Devices and methods for facilitating fluid transport

Abstract
Arrangements are provided including a base having a bore disposed therein extending from a first surface of the base through a second surface of the base, a fluid transport tube having a first end, a second end opposite the first end, and a lumen having an inner diameter, at least the second end of the tube being received within the bore of the base, and at least one fluid transport enhancing groove having at least a first section disposed in the second surface of the base and in fluid communication with the bore.
Description
FIELD OF THE INVENTION

The presented invention is directed to devices, arrangements and associated methods for effectively transporting fluids, for example, samples of body fluids.


BACKGROUND OF THE INVENTION

In the following discussion certain articles and methods will be described for background and introductory purposes. Nothing contained herein is to be construed as an “admission” of prior art. Applicant expressly reserves the right to demonstrate, where appropriate, that the articles and methods referenced herein do not constitute prior art under the applicable statutory provisions.


According to the American Diabetes Association, diabetes is the fifth-deadliest disease in the United States and kills more than 213,000 people a year, the total economic cost of diabetes in 2002 was estimated at over $132 billion dollars, and the risk of developing type I juvenile diabetes is higher than virtually all other chronic childhood diseases.


In certain medical treatment and diagnostic procedures, it is necessary to transport body fluid from the patient to a remote location. For example, one such procedure is the testing of a sample of body fluid, such as blood, for the glucose concentration level contained therein. Such diagnostic procedures may be conducted clinically or by the patient utilizing a self-testing device or arrangement. There are numerous devices and systems designed to be utilized by the patient for obtaining a sample of blood, and testing the sample to determine the glucose content at a particular point in time. One such system generally includes at least three separate devices. The first device is utilized to draw a sample of blood from the patient by performing a lancing or similar skin piercing operation. Lancets are solid members which do not include a pathway for transporting the sample of blood. Since the lancets do not offer the ability to transport the sample, a separate member or component must be provided for this purpose. Typically, such systems include a separate test strip member which is manually brought into contact with the sample of blood produced by the lancing operation. The sample is then introduced onto the test strip, which includes a mechanism, such as a chemical reagent, for reacting with the blood sample and producing a readable signal. To this end, a separate meter or other reading device is also included in the system. The test strip is typically introduced into the meter, which then interacts with the test strip to produce the quantification of the glucose content contained in the sample of blood.


Such systems suffer from certain drawbacks. The manual operations of lancing, bringing the test strip into contact with the sample of blood thus produced, and the separate step of inserting the test strip into the meter may be difficult to perform for some patients. For instance, diabetics often times suffer from visual impairment as a result of their condition. Thus, it may be difficult for them to locate the sample of blood on the surface of the skin and bring the test strip into communication therewith. Similarly, it may be difficult to properly insert the test strip into the meter. In addition, there is a trend toward minimizing the size of the lancet used to perform the lancing operation in an effort to minimize the pain associated with this self testing procedure, thereby promoting more frequent testing. The use of a smaller gauge lancet also results in a smaller volume of body fluid, or blood, produced by the lancing operation. Such smaller samples of blood may be even more difficult to locate by the patient, and also may be more challenging to transport effectively.


Other systems for self-testing on the market attempt to integrate one or more above described lancing, transporting and quantification operations. One such system requires the user to load a lancet and a test strip into a device, which includes a meter. Once loaded the device is held against the skin and the test initiated by the user, which includes a lancing operation and subsequent transport of a sample of body fluid into the test strip. This arrangement still requires the manual step of loading a separate lancet and test strip correctly into the device, and orienting the device correctly at the surface of the skin in order to perform each test. This device also uses the lancet, which in and of itself does not provide a mechanism to transport the sample of blood. Thus, it is necessary to provide a separate mechanism, which enables transportation of the blood from the surface of the skin to the test strip. In this particular device, the transport function is performed by automatically moving the test strip, which includes capillary channels, into communication with the sample of blood at the surface of the skin. If the test strip is not loaded correctly, or the mechanisms for moving the test strip into position do not function correctly, the device will not function properly. Moreover, the user must purchase, store, handle and load the separate lancet and test strip components for each test. Thus, the successful performance for each test is again at least partially dependent upon the patient correctly associating the lancet and the test strip with the device for each and every test performed.


Yet another conventional self-testing system includes multiple disposable parts for lancing and analyte quantification. In this particular device, a test strip is provided which has an integrated blood transport member in the form of a capillary tube extending from a major planar surface thereof which must be brought into communication with the droplet of blood formed on the surface of the skin resulting from a lancing operation. In order to facilitate the transport function, the test strip is provided with a separate spreading layer sandwiched between the end of the capillary tube and a reagent membrane disposed on an opposing side thereof. The spreading layer facilitates transfer of the blood from the tube to the reagent layer. This system is designed such that a sample volume that completely fills the tube is required in order to obtain an accurate test result. Thus, approximately two micro liters of blood is typically required to be drawn from the patient such that the tube can be completely filled and transferred for further analysis. This requires creation of a wound in the skin large enough to express the necessary volume of blood, thus limiting lancet size reduction efforts. Also, the process of completely filling the tube is time consuming, and may require the user to apply significant efforts to manually express or milk a sufficient quantity of blood from the wound in order to fill the tube. This design also requires the blood to flow through the spreading layer prior to reaching the reagent layer. This two-layer structure is less than optimal from an assembly standpoint (i.e. requiring the assembly of multiple distinct layers), and since the volume of the capillary tube must be first transferred through the spreading layer, this may also have a tendency to slow down the testing procedure and reduce the volume of sample available for analysis. The spreading layer also retains a certain amount of the sample, thereby reducing the amount of the sample that is available for reaction with the reagent layer, and subsequent analysis thereof. Also, the spreading layer can alter certain characteristics of body fluids, such as whole blood. For instance, the spreading layer may alter the hematocrit contained in a sample of whole blood.


Thus, conventional body fluid transport systems for medical treatment and/or diagnostic procedures suffer certain drawbacks. Such drawbacks include transport operations that are reliant upon the dexterity and ability of the patient to accurately perform various manual procedures. The conventional devices and arrangements also are not fully integrated and require significant intervention on the part of the user in order to perform an accurate test.


SUMMARY OF THE INVENTION

It is, therefore, an object of this invention to provide devices, arrangements and methods for improved transport of a body fluid, such as blood.


According to the current principles of the present invention, one or more of the following advantages may be derived from such devices, arrangements and methods. Consistent with the principles of the present invention, a body fluid can be transported without the necessity of performing various operations or procedures by the patient or user of the device. Thus, for example, it is unnecessary for the patient or user of the device to manually bring a fluid member in communication with a droplet of blood on the surface of skin.


According to the present invention, it is also unnecessary to provide a body fluid sample having a volume at least large enough to fill a capillary tube or other fluid transport member, thus reducing the time necessary to perform a test as well as providing an opportunity to create a smaller wound in the surface of the skin, and/or reducing or eliminating the need to milk blood from the wound, thereby minimizing pain and inconvenience associated with a lancing or other wound creating procedure.


According to the current principles of the invention, improved fluid transport can be provided by associating fluid transport with a fully integrated device. A fully integrated device formed according to the principles of the present invention provides for a potential lower cost device due to a reduction in distinct components which may be sourced from different vendors, which may provide a reduced manufacturing burden (i.e. reduced packaging, assembly, etc.). According to one aspect of the present invention, a needle serves multiple purposes. Namely, the needle acts as a lancet and a transfer tube, all in a single device. This insures that a sterile lancet is used for each and every test, thereby reducing the risk of infection and/or pain associated with lancet reuse, as well as simplified operation.


A further possible advantage provided by the present invention is the elimination of spreading/filtering media or layers. This advantage eliminates the reliance on a special spreading media, which can reduce the volume of blood available to the reagent, thereby providing an opportunity for even greater sample volume reduction and related pain reduction. The elimination of a spreading/filtering media or layer also simplifies manufacturing by reducing the necessity of correctly positioning a small spreading media layer relative to other components of the assembly. The elimination of the spreading layer also prevents the nature of the sample from being influenced thereby, such as an alteration of the hematocrit contained in the sample.


According to one aspect of the present invention, there is provided an arrangement comprising: a base having a bore disposed therein extending from a first surface of the base through a second surface of the base; a fluid transport tube having a first end, a second end opposite the first end, and a lumen having an inner diameter, at least the second end of the tube being received within the bore of the base; at least one fluid transport enhancing groove comprising at least a first section disposed in the second surface of the base and in fluid communication with the bore.


According to a further aspect, the present invention provides a base having a bore disposed therein extending from a first surface of the base through a second surface of the base; a needle having a first end adapted to pierce the skin, a second end opposite the first end, and a lumen having an inner diameter, at least the second end of the tube being received within the bore of the base; at least one fluid transport enhancing groove comprising at least a first section disposed in the second surface of the base and in fluid communication with the bore; and an analyte quantification member in fluid communication with at least one of the bore and the at least one fluid transport enhancing groove.


According to yet another aspect, the present invention provides a wearable blood glucose monitor comprising any of the arrangements described herein.





BRIEF DESCRIPTION OF THE DRAWINGS

The preferred embodiments are illustrated in the drawings in which like reference numerals refer to the like elements and in which:



FIG. 1 is a partial perspective view of an arrangement formed according to the present invention.



FIG. 2 is a cross sectional view taken along line II-II of FIG. 1.



FIG. 3 is a partial perspective view of another arrangement formed according to the present invention.



FIG. 4 is a cross-sectional view taken along line IV-IV of FIG. 3.



FIG. 5 is a partial perspective view of yet another arrangement formed according to the present invention.



FIG. 6 is a cross-sectional view taken along line VI-VI of FIG. 5.



FIGS. 7A-7C are cross-sectional views taken along lines VII-VII of FIGS. 1, 3, and 5, respectively, and represent alternative geometrical cross-sectional configurations of grooves formed according to the principles of the present invention.



FIG. 8 is a partial perspective view illustrating an alternative groove configured according to the principles of the present invention.



FIG. 9 is a cross-sectional view taken along line IX-IX of FIG. 8.



FIG. 10 is a cross-sectional view taken along line X-X of FIG. 8.



FIG. 11 is a partial perspective view of a groove configured according to a further embodiment of the present invention.



FIG. 12 is a cross-sectional view taken along line XII-XII of FIG. 11.



FIG. 13 is a cross-sectional view taken along line XIII-XIII of FIG. 11.



FIG. 14 is a plan view of an arrangement of grooves formed according to the present invention.



FIG. 15 is a plan view of a groove arranged according to the present invention.



FIG. 16 is a plan view of an arrangement of grooves formed according to the principles of the present invention.



FIG. 17 is a plan view of a groove arranged according to an alternative embodiment of the present invention.



FIG. 18 is a perspective view of an arrangement of grooves formed according to a further alternative embodiment of the present invention.



FIG. 19 is a cross-sectional exploded view of an alternative arrangement formed according to the present invention.



FIG. 20 is a cross-sectional exploded view of yet another alternative arrangement formed according to the present invention.



FIG. 21 is a cross-sectional exploded view of a further alternative embodiment of the present invention.



FIG. 22 is a top plan view of the embodiment of FIG. 21.



FIG. 23 is a cross-sectional exploded view of an arrangement formed according to an alternative embodiment of the present invention.



FIG. 24 is a perspective view of an arrangement formed according to a further alternative embodiment of the present invention.



FIG. 25 is a cross-sectional view taken along line XXV-XXV of FIG. 24.



FIG. 26 is a perspective view of a device formed according to a further embodiment of the present invention.



FIG. 27 is a partial cutaway view of the device of FIG. 26.





DETAILED DESCRIPTION OF THE INVENTION

Devices, arrangements and their associated methods are structured to comprise at least one, or a combination of some or all, of the following characteristics.


An exemplary arrangement 100 formed consistent with the principles of the present invention is illustrated in FIGS. 1-2. The arrangement 100 includes a fluid transport tube 10. The fluid transport tube 10 may be formed from any suitable material, such as a metal, glass, or polymeric material. The fluid transport tube 10 may be provided with an inner diameter that is sufficient to produce a capillary action of fluid flowing through the tube. By way of example, the fluid transport 10 may be provided with inner diameter on the order of 0.007 to 0.012 inches. The fluid transport 10 may be provided with a first end 12 and a second end 14 opposite the first end 12. A lumen 16 having an inner diameter, optionally dimensioned as described above, extends along its longitudinal length between the first end 12 and the second end 14. The lumen 16 may be provided, on at least a portion of the surface thereof, with a fluid flow enhancing feature. For example, such a feature may comprise a suitable coating, such as polydimethylsiloxane (PDMS) or Silwet™ Alternatively, at least a portion of the surface of lumen 16 may be provided with a surface texturing which promotes fluid flow, such as a surface roughening or pattern applied on at least a portion of the surface. According to one embodiment of the present invention, the fluid transport tube 10 is in a form of a needle having a first end provided with a construction adapted to pierce the surface of the skin, such as bevel B or other configuration known in the art (see, e.g., needle 18 of FIG. 24). The needle may be provided with one or any combination of some or all of the features of the fluid transport tube, as described above.


The arrangement 100 may further include a base 20. The base 20 may have any suitable geometry or size. In the embodiment demonstrated in FIGS. 1-2, the base 20 is in the form of a polygon or block. However, the base 20 of the present invention is not limited to this geometry, and in fact, as illustrated in other embodiments described herein, may have other suitable geometries. Base 20 is formed of any suitable material. According to one embodiment, the base is formed from a material that is more hydrophilic than the tube 10, which will tend to draw the fluid up from the tube. For example, the base 20 can be formed of a metal, glass, quartz, or polymeric material. The base 20 may be provided with a bore 22 that extends from a first surface 24 of the base 20 and through a second surface 26. As illustrated, the base 20 receives at least the second end 14 of the fluid transport tube 10 (or needle 18). According to one embodiment, the bore 22 comprises a first section 28 defining a counter bore for receiving the fluid transport tube 10 or needle at the second end 14 thereof. The fluid transport tube 10 maybe secured to the base by any suitable means, such as co-molding, gluing, soldering and the like. According to another embodiment, the bore 22 comprises a second section extending from the counter bore 28, or second end 14 of the tube 10 or needle, to the second surface 26. The above-described portion of the bore 22 is indicated at 29. The second section 29 of the bore 22 may be provided with a fluid flow enhancing feature of the type described above in connection with the lumen 16. The second section 29 of the bore may also be provided with an inner diameter that is substantially the same as the inner diameter of the lumen 16 in order to prevent or minimize unwanted disruptions in the flow of fluid therebetween. In this context, “substantially the same” is intended to encompass surface imperfections and irregularities attributable to the limitations of current common manufacturing techniques. According to a further alternative embodiment, the fluid transport tube 10 or needle 18 may be received in the base 20 such that the second end 14 is substantially is co-planar with the second surface 26 of the base 20 (See, e.g., FIG. 21).


