The present disclosure pertains to devices and methods for the endolumenal treatment of obesity. More particularly, the present disclosure relates to devices and methods for endolumenally manipulating stomach tissue, forming and securing tissue folds, forming and securing tissue invaginations, forming and securing tissue appositions and tissue fold appositions, altering stomach tissue configuration, restricting the ability of stomach tissue to distend, altering the function of nerves located in or near stomach tissue, and/or altering hormone production from cells associated with stomach tissue.
The National Institutes of Health (NIH) estimate that about two-thirds of adults—133.6 million people—in the U.S. are overweight or obese, while almost 5% of adults—15 million Americans—are considered extremely obese. Obese adults are at increased risk of type II diabetes, hypertension, stroke, certain cancers, and other dangerous conditions.
The NIH estimates that being overweight or obese leads to $117 billion in medical spending a year, with $61 billion in direct costs and $56 billion in indirect costs.
As obesity rates continue to rise, patients are increasingly seeking surgical weight loss options. Bariatric surgery aids weight loss by restricting food intake and, in some operations, altering the digestive process. The Roux-en-Y Gastric Bypass Procedure (RYGBP) is the most commonly performed bariatric procedure, estimated to account for approximately 65% of weight loss surgeries performed in the U.S.
A study from the Agency for Healthcare Research and Quality (AHRQ) found that the number of bariatric surgeries grew by 400 percent between 1998 and 2002. In 2007, an estimated 205,000 people with morbid obesity in the U.S. will have undergone bariatric surgery and these numbers are expected to grow. Only 1% of the clinically eligible population is currently being treated for morbid obesity through bariatric surgery.
A major retrospective study published in the New England Journal of Medicine showed that gastric bypass reduced the risk of death in extremely obese patients by over 40% by lowering the incidence of diabetes, coronary artery disease and cancer.
The Roux-en-Y gastric bypass procedure involves creating a small stomach pouch out of a portion of the stomach and attaching it directly to the jejunum, bypassing a large part of the stomach and duodenum. The stomach is made very small to restrict the amount of food that can be consumed. The opening between the stomach pouch and the small intestine (called the stoma) is also made very small to slow the passage of food from the stomach. These restrictions help the patient feel full and limit the amount of food that can be eaten. In addition, by altering the path of the intestines, consumed food bypasses the duodenum so fat absorption is substantially reduced.
The RYGB procedure is performed either laparoscopically or in an open surgery. Alternative procedures for obtaining some or all of the benefits of bariatric surgery without requiring an open surgical or laparoscopic procedure would be preferred.
In a first aspect, endolumenal treatment of obesity in a minimally invasive manner includes a number of methods and devices. The devices are introduced endolumenally (e.g., transorally, transanally, etc.) into the patient's body and into or around the gastrointestinal (“GI”) tract. Once the instruments are positioned within the stomach, tissue within the stomach is temporarily engaged or grasped and the engaged tissue is manipulated by a surgeon or practitioner from outside the patient's body.
In engaging, manipulating, and/or securing the tissue, various methods and devices may be implemented. For instance, tissue securement devices may be delivered and positioned via an endoscopic apparatus for contacting a tissue wall of the gastrointestinal (“GI”) lumen, creating one or more tissue folds, and deploying one or more tissue anchors through the tissue fold(s). The tissue anchor(s) may be disposed through the muscularis and/or serosa layers of the GI lumen. An endoscopic access assembly having an elongate body, a steerable distal portion, and multiple lumens defined therethrough may be advanced into a lumen per-orally and through the esophagus. A tissue manipulation assembly positioned at the distal end of a tubular body may be passed through the endoscopic assembly for engaging and securing the tissue.
Utilizing one or more of the instruments, the endoscopic access device may be used to pass the flexible body therethrough and into the stomach where it may be used to engage tissue and form folds, invaginations, tissue appositions, or other reconfigurations of tissue which are secured via expandable tissue anchors expelled from the tissue manipulation assembly. Any number of tissue folds, invaginations, and/or appositions i.e., one or more, may be created in a uniform pattern or randomly throughout the stomach interior such that the stomach volume is reduced, stomach tissue is inhibited from distention, and stomach nerve function and/or hormone production are altered.
