Diabetes, heart disease, and other obesity-related conditions may be treated surgically with bariatric procedures such as jejuno-ileal bypass, jejuno-colic bypass, biliopancreatic diversion, gastric bypass, and gastroplasty. These procedures may be effective for weight control and treatment of chronic conditions. However, these procedures carry with them substantial shortcomings, including the risk of infection and other risks accompanying surgery. Some of these procedures induce radical permanent changes to the gastrointestinal anatomy, thus foreclosing subsequent surgical intervention.
What is needed are devices and methods that use non-surgical techniques that avoid the risks associated with gastrointestinal bypass surgery. What is also needed are devices and methods for gastrointestinal bypass that allow for additional or revision procedures to be performed. What is also needed are devices and methods for gastrointestinal bypass that are reversible.
A gastrointestinal bypass device is described. In one embodiment, the device may comprise a gastrointestinal cuff configured to be at least partially positioned in an esophagus. The device may also comprise a gastrointestinal sleeve coupled to the cuff. The sleeve may be configured to be at least partially positioned in a stomach and a small intestine. The cuff may be configured to allow a nonbypassed portion of food to pass into the stomach.
Gastrointestinal bypass device 1000 may include a gastrointestinal cuff 1100 and a gastrointestinal sleeve 1200.
Cuff 1100 may be configured to be positioned at least partially in the esophagus. Cuff 1100 may be positioned at or near the gastroesophageal junction. Alternatively, cuff 1100 may be positioned proximal to the gastroesophageal junction, in the proximal stomach, or at some other location. For example, cuff 1100 may be positioned within about 3 cm, 2.5 cm, 2 cm, 1.5 cm, 1 cm, 0.5 cm, above, below, or at the GEJ or squamocolumnar junction (SCJ or Z-line). As another example, cuff 1100 may be positioned up to 5 cm above the diaphragm. Some non-limiting locations for cuff 1100 can be found, for example, in U.S. Pat. Pub. No. 2007/0198174 to Dann et al., which is hereby incorporated by reference in its entirety (e.g., at paras. [0131] to [0147]). Cuff 1100 may be sufficiently flexible to expand and collapse to conform with the inside of the esophagus. Cuff 1100 also provides a structure to which sleeve 1200 may be attached. Cuff 1100 may be positioned using tissue anchors and/or an intragastric support such as that found, for example, in U.S. Pat. No. 8,182,441 to Swain et al.
Cuff 1100 may be configured to receive at least a portion of ingested food and allow this portion to pass inside cuff 1100 and into sleeve 1200. This is a bypassed portion of food, or a portion of the ingested food that is bypassed past the stomach and into the small intestine. Cuff 1100 may be configured to allow a portion of ingested food to pass into the stomach. This is a nonbypassed portion of food, or a portion of the ingested food that is not bypassed past the stomach, but allowed to reach the stomach.
Cuff 1100 may include a liner 1110, a plurality of anchor holes 1130, and a plurality of struts 1150.
Liner 1110 may include a proximal portion 1111, a distal portion 1112, a lumen 1113, and a longitudinal axis 1114. Liner 1110 may be tubular and may have a uniform width. Alternatively, liner 1110 may taper or change in width. Liner 1110 may be made of material that is flexible. This flexibility allows the cuff position, such as the lower esophageal sphincter, to open and close substantially normally. Liner 1110 may be made of a material that is thin, allowing it to collapse into a smaller profile. This smaller profile allows the cuff position, such as the lower esophageal sphincter, to close substantially normally, and also helps liner 1110 to be collapsed for delivery. Liner 1110 may include a single layer of material. Alternatively, liner 1110 may include a plurality of layers. In one embodiment, liner 1110 may have a length of approximately 20 mm to 80 mm. Liner 1110 may include a sleeve-coupling element, e.g., suture holes 1115 formed at distal portion 1112.
Liner 1110 may be configured to allow a nonbypassed portion of food to pass into the stomach. Allowing some food to reach the stomach may help the stomach to maintain at least some functionality. Allowing some food to reach the stomach may also reduce the likelihood of nutrient deficiency, as seen in some patients whose stomachs have been surgically bypassed. In addition, oral medications may be allowed to reach the stomach.
Liner 1110 may be made of a material that is at least semi-permeable to ingested food, including liquids and/or solids. Liner 1110 may be made of a woven material, a mesh material, DACRON, and/or any other suitable material. The material may be selected to have pores or openings which allow a desired amount of food to pass from the inside of liner 1110 to the outside of liner 1110.
Alternatively, or in combination, liner 1110 may include nonbypass features 1119 which allow a desired amount of food to pass from the inside of liner 1110 to the outside of liner 1110. Nonbypass features 1119 may include one or more, or any combination of one or more, openings, slits, holes, channels, valves, flaps, and/or other suitable features.