The arrangement 100 includes at least one fluid transport-enhancing groove 30. The fluid transport-enhancing groove 30 is located in the second surface 26 of the base 20. The groove is preferably in fluid communication with the bore 22. The groove 30 may also extend away from the bore 22 to an edge of the second surface 26. The groove 30 may be provided in many different forms. For example, the groove 30 can be provided with a number of suitable geometrical or cross sectional configurations. Non-limiting examples are illustrated in FIGS. 7A-7C. As illustrated in FIG. 7A, grooves 30A formed according to the principles of the present invention may be generally square or rectangular, and comprise a flat bottom. Alternatively, grooves 30B formed according to the present invention may be oval, semi-circular, semi-oval, and the like, and comprise a generally curved bottom. According to a further alternative, groove 30C formed according to the present invention may comprise a generally pointed bottom.


According to a further optional embodiment of the present invention, grooves 30D formed according to the present invention may have a cross sectional area that varies along its length, as illustrated, for example, in FIGS. 8-10. Such a groove 30D is illustrated in FIG. 8. As illustrated therein, the cross sectional area of groove 30D decreases in direction of arrow AB. The direction of arrow AB may correspond to a direction that is generally away from a bore 22. As illustrated by groove 30D in FIGS. 9-10, the cross sectional area is varied by decreasing the depth of the groove along the direction arrow AB. This variation is shown for purposes of illustration only, and the cross sectional area of the groove may be varied by altering other dimensions of the groove, such as its width, as illustrated by groove 30E in FIGS. 11-13. In addition, although the groove 30D of the illustrated embodiment has cross sectional area that decreases in a constant manner along arrow AB, the present invention is not limited to such a configuration. For example, the cross sectional area of a groove formed according the principles of the present invention may change in a step-wise manner, as illustrated by groove 30E. Alternatively, the cross-sectional area of a groove formed according to the present invention may fluctuate along its length, such as in the shape of an hourglass, or repeated hourglass configurations.


Grooves formed according the principles of the present invention may also have any suitable dimensions. In general, grooves formed according to the present invention are dimensioned to provide enhanced capillary action upon contact with target fluid, such as whole blood. For purposes of illustration only, grooves formed according to the present invention, which are square or rectangular may have a depth on the order of 0.002-0.020 inches, and a width of 0.002-0.020 inches. Grooves having a curved bottom may be provided with a radius of curvature on the order of 0.002-0.022 inches.


Grooves formed according the principles of the present invention may also comprise an additional fluid flow-enhancing feature disposed on at least a portion thereof. For example, a groove may be provided with a fluid flow enhancing coating. For example, a coating of polydimethaxelane (PDMS), or Silwet™, may be applied to at least a portion of the groove. Alternatively, or in addition to the aforementioned coating, the groove may be formed in the surface of a material having a flow enhancing property inherent thereto. For example, the groove may be cut into the surface of a hydrophilic polymeric material. Alternatively, or in combination with the above, the groove may also be provided with a surface texturing, which promotes fluid flow therein.


Grooves formed according to the principles of the present invention may be formed by any suitable manufacturing technique. For example, grooves formed according to the present invention may be molded or cast in place. Alternatively, the grooves may be cut, by a suitable removal technique, such as laser ablation, a plunge EDM technique utilizing an electrode whose contour would match the desired groove profile, or another suitable micro-machining technique.


It should be understood that the above discussion of the various characteristics, features, and techniques for forming grooves, applies universally to all the grooves described in the present application regardless of the particular arrangement they may be associated with. Thus, the above discussion will not be repeated in connection with every possible alternative embodiment of the present invention described herein, however, the aforementioned features, characteristics and methods of forming the grooves nonetheless applies to all the embodiments described herein.


As illustrated in FIGS. 1-2 the arrangement 100 may further comprise an additional groove 31 which, for example, may have any of the above-mentioned features and characteristics of the groove 30 or of any of the grooves formed according the principles of the present invention. Thus, the arrangement 100 comprises at least one fluid transport-enhancing groove 30, and may comprise a plurality of such grooves 30, 31.


An alternative arrangement 300 formed according to the principles of the present invention, is illustrated in FIGS. 3-4. The arrangement 300 is similar to the previous described arrangement 100. Thus, discussions of those features which are common to both arrangements 100 and 300 will not be repeated herein. The arrangement 300 is constructed having at least one groove. The at least one groove comprises of first section 30′ which extends along the second surface 26 of the base 20, as well as a second section 30″ which is provided along the second section 29 of the bore 22. According to the illustrated embodiment, the second section 30″ of the groove is substantially linear. Further, according to the illustrated embodiment, the second section 30″ extends longitudinally along the second section 29 of the bore 22. The second section 30″ can have a substantially constant cross-sectional area along its length, as illustrated in FIG. 3. Alternatively, the second section 30″ can be of a varying cross-sectional area that decreases in the direction of desired travel, as illustrated in FIG. 4. According to one embodiment, the largest cross sectional area of the second section 30″ is smaller than the cross-sectional area of the lumen 16 to encourage blood to flow into grooves from lumen, then decreases at a constant rate until arriving at a cross-sectional area that is slightly larger than the second section 30″ at the transition into the first section 30′. The cross-sectional area of first section 30′ can then be a constant size or can vary as previously described herein. The above described alternative construction advantageously creates an increasing gradient of capillary force.


According to the arrangement 300, since the groove originates in the bore 22 at a location which is typically below where a meniscus of the fluid being transported (see, e.g., “M”, FIG. 23), such as whole blood, would be located, the second section of the groove 30″ acts to promote fluid flow at a location which is closer to the origin of the fluid. The combination of first and second sections of the groove 30′, 30″ pull the fluid up the groove along the second section 29 of the bore 22, and across the top surface 26 of the base 20 by enhanced capillary action.


The transition between the first and second sections 30′, 30″ of the groove may have any suitable geometric configuration. According to one alternative embodiment, the transition between the first and second sections 30′, 30″ is rounded or radiused, so as to minimize adverse impacts on capillary flow between first and second sections 30′, 30″ of the groove. As illustrated in FIG. 3, the arrangement 300 may also include an additional groove having a first section 31′ and a second section 31″ that correspond to the sections 30′, 30″ of the first groove 30.



FIGS. 5 and 6 illustrate a further embodiment of the present invention. As illustrated therein, the arrangement 500 comprises features which are common to the previously described arrangements 100, 300. According to the arrangement 500, the groove comprises a first section 30′ which extends along the second surface 26 of the base 20, as well as a second section 30′″ which is disposed along the second section 29 of the bore 22. According to this embodiment, the second section 30′″ is generally curved. According to the illustrated embodiment, the second section 30′″ is provided in the form of a spiral groove disposed along the second section 29 of the bore 22. The location and configuration of the second section 30′″ places the fluid enhancing groove at a location which is closer to the meniscus of the fluid, and, in combination with the first section 30′ draws fluid up the second section 29, and along the second surface 26, via enhanced capillary action. As with the arrangement 300, the transition between the first and second sections of the groove 30′, 30′″, may be provided with any suitable geometric configuration. According to one alternative embodiment, this transition is radiused, or curved, so as to minimize adverse impacts on the flow of fluid along the transition between the first and second sections 30′, 30′″. According to further alternative embodiments, the first and/or second sections may have a cross-sectional area that varies, as previously described.


According to further alternative embodiments of the present invention, the number and arrangement of grooves disposed in the second surface 26 of the base 20 may vary according to the principles of the present invention. Five alternative embodiments of such arrangements are depicted, for purposes of illustration, in FIGS. 14-18.


As illustrated in FIG. 14, a plurality of grooves may be provided in the second surface 26 of the base 20, wherein each of the plurality of grooves is in fluid communication at one end thereof with the bore 22, and with an edge of the second surface at an opposing end thereof. According to the illustrated embodiment, grooves 32, 34, 36, 38 are disposed in the second surface in the manner described above. Thus, each of the grooves 32, 34, 36, and 38 intersect, or are in fluid communication with the bore 22 at a first end thereof, and extend to an edge of a second surface 26 at an opposing end thereof.


According to a further alternative, one or more grooves may be provided which are in fluid communication with the bore at a location other than at an end thereof. For example, according to the illustrated embodiment depicted in FIG. 15, at least one groove 40 is provided which tangentially intersects the bore 22 at a location that is intermediate to its ends, and is in fluid communication therewith at this intersection. According to the illustrated embodiment, the groove 40 may be in communication with edges of the second surface 26 at the base 20 at opposing ends thereof. However, it should be understood the present invention contemplates alternatives to this arrangement. For example, the groove 40 may tangentially intersect the bore 22 and have only end thereof in communication with an edge of the second surface 26. In addition, the number of grooves may differ than that of the illustrated embodiment. Thus, for example, it is contemplated that a plurality of grooves may be provided which intersect the bore 22 in a tangential manner.


According to the embodiment depicted in FIG. 16, at least one groove may be provided in the surface 26 of the base 20 that intersects, or is in fluid communication with, another groove, but does not directly intersect the bore 22. Thus, for example, as illustrated in FIG. 16, a plurality of grooves 42, 44, 46, 48 are provided which intersect another groove at a first end thereof, and are in communication with an edge of the second surface 26 at an opposing end thereof, but do not otherwise directly intersect the bore 22. Instead, the grooves 32, 34, 36, 38 are in direct fluid communication with the bore 22, thereby enabling fluid communication by the grooves 42, 44, 46, and 48 therewith, albeit in an indirect manner.


As illustrated in FIG. 17, at least one groove 49 may be provided in surface 26 which is in the form of a spiral surrounding, and in fluid communication with, the bore 22. The groove 49 advantageously keeps the body fluid in a location closely centered around a quantification member or assay pad which may be located above the groove 49.


According to another embodiment, a groove pattern 180 such as the one illustrated in FIG. 18 may be provided on surface 26. As illustrated therein, a plurality of fluid transport grooves 182 may be provided in fluid communication with the bore 22 at one end thereof, and with a relatively large groove 184 at the opposing end. The groove 184 surrounds the bore 22. According to the illustrated embodiments, the groove 184 is circular, however, other geometries are contemplated. For example, the groove 184, may be oval or in the form of a polygon. The groove 184 provides a number of advantages. For instance, the groove 184 can collect excess sample volume. This feature may be advantageous where a relatively large volume of body fluid or large volume of blood is acquired during sampling. The groove 184 may optionally be at least partially filled with an absorbent material to facilitate and enhance collection and containment of body fluid therein. A counter bore 186 may also be provided for receiving a quantification member or assay pad. One or more additional vent grooves 188 may be provided in communication with the groove 184 at a first end, and with an edge of the second surface 26. These one or more grooves 188 advantageously allow oxygen to access the groove 184, thereby providing enhanced amounts of oxygen to a quantification member or assay pad in registry therewith. When the assay pad contains a reagent that reacts with an analyte contained in the sample of body fluid, the increased availability of oxygen aids this chemical reaction. The at least one groove 188 may have any suitable form. According to the illustrated embodiment, the at least one groove 188 has a relatively narrow width at the end in communication with the groove 184, and a relatively larger width at the end in communication with the edge of surface 26. Other configurations are contemplated, as previously described herein. As further illustrated, the arrangement 180 may include a plurality of fluid communication grooves 182 in communication with the groove 184 and/or the counter bore 186.


The grooves contained in the arrangement 180 may have any suitable dimensions. According to a non-limiting example, the groove(s) 182 may be approximately 0.002 inches wide and 0.002 inches deep, the groove 184 may be approximately 0.005 inches width and 0.010 inches deep, and the groove(s) 188 may have a width of approximately 0.010 inches at the narrow end, with a depth of approximately 0.010 inches.


As previously noted, the grooves associated with the above embodiments of FIGS. 14-18 may contain any of the previously discussed features, characteristics, and can be manufactured according to the previous generic discussion of the grooves of the present invention. The above described groove configurations may be also be combined with any of the other embodiments and/or arrangements discussed within the present application.


Another arrangement 190 constructed according to the principles of the present invention is illustrated in FIG. 19. The arrangement 190 further comprises an analyte quantification member 50. The analyte quantification member 50 may be provided in many different forms. In general, the analyte quantification member 50 may be in the form of a member that provides quantification by any number of suitable techniques, such as electrochemical, or photometric analysis. According to one exemplary embodiment, the analyte quantification member 50 comprises an assay pad or membrane that contains one or more reagents selected to react with a predetermined analyte, thereby producing a readable signal. According to one embodiment of the present invention, the analyte quantification member 50 is in fluid communication with the bore 22. According to a further embodiment, the analyte quantification member 50 is in direct fluid communication with the bore 22. In other words, there are no additional components or features intervening between the bore 22, which opens at the second surface 26, and at least one surface of the analyte quantification member 50. This arrangement is beneficial in that the fluid may be transported from the lumen 16 and/or bore 22 directly to the analyte quantification member 50, thereby enabling a quicker overall fluid transport operation in some arrangements of the prior art, such as those arrangements which include one or more intervening spreading or transfer layers between the analyte quantification member and a fluid transport channel or passageway.


The arrangement 190 may further comprise a means for securing the analyte quantification member 50 to the base 20. Suitable means for securing include an adhesive provided between the analyte quantification member 50 and the base 20, or one or more recess features provided on the base 20 which trap and/or contain the quantification member 50 therein, transparent adhesive tape placed over the quantification member 50 (not shown), or an integral or separate cover member disposed on the base overlying the quantification member 50. According to the illustrated embodiment, the means for securing the analyte quantification member 50 includes a cover 54, which overlies the analyte quantification member 50. The cover 54 may provide means for allowing optical communication with the analyte quantification member 50 lying below. Suitable means for providing optical communication includes forming the cover 54 entirely of a transparent or translucent material. Alternatively, the cover 54 may be formed with one or more windows 55 of a transparent or translucent material, and wherein the cover 54 may otherwise be formed from an opaque material. The cover 54 may be secured to the base 20 by any suitable means. Suitable securing means include fasteners, a press fit, snaps, latches, adhesives, and thermal bonding.


According to the illustrated arrangement 190, an optional spacer 56 may also be provided, which limits compression of the analyte quantification member 50. The optional spacer 56 is preferably formed such that it also permits optical communication with the analyte quantification member 50 lying below. The arrangement 190 may also comprise a counterbore 52 receiving the analyte quantification member 50 therein. This counterbore 52 also limits compression of the analyte quantification member 50 by the cover 54. It should be evident that the arrangement 190 may comprise either the counterbore 52 or the spacer 54 as an effective means of preventing over compression, and need not include both.