In an embodiment, a delivery catheter is advanced through a patient's mouth and esophagus and into the patient's stomach, with the delivery catheter including a flexible tube having a needle at its distal end and with a first tissue anchor assembly being contained within the flexible tube of the delivery catheter. One or more instruments associated with the delivery catheter are used to form a first tissue fold in the tissue of the stomach fundus, the tissue fold including a fold in the muscularis and/or a serosa-to-serosa contact of tissue on the peritoneal surface of the stomach fundus. The needle of the delivery catheter is passed through the first tissue fold, and a first tissue anchor assembly is deployed from the delivery catheter through the first tissue fold to thereby secure the first tissue fold. A first plurality of additional tissue folds is also secured in the tissue of the stomach fundus. A first elongated invagination of tissue is then formed in the body region of the stomach extending generally from the fundus toward the antrum, with the first elongated invagination including an invagination of the muscularis layer and/or a serosa-to-serosa contact of tissue on the peritoneal surface of the stomach body region. A plurality of tissue anchor assemblies from the delivery catheter is deployed through the first elongated invagination of tissue to thereby secure the tissue.
In some embodiments, the first elongated invagination is located substantially on the anterior wall of the stomach body region. In other embodiments, the first elongated invagination is located substantially on the lateral wall of the stomach body region. In still other embodiments, a second elongated invagination is formed in the body region.
In alternative embodiments, various combinations of tissue folds, tissue invaginations, tissue appositions, and other tissue reconfigurations are formed and secured at selected regions of the fundus, body, and/or antrum of the stomach. The tissue folds, invaginations, appositions, and other reconfigurations have the effects of reducing stomach volume, inhibiting distention of stomach tissue, more effectively and more quickly force food down to the antrum, and/or favorably altering the nerve function and/or hormone production of stomach tissue to thereby creating signals of satiety.
Endolumenal surgical methods and devices are described herein. In several embodiments, the methods entail performing surgery through a patient's mouth or other natural orifices, reducing or eliminating the need for external incisions into the body. Operating through the body's natural orifices offers promise for faster healing times, less scarring and less pain which could lead to reduced hospitalization and quicker recovery.
In several embodiments, the endolumenal surgical procedures are performed using devices that have been developed by USGI Medical, Inc. of San Clemente, Calif. Several endoscopic access devices are described, for example, in the following United States patent applications:
Several tissue manipulation and tissue anchor delivery devices are described in the following United States patent applications:
Endolumenal tissue grasping devices are described in several of the United States patent applications listed above, and in the following United States patent applications:
Tissue anchors are described in several of the United States patent applications listed above, and in the following United States patent applications:
Each of the foregoing patent applications is hereby incorporated by reference in its entirety.
Several embodiments of the endolumenal surgical procedures described herein include the steps of grasping gastrointestinal (e.g., stomach) tissue to form a tissue fold and deploying or implanting a fold retaining device (e.g., a tissue anchor assembly) that is used to maintain the fold. For simplicity, the discussion herein will describe tissue anchor assemblies holding tissue folds, with it being understood that other portions or sections of tissue that do not constitute tissue folds are suitably retained by the tissue anchor assemblies. The following sections include descriptions of several embodiments of devices that are suitable for performing these and other endolumenal surgical procedures.
In several embodiments, a tissue anchor assembly is used to maintain a tissue fold in the gastrointestinal lumen. The preferred tissue anchor assemblies include tissue anchors such as those described in several of the United States patent applications incorporated by reference above, including Ser. Nos. 10/841,411, 11/404,423, and 11/773,933. A schematic representation of a suitable tissue anchor assembly is shown in
Preferably, the tissue anchor assemblies include a pair of tissue anchors 50a, 50b slidably retained by a connecting member, such as a suture 60. A locking mechanism, such as a cinch 102, is also slidably retained on the suture 60. The cinch 102 is configured to be slidable on the suture 60 in only a single direction (one-way or uni-directional), in particular, toward the distal end of the suture. In this way, the cinch 102 is configured to provide a cinching force against the anchors 50a, 50b in order to impart a tension force on the suture. Accordingly, the tissue anchor assembly 100 is adapted to hold a fold of tissue, as shown in
In other embodiments, alternative tissue fasteners and/or other devices are used to secure, retain, and/or maintain tissue in a folded state, in apposition, or in another reconfigured state. For example, tissue fasteners such as staples, clips, rings, rivets, clamps, and other tissue fastening devices may be used to secure tissue in a reconfigured state, such as in a fold, in apposition with other tissue, or a combination of these. In still other embodiments, a suture or suture-like member is extended through tissue and secured in order to secure, retain, and/or maintain tissue in a folded, apposed, or other reconfigured state. For convenience, the descriptions herein will include details of the tissue anchor assemblies 100, with it being understood that alternative tissue fasteners are also suitable.