Nonbypass features 1119 may be configured to allow the amount of the nonbypassed portion of food to be adjusted in situ to provide adjustable or titratable bypass. For example, nonbypass features 1119 may include temporary or removable panels which increase the number of holes or openings in liner 1110. As another example, nonbypass features 1119 may include temporary or removable layers which change the permeability of liner 1110 to ingested food.
A coupling mechanism, e.g., anchor holes 1130 may be formed at or near proximal portion 1111 of liner 1110. Anchor holes 1130 are configured to receive tissue anchors. Anchor holes 1130 may be marked with a contrasting color, radiopaque marker, or other means to aid visualization. Anchor holes 1130 may be marked with stitching, ink, or other suitable marking. Anchor holes 1130 may be used as a placement template for tissue anchors. Anchor holes 1130 may be evenly spaced about a circumference of liner 1110. Evenly spaced anchor holes 1130 may help to distribute forces among the tissue anchors, prevent concentration of forces in a small number of tissue anchors, and enhance conformance of liner 1110 to an inside (e.g., luminal wall) of the esophagus. Alternatively, anchor holes 1130 may be spaced in any manner about a circumference of liner 1110. Anchor holes 1130 may be substantially coplanar. Anchor holes 1130 may be arranged in a plane substantially perpendicular to longitudinal axis 1114, or angled to longitudinal axis 1114. A substantially coplanar arrangement may help to prevent concentration of forces in a small number of tissue anchors. Alternatively, anchor holes 1130 may be arranged in a staggered fashion.
Struts 1150 each include a proximal portion 1151 and a distal portion 1152. Struts 1150 may be elongate and substantially straight. Alternatively, struts 1150 may be curved or any other suitable shape. Struts 1150 may be coupled to an inner surface of liner 1110. Alternatively, struts 1150 may be coupled to an outer surface of liner 1110 or between layers of liner 1110 to reduce obstructions on an inner surface of liner 1110. Struts 1150 may be coupled to liner 1110 longitudinally. Alternatively, struts 1150 may be coupled to liner 1110 at an angle of 1 to 30 degrees or more with respect to longitudinal axis 1114 of liner 1110. Struts 1150 may include a first attachment element, e.g., an anchor hole 1154 at or near proximal portion 1151. Anchor holes 1154 of struts 1150 may be aligned with anchor holes 1130 of liner 1110. Anchor holes 1154 of struts 1150 may reinforce anchor holes 1130 of liner 1110 and prevent tissue anchors from pulling through. Struts 1150 may include a second attachment element, .e.g., suture holes 1155, and struts 1150 may be coupled to liner 1110 with sutures stitched through suture holes 1155 and liner 1110. Alternatively, struts 1150 may be coupled to liner 1110 with adhesives, thermal bonding, ultrasonic or laser welding, pockets formed between layers of liner 1110, or other suitable ways. Struts 1150 may have a uniform cross-section. Alternatively, struts 1150 may have a non-uniform cross-section which varies wider, narrower, thicker, and/or thinner. For example, struts 1150 may each have a proximal portion 1151 and/or a distal portion 1152 which are thinner. This thinner cross-section allows proximal portion 1151 and/or distal portion 1152 to be more flexible. Struts 1150 may be made of a plastic such as PEEK, a metal, or any other suitable material.
Struts 1150 may reduce longitudinal stretching of liner 1110. Prograde forces such as peristaltic forces at distal portion 1112 of liner 1110 are transferred by struts 1150 to anchor holes 1154 and tissue anchors, to advantageously redistribute forces and minimize focal wear or failure points. Struts 1150 may also prevent inversion of liner 1110. Retrograde forces such as vomiting or retching forces at distal portion 1112 of liner 1110 are resisted by struts 1150, helping to maintain liner 1110 in proper implanted position.
Sleeve 1200 may be configured to be positioned at least partially in the stomach and the small intestine. Sleeve 1200 is configured to be coupled to cuff 1100, either in an integrally formed or removably coupled manner. Sleeve 1200 directs food and liquids into the intestine. Sleeve 1200 may include a coupling 1210 and a tube 1250.
Coupling 1210 directs food and liquids from cuff 1100 to tube 1250. Coupling 1210 includes a proximal portion 1211, a distal portion 1212, and a lumen 1213. A coupling element, e.g., suture holes 1215 may be formed at or near proximal portion 1211 to allow coupling 1210 be coupled with sutures to a complementary cuff-coupling element, e.g., suture holes 1115 in liner 1110. Proximal portion 1211 may have a width that is the same or substantially the same as liner 1110, or in some embodiments taper down in width to restrict the flow of food and liquids through coupling 1210, which may help to create a feeling of fullness. Distal portion 1212 may have a uniform width. Alternatively, proximal portion 1211 and distal portion 1212 may have a uniform width. Coupling 1210 may be made of a material that is flexible, but does not stretch substantially in a radial or longitudinal direction. Coupling 1210 may be made of a polyurethane elastomer such as PELLETHANE, or any other suitable material.