The arrangement 190 may further include one or more components typically provided for photometric detection and quantification of the analyte. For example, as illustrated in FIG. 19, a photometric detection arrangement may be provided which includes a light source S, and a detection element D. The detection element D may comprise any suitable arrangement. For example, the detection element D may comprise an array of CMOS-based sensors or detection elements. Optionally, one or more lenses L may be provided as a detection arrangement. As the fluid sample is transported with the assistance of the at least one groove and/or other features described herein, it reaches the quantification member or membrane 50, and a reaction occurs between the target analyte and one or more chemical reagents contained within the membrane 50. This reaction produces a color change in the membrane 50, which can then be detected and analyzed in the arrangement described above, including the light source S, detection element D, and optional lens L, in a manner familiar to those in the art. The present invention contemplates a number of such arrangements. It should be understood that any of the embodiments or arrangements described in the present application may include one or more of the features described in connection with the arrangement 190 described above.



FIG. 20 illustrates a further alternative arrangement 200 of the present invention. According to the arrangement 200, a counter bore, or first section 28 of the bore 22 is omitted. The second end 14 of the tube 10 or needle is received directly within the bore 22, and extends all the way to a counter bore 52 disposed in the second surface 26 for receiving the analyte quantification member 50 therein. When the counter bore 28 is omitted, and the tube 10 or needle received within the base 20 in the manner previously described, it may be beneficial to provide the second end of the tube 10 or needle with a bevel or taper 58. The bevel or taper 58 is provided to permit more direct access by the fluid flowing within the lumen 16 with the groove 30. It should be evident that the arrangement 200 may comprise either the counterbore 52 or the spacer 54 as an effective means of preventing over compression, and need not include both.


Although not illustrated, the arrangement 200 may also comprise the above-described photometric detection components, such as a light source S, detection element D, and optional lens L as well as any other of the features associated with the previously described embodiments.


A modified arrangement 210 formed according to an alternative embodiment of the present invention is illustrated in FIGS. 21-22. As with the arrangement 200, the first section 28 of the bore 22 is omitted. According to the arrangement 210, the counterbore 52 is also omitted and the tube 10 is received within the bore 22 such that the end surface 14c thereof is substantially coplanar with the second surface 26. A quantification member 50 is placed in direct fluid communication with the lumen 16. One or more fluid transport grooves 30′ may be provided in the second surface 26. According to the illustrated embodiment, the one or more groove 30′ may be present in the end surface 14c of the tube 10 as well as the second surface. As an additional optional feature, the arrangement 210 may further include at least one groove or groove section 30″ formed in the lumen 16 of the tube 10. The at least one groove or groove section 30″ may be in fluid communication with the least one groove 30′, as previously described herein.


A further alternative arrangement of the present invention is illustrated in FIG. 23. The arrangement 230 depicted therein is formed with a counterbore 60 disposed in the second surface 26 of the base 20 for receiving the analyte quantification member 50 therein. As illustrated in FIG. 23, the counter bore 60 is provided with a curved bottom surface. One or more grooves 62, formed as previously described herein, are provided, at least along the curved bottom surface of the counter bore 60, such that they are in fluid communication with at least the second section 29 of the bore 22 at an end thereof. According to the illustrated embodiment, the opposing end of the at least one groove 62 is in communication with an edge of the second surface 26. The arrangement 230 is further provided with a compression member 64, for locating and retaining the analyte quantification member 50. According to the illustrated embodiment, the compression or retention member 64 has a domed or curved configuration so as to mate or generally conform to the curved bottom surface of the counter bore 60. The compression or retention member 64 may be attached to the base by any suitable means, such as those previously described in connection with the cover 54. According to the illustrated embodiment, one or more fasteners F are provided for this purpose.


The arrangement 230 provides certain advantages. For example, if the diameter of the analyte quantification members is larger than the larger diameter of the counter bore 60, the analyte quantification member 50 may still be conformed to and mounted within the counter bore 60, in the manner illustrated in FIG. 23. Since larger analyte quantification members are easier to handle during the manufacturing process, this ability to install an analyte quantification member which is larger in size than may be permitted when using squared counter bored surfaces, provides an efficiency and manufacturing advantage. This arrangement also permits greater tolerances with regard to the precision by which the analyte quantification member 50 is located. Again, this flexibility provides a manufacturing and assembly advantage which may not be possessed by an arrangement having more conventional counterbore structures. Yet another advantage which may be provided by the arrangement 230, includes the fact that as the analyte quantification member or assay pad 50 is compressed within the counter bore 60, it produces a convex curved surface on the bottom thereof, which will extend toward the meniscus of fluid M traveling within the lumen 16 of the tube 10 or needle. Thus, this convex surface of the analyte quantification member 50 is more likely to reach and establish positive contact with a generally concave meniscus M of fluid traveling within the lumen 16.


The arrangement 230 may also be provided with one, or a combination, of the previously described features.


A further alternative arrangement 240 constructed according to the present invention is depicted in FIGS. 24-25. According to the arrangement 240, the base 20 is formed as a generally round hub shaped member having a central bore 22 formed therein. A needle 18 has a first end 12 formed in a manner adapted to pierce the skin. According to the illustrated embodiment, the first end 12 of the needle 18 comprises a bevel B, as common to the art. A second end 14 of the needle 18 is received within a first section 28 of the bore 22. According to the arrangement 240, the hublike base 20 is provided with a second surface 26 having at least one groove 30 formed therein in a manner previously described. According to the illustrated embodiment, the arrangement 240 further comprises at least one additional groove 31 disposed therein, similar to the arrangement depicted in FIG. 1. However, as previously noted herein, numerous alternative groove constructions and arrangements are contemplated. According to the arrangement 240, an analyte quantification member 50 is provided along the second surface 26. In the illustrated embodiment, the analyte quantification member 50 is in direct fluid communication with the second section 29 of the bore 22, thereby providing the advantages previously described herein. A cover in the form of a cap 72 is provided to secure and retain the analyte quantification member 50 to the base 20. As previously discussed herein, alternative devices and arrangements are possible for securing the analyte quantification member 50 to the base 20. According to the illustrated embodiment, the cap may be secured to the base by any suitable means, such as fasteners, a press fit, snaps, latches, adhesives, and/or thermal bonding. The cap 72 is preferably constructed such that it permits optical communication with the analyte quantification member 50 lying below. Thus, the cap 72 may be formed entirely transparent or translucent material. Alternatively, cap 72 may be formed from a generally opaque material having one or more windows disposed therein so as permit the desired optical communication. The arrangement 240 may further comprise a light source, detection element, and/or lens, as previously described herein. In addition, the arrangement 240 may further comprise any of the additional features of any other described arrangements contained herein.


The arrangement 240 may further include an actuation member 70 which is mounted to the base 20 by any suitable mechanism. According to the illustrated embodiment, the actuation member 70 is disposed in a passageway extending through the hublike base 20 (see, e.g., FIG. 25). Any suitable actuation member may be provided according to the arrangement 240. In the illustrated embodiment the actuation member 70 is in the form of torsional spring-type element. Alternative actuation members are contemplated by the present invention.


An integrated device for sampling and testing a sample of body fluid for analyte concentration is formed according to the principles of the present invention may have a number of suitable configurations. According to certain embodiments the device is configured to perform testing by acquiring a sample of blood from the user, transfer the sample to an analysis site, and determine the concentration of glucose contained therein. These operations are all performed with little or no user input. For example, these operations may commence automatically according to a specified or predetermined schedule. Alternatively, these operations may commence at the command of the user via, for example, pressing a start button on the device.


The device may include disposable and reusable portions. The disposable portion may include at least one skin piercing element/transport member and analysis site (which may include an assay pad). The disposable portion may provide the capability to perform a single test. After testing is complete, the disposable portion is discarded and replaced with a new disposable portion before performing another test. Alternatively, the disposable portion includes a plurality of skin piercing elements/transport members and analysis sites. Such disposable units permit a plurality of tests to be performed before it is necessary to discard and replace the disposable unit. The device may be either wearable or handheld, or both.


A non-limiting exemplary integrated device 260 is illustrated in FIGS. 26-27. As illustrated therein the device 260 generally comprises a functional portion 262, and an optional attachment means or band 264. Thus according to the present invention, the integrated device 260 may be wearable. In addition, or alternatively, the integrated device may be operable as a hand-held device. For example, according to the illustrated embodiment, the band 264 can be separated and/or otherwise removed from the user, and the device 260 stored in a suitable case or in the user's pocket. The band can then be grasped and used to hold the device against the skin to perform a testing operation.


The device 260 preferably includes at least one arrangement for performing a measurement of the concentration of an analyte contained in a sample of blood. According to the illustrated embodiment, the device 260 comprises at least one arrangement 240 as described herein comprising at least one skin-piercing element, at least one actuation member, such as a torsional spring element, and at least one analysis site which may contain an assay pad. The at least one arrangement may form part of a disposable portion or unit. According to one embodiment, the disposable unit allows for at least one measurement of the concentration of an analyte contained in a sample of blood prior to being discarded and replaced. According to a further embodiment, the disposable unit allows for a plurality of measurements of the concentration of an analyte contained in a sample of blood prior to being discarded and replaced.


Any of the arrangements and/or embodiments of the present invention may be utilized in devices of the type described above, either entirely or partially. Thus, various combinations of features described in connection with arrangements herein may be selected and utilized independently or together in a multitude of different combinations.


In addition, any of the arrangements described herein may be combined with additional fluid flow enhancing features, such as those described in U.S. Patent Application Publication No. US 2007-0078358, entitled FLUID SAMPLE TRANSPORT DEVICES AND METHODS, the entire content of which is incorporated herein by reference.


All of the above-described exemplary arrangements of the present invention may be used independently, or in combination with other devices and arrangements, and systems. Inclusion in other types of devices, wearable and non-wearable, are specifically contemplated by the present invention. Additional details of such discrete autonomous integrated testing devices may be gathered from the disclosure of U.S. Patent Application Ser. No. 60/721,966, entitled DEVICE FOR FLUID ANALYSIS WITH SAMPLE EXTRACTION AND TRANSPORT, the entire content of which is incorporated herein by reference.


According to the present invention, there is also provided methods for improving the transport of a fluid. The present invention also provides methods for improving the transport of body fluid by enhancing the capillary transport properties of a base or support member.


According to one aspect, the present invention comprises a method of improving transport of a fluid, such as a body fluid, comprising providing a base with a bore disposed therein extending from a first surface of the base through a second surface of the base; providing a fluid transport tube having a first end, a second end opposite the first end, and a lumen having an inner diameter, inserting at least the second end of the tube within the bore of the base; and disposing at least one fluid transport-enhancing groove comprising at least a first section in the second surface of the base such that it is in fluid communication with the bore.


The method may further comprise disposing an analyte quantification member in fluid communication with at least one of the bore and the at least one fluid transport enhancing groove. The quantification member may be located such that it is in direct fluid communication with at least one of the bore and the at least one fluid transport enhancing groove. The quantification member can comprise a fibrous membrane or assay pad containing a chemical reagent chosen to react with a predetermined analyte. The method may further include providing a cover overlying the quantification member. The cover can be constructed to permit optical communication with the quantification member. The cover may also be in the form of a cap. Methods of the present invention may further comprise providing a spacer interposed between the quantification member and the cover. A counterbore may also be formed in the second surface of the base receiving the quantification member therein. The counter bore may have at least one of a flat bottom and a curved bottom.


The method may further include providing the fluid transport tube in the front of a needle, wherein the first end of the needle is constructed for piercing the skin. The needle can be formed from a metal, and the base is formed, at least in part from a metal, a polymer, a glass, or a ceramic.


In any of the above-described methods, at least a portion of the lumen may comprise a fluid transport enhancing feature, such as at least one of a coating and a surface texture.


The methods of the present invention may include providing the bore with a first section extending from the first surface of the base and defining a counter bore receiving at least the second end of the fluid transport tube. The bore may also comprise a second section extending from the second end of the fluid transport tube to the second surface of the base.


In any of the above described methods, the at least one fluid transport enhancing groove may further comprise a second section disposed in the second section of the bore. The second section of the at least one groove can be substantially linear and extend longitudinally along the second section of the bore, or may be formed substantially as a spiral in the second section of the bore.


According to the methods of the present invention, at least one of the first and second sections of the groove can be provided with a geometrical cross-sectional configuration comprising a flat-bottomed groove, a curved-bottom groove, or a pointed-bottom groove. Optionally, at least one of the first and second sections of the groove comprises a cross-sectional area that decreases in the direction extending away from the second end of the needle.


Methods performed according to the present invention may further comprise providing a plurality of fluid transport enhancing grooves in the second surface of the base, and wherein at least two of the plurality of grooves may intersect the bore at the second surface of the base. The plurality of grooves may further comprise at least one groove disposed in the second surface of the base that intersects another of the plurality of grooves, but does not intersect the bore. Alternatively, or in addition, the at least one groove may tangentially intersect the bore along the second surface of the base. At least one of the first and second sections of the groove(s) may comprise a fluid transport-enhancing feature, the feature comprising at least one of a coating and a surface texture. The portion of the bore extending from the second end of the tube to the second surface may comprise an additional fluid transport enhancing feature, the feature comprising at least one of a coating and a surface texture.


According to the methods of the present invention, the base may comprise a generally cylindrical hub. An actuation member may be attached to the hub.


According to an alternative aspect of the present invention, a method for improving transport of a fluid, such as a body fluid, comprises providing a base having a bore disposed therein extending from a first surface of the base through a second surface of the base; providing a needle having a first end adapted to pierce the skin, a second end opposite the first end, and a lumen having an inner diameter, inserting at least the second end of the tube received within the bore of the base; disposing at least one fluid transport enhancing groove comprising at least a first section disposed in the second surface of the base in fluid communication with the bore; and providing an analyte quantification member in fluid communication with at least one of the bore and the at least one fluid transport enhancing groove.


According to the methods of the present invention, a wearable or hand held blood glucose monitor is formed and/or operated by a method comprising, at least in part, any of the above described methods.


While this invention is satisfied by embodiments in many different forms, as described in detail in connection with preferred embodiments of the invention, it is understood that the present disclosure is to be considered as exemplary of the principles of the invention and is not intended to limit the invention to the specific embodiments illustrated and described herein. Numerous variations may be made by persons skilled in the art without departure from the spirit of the invention. The scope of the invention will be measured by the appended claims and their equivalents. The abstract and the title are not to be construed as limiting the scope of the present invention, as their purpose is to enable the appropriate authorities, as well as the general public, to quickly determine the general nature of the invention. In the claims that follow, unless the term “means” is used, none of the features or elements recited therein should be construed as means-plus-function limitations pursuant to 35 U.S.C. § 112, 916.

