods entail performing surgery through a patient's mouth or other natural orifices, reducing or eliminating the need for external incisions into the body. Operating through the body's natural orifices offers promise for faster healing times, less scarring and less pain which could lead to reduced hospitalization and quicker recovery.
In several embodiments, the endolumenal surgical procedures are performed using devices that have been developed by USGI Medical, Inc. of San Clemente, Calif. Several endoscopic access devices are described, for example, in the following U.S. patent applications:
Several tissue manipulation and tissue anchor delivery devices are described in the following U.S. patent applications:
Endolumenal tissue grasping devices are described in several of the U.S. patent applications listed above, and in the following U.S. patent applications:
Tissue anchors are described in several of the U.S. patent applications listed above, and in the following U.S. patent applications:
Each of the foregoing patent applications is hereby incorporated by reference in its entirety.
Several embodiments of the endolumenal surgical procedures described herein include the steps of grasping gastrointestinal (e.g., stomach) tissue to form a tissue fold and deploying or implanting a fold retaining device (e.g., a tissue anchor assembly) that is used to maintain the fold. For simplicity, the discussion herein will describe tissue anchor assemblies holding tissue folds, with it being understood that other portions or sections of tissue that do not constitute tissue folds are suitably retained by the tissue anchor assemblies. The following sections include descriptions of several embodiments of devices that are suitable for performing these and other endolumenal surgical procedures.
In several embodiments, a tissue anchor assembly is used to maintain a tissue fold in the gastrointestinal lumen. The preferred tissue anchor assemblies include tissue anchors such as those described in several of the U.S. patent applications incorporated by reference above, including Ser. Nos. 10/841,411, 11/404,423, and 11/773,933. A schematic representation of a suitable tissue anchor assembly is shown in
Preferably, the tissue anchor assemblies include a pair of tissue anchors 150a/50a, 150b/50b slidably retained by a connecting member, such as a suture 60. A locking mechanism, such as a cinch 102, is also slidably retained on the suture 60. The cinch 102 is configured to provide a cinching force against the anchors 150a/50a, 150b/50b in order to impart a tension force on the suture. Accordingly, the tissue anchor assembly 100 is adapted to hold a fold of tissue, as shown in
In several embodiments, a delivery device is used to deploy the tissue anchors and tissue anchor assemblies 100 endolumenally. An example of a suitable delivery device is shown in
In manipulating tissue or creating tissue folds, a device having a distal end effector may be advanced endolumenally, e.g., transorally, transgastrically, etc., into the patient's body, e.g., the stomach. The tissue may be engaged or grasped and the engaged tissue may be manipulated by a surgeon or practitioner from outside the patient's body. Examples of creating and forming tissue plications are described in further detail in U.S. patent application Ser. No. 10/955,245, filed Sep. 29, 2004, which is incorporated herein by reference, as well as U.S. patent application Ser. No. 10/735,030, filed Dec. 12, 2003, which is also incorporated herein by reference in its entirety.
In engaging, manipulating, and/or securing the tissue, various methods and devices may be implemented. For instance, tissue securement devices may be delivered and positioned via an endoscopic apparatus for contacting a tissue wall of the gastrointestinal lumen, creating one or more tissue folds, and deploying one or more tissue anchors through the tissue fold(s). The tissue anchor(s) may be disposed through the muscularis and/or serosa layers of the gastrointestinal lumen.
The delivery device 208 shown in
A tissue manipulation end effector 214 is located at the distal end of the tubular body 212 and is generally used to contact and form tissue folds and/or to otherwise bring portions of tissue into apposition. The tissue manipulation end effector 214 is connected to the distal end of the tubular body 212 via a pivotable coupling 218. A lower jaw member 220 extends distally from the pivotable coupling 218 and an upper jaw member 222, in this example, is pivotably coupled to the lower jaw member 220 via a jaw pivot 226. The location of the jaw pivot 226 may be positioned at various locations along the lower jaw 220 depending upon a number of factors, e.g., the desired size of the “bite” or opening for accepting tissue between the jaw members, the amount of closing force between the jaw members, etc. One or both jaw members 220, 222 may also have a number of protrusions, projections, grasping teeth, textured surfaces, etc. on the surface or surfaces of the jaw members 220, 222 facing one another to facilitate the adherence of tissue between the jaw members 220, 222.