Tube 1250 includes a proximal portion 1251, a distal portion 1252, and a lumen 1253. Proximal portion 1251 of tube 1250 may be coupled to distal portion 1212 of coupling 1210 with an interference fit, heat bonded, and/or other suitable methods. Alternatively, tube 1250 may be formed integrally with coupling 1210. Tube 1250 may have a uniform width. Alternatively, tube 1250 may taper or change in width. Tube 1250 may allow food and liquids to bypass the stomach and/or part of the intestine. Tube 1250 may allow foods and liquids to be bypassed into the duodenum, jejunum, or other part of the intestine. In one embodiment, tube 1250 may have a length of approximately 80 cm to 450 cm, a diameter of approximately 15 mm to 25 mm, and/or a thickness of about 0.05 mm to about 0.5 mm, such as about 0.15 mm.
Tube 1250 may be made of a material that is floppy or flaccid, but does not stretch substantially in a radial direction. Thus, tube 1250 may be flexible and compliant inwardly to allow peristaltic forces to act on its contents, but will not balloon outwardly. Tube 1250 may also not stretch substantially in a longitudinal direction. Tube 1250 may be made of a polymer, polyethylene, polypropylene, polyurethane elastomer such as PELLETHANE, or any other suitable material. Tube 1250 may be impermeable or semi-permeable. Tube 1250 may allow nutrients and medications inside tube 1250 to pass outward. Alternatively or in addition, tube 1250 may allow digestive juices and hormones outside tube 1250 to pass inward. Tube 1250 or portions of tube 1250 may be biodegradable. Tube 1250 with a plurality of biodegradable portions may be configured such that each portion degrades at a different rate.
Tube 1250 may include one or more coatings to resist calcification, deliver medications, provide lubriciousness, and/or provide other desired properties. These coatings may include parylene, polyvinylpyrrolidone (PVP), and/or other suitable materials. Tube 1250 may include an electrical stimulation element to resist calcification and promote motility and satiety. Various electrical stimulation elements that can be utilized or modified for use with the systems and methods disclosed herein are described, for example, in U.S. Pat. No. 7,881,797 to Griffin et al., which is hereby incorporated by reference in its entirety. Tube 1250 may be made up of one or more sections which may be coupled or uncoupled to adjust a length of tube 1250. Tube 1250 may include one, two, or more additional lumens interior to, exterior to, or within walls of tube 1250 for delivery of medications, access for imaging devices for visual monitoring, and access for diagnostic sampling. Tube 1250 may have additional lumens which open at different points along the length of tube 1250 for targeted delivery or access.
Tube 1250 may include a radiopaque marker 1254. Radiopaque marker 1254 may be one or more longitudinal stripes which run along all or part of the length of tube 1250. Radiopaque marker 1254 may be configured to help prevent or reduce kinking and twisting of tube 1250. For example, radiopaque marker 1254 may be thicker and/or wider toward proximal portion 1251 of tube 1250, where kinking and twisting may be more pronounced. Alternatively, radiopaque marker 1254 may be a helical stripe, circumferential bands, or other suitable configuration. Radiopaque marker 1254 may be coupled to an inside surface of tube 1250 to help maintain at least some patency of lumen 1253 and prevent lumen 1253 from closing completely when tube 1250 is kinked or twisted. Alternatively, radiopaque marker 1254 may be coupled to an outside surface of tube 1250. Various embodiments, features, materials and parameters of cuffs, sleeves, anchors, and other components that can be used or modified for use with those disclosed herein are described, for example, in the following patents and publications, each of which are incorporated by reference in their entireties: U.S. Pat. Pub. No. 2007/0198074 to Dann et al., U.S. Pat. No. 8,070,743 to Kagan et al., U.S. Pat. Pub. No. 2009/0149871 to Kagan et al., U.S. Pat. Pub. No. 2004/0092892 to Kagan et al., U.S. Pat. Pub. No. 2006/0155375 to Kagan et al., U.S. Pat. Pub. No. 2006/0015125 to Swain, U.S. Pat. Pub. No. 2006/0020254 to von Hoffmann, U.S. Pat. No. 8,118,774 to Dann et al., U.S. Pat. Pub. No. 2009/0012553 to Swain et al., U.S. Pat. Pub. No. 2009/0012544 to Thompson et al., and U.S. Pat. Pub. No. 2009/0012541 to Dahl et al.
Tube 1250 may include one, two, three, or more tails 1255 at distal portion 1252. Tails 1255 may be folded over each other and cinched with a grasping element, such as a loop snare, to seal distal portion 1255 of tube 1250 during deployment of sleeve 1200. Tails 1255 may be as described, for example, in U.S. Pat. No. 8,118,774 to Dann et al., which is hereby incorporated by reference in its entirety.