In several embodiments, a delivery device is used to deploy the tissue anchors and tissue anchor assemblies 100 endolumenally. An example of a suitable delivery device is shown in
In manipulating tissue or creating tissue folds, a device having a distal end effector may be advanced endolumenally, e.g., transorally, transgastrically, etc., into the patient's body, e.g., the stomach. The tissue may be engaged or grasped and the engaged tissue may be manipulated by a surgeon or practitioner from outside the patient's body. Examples of creating and forming tissue plications are described in further detail in U.S. patent application Ser. No. 10/955,245, filed Sep. 29, 2004, which is incorporated herein by reference, as well as U.S. patent application Ser. No. 10/735,030, filed Dec. 12, 2003, which is also incorporated herein by reference in its entirety.
In engaging, manipulating, and/or securing the tissue, various methods and devices may be implemented. For instance, tissue securement devices may be delivered and positioned via an endoscopic apparatus for contacting a tissue wall of the gastrointestinal lumen, creating one or more tissue folds, and deploying one or more tissue anchors through the tissue fold(s). The tissue anchor(s) may be disposed through the muscularis and/or serosa layers of the gastrointestinal lumen.
The delivery device 208 shown in
A tissue manipulation end effector 214 is located at the distal end of the tubular body 212 and is generally used to contact tissue and form tissue folds and/of to otherwise bring portions of tissue into apposition. The tissue manipulation end effector 214 is connected to the distal end of the tubular body 212 via a pivotable coupling 218. A lower jaw member 220 extends distally from the pivotable coupling 218 and an upper jaw member 222, in this example, is pivotably coupled to the lower jaw member 220 via a jaw pivot 226. The location of the jaw pivot 226 may be positioned at various locations along the lower jaw 220 depending upon a number of factors, e.g., the desired size of the “bite” or opening for accepting tissue between the jaw members, the amount of closing force between the jaw members, etc. One or both jaw members 220, 222 may also have a number of protrusions, projections, grasping teeth, textured surfaces, etc. on the surface or surfaces of the jaw members 220, 222 facing one another to facilitate the adherence of tissue between the jaw members 220, 222.
In other embodiments, such as those described in U.S. patent application Ser. No. 10/955,245, which is incorporated by reference above, the tissue manipulation end effector 214 includes a lower extension member (or bail) and an upper extension member (or bail) in place of the lower jaw 220 and upper jaw 222. The upper and lower extension members may be provided in a substantially fixed, substantially parallel relationship to one another extending distally from the distal end of the tubular body 212, such that an open space is provided between the extension members that is sufficiently large enough to accommodate the drawing of multiple layers of tissue between the two members. In still other embodiments, one of the extension members (bails) is movable relative to the other.
A launch tube 228 extends from the handle 216, through the tubular body 212, and distally from the end of the tubular body 212 where a distal end of the launch tube 228 is pivotally connected to the upper jaw member 222 at a launch tube pivot 230. A distal portion of the launch tube 228 may be pivoted into position within a channel or groove defined in upper jaw member 222, to facilitate a low-profile configuration of tissue manipulation end effector 214. When articulated, either via the launch tube 228 or other mechanism, the jaw members 220, 222 may be urged into an open configuration to receive tissue in the opening between the jaw members 220, 222.
The launch tube 228 may be advanced from its proximal end at the handle 216 such that the portion of the launch tube 228 that extends distally from the body 212 is forced to rotate at a hinge or pivot 230 and reconfigure itself such that the exposed portion forms a curved or arcuate shape that positions the launch tube opening perpendicularly relative to the upper jaw member 222. The launch tube 228, or at least the exposed portion of the launch tube 228, may be fabricated from a highly flexible material or it may be fabricated, e.g., from Nitinol tubing material which is adapted to flex, e.g., via circumferential slots, to permit bending.