A launch tube 228 extends from the handle 216, through the tubular body 212, and distally from the end of the tubular body 212 where a distal end of the launch tube 228 is pivotally connected to the upper jaw member 222 at a launch tube pivot 230. A distal portion of the launch tube 228 may be pivoted into position within a channel or groove defined in upper jaw member 222, to facilitate a low-profile configuration of tissue manipulation end effector 214. When articulated, either via the launch tube 228 or other mechanism, the jaw members 220, 222 may be urged into an open configuration to receive tissue in the opening between the jaw members 220, 222.
The launch tube 228 may be advanced from its proximal end at the handle 216 such that the portion of the launch tube 228 that extends distally from the body 212 is forced to rotate at a hinge or pivot 230 and reconfigure itself such that the exposed portion forms a curved or arcuate shape that positions the launch tube opening perpendicularly relative to the upper jaw member 222. The launch tube 228, or at least the exposed portion of the launch tube 228, may be fabricated from a highly flexible material or it may be fabricated, e.g., from Nitinol tubing material which is adapted to flex, e.g., via circumferential slots, to permit bending.
Once the tissue has been engaged between the jaw members 220, 222, a needle deployment assembly 260 is urged through the handle 216, though the tubular body 212, and out through the launch tube 228. The needle deployment assembly 260 may pass through the lower jaw member 220 via a needle assembly opening (not shown in the drawing) defined in the lower jaw member 220 to pierce through the grasped tissue. Once the needle deployment assembly has been passed through the engaged tissue, one or more tissue anchors of a tissue anchor assembly 100 (see
The elongate and flexible sheath or catheter 264 extends removably from the needle assembly control or housing 262. The sheath or catheter 264 and the housing 262 may be interconnected via an interlock 270 which may be adapted to allow for the securement as well as the rapid release of the sheath 264 from the housing 262 through any number of fastening methods, e.g., threaded connection, press-fit, releasable pin, etc. The needle body 272, which may be configured into any one of the variations described above, extends from the distal end of the sheath 264 while maintaining communication between the lumen of the sheath 264 and the needle opening 274.
An elongate pusher 276 comprises a flexible wire or hypotube that is translationally disposed within the sheath 264 and movably connected within tie housing 262. A proximally-located actuation member 278 is rotatably or otherwise connected to the housing 262 to selectively actuate the translational movement of the elongate pusher 276 relative to the sheath 264 for deploying the anchors from the needle opening 274. The tissue anchor assembly 100 is positioned distally of the elongate pusher 276 within the sheath 264 for deployment from the sheath 264. Needle assembly guides 280 protrude from the housing 262 for guidance through the locking mechanism described above.
In several embodiments, the delivery device 210 and needle deployment assembly 260 are advanced into the gastrointestinal lumen using an endolumenal access system such as those described in the U.S. patent applications referenced above in Table 1. Two embodiments of endolumenal access systems are shown in
The endolumenal access systems 90 illustrated in
Referring to
The gastrointestinal lumen, including the stomach, includes four tissue layers, wherein the mucosa layer is the top tissue layer followed by connective tissue, the muscularis layer and the serosa layer. When stapling or suturing from the peritoneal side of the GI tract, it is easier to gain access to the serosal layer. In endolumenal approaches to surgery, the mucosa layers are visualized, and the muscularis and serosal layers are difficult to access because they are only loosely adhered to the mucosal layer. In order to create a durable tissue fold or other approximation with suture or staples or some form of anchor, it is important to create a serosa to serosa approximation. This is because the mucosa and connective tissue layers typically do not heal together in a way that can sustain the tensile loads imposed by normal movement of the stomach wall during ingestion and processing of food. In particular, folding the serosal layers in a way that they will heal together will form a durable tissue fold, plication, or elongated invagination. This problem of capturing the muscularis or serosa layers becomes particularly acute where it is desired to place an anchor or other apparatus transesophageally rather than intraoperatively, since care must be taken in piercing the tough stomach wall not to inadvertently puncture adjacent tissue or organs.