Claims
  • 1. An arrangement comprising: a base comprising a bore extending from a first surface of the base to a second surface opposite the first surface, wherein the second surface of the base comprises a plurality of radial grooves in fluid communication with and extending away from the bore, each of the plurality of radial grooves having a cross-sectional area that varies along its length;a fluid transport tube coupled to the base and comprising a lumen therethrough, wherein the fluid transport tube is in fluid communication with the bore; andan analyte quantification member comprising a reagent, wherein the analyte quantification member is in contact with the second surface of the base and overlies each of the plurality of radial grooves.
  • 2. The arrangement of claim 1, wherein the analyte quantification member overlies the bore.
  • 3. The arrangement of claim 1, wherein each of the plurality of radial grooves intersects the bore.
  • 4. The arrangement of claim 1, wherein a depth of each of the plurality of radial grooves decreases as the groove extends away from the bore.
  • 5. The arrangement of claim 1, wherein a width of each of the plurality of radial grooves increases as the groove extends away from the bore.
  • 6. The arrangement of claim 1 further comprising a retaining member at least partially overlying the analyte quantification member, wherein the retaining member is coupled to the base such that a portion of the analyte quantification member is compressed between the retaining member and the base.
  • 7. The arrangement of claim 1 further comprising a retaining member coupled to the base and at least partially overlying the analyte quantification member, wherein the retaining member is configured to permit optical communication with the analyte quantification member.
  • 8. The arrangement of claim 1, wherein the base comprises a cylindrical hub.
  • 9. The arrangement of claim 8 further comprising an actuation member attached to the hub.
  • 10. The arrangement of claim 1, wherein an end of the fluid transport tube is positioned within the bore.
  • 11. A system comprising: an integrated analyte meter; andthe arrangement of claim 2.
  • 12. The system of claim 11, wherein the integrated analyte meter is configured to be wearable or handheld.
  • 13. The system of claim 11, wherein the integrated analyte meter is constructed to perform multiple blood glucose concentration measurements.
CROSS REFERENCE TO RELATED APPLICATIONS

This application is a Continuation application of U.S. patent application Ser. No. 14/321,631, filed Jul. 1, 2014, which issued as U.S. Pat. No. 10,433,780 on Oct. 8, 2019, and which is a Continuation application of U.S. patent application Ser. No. 11/239,123, filed on Sep. 30, 2005, which issued as U.S. Pat. No. 8,801,631 on Aug. 12, 2014, the content of each of which is herein incorporated by reference in its entirety.