Coupling 1210 and/or tube 1250 may be configured to allow a nonbypassed portion of food to pass into the stomach. Coupling 1210 and/or tube 1250 may include nonbypass features 1259 which allow a desired amount of food to pass from the inside of coupling 1210 and/or tube 1250 to the outside of coupling 1210 and/or tube 1250. Nonbypass features 1259 may include one or more, or any combination of one or more, openings, slits, holes, channels, valves, flaps, and/or other suitable features. These may be located in the portion of tube 1250 that is positioned in the stomach, such as at or near proximal portion 1251 of tube 1250.
Nonbypass features 1259 may be configured to allow the amount of the nonbypassed portion of food to be adjusted in situ to provide adjustable or titratable bypass. For example, nonbypass features 1259 may include temporary or removable panels which increase the number of holes or openings in coupling 1210 and/or tube 1250. As another example, nonbypass features 1259 may include temporary or removable layers which change the permeability of coupling 1210 and/or tube 1250 to ingested food.
Gastrointestinal bypass device 2000 may include a gastrointestinal cuff 2100 and a gastrointestinal sleeve 2200.
Cuff 2100 may be configured to be positioned at least partially in the esophagus. Cuff 2100 may be positioned at or near the gastroesophageal junction. Alternatively, cuff 2100 may be positioned proximal to the gastroesophageal junction, in the proximal stomach, or at some other location. For example, cuff 2100 may be positioned within about 3 cm, 2.5 cm, 2 cm, 1.5 cm, 1 cm, 0.5 cm, above, below, or at the GEJ or squamocolumnar junction (SCJ or Z-line). As another example, cuff 1100 may be positioned up to 5 cm above the diaphragm. Some non-limiting locations for cuff 2100 can be found, for example, in U.S. Pat. Pub. No. 2007/0198174 to Dann et al., which is hereby incorporated by reference in its entirety (e.g., at paras. [0131] to [0147]). Cuff 2100 may be sufficiently flexible to expand and collapse to conform with the inside of the esophagus. Cuff 2100 also provides a structure to which sleeve 2200 may be attached. Cuff 2100 may be positioned using tissue anchors and/or an intragastric support such as that found, for example, in U.S. Pat. No. 8,182,441 to Swain et al.
Cuff 2100 may be configured to receive at least a portion of ingested food and allow this portion to pass inside cuff 2100 and into sleeve 2200. This is a bypassed portion of food, or a portion of the ingested food that is bypassed past the stomach and into the small intestine. Cuff 2100 may be configured to allow a portion of ingested food to pass into the stomach. This is a nonbypassed portion of food, or a portion of the ingested food that is not bypassed past the stomach, but allowed to reach the stomach.
Cuff 2100 may include a liner 2110, a plurality of anchor holes 2130, a retainer 2140, a plurality of struts 2150, and one or more hooks 2160.
Liner 2110 may include a proximal portion 2111, a distal portion 2112, a lumen 2113, and a longitudinal axis 2114. Liner 2110 may be tubular and may have a uniform width. Alternatively, liner 2110 may taper or change in width. Liner 2110 may be made of material that is flexible. This flexibility allows the cuff position, such as the lower esophageal sphincter, to open and close substantially normally. Liner 2110 may be made of a material that is thin, allowing it to collapse into a smaller profile. This smaller profile allows the cuff position, such as the lower esophageal sphincter, to close substantially normally, and also helps liner 2110 to be collapsed for delivery. Liner 2110 may include a single layer of material. Alternatively, liner 2110 may include a plurality of layers. In one embodiment, liner 2110 may have a length of approximately 20 mm to 80 mm.
Liner 2110 may be configured to allow a nonbypassed portion of food to pass into the stomach. Allowing some food to reach the stomach may help the stomach to maintain at least some functionality. Allowing some food to reach the stomach may also reduce the likelihood of nutrient deficiency, as seen in some patients whose stomachs have been surgically bypassed. In addition, oral medications may be allowed to reach the stomach.
Liner 2110 may be made of a material that is at least semi-permeable to ingested food, including liquids and/or solids. Liner 2110 may be made of a woven material, a mesh material, DACRON, and/or any other suitable material. The material may be selected to have pores or openings which allow a desired amount of food to pass from the inside of liner 2110 to the outside of liner 2110.
Alternatively, or in combination, liner 2110 may include nonbypass features 2119 which allow a desired amount of food to pass from the inside of liner 2110 to the outside of liner 2110. Nonbypass features 2119 may include one or more, or any combination of one or more, openings, slits, holes, channels, valves, flaps, and/or other suitable features.
Nonbypass features 2119 may be configured to allow the amount of the nonbypassed portion of food to be adjusted in situ to provide adjustable or titratable bypass. For example, nonbypass features 2119 may include temporary or removable panels which increase the number of holes or openings in liner 2110. As another example, nonbypass features 2119 may include temporary or removable layers which change the permeability of liner 2110 to ingested food.