To treat obesity in a minimally invasive manner, a tissue manipulation and/or securement instrument is introduced per-orally through the patient's esophagus and into the stomach to perform a number of procedures. Alternatively, the instrument may be introduced transgastrically, percutaneously, etc., into the patient's body and into or around the stomach. Once the instrument is positioned within or adjacent to the stomach, tissue within or from the stomach is temporarily engaged or grasped and the engaged tissue is manipulated by a surgeon or practitioner from outside the patient's body. Examples of creating and forming tissue plications are described in further detail in U.S. patent application Ser. No. 10/955,245 filed Sep. 29, 2004 as well as in U.S. patent application Ser. No. 10/735,030 filed Dec. 12, 2003, each of which is incorporated herein by reference in its entirety.
Various methods and devices are implemented to engage, manipulate, and/or secure the tissue. For instance, in some embodiments, tissue securement devices are delivered and positioned via an endoscopic apparatus for contacting a tissue wall of the gastrointestinal lumen, creating one or more tissue folds, and deploying one or more tissue anchors through the tissue fold(s). The tissue anchor(s) are disposed through the muscularis and/or serosa layers of the tissue. When manipulating and securing tissue within a patient's body, a separate elongate shaft having a tissue engager on or near the distal end of the shaft may be utilized in conjunction with a tissue manipulation assembly. Such an instrument is generally utilized in endolumenal procedures where the tools are delivered through an endoscopic device.
As illustrated in
The endoscopic assembly 10 generally comprises an endoscopic body 12 having an articulatable distal portion 24. The endoscopic body 12 may define at least first and second lumens 26, 28, respectively, through the endoscopic body 12 through which one or more tools may be deployed into the stomach S. Additional lumens may be provided through the endoscopic body 12, such as a visualization lumen 30, through which an endoscope may be positioned to provide visualization of the region of tissue. Alternatively, an imager such as a CCD imager or optical fibers may be provided in lumen 30 to provide visualization. An optional thin wall sheath may be disposed through the patient's mouth, esophagus E, and possibly past the gastroesophageal junction GEJ into the stomach S. The endoscopic body 12, having a covering 22 thereon, may be advanced through the esophagus E and into the stomach S while disposed in a flexible state.
The distal steerable portion 24 of the endoscopic body 12 is then articulated to an orientation, e.g., whereby the distal portion 24 facilitates engagement of tissue near and/or inferior to the patient's gastroesophageal junction GEJ. Accordingly, the distal steerable portion 24 may comprise a number of steering features, as described in further detail in U.S. patent application Ser. Nos. 10/346,709, 10/734,562, and 11/750,986, incorporated above. In those embodiments having shape-locking or rigidizing capabilities, with the distal steerable portion 24 disposed in a desired configuration or orientation, the endoscopic body 12 may be reversibly shape-locked to a rigid state such that the endoscopic body 12 maintains its position within the stomach S. Various methods and apparatus for rigidizing endoscopic body 12 along its length are also described in further detail in U.S. patent application Ser. Nos. 10/346,709, 10/734,562, and 10/346,709, incorporated above.
An illustrative example of a tissue manipulation instrument which may be utilized for endolumenally accessing tissue is described in further detail in U.S. patent application Ser. No. 11/070,863 filed Mar. 1, 2005 (US Pat. Pub. 2005/0251166 A1), which is incorporated herein by reference in its entirety. Such an instrument assembly generally comprises a flexible catheter or tubular body 14 which may be configured to be sufficiently flexible for advancement into a body lumen, e.g., transorally, percutaneously, laparoscopically, etc. Tubular body 14 may be configured to be torqueable through various methods, e.g., utilizing a braided tubular construction, such that when a proximally-located handle is manipulated and/or rotated by a practitioner from outside the patient's body, the longitudinal and/or torquing force is transmitted along body 14 such that the distal end of body 14 is advanced, withdrawn, or rotated in a corresponding manner.