Once the tissue has been engaged between the jaw members 220, 222, a needle deployment assembly 260 is urged through the handle 216, though the tubular body 212, and out through the launch tube 228. The needle deployment assembly 260 may pass through the lower jaw member 220 via a needle assembly opening (not shown in the drawing) defined in the lower jaw member 220 to pierce through the grasped tissue. Once the needle deployment assembly has been passed through the engaged tissue, one or more tissue anchors of a tissue anchor assembly 100 (see
The elongate and flexible sheath or catheter 264 extends removably from the needle assembly control or housing 262. The sheath or catheter 264 and the housing 262 may be interconnected via an interlock 270 which may be adapted to allow for the securement as well as the rapid release of the sheath 264 from the housing 262 through any number of fastening methods, e.g., threaded connection, press-fit, releasable pin, etc. The needle body 272, which may be configured into any one of the variations described above, extends from the distal end of the sheath 264 while maintaining communication between the lumen of the sheath 264 and the needle opening 274.
An elongate pusher 276 comprises a flexible wire or hypotube that is translationally disposed within the sheath 264 and movably connected within the housing 262. A proximally-located actuation member 278 is rotatably or otherwise connected to the housing 262 to selectively actuate the translational movement of the elongate pusher 276 relative to the sheath 264 for deploying the anchors from the needle opening 274. The tissue anchor assembly 100 is positioned distally of the elongate pusher 276 within the sheath 264 for deployment from the sheath 264. Needle assembly guides 280 protrude from the housing 262 for guidance through the locking mechanism described above.
In several embodiments, the delivery device 210 and needle deployment assembly 260 are advanced into the gastrointestinal lumen using an endolumenal access system such as those described in the United States patent applications referenced above in Table 1. Two embodiments of endolumenal access systems are shown in
The endolumenal access systems 90 illustrated in
Referring to
The gastrointestinal lumen, including the stomach, includes four tissue layers, wherein the mucosa layer is the inner tissue layer followed by submucosa connective tissue, the muscularis layer and the serosa layer. When stapling or suturing from the peritoneal side of the GI tract, it is easier to gain access to the serosal layer. In endolumenal approaches to surgery, the mucosa layers are visualized, and the muscularis and serosal layers are difficult to access because they are only loosely adhered to the mucosal layer. In order to create a durable tissue fold or other approximation with suture or staples or some form of anchor, it is important to create a muscularis and/or serosa to serosa approximation. This is because the mucosa and submucosa connective tissue layers typically do not heal together in a way that can sustain the tensile loads imposed by normal movement of the stomach wall during ingestion and processing of food. In particular, folding the serosal layers in a way that they will heal together will form a durable tissue fold, plication, or elongated invagination. This problem of capturing the muscularis or serosa layers becomes particularly acute where it is desired to place an anchor or other apparatus transesophageally rather than intraoperatively, since care must be taken in piercing the tough stomach wall not to inadvertently puncture adjacent tissue or organs.
To treat obesity in a minimally invasive manner, a tissue manipulation and/or securement instrument is introduced per-orally through the patient's esophagus and into the stomach to perform a number of procedures. Alternatively, the instrument may be introduced transgastrically, percutaneously, etc., into the patient's body and into or around the stomach. Once the instrument is positioned within or adjacent to the stomach, tissue within or from the stomach is temporarily engaged or grasped and the engaged tissue is manipulated by a surgeon or practitioner from outside the patient's body. Examples of creating and forming tissue plications are described in further detail in U.S. patent application Ser. No. 10/955,245, filed Sep. 29, 2004 as well as in U.S. patent application Ser. No. 10/735,030 filed Dec. 12, 2003, each of which is incorporated herein by reference in its entirety.
Various methods and devices are implemented to engage, manipulate, and/or secure the tissue. For instance, in some embodiments, tissue securement devices are delivered and positioned via an endoscopic apparatus for contacting a tissue wall of the gastrointestinal lumen, creating one or more tissue folds, and deploying one or more tissue anchors through the tissue fold(s). The tissue anchor(s) are disposed through the muscularis and/or serosa layers of the tissue. When manipulating and securing tissue within a patient's body, a separate elongate shaft having a tissue engager on or near the distal end of the shaft may be utilized in conjunction with a tissue manipulation assembly. Such an instrument is generally utilized in endolumenal procedures where the tools are delivered through an endoscopic device.