A coupling mechanism, e.g. anchor holes 2130 may be formed at or near proximal portion 2111 of liner 2110. Anchor holes 2130 are configured to receive tissue anchors. Anchor holes 2130 may be marked with a contrasting color, radiopaque marker, or other means to aid visualization. Anchor holes 2130 may be marked with stitching, ink, or other suitable marking Anchor holes 2130 may be used as a placement template for tissue anchors. Anchor holes 2130 may be evenly spaced about a circumference of liner 2110. Evenly spaced anchor holes 2130 may help to distribute forces among the tissue anchors, prevent concentration of forces in a small number of tissue anchors, and enhance conformance of liner 2110 to an inside (e.g., luminal wall) of the esophagus. Alternatively, anchor holes 2130 may be spaced in any manner about a circumference of liner 2110. Anchor holes 2130 may be substantially coplanar. Anchor holes 2130 may be arranged in a plane substantially perpendicular to longitudinal axis 2114, or angled to longitudinal axis 2114. A substantially coplanar arrangement may help to prevent concentration of forces in a small number of tissue anchors. Alternatively, anchor holes 2130 may be arranged in a staggered fashion.
Retainer 2140 may be coupled to distal portion 2112 of liner 2110. Retainer 2140 may be collapsible radially inwardly but not expandable radially outwardly. Retainer 2140 may be a circumferential channel formed in distal portion 2112 of liner 2110 by one or more folds 2141. Folds 2141 may be secured by a suture 2142, adhesive, or other means. Folds 2141 may be made more rigid by applying a stiffening substance to distal portion 2112 and/or folds 2141. The stiffening substance may be silicone or other suitable substance. Alternatively, retainer 2140 may be made of plastic or other suitable material, and coupled to distal portion 2112 of liner 2110.
Struts 2150 each include a proximal portion 2151 and a distal portion 2152. Struts 2150 may be elongate and substantially straight. Alternatively, struts 2150 may be curved or any other suitable shape. Struts 2150 may be coupled to an inner surface of liner 2110. Alternatively, struts 2150 may be coupled to an outer surface of liner 2110 or between layers of liner 2110 to reduce obstructions on an inner surface of liner 2110. Struts 2150 may be coupled to liner 2110 longitudinally. Alternatively, struts 2150 may be coupled to liner 2110 at an angle of 1 to 30 degrees or more with respect to longitudinal axis 2114 of liner 2110. Struts 2150 may include a first attachment element, e.g., an anchor hole 2154 at or near proximal portion 2151. Anchor holes 2154 of struts 2150 may be aligned with anchor holes 2130 of liner 2110. Anchor holes 2154 of struts 2150 may reinforce anchor holes 2130 of liner 2110 and prevent tissue anchors from pulling through. Struts 2150 may include a second attachment element, e.g., suture holes 2155, and struts 2150 may be coupled to liner 2110 with sutures stitched through suture holes 2155 and liner 2110. Alternatively, struts 2150 may be coupled to liner 2110 with adhesives, thermal bonding, ultrasonic or laser welding, pockets formed between layers of liner 2110, or other suitable ways. Struts 2150 may have a uniform cross-section. Alternatively, struts 2150 may have a non-uniform cross-section which varies wider, narrower, thicker, and/or thinner. For example, struts 2150 may each have a proximal portion 2151 and/or a distal portion 2152 which are thinner. This thinner cross-section allows proximal portion 2151 and/or distal portion 2152 to be more flexible. Struts 2150 may be made of a plastic such as PEEK, a metal, or any other suitable material.
Struts 2150 may reduce longitudinal stretching of liner 2110. Prograde forces such as peristaltic forces at distal portion 2112 of liner 2110 are transferred by struts 2150 to anchor holes 2154 and tissue anchors, to advantageously redistribute forces and minimize focal wear or failure points. Struts 2150 may also prevent inversion of liner 2110. Retrograde forces such as vomiting or retching forces at distal portion 2112 of liner 2110 are resisted by struts 2150, helping to maintain liner 2110 in proper implanted position.
Hooks 2160 may each include a proximal portion 2161 and a distal portion 2162. Proximal portion 2161 may be coupled to distal portion 2152 of strut 2150. Hooks 2160 may include one or more suture holes 2164 for stitching to liner 2110 and/or distal portion 2152 of strut 2150. Alternatively, hooks 2160 may be coupled to liner 2110 or one or more struts 2150 with an adhesive or other suitable methods. Alternatively, hooks 2160 may be formed as part of one or more struts 2150. Hooks 2160 may each include a retainer 2165 and a barb 2166. Distal portions 2162 may be configured so that they do not substantially protrude beyond struts 2150 into an interior of liner 2110. Distal portion 2112 of liner 2110 may be enlarged in diameter or otherwise configured to accommodate hooks 2160.
Sleeve 2200 may be configured to be positioned at least partially in the stomach and the small intestine. Sleeve 2200 is configured to be coupled to cuff 2100, either in an integrally formed or removably coupled manner. Sleeve 2200 directs food and liquids into the intestine. Sleeve 2200 may include a coupling 2210, a ring 2240, a tube 2250, and a halo 2260.