As shown in
The launch tube 40 may extend from the handle, through the tubular body 14, and distally from the end of the tubular body 14 where a distal end of the launch tube 40 is pivotally connected to the upper jaw member 20 at a launch tube pivot. A distal portion of the launch tube 40 may be pivoted into position within a channel or groove defined in the upper jaw member 20, to facilitate a low-profile configuration of the tissue manipulation assembly 16. When articulated, either via the launch tube 40 or other mechanism, as described further below, the jaw members 18, 20 may be urged into an open configuration to receive tissue in the jaw opening between the jaw members 18, 20.
The launch tube 40 may be advanced from its proximal end at the handle such that the portion of the launch tube 38 that extends distally from body 14 is forced to rotate at a hinge or pivot and reconfigure itself such that the exposed portion forms a curved or arcuate shape that positions the launch tube opening to a position that is substantially perpendicular relative to the upper jaw member 20. The launch tube 40, or at least the exposed portion of the launch tube 38, may be fabricated from a highly flexible material or it may be fabricated, e.g., from Nitinol tubing material which is adapted to flex, e.g., via circumferential slots, to permit bending.
The tissue region of interest 36 as well as the procedure may be visualized through the visualization lumen 30 or a separate imager. In either case, the tissue manipulation assembly 16 and the tissue engagement member 32 may be advanced distally out from the endoscopic body 12 through their respective lumens 26, 28. The tissue engagement member 32 may be advanced into contact against the tissue surface, as shown in
Once desirably positioned, the launch tube 40 may be urged proximally via its proximal end at the handle. Because of the jaw assembly pivot and the relative positioning of the upper jaw 20 along the lower jaw member 18 and the launch tube pivot along upper jaw member 20, the proximal movement of the launch tube 40 may effectively articulate the upper jaw 20 into an expanded jaw configuration, as shown in
Once the launch tube 40 has been urged proximally, it may be locked into place thus locking the jaw configuration as well. Moreover, having the launch tube 40 articulate the jaw members 18, 20 in this manner eliminates the need for a separate jaw articulation and/or locking mechanism. Once the tissue has been pulled or manipulated between the jaw members 18, 20, the launch tube 40 may be pushed distally to actuate the jaw members 18, 20 into a closed, grasping configuration, as shown in
Although the launch tube 40 may be fabricated from different materials having differing flexibilities, it may also be fabricated from a single material, as mentioned above, where the flexible portion 38 may be configured, e.g., by slotting, to allow for bending of the launch tube 40 in a plane to form a single curved or arcuate section while the proximal rigid section may extend at least partially into the tubular body 14 to provide column strength to the launch tube 40 while it is urged distally upon the upper jaw member 20 and upon any tissue engaged thereby, as seen in the
Once the tissue has been engaged between the jaw members 18, 20, a needle assembly may be urged through the handle and out through the launch tube 40. The needle assembly may pass through the lower jaw member 18 via a needle assembly opening defined in the lower jaw member 18 to pierce through the grasped tissue. Once the needle assembly has been passed through the engaged tissue, one or more tissue anchors may be deployed for securing the tissue, as described in further detail in U.S. patent application Ser. No. 10/955,245, which has been incorporated by reference above.
The tissue engagement member 32 may be retracted from the tissue F or it may be left within the tissue while the tissue manipulation assembly engages and secures the tissue F. The tissue engagement member 32 is shown as a tissue piercing helix or corkscrew structure upon a flexible shaft 34. The tissue engagement member 32 may be rotated about its longitudinal axis to engage the tissue of interest by rotating its handle located on the proximal end of the flexible shaft 34.