As illustrated in
The endoscopic assembly 10 generally comprises an endoscopic body 12 having an articulatable distal portion 24. The endoscopic body 12 may define at least first and second lumens 26, 28, respectively, through the endoscopic body 12 through which one or more tools may be deployed into the stomach S. Additional lumens may be provided through the endoscopic body 12, such as a visualization lumen 30, through which an endoscope may be positioned to provide visualization of the region of tissue. Alternatively, an imager such as a CCD imager or optical fibers may be provided in lumen 30 to provide visualization. Advantageously, the endoscopic body 12 may be provided with a lumen or other member containing an interface capable of connecting to a source of insufflation, such as a conventional laparoscopic insufflator. An optional thin wall sheath may be disposed through the patient's mouth, esophagus E, and possibly past the gastroesophageal junction GEJ into the stomach S. The endoscopic body 12, having a covering 22 thereon, may be advanced through the esophagus E and into the stomach S while disposed in a flexible state.
The distal steerable portion 24 of the endoscopic body 12 is then articulated to an orientation, e.g., whereby the distal portion 24 facilitates engagement of tissue near and/or inferior to the patient's gastroesophageal junction GEJ. Accordingly, the distal steerable portion 24 may comprise a number of steering features, as described in further detail in U.S. patent application Ser. Nos. 10/346,709, 10/734,562, and 11/750,986, incorporated above. In those embodiments having shape-locking or rigidizing capabilities, with the distal steerable portion 24 disposed in a desired configuration or orientation, the endoscopic body 12 may be reversibly shape-locked to a rigid state such that the endoscopic body 12 maintains its position within the stomach S. Various methods and apparatus for rigidizing endoscopic body 12 along its length are also described in further detail in U.S. patent application Ser. Nos. 10/346,709, 10/734,562, and 10/346,709, incorporated above.
As described above, in some embodiments, the endoscopic body 12 is provided with a lumen or other member providing an interface with a source of insufflation, such as a conventional laparoscopic insufflator. In several of the embodiments described herein, the stomach is insufflated using CO2 at a minimum level, such as about 5 to about 8 mmHg. This level of insufflation is intended to provide sufficient visualization, while not causing the tissue to become taut and difficult to manipulate into folds.
An illustrative example of a tissue manipulation instrument which may be utilized for endolumenally accessing tissue is described in further detail in U.S. patent application Ser. No. 11/070,863 filed Mar. 1, 2005 (US Pat. Pub. 2005/0251166 A1), which is incorporated herein by reference in its entirety. Such an instrument assembly generally comprises a flexible catheter or tubular body 14 which may be configured to be sufficiently flexible for advancement into a body lumen, e.g., transorally, percutaneously, laparoscopically, etc. Tubular body 14 may be configured to be torqueable through various methods, e.g., utilizing a braided tubular construction, such that when a proximally-located handle is manipulated and/or rotated by a practitioner from outside the patient's body, the longitudinal and/or torquing force is transmitted along body 14 such that the distal end of body 14 is advanced, withdrawn, or rotated in a corresponding manner.
As shown in
The launch tube 40 may extend from the handle, through the tubular body 14, and distally from the end of the tubular body 14 where a distal end of the launch tube 40 is pivotally connected to the upper jaw member 20 at a launch tube pivot. A distal portion of the launch tube 40 may be pivoted into position within a channel or groove defined in the upper jaw member 20, to facilitate a low-profile configuration of the tissue manipulation assembly 16. When articulated, either via the launch tube 40 or other mechanism, as described further below, the jaw members 18, 20 may be urged into an open configuration to receive tissue in the jaw opening between the jaw members 18, 20.
The launch tube 40 may be advanced from its proximal end at the handle such that the portion of the launch tube 38 that extends distally from body 14 is forced to rotate at a hinge or pivot and reconfigure itself such that the exposed portion forms a curved or arcuate shape that positions the launch tube opening to a position that is substantially perpendicular relative to the upper jaw member 20. The launch tube 40, or at least the exposed portion of the launch tube 38, may be fabricated from a highly flexible material or it may be fabricated, e.g., from Nitinol tubing material which is adapted to flex, e.g., via circumferential slots, to permit bending.