Coupling 2210 directs food and liquids from cuff 2100 to tube 2250. Coupling 2210 includes a proximal portion 2211, a distal portion 2212, and a lumen 2213. Drawstring holes 2215 may be formed at or near proximal portion 2211. Proximal portion 2211 may have a width that is the same or substantially the same as liner 2110, or in some embodiments taper down in width to restrict the flow of food and liquids through coupling 2210, which may help to create a feeling of fullness. Distal portion 2212 may have a uniform width. Alternatively, proximal portion 2211 and distal portion 2212 may have a uniform width. Coupling 2210 may be made of a material that is flexible, but does not stretch substantially in a radial or longitudinal direction. Coupling 2210 may be made of a polyurethane elastomer such as PELLETHANE, or any other suitable material.
Ring 2240 may be coupled to proximal portion 2211 of coupling 2210. Ring 2240 may be a thickened portion of coupling 2210, or a separate structure operably attached to coupling 2210. Ring 2240 may be sufficiently flexible to deform inwardly, but sufficiently rigid to spring back to its original shape. Ring 2240 is configured to interface with retainer 2140. Ring 2240 may have an interference fit with retainer 2140, or other form of attachment. Sleeve 2200 is thus coupled to cuff 2100 by ring 2240 and retainer 2140. Ring 2240 may deform when sleeve 2200 is pulled distally to allow sleeve 2200 some travel, provide some shock absorption, and more evenly distribute forces to tissue anchors. Sleeve 2200 can be exchanged for a new, second sleeve having the same or one, two, or more differing properties by inwardly deforming ring 2240 and removing sleeve 2200. Ring 2240 may be inwardly deformed using a drawstring 2241 threaded through drawstring holes 2215. Other properties of sleeves, cuffs, cuff-sleeve attachment interfaces, and sleeve exchange methods can be found, for example, in U.S. Pat. Pub. No. 2007/0198074 to Dann et al., and U.S. Pat. No. 8,070,743 to Kagan et al., each of which are hereby incorporated by reference in their entireties.
Tube 2250 includes a proximal portion 2251, a distal portion 2252, and a lumen 2253. Proximal portion 2251 of tube 2250 may be coupled to distal portion 2212 of coupling 2210 with an interference fit, heat bonded, and/or other suitable methods. Alternatively, tube 2250 may be formed integrally with coupling 2210. Tube 2250 may have a uniform width. Alternatively, tube 2250 may taper or change in width. Tube 2250 may allow food and liquids to bypass the stomach and/or part of the intestine. Tube 2250 may allow foods and liquids to be bypassed into the duodenum, jejunum, or other part of the intestine. In one embodiment, tube 2250 may have a length of approximately 80 cm to 450 cm, a diameter of approximately 15 mm to 25 mm, and/or a thickness of about 0.05 mm to about 0.5 mm, such as about 0.15 mm.
Tube 2250 may be made of a material that is floppy or flaccid, but does not stretch substantially in a radial direction. Thus, tube 2250 may be flexible and compliant inwardly to allow peristaltic forces to act on its contents, but will not balloon outwardly. Tube 2250 may also not stretch substantially in a longitudinal direction. Tube 2250 may be made of a polymer, polyethylene, polypropylene, polyurethane elastomer such as PELLETHANE, or any other suitable material. Tube 2250 may be impermeable or semi-permeable. Tube 2250 may allow nutrients and medications inside tube 2250 to pass outward. Alternatively or in addition, tube 2250 may allow digestive juices and hormones outside tube 2250 to pass inward. Tube 2250 or portions of tube 2250 may be biodegradable. Tube 2250 with a plurality of biodegradable portions may be configured such that each portion degrades at a different rate.
Tube 2250 may include one or more coatings to resist calcification, deliver medications, provide lubriciousness, and/or provide other desired properties. These coatings may include parylene, polyvinylpyrrolidone (PVP), and/or other suitable materials. Tube 2250 may include an electrical stimulation element to resist calcification and promote motility and satiety. Various electrical stimulation elements that can be utilized or modified for use with the systems and methods disclosed herein are described, for example, in U.S. Pat. No. 7,881,797 to Griffin et al., which is hereby incorporated by reference in its entirety. Tube 2250 may be made up of one or more sections which may be coupled or uncoupled to adjust a length of tube 2250. Tube 2250 may include one, two, or more additional lumens interior to, exterior to, or within walls of tube 2250 for delivery of medications, access for imaging devices for visual monitoring, and access for diagnostic sampling. Tube 2250 may have additional lumens which open at different points along the length of tube 2250 for targeted delivery or access.