US Referenced Citations (787)
Number Name Date Kind
842690 Oswalt Jan 1907 A
D137874 Partridge May 1944 S
2749797 Harks Mar 1950 A
3092465 Adams, Jr. Jun 1963 A
3310002 Wilburn Mar 1967 A
3620209 Kravitz Nov 1971 A
3623475 Sanz et al. Nov 1971 A
3626929 Sanz et al. Dec 1971 A
3630957 Rey Dec 1971 A
D223165 Komendat Mar 1972 S
3723064 Liotta Mar 1973 A
3741197 Sanz et al. Jun 1973 A
3961898 Neeley et al. Jun 1976 A
3992158 Przybylowicz et al. Nov 1976 A
4014328 Cluff et al. Mar 1977 A
4042335 Clement Aug 1977 A
4057394 Genshaw Nov 1977 A
4109655 Chacornac Aug 1978 A
4253083 Imamura Feb 1981 A
4254083 Columbus Mar 1981 A
4258001 Pierce et al. Mar 1981 A
4260257 Neeley et al. Apr 1981 A
4289459 Neeley et al. Sep 1981 A
4321397 Nix et al. Mar 1982 A
4350762 DeLuca et al. Sep 1982 A
4394512 Batz Jul 1983 A
4414975 Ryder et al. Nov 1983 A
4416279 Lindner et al. Nov 1983 A
4418037 Katsuyama et al. Nov 1983 A
4422941 Vaughan, Jr. et al. Dec 1983 A
4429700 Thees et al. Feb 1984 A
4627445 Garcia et al. Dec 1986 A
4637403 Garcia et al. Jan 1987 A
4637406 Guinn et al. Jan 1987 A
4653513 Dombrowski Mar 1987 A
4661319 Lape Apr 1987 A
4702261 Cornell et al. Oct 1987 A
4711250 Gilbaugh, Jr. et al. Dec 1987 A
4737458 Batz et al. Apr 1988 A
4747687 Hoppe et al. May 1988 A
4767415 Duffy Aug 1988 A
4774192 Terminiello et al. Sep 1988 A
4787398 Garcia et al. Nov 1988 A
4790979 Terminiello et al. Dec 1988 A
4794926 Munsch et al. Jan 1989 A
4815843 Tiefenthaler et al. Mar 1989 A
4829470 Wang May 1989 A
4844095 Chiodo et al. Jul 1989 A
4846785 Cassou et al. Jul 1989 A
4887306 Hwang et al. Dec 1989 A
4920977 Haynes May 1990 A
4929426 Bodai et al. May 1990 A
4930525 Palestrant Jun 1990 A
4935346 Phillips Jun 1990 A
4953552 De Marzo Sep 1990 A
4966646 Zdeblick Oct 1990 A
4983178 Schnell Jan 1991 A
4995402 Smith Feb 1991 A
5029583 Meserol Jul 1991 A
5035704 Lambert et al. Jul 1991 A
5037199 Hlousek Aug 1991 A
5049487 Phillips et al. Sep 1991 A
5050617 Columbus et al. Sep 1991 A
5054878 Gergely et al. Oct 1991 A
5059394 Phillips et al. Oct 1991 A
5077199 Basagni et al. Dec 1991 A
5094943 Siedel et al. Mar 1992 A
5110724 Hewett May 1992 A
5114350 Hewett May 1992 A
5116759 Klainer et al. May 1992 A
5131404 Neeley et al. Jul 1992 A
5141868 Shanks et al. Aug 1992 A
5145565 Kater et al. Sep 1992 A
5146437 Boucheron Sep 1992 A
5153416 Neeley Oct 1992 A
5164575 Neeley et al. Nov 1992 A
5166498 Neeley Nov 1992 A
5174291 Schoonen et al. Dec 1992 A
5176632 Bernardi Jan 1993 A
5179005 Phillips et al. Jan 1993 A
5183741 Arai et al. Feb 1993 A
5194393 Hugl et al. Mar 1993 A
5196302 Kidwell Mar 1993 A
5208163 Charlton et al. May 1993 A
5213966 Vuorinen et al. May 1993 A
5217480 Habar et al. Jun 1993 A
5218966 Yamasawa Jun 1993 A
5223219 Subramanian et al. Jun 1993 A
5228972 Osaka et al. Jul 1993 A
5234818 Zimmermann et al. Aug 1993 A
5241969 Carson et al. Sep 1993 A
5251126 Kahn et al. Oct 1993 A
D341848 Bigelow et al. Nov 1993 S
5269800 Davis, Jr. Dec 1993 A
5275159 Griebel Jan 1994 A
5278079 Gubinski et al. Jan 1994 A
5279294 Anderson et al. Jan 1994 A
5288646 Lundsgaard et al. Feb 1994 A
5299571 Mastrototaro Apr 1994 A
5301686 Newman Apr 1994 A
5302513 Mike et al. Apr 1994 A
5304468 Phillips et al. Apr 1994 A
5306623 Kiser et al. Apr 1994 A
5308767 Terashima May 1994 A
5314441 Cusack et al. May 1994 A
5320607 Ishibashi Jun 1994 A
5354537 Moreno Oct 1994 A
5360595 Bell et al. Nov 1994 A
5368047 Suzuki et al. Nov 1994 A
5383512 Jarvis Jan 1995 A
5390671 Lord et al. Feb 1995 A
5395388 Schraga Mar 1995 A
5399316 Yamada Mar 1995 A
5401110 Neeley Mar 1995 A
5402798 Swierczek et al. Apr 1995 A
5426032 Phillips et al. Jun 1995 A
5441513 Roth Aug 1995 A
5451350 Macho et al. Sep 1995 A
5458140 Eppstein et al. Oct 1995 A
5460777 Kitajima et al. Oct 1995 A
5460968 Yoshida et al. Oct 1995 A
5482473 Lord et al. Jan 1996 A
5489414 Schreiber et al. Feb 1996 A
5506200 Hirschkoff et al. Apr 1996 A
5507288 Böcker et al. Apr 1996 A
5508200 Tiffany et al. Apr 1996 A
5510266 Bonner et al. Apr 1996 A
5514152 Smith May 1996 A
5518689 Dosmann et al. May 1996 A
5525518 Lundsgaard et al. Jun 1996 A
5563042 Phillips et al. Oct 1996 A
5568806 Cheney, II et al. Oct 1996 A
5569287 Tezuka et al. Oct 1996 A
5575403 Charlton et al. Nov 1996 A
5577499 Teves Nov 1996 A
5582184 Erickson et al. Dec 1996 A
5586553 Halili et al. Dec 1996 A
5591139 Lin et al. Jan 1997 A
5593838 Zanzucchi et al. Jan 1997 A
5602647 Xu et al. Feb 1997 A
5611809 Marshall et al. Mar 1997 A
5611999 Dosmann et al. Mar 1997 A
5624458 Lipscher Apr 1997 A
5630986 Charlton May 1997 A
5632410 Moulton et al. May 1997 A
5636632 Bommannan et al. Jun 1997 A
5638828 Lauks et al. Jun 1997 A
5647851 Pokras Jul 1997 A
5658515 Lee et al. Aug 1997 A
5660791 Brenneman Aug 1997 A
5670031 Hintsche et al. Sep 1997 A
5676850 Reed et al. Oct 1997 A
5680858 Hansen et al. Oct 1997 A
5681484 Zanzucchi et al. Oct 1997 A
5682233 Brinda Oct 1997 A
5697901 Eriksson Dec 1997 A
5700695 Yassinzadeh et al. Dec 1997 A
5701181 Boiarski et al. Dec 1997 A
5701910 Powles et al. Dec 1997 A
D389761 Thomas Jan 1998 S
5705018 Hartley Jan 1998 A
5708787 Nakano et al. Jan 1998 A
5715417 Gardien et al. Feb 1998 A
5730753 Morita Mar 1998 A
5735273 Kurnik et al. Apr 1998 A
5736103 Pugh Apr 1998 A
5741211 Renirie et al. Apr 1998 A
5746217 Erickson et al. May 1998 A
5746720 Stouder, Jr. May 1998 A
5753452 Smith May 1998 A
5757666 Schreiber et al. May 1998 A
5759364 Charlton et al. Jun 1998 A
5766066 Ranniger Jun 1998 A
5771890 Tamada Jun 1998 A
5789255 Yu Aug 1998 A
5797693 Jaeger Aug 1998 A
5800420 Gross et al. Sep 1998 A
5801057 Smart et al. Sep 1998 A
5807375 Gross et al. Sep 1998 A
5820570 Erickson et al. Oct 1998 A
5827183 Kurnik et al. Oct 1998 A
5840020 Heinonen et al. Nov 1998 A
5841126 Fossum et al. Nov 1998 A
5843692 Phillips et al. Dec 1998 A
5846837 Thym et al. Dec 1998 A
5851215 Mawhirt et al. Dec 1998 A
5854074 Charlton et al. Dec 1998 A
D403975 Douglas et al. Jan 1999 S
5855801 Lin et al. Jan 1999 A
5856195 Charlton et al. Jan 1999 A
5858194 Bell Jan 1999 A
5866281 Guckel et al. Feb 1999 A
5866349 Lilja et al. Feb 1999 A
5871494 Simons et al. Feb 1999 A
5879310 Sopp et al. Mar 1999 A
5879326 Godshall et al. Mar 1999 A
5879367 Latterell et al. Mar 1999 A
5885839 Lingane et al. Mar 1999 A
5891053 Sesekura Apr 1999 A
5893870 Talen et al. Apr 1999 A
D411621 Eisenbarth et al. Jun 1999 S
5911711 Pelkey Jun 1999 A
5911737 Lee et al. Jun 1999 A
5912139 Iwata et al. Jun 1999 A
5925021 Castellano et al. Jul 1999 A
5926271 Couderc et al. Jul 1999 A
5928207 Pisano et al. Jul 1999 A
5930873 Wyser Aug 1999 A
5938679 Freeman et al. Aug 1999 A
5945678 Yanagisawa Aug 1999 A
5951492 Douglas et al. Sep 1999 A
5951493 Douglas et al. Sep 1999 A
5951521 Mastrototaro et al. Sep 1999 A
5954685 Tierney Sep 1999 A
5962215 Douglas et al. Oct 1999 A
5968760 Phillips et al. Oct 1999 A
5968765 Grage et al. Oct 1999 A
5968836 Matzinger et al. Oct 1999 A
5971941 Simons et al. Oct 1999 A
5972294 Smith et al. Oct 1999 A
5986754 Harding Nov 1999 A
5989409 Kurnik et al. Nov 1999 A
5993189 Mueller et al. Nov 1999 A
D417504 Love et al. Dec 1999 S
6001067 Shults et al. Dec 1999 A
6005545 Nishida et al. Dec 1999 A
6010463 Lauks et al. Jan 2000 A
6010519 Mawhirt et al. Jan 2000 A
6014135 Fernandes Jan 2000 A
6014577 Henning et al. Jan 2000 A
6015969 Nathel et al. Jan 2000 A
6023629 Tamada Feb 2000 A
6027459 Shain et al. Feb 2000 A
6030827 Davis et al. Feb 2000 A
6032059 Henning et al. Feb 2000 A
6036924 Simons et al. Mar 2000 A
6037141 Banes Mar 2000 A
6041253 Kost et al. Mar 2000 A
6045753 Loewy et al. Apr 2000 A
6048352 Douglas et al. Apr 2000 A
6050988 Zuck Apr 2000 A
6056701 Duchon et al. May 2000 A
6056734 Jacobsen et al. May 2000 A
6058321 Swayze et al. May 2000 A
6059815 Lee et al. May 2000 A
6061128 Zweig et al. May 2000 A
6063039 Cunningham et al. May 2000 A
6066243 Anderson et al. May 2000 A
6071251 Cunningham et al. Jun 2000 A
6071294 Simons et al. Jun 2000 A
6077660 Wong et al. Jun 2000 A
6080116 Erickson et al. Jun 2000 A
6083196 Trautman et al. Jul 2000 A
6086544 Hibner et al. Jul 2000 A
6090790 Eriksson Jul 2000 A
6091975 Daddona et al. Jul 2000 A
6093156 Cunningham et al. Jul 2000 A
6097831 Wieck et al. Aug 2000 A
6099484 Douglas et al. Aug 2000 A
6100107 Lei et al. Aug 2000 A
6102933 Lee et al. Aug 2000 A
6103033 Say et al. Aug 2000 A
6103197 Werner Aug 2000 A
6106751 Talbot et al. Aug 2000 A
6118126 Zanzucchi Sep 2000 A
6120676 Heller et al. Sep 2000 A
6121050 Han Sep 2000 A
6123861 Santini, Jr. et al. Sep 2000 A
6126899 Woudenberg et al. Oct 2000 A
6132449 Lum et al. Oct 2000 A
6139562 Mauze et al. Oct 2000 A
6142939 Eppstein et al. Nov 2000 A
6152942 Brenneman et al. Nov 2000 A
6162639 Douglas Dec 2000 A
6172743 Kley et al. Jan 2001 B1
6175752 Say et al. Jan 2001 B1
6176865 Mauze et al. Jan 2001 B1
6183434 Eppstein et al. Feb 2001 B1
6183489 Douglas et al. Feb 2001 B1
6184990 Amirkhanian et al. Feb 2001 B1
6187210 Lebouiz et al. Feb 2001 B1
6192891 Gravel et al. Feb 2001 B1
6193873 Ohara et al. Feb 2001 B1
6197257 Raskas Mar 2001 B1
6200296 Dibiasi et al. Mar 2001 B1
6206841 Cunningham et al. Mar 2001 B1
6214626 Meller et al. Apr 2001 B1
6219574 Cormier et al. Apr 2001 B1
6228100 Schraga May 2001 B1
6230051 Cormier et al. May 2001 B1
6231531 Lum et al. May 2001 B1
6241862 McAleer et al. Jun 2001 B1
6242207 Douglas et al. Jun 2001 B1
6245215 Douglas et al. Jun 2001 B1
6246966 Perry Jun 2001 B1
6251083 Yum et al. Jun 2001 B1
6251260 Heller et al. Jun 2001 B1
6254586 Mann et al. Jul 2001 B1
6255061 Mori et al. Jul 2001 B1
6256533 Yuzhakov et al. Jul 2001 B1
6268162 Phillips et al. Jul 2001 B1
6271045 Douglas et al. Aug 2001 B1
6272364 Kurnik Aug 2001 B1
6283926 Cunningham et al. Sep 2001 B1
6289230 Chaiken et al. Sep 2001 B1
6298254 Tamada Oct 2001 B2
6299578 Kurnik et al. Oct 2001 B1
6299757 Feldman et al. Oct 2001 B1
6306104 Cunningham et al. Oct 2001 B1
6309351 Kurnik et al. Oct 2001 B1
D450711 Istvan et al. Nov 2001 S
6312612 Sherman et al. Nov 2001 B1
6312888 Wong et al. Nov 2001 B1
6315738 Nishikawa et al. Nov 2001 B1
6322808 Trautman et al. Nov 2001 B1
6329161 Heller et al. Dec 2001 B1
6331266 Powell et al. Dec 2001 B1
6332871 Douglas et al. Dec 2001 B1
6334856 Allen et al. Jan 2002 B1
6350273 Minagawa et al. Feb 2002 B1
6352514 Douglas et al. Mar 2002 B1
6356776 Berner et al. Mar 2002 B1
6358265 Thorne, Jr. et al. Mar 2002 B1
6364890 Lum et al. Apr 2002 B1
6375626 Allen et al. Apr 2002 B1
6375627 Mauze et al. Apr 2002 B1
6379969 Mauze et al. Apr 2002 B1
6391005 Lum et al. May 2002 B1
6391645 Huang et al. May 2002 B1
6402704 McMorrow Jun 2002 B1
6409679 Pyo Jun 2002 B2
6428664 Bhullar et al. Aug 2002 B1
6449608 Morita et al. Sep 2002 B1
6455324 Douglas Sep 2002 B1
6493069 Nagashimada Dec 2002 B1
6500134 Cassone Dec 2002 B1
6520973 McGarry Feb 2003 B1
6530892 Kelly Mar 2003 B1
6537243 Henning et al. Mar 2003 B1
6540675 Aceti et al. Apr 2003 B2
6544193 Abreu Apr 2003 B2
6544475 Douglas et al. Apr 2003 B1
6549796 Sohrab Apr 2003 B2
6555061 Leong et al. Apr 2003 B1
6558624 Lemmon et al. May 2003 B1
6579690 Bonnecaze et al. Jun 2003 B1
6589260 Schmelzeisen-Redeker et al. Jul 2003 B1
6591124 Sherman et al. Jul 2003 B2
6591125 Buse et al. Jul 2003 B1
6602205 Erickson et al. Aug 2003 B1
6612111 Hodges et al. Sep 2003 B1
6616616 Fritz et al. Sep 2003 B2
6626874 Duchamp Sep 2003 B1
6656167 Numao et al. Dec 2003 B2
6662031 Khalil et al. Dec 2003 B1
6679852 Schmelzeisen-Redeker et al. Jan 2004 B1
6690467 Reel Feb 2004 B1
6706000 Perez et al. Mar 2004 B2
6706049 Moerman Mar 2004 B2
6706159 Moerman Mar 2004 B2
6707554 Miltner et al. Mar 2004 B1
6740800 Cunningham May 2004 B1
6744502 Hoff et al. Jun 2004 B2
6748275 Lattner et al. Jun 2004 B2
6753187 Cizdziel et al. Jun 2004 B2
6766817 da Silva Jul 2004 B2
6775001 Friberg et al. Aug 2004 B2
6793633 Douglas et al. Sep 2004 B2
6830669 Miyazaki et al. Dec 2004 B2
6836678 Tu Dec 2004 B2
6837858 Cunningham et al. Jan 2005 B2
6847451 Pugh Jan 2005 B2
6849052 Uchigaki et al. Feb 2005 B2
6890421 Ohara et al. May 2005 B2
6896850 Subramanian et al. May 2005 B2
6903815 Uchiyama et al. Jun 2005 B2
6918404 Da Silva Jul 2005 B2
6919960 Hansen et al. Jul 2005 B2
6923764 Aceti et al. Aug 2005 B2
6936476 Anderson et al. Aug 2005 B1
D511214 Sasano et al. Nov 2005 S
6988996 Roe et al. Jan 2006 B2
7004928 Aceti et al. Feb 2006 B2
7011630 Desai et al. Mar 2006 B2
7025774 Freeman et al. Apr 2006 B2
D519868 Sasano et al. May 2006 S
7052652 Zanzucchi et al. May 2006 B2
7066586 Da Silva Jun 2006 B2
7066890 Lam et al. Jun 2006 B1
7141058 Briggs et al. Nov 2006 B2
7154592 Reynolds et al. Dec 2006 B2
7156809 Quy Jan 2007 B2
7163616 Vreeke et al. Jan 2007 B2
7183552 Russell Feb 2007 B2
7192061 Martin Mar 2007 B2
7192405 DeNuzzio et al. Mar 2007 B2
D540343 Cummins Apr 2007 S