The tissue region of interest 36 as well as the procedure may be visualized through the visualization lumen 30 or a separate imager. In either case, the tissue manipulation assembly 16 and the tissue engagement member 32 may be advanced distally out from the endoscopic body 12 through their respective lumens 26, 28. The tissue engagement member 32 may be advanced into contact against the tissue surface, as shown in
Once desirably positioned, the launch tube 40 may be urged proximally via its proximal end at the handle. Because of the jaw assembly pivot and the relative positioning of the upper jaw 20 along the lower jaw member 18 and the launch tube pivot along upper jaw member 20, the proximal movement of the launch tube 40 may effectively articulate the upper jaw 20 into an expanded jaw configuration, as shown in
Once the launch tube 40 has been urged proximally, it may be locked into place thus locking the jaw configuration as well. Moreover, having the launch tube 40 articulate the jaw members 18, 20 in this manner eliminates the need for a separate jaw articulation and/or locking mechanism. Once the tissue has been pulled or manipulated between the jaw members 18, 20, the launch tube 40 may be pushed distally to actuate the jaw members 18, 20 into a closed, grasping configuration, as shown in
Although the launch tube 40 may be fabricated from different materials having differing flexibilities, it may also be fabricated from a single material, as mentioned above, where the flexible portion 38 may be configured, e.g., by slotting, to allow for bending of the launch tube 40 in a plane to form a single curved or arcuate section while the proximal rigid section may extend at least partially into the tubular body 14 to provide column strength to the launch tube 40 while it is urged distally upon the upper jaw member 20 and upon any tissue engaged thereby, as seen in the
Once the tissue has been engaged between the jaw members 18, 20, a needle assembly may be urged through the handle and out through the launch tube 40. The needle assembly may pass through the lower jaw member 18 via a needle assembly opening defined in the lower jaw member 18 to pierce through the gasped tissue. Once the needle assembly has been passed through the engaged tissue, one or more tissue anchors may be deployed for securing the tissue, as described in further detail in U.S. patent application Ser. No. 10/955,245, which has been incorporated by reference above.
The tissue engagement member 32 may be retracted from the tissue F or it may be left within the tissue while the tissue manipulation assembly engages and secures the tissue F. The tissue engagement member 32 is shown as a tissue piercing helix or corkscrew structure upon a flexible shaft 34. The tissue engagement member 32 may be rotated about its longitudinal axis to engage the tissue of interest by rotating its handle located on the proximal end of the flexible shaft 34.
A distal portion of the shaft 34 proximal to the engagement member 32 (or the entire length or a majority of the length of the shaft 34 in other variations) may include a marked section 42, as shown in
Utilizing the instruments described above, various endolumenal obesity-related procedures may be performed. For example,
Turning to the series of
Once within the stomach, the tissue manipulation assembly 16 is used to create approximated folds of tissue that are secured via expandable tissue anchors 52 expelled from the tissue manipulation assembly 16, as described above. A plurality of tissue folds, i.e., one or more, are created in a desired pattern or randomly throughout the stomach or other portions of the gastrointestinal lumen. In several embodiments, the locations of the tissue folds are selected to provide desired results. For example, tissue folds formed in the region of the fundus F have the effects of immobilizing the fundus, reducing the amount of distension that occurs to thereby prevent the fundus from accommodating the influx of food, and/or inducing satiety. As an additional example, tissue folds formed on the anterior wall of the stomach near the location of the vagal nerve branch (anterior, major) and/or near the gastroesophageal junction have the effect of compressing the wall and changing the effectiveness of the nerve branch, thereby inducing satiety and/or loss of appetite. As a still further example, tissue folds formed in the mid-stomach region create a bumpy Magenstrasse-like effect—i.e. a “central road” or narrow path constituting a gastric canal through which food that enters the stomach S through the esophagus E is quickly passed through the stomach to the antrum A and out of the stomach through the pylorus. Still further, tissue folds formed in one or a plurality of regions of the stomach will have the effect of reducing stomach volume, thereby preventing the stomach from accommodating the influx of food and inducing satiety and/or loss of appetite. In still further examples, tissue folds formed in multiple regions of the stomach will provide combinations of the foregoing results.