Tube 2250 may include a radiopaque marker 2254. Radiopaque marker 2254 may be one or more longitudinal stripes which run along all or part of the length of tube 2250. Radiopaque marker 2254 may be configured to help prevent or reduce kinking and twisting of tube 2250. For example, radiopaque marker 2254 may be thicker and/or wider toward proximal portion 2251 of tube 2250, where kinking and twisting may be more pronounced. Alternatively, radiopaque marker 2254 may be a helical stripe, circumferential bands, or other suitable configuration. Radiopaque marker 2254 may be coupled to an inside surface of tube 2250 to help maintain at least some patency of lumen 2253 and prevent lumen 2253 from closing completely when tube 2250 is kinked or twisted. Alternatively, radiopaque marker 2254 may be coupled to an outside surface of tube 2250. Various embodiments, features, materials and parameters of cuffs, sleeves, anchors, and other components that can be used or modified for use with those disclosed herein are described, for example, in the following patents and publications, each of which are incorporated by reference in their entireties: U.S. Pat. Pub. No. 2007/0198074 to Dann et al., U.S. Pat. No. 8,070,743 to Kagan et al., U.S. Pat. Pub. No. 2009/0149871 to Kagan et al., U.S. Pat. Pub. No. 2004/0092892 to Kagan et al., U.S. Pat. Pub. No. 2006/0155375 to Kagan et al., U.S. Pat. Pub. No. 2006/0015125 to Swain, U.S. Pat. Pub. No. 2006/0020254 to von Hoffmann, U.S. Pat. No. 8,118,774 to Dann et al., U.S. Pat. Pub. No. 2009/0012553 to Swain et al., U.S. Pat. Pub. No. 2009/0012544 to Thompson et al., and U.S. Pat. Pub. No. 2009/0012541 to Dahl et al.
Tube 2250 may include one, two, three, or more tails 2255 at distal portion 2252. Tails 2255 may be folded over each other and cinched with a grasping element, such as a loop snare, to seal distal portion 2255 of tube 2250 during deployment of sleeve 2200. Tails 2255 may be as described, for example, in U.S. Pat. No. 8,118,774 to Dann et al., which is hereby incorporated by reference in its entirety.
Coupling 2210 and/or tube 2250 may be configured to allow a nonbypassed portion of food to pass into the stomach. Coupling 2210 and/or tube 2250 may include nonbypass features 2259 which allow a desired amount of food to pass from the inside of coupling 2210 and/or tube 2250 to the outside of coupling 2210 and/or tube 2250. Nonbypass features 2259 may include one or more, or any combination of one or more, openings, slits, holes, channels, valves, flaps, and/or other suitable features. These may be located in the portion of tube 2250 that is positioned in the stomach, such as at or near proximal portion 2251 of tube 2250.
Nonbypass features 2259 may be configured to allow the amount of the nonbypassed portion of food to be adjusted in situ to provide adjustable or titratable bypass. For example, nonbypass features 2259 may include temporary or removable panels which increase the number of holes or openings in coupling 2210 and/or tube 2250. As another example, nonbypass features 2259 may include temporary or removable layers which change the permeability of coupling 2210 and/or tube 2250 to ingested food.
Halo 2260 may be coupled to proximal portion 2211 of coupling 2210 by one or more standoffs 2261. Standoffs 2261 may be coupled to proximal portion 2211 of coupling 2210 using an adhesive or other suitable methods. Halo 2260 may be made of suture or other suitable material. Halo 2260 is configured to be coupled to hooks 2160. Halo 2260 and hooks 2160 may provide a primary or backup coupling between sleeve 2200 and cuff 2100. Halo 2260 and hooks 2160 are configured to keep sleeve 2200 coupled to cuff 2100 if the coupling between retainer 2140 and ring 2240 should fail. Halo 2260 may be cut between standoffs 2261 to release sleeve 2200 for removal or exchange. Distal portion 2112 of liner 2110 may be enlarged in diameter or otherwise configured to accommodate halo 2260 and standoffs 2261.
Gastrointestinal bypass device 3000 may include a gastrointestinal cuff 3100 and a gastrointestinal sleeve 3200.
Cuff 3100 may be configured to be positioned at least partially in the esophagus. Cuff 3100 may be positioned at or near the gastroesophageal junction. Alternatively, cuff 3100 may be positioned proximal to the gastroesophageal junction, in the proximal stomach, or at some other location. For example, cuff 3100 may be positioned within about 3 cm, 2.5 cm, 2 cm, 1.5 cm, 1 cm, 0.5 cm, above, below, or at the GEJ or squamocolumnar junction (SCJ or Z-line). As another example, cuff 1100 may be positioned up to 5 cm above the diaphragm. Some non-limiting locations for cuff 3100 can be found, for example, in U.S. Pat. Pub. No. 2007/0198174 to Dann et al., which is hereby incorporated by reference in its entirety (e.g., at paras. [0131] to [0147]). Cuff 3100 may be sufficiently flexible to expand and collapse to conform with the inside of the esophagus. Cuff 3100 also provides a structure to which sleeve 3200 may be attached. Cuff 3100 may be positioned using tissue anchors and/or an intragastric support such as that found, for example, in U.S. Pat. No. 8,182,441 to Swain et al.