A distal portion of the shaft 34 proximal to the engagement member 32 (or the entire length or a majority of the length of the shaft 34 in other variations) may include a marked section 42, as shown in
Utilizing the instruments described above, various endolumenal obesity-related procedures may be performed. For example,
Turning to the series of
Once within the stomach, the tissue manipulation assembly 16 is used to create approximated folds of tissue that are secured via expandable tissue anchors 52 expelled from the tissue manipulation assembly 16, as described above. A plurality of tissue folds 50, i.e., one or more, are created in a desired pattern or randomly throughout the stomach or other portions of the gastrointestinal lumen. In several embodiments, the locations of the tissue folds are selected to provide desired results. For example, tissue folds formed in the region of the fundus F have the effects of immobilizing the fundus, reducing the amount of distension that occurs to thereby prevent the fundus from accommodating the influx of food, and/or inducing satiety. As an additional example, tissue folds formed on the anterior wall of the stomach near the location of the vagal nerve branch (anterior, major) have the effect of compressing the wall and changing the effectiveness of the nerve branch, thereby inducing satiety and/or loss of appetite. As a still further example, tissue folds formed in the mid-stomach region create a bumpy Magenstrasse-like effect—i.e., a “central road” or narrow path constituting a gastric canal through which food that enters the stomach S through the esophagus E is quickly passed through the stomach to the antrum A and out of the stomach through the pylorus. Still further, tissue folds formed in one or a plurality of regions of the stomach will have the effect of reducing stomach volume, thereby preventing the stomach from accommodating the influx of food and inducing satiety and/or loss of appetite. In still further examples, tissue folds formed in multiple regions of the stomach will provide combinations of the foregoing results.
In other embodiments, tissue folds are formed and secured in other parts of the stomach, instead of or in addition to the plurality of rows of tissue folds shown in the embodiment illustrated in
In the examples illustrated in the Figures, a tissue fold 70 generally includes a portion of tissue in which at least the muscularis layer is raised relative to its immediately surrounding regions of tissue, and in some cases in which a serosa-to-serosa contact 72 (see
In the embodiment shown in
As shown in
Moreover, it is believed that the alteration of the stomach tissue in the fundus region F alters the production of Ghrelin, a prehormone that is produced predominantly in epithelial cells lining the fundus. Ghrelin is an important factor in the regulation of energy, and functions by increasing hunger through its action on hypothalamic feeding centers. Ghrelin also appears to suppress fat utilization in adipose tissue. By forming and securing tissue folds in the fundus, the fundus tissue is disrupted and heals in thickened ridges or pinches. The modified tissue will not produce Ghrelin at a normal rate, which has the effect of reducing a patient's feeling of hunger.
Turning next to
The elongated invaginations have the effect of reducing the effective volume of the stomach, and of shaping the stomach interior into a substantially tubular form. The tubular form of the stomach causes food to be forced down to the antrum A region more efficiently and quickly, thereby creating signals of satiety in the patient.
Turning next to
The combination of tissue folds 70 formed in the fundus region F and elongated invaginations 80 formed in the body region B provide a combination of the desirable effects described above for each of these stomach tissue alterations. Additional combinations of the therapeutic methods described herein will obtain similar results.
In
In
In several embodiments of tissue anchors and tissue anchor assemblies described herein) the tissue anchor includes two or more components that are combined to form a composite tissue anchor. For example, in several embodiments, a mesh pouch or mesh umbrella structure is combined with a “T”-bar or strutted anchor. In those embodiments, the mesh pouch or umbrella is formed over the exterior of the T-bar or strutted anchor, whereby the T-bar or strutted anchor forms a skeletal structure that supports the mesh.
Turning to
In
In the embodiment shown in
Surgery on the stomach to speed up or slow down gastric emptying may be performed as follows. Referring to
The engagement member 32 is then pulled back to draw the engaged tissue F between the jaws 18 and 20, as shown in
With the tissue engaged between the jaws 18, 20, a needle assembly may be fed through the handle with the needle 272, moving out of the front end of the launch tube 40. The needle 272 pierces through the engaged tissue fold F. The pusher is then used to push out the first anchor. The needle 272 is then pulled back through the tissue fold F and the second anchor is deployed. The cinch and the second anchor are pushed up against the tissue fold F, using the jaws or another instrument, to form a permanent tissue fold. Using the methods described above, permanent tissue folds or plications F may be made in the stomach, to alter gastric emptying. Although the methods above are described as endolumenal trans-oral methods, these same methods may be performed in other ways as well, such as trans-anally, percutaneously, laporoscopically, robotically, or even via traditional open body surgery.