7223365 Von Der Goltz May 2007 B2
7225008 Ward et al. May 2007 B1
7226461 Boecker et al. Jun 2007 B2
7229458 Boecker et al. Jun 2007 B2
D551243 Young Sep 2007 S
7270970 Anderson et al. Sep 2007 B2
7297151 Boecker et al. Nov 2007 B2
7299081 Mace et al. Nov 2007 B2
7316700 Alden et al. Jan 2008 B2
7323141 Kirchhevel et al. Jan 2008 B2
7323315 Marfurt Jan 2008 B2
7341830 Horn et al. Mar 2008 B2
7343188 Sohrab Mar 2008 B2
7344507 Briggs et al. Mar 2008 B2
7377904 Conway et al. May 2008 B2
7379167 Mawhirt et al. May 2008 B2
7427377 Zanzucchi et al. Sep 2008 B2
7439033 Marfurt Oct 2008 B2
D580068 Shigesada et al. Nov 2008 S
D580558 Shigesada et al. Nov 2008 S
7501053 Karinka et al. Mar 2009 B2
7537571 Freeman et al. May 2009 B2
D599373 Kobayashi et al. Sep 2009 S
D601257 Berlinger et al. Sep 2009 S
7582063 Wurster et al. Sep 2009 B2
7585278 Aceti et al. Sep 2009 B2
D601444 Jones et al. Oct 2009 S
D601578 Poulet et al. Oct 2009 S
7655019 LeVaughn et al. Feb 2010 B2
7682318 Alden et al. Mar 2010 B2
7708701 Boecker et al. May 2010 B2
7713214 Freeman et al. May 2010 B2
7725149 Peyser et al. May 2010 B2
D622393 Gatrall et al. Aug 2010 S
7780631 Lum et al. Aug 2010 B2
7803123 Perez et al. Sep 2010 B2
7819822 Calasso et al. Oct 2010 B2
7841992 Freeman et al. Nov 2010 B2
7850621 Briggs et al. Dec 2010 B2
7879058 Ikeda Feb 2011 B2
7883473 LeVaughn et al. Feb 2011 B2
7887494 Emery et al. Feb 2011 B2
7892183 Boecker et al. Feb 2011 B2
7955492 Fujiwara et al. Jun 2011 B2
7959583 DeNuzzio et al. Jun 2011 B2
7964372 Marfurt Jun 2011 B2
D642191 Barnett et al. Jul 2011 S
7972861 Deng et al. Jul 2011 B2
7988644 Freeman et al. Aug 2011 B2
8012103 Escutia et al. Sep 2011 B2
8012104 Escutia et al. Sep 2011 B2
D654926 Lipman et al. Feb 2012 S
8173439 Petrich et al. May 2012 B2
8184273 Dosmann et al. May 2012 B2
8202231 Freeman et al. Jun 2012 B2
8231832 Zanzucchi et al. Jul 2012 B2
8251920 Vreeke et al. Aug 2012 B2
8262614 Freeman et al. Sep 2012 B2
8267870 Freeman et al. Sep 2012 B2
8280476 Jina Oct 2012 B2
8298255 Conway et al. Oct 2012 B2
8303518 Aceti et al. Nov 2012 B2
8360993 Escutia et al. Jan 2013 B2
8360994 Escutia et al. Jan 2013 B2
8372015 Escutia et al. Feb 2013 B2
8372016 Freeman et al. Feb 2013 B2
8376959 Deck Feb 2013 B2
8382680 Kistner et al. Feb 2013 B2
8382681 Escutia et al. Feb 2013 B2
8391940 Matzinger et al. Mar 2013 B2
8419657 Roe Apr 2013 B2
D691174 Lipman et al. Oct 2013 S
8574168 Freeman et al. Nov 2013 B2
8574895 Freeman et al. Nov 2013 B2
8696880 Beer et al. Apr 2014 B2
8702624 Alden Apr 2014 B1
8795201 Escutia et al. Aug 2014 B2
8801631 Escutia et al. Aug 2014 B2
8919605 Lipman et al. Dec 2014 B2
8920455 Roe Dec 2014 B2
8969097 Emery et al. Mar 2015 B2
9017356 Schraga et al. Apr 2015 B2
9034639 Freeman et al. May 2015 B2
9060723 Escutia et al. Jun 2015 B2
9060727 Saikley et al. Jun 2015 B2
9063102 Hoenes et al. Jun 2015 B2
9089678 Freeman et al. Jul 2015 B2
9095292 Zanzucchi et al. Aug 2015 B2
9095847 Porsch et al. Aug 2015 B2
9097679 List et al. Aug 2015 B2
9101302 Mace et al. Aug 2015 B2
9131886 Harttig et al. Sep 2015 B2
9138179 Hoenes et al. Sep 2015 B2
9149215 Werner et al. Oct 2015 B2
9173608 Kuhr et al. Nov 2015 B2
9179872 Roe et al. Nov 2015 B2
9186097 Frey et al. Nov 2015 B2
9186104 Kraemer et al. Nov 2015 B2
9186468 Freeman et al. Nov 2015 B2
9226704 Deck Jan 2016 B2
9301171 List et al. Apr 2016 B2
9314194 Deshmukh et al. Apr 2016 B2
9326718 Petrich et al. May 2016 B2
9332931 Chan May 2016 B2
9332932 Okuyama et al. May 2016 B2
9339612 Freeman et al. May 2016 B2
9351680 Boecker et al. May 2016 B2
9364172 Konya et al. Jun 2016 B2
9366636 Emery et al. Jun 2016 B2
9375169 Choi et al. Jun 2016 B2
9375174 Richter et al. Jun 2016 B2
9375177 Planman et al. Jun 2016 B2
9380963 Gofman et al. Jul 2016 B2
9380974 Litherland et al. Jul 2016 B2
9386944 Freeman et al. Jul 2016 B2
9392968 Schraga Jul 2016 B2
9439591 Frey et al. Sep 2016 B2
9463463 He et al. Oct 2016 B2
9480419 Weiss et al. Nov 2016 B2
9480420 Konya et al. Nov 2016 B2
9486164 Roe Nov 2016 B2
9488585 Emeric et al. Nov 2016 B2
9517027 Kan et al. Dec 2016 B2
9560993 Freeman Feb 2017 B2
9561000 Lum Feb 2017 B2
9573761 List Feb 2017 B2
9599552 Baldus et al. Mar 2017 B2
9603562 Aceti et al. Mar 2017 B2
9636051 Emery et al. May 2017 B2
9668687 Volkmuth et al. Jun 2017 B2
9671387 Thoes et al. Jun 2017 B2
9717452 Roe et al. Aug 2017 B2
9724021 Freeman et al. Aug 2017 B2
9730625 Krasnow et al. Aug 2017 B2
9782114 Reynolds et al. Oct 2017 B2
9795334 Freeman et al. Oct 2017 B2
9820684 Freeman et al. Nov 2017 B2
9833183 Escutia et al. Dec 2017 B2
9839384 Escutia et al. Dec 2017 B2
9877676 Konya et al. Jan 2018 B2
9880254 Richter et al. Jan 2018 B2
9883828 Haar et al. Feb 2018 B2
9897610 Lipman et al. Feb 2018 B2
9927386 Wang et al. Mar 2018 B2
9931478 Hirshberg et al. Apr 2018 B2
9939403 Richter et al. Apr 2018 B2
9939404 Richter et al. Apr 2018 B2
9943256 Varsavsky et al. Apr 2018 B2
9943259 Kuhr et al. Apr 2018 B2
9949679 Renlund Apr 2018 B2
9965587 Aykroyd et al. May 2018 B2
9968284 Vidalis et al. May 2018 B2
9974471 Kam et al. May 2018 B1
9983140 Dickopf May 2018 B2
9987427 Polsky et al. Jun 2018 B1
10034628 Freeman et al. Jul 2018 B2
10080517 Chen et al. Sep 2018 B2
10194838 Weiss et al. Feb 2019 B2
10226208 Emery et al. Mar 2019 B2
10278621 List May 2019 B2
10309905 Dickopf Jun 2019 B2
10327689 Krasnow et al. Jun 2019 B2
10330667 Lipman et al. Jun 2019 B2
10383556 Lipman et al. Aug 2019 B2
10429337 Malecha et al. Oct 2019 B2
10433780 Escutia et al. Oct 2019 B2
10441205 Litherland et al. Oct 2019 B2
10729386 Lipman et al. Aug 2020 B2
10772550 Aceti et al. Sep 2020 B2
10842427 Escutia et al. Nov 2020 B2
11002743 Lipman et al. May 2021 B2
11045125 Escutia et al. Jun 2021 B2
11051734 Escutia et al. Jul 2021 B2
11382544 Reynolds et al. Jul 2022 B2
11399744 Emery et al. Aug 2022 B2
11419532 Emery et al. Aug 2022 B2
11672452 Escutia et al. Jun 2023 B2
20010001034 Douglas May 2001 A1
20010027277 Klitmose Oct 2001 A1
20010027328 Lum et al. Oct 2001 A1
20010053891 Ackley Dec 2001 A1
20020002326 Causey, III et al. Jan 2002 A1
20020002344 Douglas et al. Jan 2002 A1
20020004640 Conn et al. Jan 2002 A1
20020006355 Whitson Jan 2002 A1
20020016568 Lebel et al. Feb 2002 A1
20020020688 Sherman et al. Feb 2002 A1
20020022934 Vogel et al. Feb 2002 A1
20020023852 Mcivor et al. Feb 2002 A1
20020042594 Lum et al. Apr 2002 A1
20020045243 Laska et al. Apr 2002 A1
20020052618 Haar et al. May 2002 A1
20020067481 Wolf et al. Jun 2002 A1
20020087056 Aceti et al. Jul 2002 A1
20020136667 Subramanian et al. Sep 2002 A1
20020137998 Smart et al. Sep 2002 A1
20020160520 Orloff et al. Oct 2002 A1
20020168290 Yuzhakov et al. Nov 2002 A1
20020169394 Eppstein et al. Nov 2002 A1
20020169411 Sherman et al. Nov 2002 A1
20020177761 Orloff et al. Nov 2002 A1
20020177764 Sohrab Nov 2002 A1
20020183102 Withers et al. Dec 2002 A1
20020188223 Perez et al. Dec 2002 A1
20020198444 Uchigaki et al. Dec 2002 A1
20030012693 Otillar et al. Jan 2003 A1
20030028087 Yuzhakov et al. Feb 2003 A1
20030028125 Yuzhakov et al. Feb 2003 A1
20030039587 Niermann Feb 2003 A1
20030060730 Perez Mar 2003 A1
20030083685 Freeman et al. May 2003 A1
20030083686 Freeman et al. May 2003 A1
20030116596 Terasawa Jun 2003 A1
20030135166 Gonnelli Jul 2003 A1
20030135333 Aceti Jul 2003 A1
20030143746 Sage Jul 2003 A1
20030153844 Smith et al. Aug 2003 A1
20030153900 Aceti et al. Aug 2003 A1
20030175987 Verdonk et al. Sep 2003 A1
20030187395 Gabel et al. Oct 2003 A1
20030206302 Pugh Nov 2003 A1
20030207441 Eyster et al. Nov 2003 A1
20030208113 Mault et al. Nov 2003 A1
20030211619 Olson et al. Nov 2003 A1
20030212344 Yuzhakov et al. Nov 2003 A1
20030212345 McAllister et al. Nov 2003 A1
20030212347 Sohrab Nov 2003 A1
20040010207 Flaherty et al. Jan 2004 A1
20040030353 Schmelzeisen-redeker et al. Feb 2004 A1
20040039303 Wurster et al. Feb 2004 A1
20040049219 Briggs et al. Mar 2004 A1
20040059256 Perez Mar 2004 A1
20040072357 Stiene et al. Apr 2004 A1
20040073140 Douglas Apr 2004 A1
20040092842 Boecker et al. May 2004 A1
20040092995 Boecker et al. May 2004 A1
20040096959 Stiene et al. May 2004 A1
20040097796 Berman et al. May 2004 A1
20040098009 Boecker et al. May 2004 A1
20040102803 Boecker et al. May 2004 A1
20040120848 Teodorczyk Jun 2004 A1
20040122339 Roe et al. Jun 2004 A1
20040132167 Rule et al. Jul 2004 A1
20040138588 Saikley et al. Jul 2004 A1
20040155084 Brown Aug 2004 A1
20040178218 Schomakers et al. Sep 2004 A1
20040186394 Roe et al. Sep 2004 A1
20040191119 Zanzucchi et al. Sep 2004 A1
20040202576 Aceti et al. Oct 2004 A1
20040230216 Levaughn et al. Nov 2004 A1
20040236251 Roe et al. Nov 2004 A1
20040238675 Banaszkiewicz et al. Dec 2004 A1
20040242982 Sakata et al. Dec 2004 A1
20040249253 Racchini et al. Dec 2004 A1
20040259180 Burke et al. Dec 2004 A1
20050004494 Perez et al. Jan 2005 A1
20050010134 Douglas et al. Jan 2005 A1
20050015020 LeVaughn et al. Jan 2005 A1
20050033340 Lipoma et al. Feb 2005 A1
20050070819 Poux et al. Mar 2005 A1
20050077030 Wong Apr 2005 A1
20050096686 Allen May 2005 A1
20050106713 Phan et al. May 2005 A1
20050109386 Marshall May 2005 A1
20050153428 Matsumoto Jul 2005 A1
20050154410 Conway et al. Jul 2005 A1
20050159678 Taniike et al. Jul 2005 A1
20050176133 Miyashita et al. Aug 2005 A1
20050178218 Montagu Aug 2005 A1
20050187532 Thurau et al. Aug 2005 A1
20050192492 Cho et al. Sep 2005 A1
20050202567 Zanzucchi et al. Sep 2005 A1
20050202733 Yoshimura et al. Sep 2005 A1
20050209518 Sage, Jr. et al. Sep 2005 A1
20050215872 Berner et al. Sep 2005 A1
20050215923 Wiegel Sep 2005 A1
20050234494 Conway et al. Oct 2005 A1
20050245844 Mace et al. Nov 2005 A1
20050255001 Padmaabhan et al. Nov 2005 A1
20050277972 Wong et al. Dec 2005 A1
20060008389 Sacherer et al. Jan 2006 A1
20060036134 Tarassenko et al. Feb 2006 A1
20060052724 Roe Mar 2006 A1
20060064035 Wang et al. Mar 2006 A1
20060094985 Aceti et al. May 2006 A1
20060117616 Jones et al. Jun 2006 A1
20060122536 Haar et al. Jun 2006 A1
20060135873 Karo et al. Jun 2006 A1
20060155317 List Jul 2006 A1
20060161078 Schraga Jul 2006 A1
20060178600 Kennedy et al. Aug 2006 A1
20060189908 Kennedy Aug 2006 A1
20060200044 Freeman et al. Sep 2006 A1
20060204399 Freeman et al. Sep 2006 A1
20060224172 LeVaughn et al. Oct 2006 A1
20060229533 Hoenes et al. Oct 2006 A1
20060241517 Fowler et al. Oct 2006 A1
20060257993 Mcdevitt et al. Nov 2006 A1
20060259102 Slatkine Nov 2006 A1
20060264996 LeVaughn et al. Nov 2006 A1
20060281187 Emery et al. Dec 2006 A1
20070016104 Jansen et al. Jan 2007 A1
20070017824 Rippeth et al. Jan 2007 A1
20070060842 Alvarez-Icaza et al. Mar 2007 A1
20070078313 Emery et al. Apr 2007 A1
20070078358 Escutia et al. Apr 2007 A1
20070083131 Escutia et al. Apr 2007 A1
20070100255 Boecker et al. May 2007 A1
20070112281 Olson May 2007 A1
20070179404 Escutia et al. Aug 2007 A1
20070179405 Emery et al. Aug 2007 A1
20070255181 Alvarez-icaza et al. Nov 2007 A1
20070255302 Koeppel et al. Nov 2007 A1
20080046831 Imai et al. Feb 2008 A1
20080064986 Kraemer et al. Mar 2008 A1
20080064987 Escutia et al. Mar 2008 A1
20080077048 Escutia et al. Mar 2008 A1
20080194934 Ray et al. Aug 2008 A1
20080255598 LeVaughn et al. Oct 2008 A1
20080269625 Halperin et al. Oct 2008 A1
20080274447 Mecklenburg Nov 2008 A1
20090054810 Zanzucchi et al. Feb 2009 A1
20090156923 Power et al. Jun 2009 A1
20090292489 Burke et al. Nov 2009 A1
20090301899 Hodges et al. Dec 2009 A1
20100010374 Escutia et al. Jan 2010 A1
20100021947 Emery et al. Jan 2010 A1
20100021948 Lipman et al. Jan 2010 A1
20100095229 Dixon et al. Apr 2010 A1
20100152660 Mack et al. Jun 2010 A1
20100174211 Frey et al. Jul 2010 A1
20100185120 Sacherer et al. Jul 2010 A1
20100217155 Poux et al. Aug 2010 A1
20100249652 Rush et al. Sep 2010 A1
20110098599 Emery et al. Apr 2011 A1
20110105872 Chickering, III et al. May 2011 A1
20110201909 Emery et al. Aug 2011 A1
20110288440 Escutia et al. Nov 2011 A1
20110288443 Escutia et al. Nov 2011 A1
20110294152 Lipman et al. Dec 2011 A1
20120166090 Lipman et al. Jun 2012 A1
20120296179 Zanzucchi et al. Nov 2012 A1
20130144189 Escutia et al. Jun 2013 A1
20130158430 Aceti et al. Jun 2013 A1
20130158432 Escutia et al. Jun 2013 A1
20130172698 Reynolds et al. Jul 2013 A1
20130274568 Escutia et al. Oct 2013 A1
20130274579 Richter et al. Nov 2013 A1
20140316301 Escutia et al. Oct 2014 A1
20140336480 Escutia et al. Nov 2014 A1
20140376762 Lipman et al. Dec 2014 A1
20150037898 Baldus et al. Feb 2015 A1
20150153351 Lipman et al. Jun 2015 A1
20150182157 Boriah et al. Jul 2015 A1
20150212006 Emery et al. Jul 2015 A1
20150268228 Schulat et al. Sep 2015 A1
20150335272 Natale et al. Nov 2015 A1
20160011178 Hoenes et al. Jan 2016 A1
20160038066 Escutia et al. Feb 2016 A1
20160256106 Krasnow et al. Sep 2016 A1