In other embodiments, tissue folds are formed and secured in other parts of the stomach, instead of or in addition to the plurality of rows of tissue folds shown in the embodiment illustrated in
In the examples illustrated in the Figures, a tissue fold 70 generally includes a portion of tissue in which at least the muscularis layer is raised relative to its immediately surrounding regions of tissue, and in some cases in which a serosa-to-serosa contact 72 (see
In the embodiment shown in
In the alternative embodiment shown in
The fourth tissue fold 70d and fifth tissue fold 70e generally lie on and are oriented along a line that passes through the apex of the fundus and that is perpendicular to the line passing through the first tissue fold 70a, second tissue fold 70b, and third tissue fold 70c. The fourth tissue fold 70d is formed and secured by a tissue anchor assembly 100 at a location that is centered approximately 1.5 cm to about 2.5 cm, and preferably about 2.0 cm, from the apex of the fundus on the posterior side of the fundus. The fifth tissue fold 70e is formed and secured by a tissue anchor assembly 100 at a location that is centered approximately 1.5 cm to about 2.5 cm, and preferably about 2.0 cm, from the apex of the fundus on the anterior side of the fundus.
The sixth tissue fold 70f generally lies on and is oriented along the same line as the fourth tissue fold 70d and fifth tissue fold 70e. The sixth tissue fold 70f is formed and secured by a tissue anchor assembly 100 at a location that is centered approximately 1.5 cm to about 2.5 cm, and preferably about 2.0 cm, from the center of the fifth tissue fold 70e. This location may be within the fundus, or it may be along the anterior wall of the body of the stomach, depending'upon the size and shape of the stomach. In some embodiments, the sixth tissue fold 70f provides an effective connection and transition point between the tissue folds 70 formed in the fundus region F of the stomach and one or more tissue folds, a ridge of tissue, or a tissue invagination formed on or along the anterior wall of the stomach, as described more fully below.
The seventh through tenth tissue folds 70g-j are generally spaced equidistantly between the first tissue fold 70a, fifth tissue fold 70e, third tissue fold 70c, and fourth tissue fold 70d, as shown in
In other alternative embodiments, additional tissue folds 70 are formed and secured by tissue anchor assemblies at additional locations within the fundus region F of the stomach spaced between the foregoing identified locations. In still other embodiments, fewer tissue folds 70 are formed. For example, in a relatively smaller stomach, sufficient restriction may be achieved without including one or more of the seventh through tenth tissue folds 70g-j, or by substituting one or more of the seventh through tenth tissue folds 70g-j for one or more of the first through fifth tissue folds 70a-e, or by including only a limited number (e.g., two, three, four, or five) of the tissue folds 70a-j.
In an embodiment, the tissue folds 70a-j are formed and secured in the fundus region F at the foregoing pre-determined locations and in a pre-determined sequence in order to optimize the capability of forming and securing tissue folds having a size and shape that produce the desired volume restriction and decreased ability for the fundus tissue to distend. The preferred methods include using certain portions of the stomach as landmarks for positioning and measuring. These include the GEJ, the incisura cardiaca, the apex of the fundus, the greater curvature, and the incisura angularis. In addition, the instruments used to manipulate tissue and deploy tissue anchors may be used to measure distance, where applicable and convenient. For example, in some embodiments, the jaw members 18, 20 of the tissue manipulation assembly 16 are able to open approximately 2.0 cm, a distance that may be used as a measurement for spacing between the targeted centers of adjacent tissue folds. In other embodiments, other endoscopic instruments are used to measure and maintain the desired distances between tissue folds. In still other embodiments, an electrocautery device is used to mark the locations at which tissue folds are to be formed prior to forming the tissue folds.