Surgery on the fundus to treat hypertension or heart disease may be performed as follows. The fundus F may be visualized through the visualization lumen 30 or a separate imager. In either case, the tissue manipulation assembly 16 and the tissue engagement member 32 may be advanced distally out from the endoscopic body 12 through lumens 26, 28. The distal steerable portion 24 of the endoscopic body 12 is steered to an orientation to position the jaws to engage the fundus.
The engagement member 32 is then pulled back to draw the engaged tissue F between the jaws 18 and 20, as shown in
With the tissue engaged between the jaws 18, 20, a needle assembly may be fed through the handle with the needle 272 moving out of the front end of the launch tube 40. The needle 272 pierces through the engaged tissue fold F. The pusher is then used to push out the first anchor. The needle 272 is then pulled back through the tissue fold F and the second anchor is deployed. The cinch and the second anchor are pushed up against the tissue fold F, using the jaws or another instrument, to form a permanent tissue fold.
Using the methods described above, permanent tissue folds or plications F may be made in the fundus to treat hypertension and heart disease. Plications made in or on the fundus near the location of the vagal nerve branch (anterior, major) have the effect of compressing the wall and changing the effectiveness of the nerve branch, thereby inducing lowering blood pressure.
Turning to
Although various illustrative embodiments are described above, it will be evident to one skilled in the art that various changes and modifications are within the scope of the invention. It is intended in the appended claims to cover all such changes and modifications that fall within the true spirit and scope of the invention.
This application is a continuation of U.S. patent application Ser. No. 12/409,335 filed Mar. 23, 2009 and now pending, which claims benefit of priority to U.S. Provisional Patent Application No. 61/038,487, filed on Mar. 21, 2008. This application is also a continuation of U.S. patent application Ser. Nos. 13/479,991 and 13/480,210, both filed May 24, 2012 and now pending. Each of U.S. patent application Ser. Nos. 13/479,991 and 13/480,210 is a Continuation-in-Part of U.S. patent application Ser. No. 11/070,863 filed on Mar. 1, 2005, now U.S. Pat. No. 8,216,252, which is a Continuation-in-Part of U.S. patent application Ser. No. 10/840,950 filed on May 7, 2004, now U.S. Pat. No. 8,308,765. Each of U.S. patent application Ser. Nos. 13/479,991 and 13/480,210 is also a Continuation-in-Part of U.S. patent application Ser. No. 10/735,030 filed on Dec. 12, 2003, now U.S. Pat. No. 8,574,243, which is a Continuation-in-Part of U.S. patent application Ser. No. 10/639,162, filed Aug. 11, 2003, now U.S. Pat. No. 7,618,426. These applications are incorporated herein by reference.
Number | Date | Country | |
---|---|---|---|
61038487 | Mar 2008 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 12409335 | Mar 2009 | US |
Child | 14737092 | US | |
Parent | 13479991 | May 2012 | US |
Child | 12409335 | US | |
Parent | 13480210 | May 2012 | US |
Child | 10840950 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 11070863 | Mar 2005 | US |
Child | 13479991 | US | |
Parent | 10840950 | May 2004 | US |
Child | 11070863 | US | |
Parent | 11070863 | Mar 2005 | US |
Child | 13480210 | US | |
Parent | 10840950 | May 2004 | US |
Child | 11070863 | US | |
Parent | 10735030 | Dec 2003 | US |
Child | 13479991 | US | |
Parent | 10639162 | Aug 2003 | US |
Child | 10735030 | US | |
Parent | 10735030 | Dec 2003 | US |
Child | 13480210 | US | |
Parent | 10639162 | Aug 2003 | US |
Child | 10735030 | US |