20160367178 Litherland et al. Dec 2016 A1
20160374603 Shaanan et al. Dec 2016 A1
20170095188 Emery et al. Apr 2017 A1
20170319121 Aceti et al. Nov 2017 A1
20170354355 Emery et al. Dec 2017 A1
20180008178 Escutia et al. Jan 2018 A1
20180214059 Escutia et al. Aug 2018 A1
20180296143 Anderson et al. Oct 2018 A1
20180310865 Escutia et al. Nov 2018 A1
20180338713 Polsky et al. Nov 2018 A1
20190000365 Beyerlein et al. Jan 2019 A1
20190025318 Lipman et al. Jan 2019 A1
20190104976 Reynolds et al. Apr 2019 A1
20190175086 Yang Jun 2019 A1
20190209064 Emery et al. Jul 2019 A1
20190209820 Chickering, III et al. Jul 2019 A1
20190269358 Messerschmidt Sep 2019 A1
20190274607 Krasnow et al. Sep 2019 A1
20190391129 Lipman et al. Dec 2019 A1
20200155052 Litherland et al. May 2020 A1
20200214605 Lipman et al. Jul 2020 A1
20200237280 Escutia et al. Jul 2020 A1
20210177361 Lipman et al. Jun 2021 A1
20210307662 Escutia et al. Oct 2021 A1
20210330225 Escutia et al. Oct 2021 A1
20220026436 Lipman Jan 2022 A1
20220039711 Escutia et al. Feb 2022 A1
20220322980 Escutia et al. Oct 2022 A1
20230123209 Lipman et al. Apr 2023 A1
20230190144 Emery et al. Jun 2023 A1
Foreign Referenced Citations (235)
Number Date Country
2 201 530 Sep 1997 CA
2 513 465 Aug 2004 CA
197 05 091 Feb 1999 DE
199 22 413 Nov 2000 DE
103 02-501 Aug 2004 DE
0 103 426 Mar 1984 EP
0 256 806 Feb 1988 EP
0 160 708 Oct 1989 EP
0 356 418 Feb 1990 EP
0 396-016 Nov 1990 EP
0 396-016 Nov 1990 EP
0 397 424 Nov 1990 EP
0 409 032 Jan 1991 EP
0 255-338 Feb 1998 EP
0 849 584 Jun 1998 EP
0 877 250 Nov 1998 EP
1 037 048 Sep 2000 EP
1 060 768 Dec 2000 EP
1 118 856 Jul 2001 EP
1 266-607 Dec 2002 EP
1 266-607 Dec 2002 EP
1 369 688 Oct 2003 EP
1 369 688 Oct 2003 EP
1 360-934 Nov 2003 EP
1 360-934 Nov 2003 EP
1 486-766 Dec 2004 EP
1 486-766 Dec 2004 EP
1486766 Dec 2004 EP
1 529-489 May 2005 EP
1 529-489 May 2005 EP
1 769-735 Apr 2007 EP
61-290342 Dec 1986 JP
63-305841 Dec 1988 JP
1-318963 Dec 1989 JP
3-63570 Mar 1991 JP
03093189 Apr 1991 JP
H0525587 Feb 1993 JP
7-67861 Mar 1995 JP
7-213925 Aug 1995 JP
9-168530 Jun 1997 JP
9-313465 Sep 1997 JP
9-266889 Oct 1997 JP
9-294737 Nov 1997 JP
10-024028 Jan 1998 JP
H105199 Jan 1998 JP
10-505258 May 1998 JP
10-508518 Aug 1998 JP
10-318970 Dec 1998 JP
11-056822 Mar 1999 JP
2000-126161 May 2000 JP
2000-168754 Jun 2000 JP
2000152923 Jun 2000 JP
2000-254111 Sep 2000 JP
2001-159618 Jun 2001 JP
2001-515203 Sep 2001 JP
2001-281242 Oct 2001 JP
2001-305096 Oct 2001 JP
2001-330581 Nov 2001 JP
2002-502045 Jan 2002 JP
2002-085384 Mar 2002 JP
2002-514453 May 2002 JP
2003-507719 Feb 2003 JP
2003108679 Apr 2003 JP
2003-180417 Jul 2003 JP
3457964 Oct 2003 JP
2004-000598 Jan 2004 JP
2004-500948 Jan 2004 JP
2004-117339 Apr 2004 JP
2004-202256 Jul 2004 JP
2004-209266 Jul 2004 JP
2004-519302 Jul 2004 JP
2004-522500 Jul 2004 JP
2004-528936 Sep 2004 JP
3561727 Sep 2004 JP
2004535576 Nov 2004 JP
2005-503538 Feb 2005 JP
2005-087613 Apr 2005 JP
2006-512969 Apr 2005 JP
3638958 Apr 2005 JP
2008-125813 Jun 2005 JP
2005-525149 Aug 2005 JP
2005-237938 Sep 2005 JP
2005-525846 Sep 2005 JP
2005-527254 Sep 2005 JP
2006-506185 Feb 2006 JP
2006068384 Mar 2006 JP
2006-512974 Apr 2006 JP
2006-516723 Jul 2006 JP
2006-521555 Sep 2006 JP
2006-527013 Nov 2006 JP
2007-014381 Jan 2007 JP
2007-054407 Mar 2007 JP
2007-136198 Jun 2007 JP
2007-521031 Aug 2007 JP
2007-527287 Sep 2007 JP
2007-537804 Dec 2007 JP
2008043741 Feb 2008 JP
2008-212324 Sep 2008 JP
2009-509645 Mar 2009 JP
2009-509667 Mar 2009 JP
2013505747 Feb 2013 JP
100458978 May 2005 KR
WO-8605966 Oct 1986 WO
WO-8800812 Feb 1988 WO
WO-8807666 Oct 1988 WO
WO-9114212 Sep 1991 WO
WO-9413203 Jun 1994 WO
WO-9510223 Apr 1995 WO
WO-9510223 Apr 1995 WO
WO-9604857 Feb 1996 WO
WO-9607907 Mar 1996 WO
WO-9614026 May 1996 WO
WO-9625088 Aug 1996 WO
WO-9704707 Feb 1997 WO
WO-9715227 May 1997 WO
WO-9729847 Aug 1997 WO
WO-9730344 Aug 1997 WO
WO-9741421 Nov 1997 WO
WO-9742885 Nov 1997 WO
WO-9742888 Nov 1997 WO
WO-9743962 Nov 1997 WO
WO-9800193 Jan 1998 WO
WO-9831275 Jul 1998 WO
WO-9835225 Aug 1998 WO
WO-9912008 Mar 1999 WO
WO-9923492 May 1999 WO
WO-9944508 Sep 1999 WO
WO-9956954 Nov 1999 WO
WO-9958051 Nov 1999 WO
WO-9962576 Dec 1999 WO
WO-0009184 Feb 2000 WO
WO-0013573 Mar 2000 WO
WO-0014269 Mar 2000 WO
WO-0014535 Mar 2000 WO
WO-0015102 Mar 2000 WO
WO-0018449 Apr 2000 WO
WO-0018449 Apr 2000 WO
WO-0019185 Apr 2000 WO
WO-0036400 Jun 2000 WO
WO-0249509 Jun 2000 WO
WO-0042422 Jul 2000 WO
WO-0074763 Dec 2000 WO
WO-0074763 Dec 2000 WO
WO-0078208 Dec 2000 WO
WO 0113795 Mar 2001 WO
WO-0116575 Mar 2001 WO
WO-0138857 May 2001 WO
WO-0152727 Jul 2001 WO
WO-0164105 Sep 2001 WO
WO-0164105 Sep 2001 WO
WO-0172220 Oct 2001 WO
WO-0180728 Nov 2001 WO
WO-0185233 Nov 2001 WO
WO-0185233 Nov 2001 WO
WO-0191634 Dec 2001 WO
WO-0191634 Dec 2001 WO
WO-0200101 Jan 2002 WO
WO-0200101 Jan 2002 WO
WO-0249507 Jun 2002 WO
WO-0249509 Jun 2002 WO
WO-02078533 Oct 2002 WO
WO-02078533 Oct 2002 WO
WO-02082052 Oct 2002 WO
WO-02082052 Oct 2002 WO
WO-02093144 Nov 2002 WO
WO-02100251 Dec 2002 WO
WO-02100251 Dec 2002 WO
WO-02101359 Dec 2002 WO
WO-02101359 Dec 2002 WO
WO-03007819 Jan 2003 WO
WO-2003030984 Apr 2003 WO
WO-2003066128 Aug 2003 WO
WO-2003066128 Aug 2003 WO
WO-2003070099 Aug 2003 WO
WO-2003071940 Sep 2003 WO
WO-2003071940 Sep 2003 WO
WO-03088834 Oct 2003 WO
WO-2004045375 Jun 2004 WO
WO-2004045375 Jun 2004 WO
WO-2004062499 Jul 2004 WO
WO-2004062500 Jul 2004 WO
WO-2004062500 Jul 2004 WO
WO-2004064636 Aug 2004 WO
WO-2004085995 Oct 2004 WO
WO-2004085995 Oct 2004 WO
WO-2004091693 Oct 2004 WO
WO-2004091693 Oct 2004 WO
WO-2004105827 Dec 2004 WO
WO-2004112612 Dec 2004 WO
WO-2005006939 Jan 2005 WO
WO-2005006939 Jan 2005 WO
WO-2005009238 Feb 2005 WO
WO-2005013824 Feb 2005 WO
WO-2005016125 Feb 2005 WO
WO-2005018709 Mar 2005 WO
WO-2005018709 Mar 2005 WO
WO-2005018710 Mar 2005 WO
WO-2005018710 Mar 2005 WO
WO-2005054840 Jun 2005 WO
WO-2005084543 Sep 2005 WO
WO-2005084546 Sep 2005 WO
WO-2005084546 Sep 2005 WO
WO-2005085995 Sep 2005 WO
WO-2005090969 Sep 2005 WO
WO-2005112763 Dec 2005 WO
WO-2006004859 Jan 2006 WO
WO-2006031920 Mar 2006 WO
WO-2006138226 Dec 2006 WO
WO-2006138226 Dec 2006 WO
WO-2007041062 Apr 2007 WO
WO-2007041062 Apr 2007 WO
WO-2007041063 Apr 2007 WO
WO-2007041063 Apr 2007 WO
WO-2007041244 Apr 2007 WO
WO-2007041244 Apr 2007 WO
WO-2007041287 Apr 2007 WO
WO-2007041287 Apr 2007 WO
WO-2007041355 Apr 2007 WO
WO-2007041355 Apr 2007 WO
WO-2007054317 May 2007 WO
WO-2007088875 Aug 2007 WO
WO-2007108519 Sep 2007 WO
WO-2007112034 Oct 2007 WO
WO-2007112034 Oct 2007 WO
WO-2008027319 Mar 2008 WO
WO-2008027319 Mar 2008 WO
WO-2008062648 May 2008 WO
WO-2009145920 Dec 2009 WO
WO-2009148624 Dec 2009 WO
WO-2009148626 Dec 2009 WO
WO-2011065981 Jun 2011 WO
WO-2011162823 Dec 2011 WO
WO-2013020103 Feb 2013 WO
WO-2014205412 Dec 2014 WO
WO-2018191700 Oct 2018 WO
Non-Patent Literature Citations (152)
Entry
ADA Consensus Development Panel. (Jan.-Feb. 1987). “Consensus Statement on Self-Monitoring of Blood Glucose,” Diabetes Care 10(1):95-99.
ADA (Jan. 1994). “Self-Monitoring of Blood Glucose,” Consensus Statement Diabetes Care 17(1):81-86.
Anonymous. (Sep. 30, 1993). “The Effect of Intensive Treatment of Diabetes on the Development and Progression of Long-Term Complications in Insulin-Dependent Diabetes Mellitus.” The New England Journal of Medicine 329(14):977-986.
Anonymous. (Jun. 23, 1998). Taking the “Ouch” Out of Needles: Arrays of “Microneedles” Offer New Techniques for Drug Delivery, Science Daily, located at <http:www.sciencedaily.com/releases/1998/06/980623045850.htm>, last visited Jan. 14, 2014, 3 pages.
Beregszàszi, M. et al. (Jul. 1997). “Nocturnal Hypoglycemia in Children and Adolescents with Insulin-Dependent Diabetes Mellitus: Prevalence and Risk Factors,” J. Pediatrics 131(1 Pt. 1):27-33.
Chase, H.P. et al. (Feb. 2001). “Continuous Subcutaneous Glucose Monitoring in Children with Type 1 Diabetes,” Pediatrics 107(2):222-226.
Clarke, W.L. et al. (Sep.-Oct. 1987). “Evaluating Clinical Accuracy of Systems for Self-Monitoring of Blood Glucose,” Diabetes Care 10(5):622-628.
Collison, M.E. et al. (Sep. 1999). “Analytical Characterization of Electrochemical Biosensor Test Strips for Measurement of Glucose in Low-Volume Interstitial Fluid Samples,” Clinical Chemistry 45(9):1665-1673.
Cox, D.J. et al. (Jun. 1997). “Understanding Error Grid Analysis,” Diabetes Care 20(6):911-912.
D'Arrigo, T.D. (Mar. 2000). “GlucoWatch Monitor Poised for Approval,” Diabetes Forecast,53(3):43-44.
European Examination Report dated Mar. 18, 2011, for EP Patent Application No. 06 815 329.5 filed on Sep. 26, 2006, five pages.
European Examination Report dated Jul. 19, 2012, for EP Patent Application No. 06 815 329.5 filed on Sep. 26, 2006, five pages.
Feldman, B. et al. (2000). “FreeStyle™: A Small-Volume Electrochemical Glucose Sensor for Home Blood Glucose Testing,” Diabetes Technology and Therapeutics, 2(2):221-229.
Final Office Action dated Mar. 5, 2009, for U.S. Appl. No. 11/239,123, filed Sep. 30, 2005, 17 pages.
Final Office Action dated Mar. 3, 2011, for U.S. Appl. No. 11/239,123, filed Sep. 30, 2005, 25 pages.
Final Office Action dated Jan. 6, 2016, for U.S. Appl. No. 14/321,631, filed Jul. 1, 2014, 9 pages.
International Search Report dated Aug. 20, 2007 for PCT Application No. PCT/US2006/37245, filed on Sep. 26, 2006, 1 page.
Johnson, R.N. et al. (Jan. 1998). “Accuracy of Devices Used for Self-Monitoring of Blood Glucose,” Annals of Clinical Biochemistry 35(1):68-74.
Johnson, R.N. et al. (Jan. 1999). “Analytical Error of Home Glucose Monitors: A Comparison of 18 Systems,” Annals of Clinical Biochemistry 36(1):72-79.
Johnson, R.N. et al. (2001). “Error Detection and Measurement in Glucose Monitors,” Clinica Chimica Acta 307:61-67.
Khalil, “Non-invasive glucose measurement technologies: an update from 1999 to the dawn of the new millennium,” Diabetes Technology & Therapeutics., vol. 6, No. 5, 2004 (Invalidity Searching Apr. 2020).
Kumetrix, Inc. (Dec. 1999). “Painless Blood Glucose Monitoring, Courtesy of the Mosquito,” Start-Up pp. 27-28.
Lee, S-C. (Jun. 1999). “Light Scattering by Closely Spaced Parallel Cylinders Embedded in a Finite Dielectric Slab,” Journal of the Optical Society of America A 16(6):1350-1361.
Mahler, R.J. et al. (1999). “Clinical Review 102, Type 2 Diabetes Melitus: Update on Diagnosis Pathophysiology, and Treatment,” The Journal of Clinical Endocrinology and Metabolism 84(4):1165-1171.
McGarraugh, G. et al. (2001). “Physiological Influences on Off-Finger Glucose Testing,” Diabetes Technology & Therapeutics 3(3):367-376.
McNichols, R.J. et al. (Jan. 2000). “Optical Glucose Sensing in Biological Fluids: An Overview,” Journal of Biomedical Optics, 5(1):5-16.
Medline Plus. (Jun. 17, 2008), Medical Encyclopedia, Monitor Blood Glucose-Series: Part 1-4, 6 pages.
Neeley, W.E. et al. (1981). “An Instrument for Digital Matrix Photometry,” Clinical Chemistry 27(10):1665-1668.
Neeley, W.E. (1983). “Reflectance Digital Matrix Photometry,” Clinical Chemistry 29(6):1038-1041.
Neeley, W.E. (1983). “Multilayer Film Analysis for Glucose in 1-μL Samples of Plasma,” Clinical Chemistry 29(12):2103-2105.
Neeley, W.E. (1988). “A Reflectance Photometer with a Square Photodiode Array Detector for Use on Multilayer Dry-Film Slides,” Clinical Chemistry 34(11):2367-2370.
Non-Final Office Action dated Nov. 1, 2007, for U.S. Appl. No. 11/239,123, filed Sep. 30, 2005, 15 pages.
Non-Final Office Action dated Apr. 15, 2010, for U.S. Appl. No. 11/239,123, filed Sep. 30, 2005, 19 pages.
Non-Final Office Action dated Sep. 19, 2013, for U.S. Appl. No. 11/239,123, filed Sep. 30, 2005, 24 pages.
Non-Final Office Action dated Aug. 8, 2014, for U.S. Appl. No. 14/321,631, filed Jul. 1, 2014, 11 pages.
Notice of Allowance dated Apr. 3, 2014, for U.S. Appl. No. 11/239,123, filed Sep. 30, 2005, 6 pages.
Otto, E. et al. (2000). “An Intelligent Diabetes Software Prototype: Predicting Blood Glucose Levels and Recommending Regimen Changes,” Diabetes Technology and Therapeutics 2(4):569-576.
Pfohl, M. et al. (2000). “Spot Glucose Measurement in Epidermal Interstitial Fluid—An Alternative to Capillary Blood Glucose Estimation,” Experimental and Clinical Endocrinology & Diabetes 108(1):1-4.
Princen, H.M. (May 1969). “Capillary Phenomena in Assemblies of Parallel Cylinders, I. Capillary Rise Between Two Cylinders,” Journal of Colloid and Interface Science 30(1):69-75.
Princen, H.M. (Jul. 1969). “Capillary Phenomena in Assemblies of Parallel Cylinders, II. Capillary Rise in Systems with More Than Two Cylinders,” Journal of Colloid and Interface Science 30(3):359-371.
Rebrin, K. et al. (Sep. 1999). “Subcutaneous Glucose Predicts Plasma Glucose Independent of Insulin: Implications for Continuous Monitoring,” American Journal of Physiology 277(3):E561-E571.