The pre-determined sequence includes first forming and securing the first tissue fold 70a at its location measured in relation to the GEJ. This is followed by locating, forming, and then securing the second tissue fold 70b, and then the third tissue fold 70c generally along the line extending through and between the GEJ, the apex of the fundus, and toward the greater curvature of the stomach. In alternative embodiments, the order of forming the first, second, and third tissue folds 70a-c may be altered at the discretion of the user. At this point, the first, second, and third tissue folds 70a-c define a ridge of tissue extending through the center of the fundus F. In some embodiments, it is advantageous for the user to engage or grasp and pull up on the ridge with the tissue manipulation assembly 16 to create a “pocket” at the location of the fourth tissue fold 70d, the “pocket” facilitating acquisition of tissue by the tissue engagement member 32 (or other suitable grasping instrument). The fourth tissue fold 70d is then formed and secured. The tissue manipulation assembly 16 is then moved to the anterior side of the stomach, where the fifth and sixth tissue folds 70e-f are located, formed, and secured. Finally, and optionally, the seventh through tenth tissue folds 70g-j are located, formed, and secured.
As shown in
As noted previously, the secured tissue folds 70 substantially restrict and reduce the amount of distention that occurs to thereby prevent the fundus F from accommodating the influx of food, and/or inducing satiety. For example, in several embodiments, a sufficient number of tissue folds 70 having a sufficient size and shape profile are formed in the tissue of the fundus region F such that the fundus tissue is substantially completely effaced. In other embodiments, a sufficient number of tissue folds 70 having a sufficient size and shape profile are formed in the tissue of the fundus region F such that the tissue in the fundus region F is 75% effaced. In still other embodiments, a sufficient number of tissue folds 70 having a sufficient size and shape profile are formed in the tissue of the fundus region F such that the tissue in the fundus region F is 50% effaced. Upon reconfiguration, the less distendable fundus F will “tug” on the GEJ as the stomach is filled with food to create a sensation of fullness, and will cause ingested food to be more quickly transported to the antrum region of the stomach and to the duodenum and the remaining portions of the gastrointestinal tract.
Moreover, it is believed that the alteration of the stomach tissue in the fundus region F alters the production of Ghrelin, a prehormone that is produced predominantly in epithelial cells lining the fundus. Ghrelin is an important factor in the regulation of energy, and functions by increasing hunger through its action on hypothalamic feeding centers. Ghrelin also appears to suppress fat utilization in adipose tissue. By forming and securing tissue folds in the fundus, the fundus tissue is disrupted and heals in thickened ridges or pinches. The modified tissue will not produce Ghrelin at a normal rate, which has the effect of reducing a patient's feeling of hunger.
Turning next to
The elongated invaginations have the effect of reducing the effective volume of the stomach, and of shaping the stomach interior into a substantially tubular form. The tubular form of the stomach causes food to be forced down to the antrum A region more efficiently and quickly, thereby creating signals of satiety in the patient.
Turning next to
In several embodiments, the tissue folds 70a-j formed and secured in the fundus region F in the manner described above in relation to
In an embodiment shown in
In an embodiment, the anterior wall tissue folds 70r-t are formed and secured along the anterior wall of the stomach body B proceeding in a distal to proximal direction beginning near the incisura angularis.
Turning next to
Turning to
Turning next to
In several embodiments of the endolumenal weight loss treatment methods described herein, the tissue appositions 110 formed by the processes described above are used in combination with tissue folds 70 and/or tissue invaginations 80 described above. For example, in several embodiments, a plurality of tissue folds 70 are formed in the fundus region F of the stomach (as described above in relation to
The combination of tissue folds 70 formed in the fundus region F and tissue folds 70, elongated invaginations 80, and/or tissue appositions 110 formed in the body region B and/or antrum A provide a combination of the desirable effects described above for each of these stomach tissue alterations. Accordingly, the described methods include several embodiments, including all of the embodiments described herein as well as all combinations of each of those embodiments. Additional combinations of the therapeutic methods described herein will obtain similar results.
Although various illustrative embodiments are described above, it will be evident to one skilled in the art that various changes and modifications are within the scope of the invention. It is intended in the appended claims to cover all such changes and modifications that fall within the true spirit and scope of the invention.
This application claims the benefit of priority to U.S. Provisional Patent Application No. 61/239,709, filed on Sep. 3, 2009, the content of which is incorporated by reference in its entirety. This application also relates to U.S. Provisional Patent Application Ser. No. 61/038,487, filed on Mar. 21, 2008, and U.S. patent application Ser. No. 12/409,335, filed on Mar. 23, 2009, the content of each of which is incorporated herein by reference in their entireties.
Number | Date | Country | |
---|---|---|---|
61239709 | Sep 2009 | US |