Restriction Requirement dated Aug. 23, 2007, for U.S. Appl. No. 11/239,123, filed Sep. 30, 2005, 6 pages.
Smart, W.H. et al. (2000). “The Use of Silicon Microfabrication Technology in Painless Glucose Monitoring,”Diabetes Technology & Therapeutics 2(4):549-559.
Svedman, C. et al. (Apr. 1999). “Skin Mini-Erosion Technique for Monitoring Metabolites in Interstitial Fluid: Its Feasibility Demonstrated by OGTT Results in Diabetic and Non-Diabetic Subjects,” Scand. J. Clin. Lab. Invest. 59(2):115-123.
Trinder, P. (1969). “Determination of Glucose in Blood Using Glucose Oxidase with an Alternate Oxygen Acceptor,” Annals of Clinical Biochemistry 6:24-28.
Written Opinion dated Aug. 20, 2007 for PCT Application No. PCT/US2006/37245, filed on Sep. 26, 2006, 7 pages.
Yum, S. I. et al. (Nov. 1, 1999). “Capillary Blood Sampling for Self-Monitoring of Blood Glucose,” Diabetes Technology & Therapeutics, 1(1):29-37.
Extended European search report received from the European Patent Office for Application No. 16200931.0, dated Apr. 12, 2017, 9 pages.
Non-Final Office Action dated Aug. 24, 2017, for U.S. Appl. No. 14/321,631, filed Jan. 11, 2017, 18 pages.
Brazzle, J. et al. Active Microneedles with Integrated Functionality, Solid-State Sensor and Actuator Workshop, Hilton Head Island, South Carolina, Jun. 4-8, 2000, Technical Digest, 199-202.
Burge, M.R., (Aug. 2001). “Lack of Compliance with Home Blood Glucose Monitoring Predicts Hospitalization in Diabetes”, Diabetes Care 24(8): 1502-1503.
Clarke, W.L. et al. (Sep.-Oct. 1981). “Evaluation of a New Reflectance Photometer for Use in Home Blood Glucose Monitoring,” Diabetes Care, 4(5):547-550.
Coster, S. et al. (2000). “Monitoring Blood Glucose Control in Diabetes Mellitus: A Systematic Review.” Health Technology Assessment 4(12):1-93.
Rosen, S. (1999). “Road to New-Age Glucose Monitoring Still Rocky,” Diagnostic Insight, pp. 4-5, 12-13, 16.
Spielman, A. et al. (2001). Mosquito: A Natural History of Our Most Persistent and Deadly Foe, First Edition, Hyperion, New York, NY, 3 pages. (Table of Contents Only).
Sonntag, O. (1993). Ektachem. Dry Chemistry, Analysis With Carrier-Bound Reagents, Elsevier Science Publishers, 57 pages.
Tietz, N.W. (1986). Textbook of Clinical Chemistry, W.B. Saunders Company, pp. 1533 and 1556.
Wikipedia (2016). “Capillary action,” 7 pages.
Hemmerich, K.J. et al. (Apr. 1995).“Guide to Engineering Thermoplastics,” Medical Devices and Diagnostic Industry pp. 39-59.
Integ. (2000). “LifeGuideÔ Glucose Meter. No Lancets. No Blood,” located at <http://www.integonline.com>, last visited May 1, 2000, 10 pages.
Ishii H. et al., (Aug. 2001). “Seasonal Variation of Glycemic Control in Type 2 Diabetic Patients”, Diabetes Care 24(8):1503.
Massey V. et al. (Aug. 1960). “Studies on the Reaction Mechanism of Lipoyl Dehydrogenase” Biochim. Biophys. Acta 48: 33-47.
Straub F.B. (Mar. 1939). “Isolation and Properties of a flavoprotien from Heart Muscle Tissue”, Biochemical Journal 33: 787-792.
U.S. Precision Lens, Inc. (1983).The Handbook of Plastic Optics.
Extended European Search Report dated Nov. 8, 2016 from the European Patent Office for Application No. 16167087.2, filed Aug. 3, 2012, 6 pages.
Final Office Action dated Dec. 20, 2017, for U.S. Appl. No. 15/191,434, filed Jun. 23, 2016, 21 pages.
Non-Final Office Action dated Dec. 16, 2016, for U.S. Appl. No. 13/566,886, filed Aug. 3, 2012, 11 pages.
Non-Final Office Action dated Jun. 20, 2017, for U.S. Appl. No. 15/191,434, filed Jun. 23, 2016, 20 pages.
Non-Final Office Action dated Mar. 20, 2017, by The United States Patent and Trademark Office for U.S. Appl. No. 15/191,434, filed Jun. 23, 2016, 20 pages.
Non-Final Office Action dated Aug. 15, 2018, for U.S. Appl. No. 15/191,434, filed Jun. 23, 2016, 21 pages.
Non-Final Office Action dated Nov. 6, 2018, for U.S. Appl. No. 14/321,631, filed Jul. 1, 2014, 18 pages.
Notice of Allowance dated May 31, 2019, for U.S. Appl. No. 14/321,631, filed Jul. 1, 2014, 8 pages.
Non-Final Office Action dated Aug. 7, 2020, for U.S. Appl. No. 15/697,311, filed Sep. 6, 2017, 10 pages.
Extended European Search Report dated Nov. 10, 2020, for European Application No. 20169957.6, filed on Aug. 3, 2012, 9 pages.
Extended European Search Report dated Aug. 8, 2022, for EP Application No. 22153909.1, 10 pages.
Final Office Action dated Mar. 21, 2018, for U.S. Appl. No. 14/321,631, filed Jul. 1, 2014, 18 pages.
Non-Final Office Action for U.S. Appl. No. 16/568,095, dated Oct. 17, 2022, 14 pages.
Non-Final Office Action dated Jul. 8, 2021, for U.S. Appl. No. 16/215,468, filed Dec. 10, 2018, 11 pages.
Notice of Allowance for U.S. Appl. No. 17/848,271 dated Jan. 24, 2023 5 pages.
Notice of Allowance dated Mar. 4, 2021, for U.S. Appl. No. 15/697,311, filed Sep. 6, 2017, 9 pages.
European Search Report and Opinion issued in European Patent Application No. 10181155.2 dated Feb. 9, 2012, 5 pgs.
Extended European Search Report dated Apr. 19, 2011, for EP Application No. 10 18 0848.3 filed Sep. 28, 2010, 5 pages.
Extended European Search Report mailed Feb. 26, 2019, from the European Patent Office for Application No. 18180388.3, filed Sep. 26, 2006, 9 pages.
Extended European search report mailed on Apr. 23, 2010, from the European Patent Office for Application No. 06815329.5, filed Sep. 26, 2006, 7 pages.
Extended European Search Report mailed on Jan. 22, 2015, for EP Patent Application 12820723.0, filed on Aug. 3, 2012. 4 pages.
Extended European Search Report mailed on Oct. 30, 2018, for EP Patent Application 18166131.5, filed on Aug. 3, 2012. 8 pages.
Extended Search Report dated Apr. 29, 2013 from the European Patent Office for Application No. 12192620.8, filed Sep. 29, 2006, 8 pages.
Final Office Action issued in U.S. Appl. No. 11/239,094, mailed Mar. 17, 2009, 15 pgs.
Final Office Action issued in U.S. Appl. No. 13/566,886, mailed Jan. 20, 2016, 11 pages.
Final Office Action mailed Apr. 13, 2016, for U.S. Appl. No. 13/669,366, filed Nov. 5, 2012, 31 pages.
Final Office Action mailed Aug. 28, 2014, for U.S. Appl. No. 13/562,129, filed Jul. 30, 2012, 11 pages.
Final Office Action mailed Dec. 26, 2014, for U.S. Appl. No. 13/669,366, filed Nov. 5, 2012, 9 pages.
Final Office Action mailed Jan. 22, 2014, for U.S. Appl. No. 13/669,366, filed Nov. 5, 2012, 8 pages.
Final Office Action mailed May 30, 2007, for U.S. Patent Application No. 11/125, 107, filed on May 10, 2005, 11 pages.
Final Office Action mailed Nov. 1, 2010, for U.S. Appl. No. 11/311,667, filed Dec. 20, 2005, 10 pages.
Final Office Action mailed Nov. 21, 2011, for U.S. Appl. No. 11/311,667, filed Dec. 20, 2005, 8 pages.
Final Office Action mailed on Aug. 15, 2013 for U.S. Appl. No. 13/562,129, filed Jul. 30, 2012, 12 pages.
Final Office Action mailed on Jun. 11, 2010, for U.S. Appl. No. 11/529,614, filed Sep. 29, 2006, 16 pages.
Final Office Action mailed on Mar. 10, 2015, for U.S. Appl. No. 11/529,614, filed Sep. 29, 2006, 24 pages.
International Search Report mailed Dec. 3, 2004, for PCT Application No. PCT/US2004/08798, filed on Mar. 24, 2004, 3 pages.
International Search Report mailed on May 2, 2007, for PCT Application No. PCT/US2006/37923, filed on Sep. 9, 2006, 1 page.
International Search Report mailed on Oct. 19, 2012 for PCT Application No. PCT/US2012/049629, filed on Aug. 3, 2012, 3 pages.
International Search Report mailed Sep. 12, 2002, by the International Searching Authority for PCT/US2001/020447, filed Jun. 27, 2001, 1 page.
Non Final Office Action mailed Apr. 12, 2011, for U.S. Appl. No. 11/311,667, filed Dec. 20, 2005, 8 pages.
Non Final Office Action mailed Aug. 5, 2014, for U.S. Appl. No. 13/669,366, filed Nov. 5, 2012, 8 pages.
Non Final Office Action mailed Dec. 5, 2014, for U.S. Appl. No. 13/562,129, filed Jul. 30, 2012, 7 pages.
Non Final Office Action mailed Jul. 13, 2010, for U.S. Appl. No. 12/222,724, filed Aug. 14, 2008, 11 pages.
Non Final Office Action mailed Jul. 31, 2015, for U.S. Appl. No. 13/669,366, filed Nov. 5, 2012, 16 pages.
Non Final Office Action mailed Mar. 21, 2014, for U.S. Appl. No. 13/562,129, filed Jul. 30, 2012, 12 pages.
Non Final Office Action mailed Mar. 25, 2011, for U.S. Appl. No. 12/222,724, filed Aug. 14, 2008, 13 pages.
Non Final Office Action mailed Mar. 5, 2010, for U.S. Appl. No. 11/311,667, filed Dec. 20, 2005, 9 pages.
Non Final Office Action mailed May 16, 2013, for U.S. Appl. No. 13/669,366, filed Nov. 5, 2012, 8 pages.
Non Final Office Action mailed May 5, 2005, for U.S. Appl. No. 10/131,268, filed Apr. 23, 2002, 8 pages.
Non Final Office Action mailed Nov. 2, 2006, for U.S. Appl. No. 11/125,107, filed May 10, 2005, 10 pages.
Non Final Office Action mailed Oct. 3, 2008, for U.S. Appl. No. 10/722,074, filed Nov. 24, 2003, 10 pages.
Non Final Office Action mailed on Apr. 8, 2015, for U.S. Appl. No. 13/566,886, filed Aug. 3, 2012, 12 pages.
Non- Final Office Action mailed on Dec. 17, 2015, for U.S. Appl. No. 11/529,614, filed Sep. 29, 2006, 6 pages.
Non Final Office Action mailed on Dec. 2, 2004, for U.S. Appl. No. 10/347,620, filed Jan. 22, 2003, 8 pages.
Non- Final Office Action mailed on Jan. 27, 2009, for U.S. Appl. No. 11/529,614, filed Sep. 29, 2006, 17 pages.
Non- Final Office Action mailed on Jan. 6, 2014, for U.S. Appl. No. 11/529,614, filed Sep. 29, 2006, 43 pages.
Non- Final Office Action mailed on Jun. 6, 2008, for U.S. Appl. No. 11/529,614, filed Sep. 29, 2006, 17 pages.
Non Final Office Action mailed Sep. 29, 2004, for U.S. Appl. No. 10/394,230, filed Mar. 24, 2003, 10 pages.
Non-final Office Action issued in U.S. Appl. No. 11/239,094, mailed Apr. 9, 2008, 11 pgs.
Non-final Office Action issued in U.S. Appl. No. 11/239,094, mailed Aug. 28, 2008, 13 pgs.
Non-final Office Action issued in U.S. Appl. No. 11/239,094, mailed Dec. 9, 2009, 21 pgs.
Non-final Office Action issued in U.S. Appl. No. 12/983,078, mailed Sep. 13, 2013, 12 pgs.
Non-final Office Action issued in U.S. Appl. No. 17/848,271, mailed Aug. 31, 2022, 7 pgs.
Non-Final Office Action mailed on Nov. 26, 2012 for U.S. Appl. No. 13/562,129, filed Jul. 30, 2012, 9 pages.
Non-Final Office Action mailed on Nov. 27, 2019, for U.S. Appl. No. 15/697,311, filed Sep. 6, 2017, 7 pages.
Non-Final Office Action mailed on Oct. 16, 2019, for U.S. Appl. No. 15/466,684, filed Mar. 22, 2017, 8 pages.
Notice of Allowance issued in U.S. Appl. No. 11/239,094, mailed Jul. 23, 2010, 6 pages.
Notice of Allowance issued in U.S. Appl. No. 11/239,094, mailed Sep. 28, 2010, 6 pages.
Notice of Allowance issued in U.S. Appl. No. 16/215,468, mailed Mar. 9, 2022, 6 pages.
Notice of Allowance mailed Jun. 29, 2012, for U.S. Appl. No. 11/311,667, filed Dec. 20, 2005, 5 pages.
Notice of Allowance mailed Mar. 14, 2012, for U.S. Appl. No. 12/222,724, filed Aug. 14, 2008, 7 pages.
Notice of Allowance mailed Mar. 31, 2005, for U.S. Appl. No. 10/394,230, filed Mar. 24, 2003, 6 pages.
Notice of Allowance mailed May 15, 2008, for U.S. Patent Application No. 11/125, 107, filed on May 10, 2005, 7 pages.
Notice of Allowance mailed May 31, 2019, for U.S. Appl. No. 15/191,434, filed Jun. 23, 2016, 7 pages.
Notice of Allowance mailed Nov. 23, 2011, for U.S. Appl. No. 12/222,724, filed Aug. 14, 2008, 7 pages.
Notice of Allowance mailed Nov. 29, 2005, for U.S. Appl. No. 10/131,268, filed Apr. 23, 2002, 6 pages.
Notice of Allowance mailed on Aug. 18, 2017, for U.S. Appl. No. 13/566,886, filed Aug. 3, 2012, 10 pages.
Notice of Allowance mailed on Jun. 15, 2009, for U.S. Appl. No. 10/722,074, filed Nov. 24, 2003, 6 pages.
Notice of Allowance mailed on Mar. 2, 2016, for U.S. Appl. No. 11/529,614, filed Sep. 29, 2006, 12 pages.
Notice of Allowance mailed on Mar. 27, 2015, for U.S. Appl. No. 13/562,129, filed Jul. 30, 2012, 7 pages.
Notice of Allowance mailed on Mar. 28, 2005, for U.S. Appl. No. 10/347,620, filed Jan. 22, 2003, 6 pages.
Office Action mailed on Jan. 24, 2019, for U.S. Appl. No. 15/191,434, filed Jun. 23, 2016, 19 pages.
Summary of Facts and Submissions issued in European Patent Application No. EP01950550.2 dated Dec. 2, 2014, 25 pgs.
Supplementary Partial European Search Report issued in European Patent Application No. 01950550.2 dated May 4, 2005, 7 pgs.
Third Party Observation filed in European Patent Application No. 01950550.2 dated Aug. 17, 2009, 2 pgs.
Written Opinion mailed Dec. 3, 2004, for PCT Application No. PCT/US2004/08798, filed on Mar. 24, 2004, 4 pages.
Written Opinion mailed on May 2, 2007, for PCT Application No. PCT/US2006/37923, filed on Sep. 9, 2006, 5 pages.
Written Opinion mailed on Oct. 19, 2012 for PCT Application No. PCT/US2012/049629, filed on Aug. 3, 2012, 7 pages.
Related Publications (1)
Number Date Country
20200237280 A1 Jul 2020 US
Continuations (2)
Number Date Country
Parent 14321631 Jul 2014 US
Child 16586685 US
Parent 11239123 Sep 2005 US
Child 14321631 US