Cuff 3100 may be configured to receive at least a portion of ingested food and allow this portion to pass inside cuff 3100 and into sleeve 3200. This is a bypassed portion of food, or a portion of the ingested food that is bypassed past the stomach and into the small intestine. Cuff 3100 may be configured to allow a portion of ingested food to pass into the stomach. This is a nonbypassed portion of food, or a portion of the ingested food that is not bypassed past the stomach, but allowed to reach the stomach.
Cuff 3100 may include a liner 3110, an edge with one, two, or more projections, e.g., a scalloped edge 3120, a plurality of anchor holes 3130, a retainer 3140, a plurality of struts 3150, one or more attachment openings 3160, and a scaffold 3170.
Liner 3110 may include a proximal portion 3111, a distal portion 3112, a lumen 3113, and a longitudinal axis 3114. Liner 3110 may be tubular and may have a uniform width. Alternatively, liner 3110 may taper or change in width. Liner 3110 may be made of material that is flexible. This flexibility allows the cuff position, such as the lower esophageal sphincter, to open and close substantially normally. Liner 3110 may be made of a material that is thin, allowing it to collapse into a smaller profile. This smaller profile allows the cuff position, such as the lower esophageal sphincter, to close substantially normally, and also helps liner 3110 to be collapsed for delivery. Liner 3110 may include an inner layer 3116 and an outer layer 3117. Alternatively, liner 3110 may include a single layer of material, or any number of layers. Inner layer 3116 and outer layer 3117 may be sealed at proximal portion 3111 with an edge seal 3118. Edge seal 3118 may be silicone or other suitable material. Edge seal 3118 may be radiopaque. Alternatively, inner layer 3116 and outer layer 3117 may be formed from a single layer of material folded over Inner layer 3116 and outer layer 3117 may be at least partially coupled together by sutures, thermal bonding, ultrasonic or laser welding, or other ways. In one embodiment, liner 3110 may have a length of approximately 20 mm to 80 mm.
Liner 3110 may be configured to allow a nonbypassed portion of food to pass into the stomach. Allowing some food to reach the stomach may help the stomach to maintain at least some functionality. Allowing some food to reach the stomach may also reduce the likelihood of nutrient deficiency, as seen in some patients whose stomachs have been surgically bypassed. In addition, oral medications may be allowed to reach the stomach.
Liner 3110 may be made of a material that is at least semi-permeable to ingested food, including liquids and/or solids. Liner 3110 may be made of a woven material, a mesh material, DACRON, and/or any other suitable material. The material may be selected to have pores or openings which allow a desired amount of food to pass from the inside of liner 3110 to the outside of liner 3110, as shown in
Alternatively, or in combination, liner 3110 may include nonbypass features 3119 which allow a desired amount of food to pass from the inside of liner 3110 to the outside of liner 3110, such as shown in
Nonbypass features 3119 may be configured to allow the amount of the nonbypassed portion of food to be adjusted in situ to provide adjustable or titratable bypass. For example, nonbypass features 3119 may include temporary or removable panels which increase the number of holes or openings in liner 3110. As another example, nonbypass features 3119 may include temporary or removable layers which change the permeability of liner 3110 to ingested food.
Scalloped edge 3120 may include a plurality of peaks 3121 and valleys 3122 formed at the edge of proximal portion 3111 of liner 3110. Peaks 3121 and valleys 3122 may be of uniform shape and size. Alternatively, peaks 3121 and valleys 3122 may be of varying shapes and sizes. Scalloped edge 3120 allows peaks 3121 to open wider than the rest of liner 3110, as shown in
The shape and size of peaks 3121 and valleys 3122 may be selected to enhance conformance of scalloped edge 3120 to an inside of the esophagus and reduce the amount of ingested food which passes outside of scalloped edge 3120 and into the stomach (and thus outside of cuff 3100 and sleeve 3200). Valleys 3122 may include a webbing which may be thinner than liner 3110. Scalloped edge 3120 reduces bunching of liner 3110 when the esophagus is closed, and reduces the profile of liner 3110 when the esophagus is closed, as shown in
Alternatively, the shape and size of peaks 3121 and valleys 3122 may be selected to allow a nonbypassed portion of food to pass through valleys 3122 to an outside of liner 3110 and into the stomach. For example, peaks 3121 may be taller and valleys 3122 be deeper to allow a larger amount of nonbypassed portion of food to pass through valleys 3122 and into the stomach, as shown in
A coupling mechanism, e.g., anchor holes 3130 may be formed in the peaks 3121 of scalloped edge 3120. Anchor holes 3130 are configured to receive tissue anchors. Anchor holes 3130 may be marked with a contrasting color, radiopaque marker, or other means to aid visualization. Anchor holes 3130 may be marked with stitching, ink, or other suitable marking Anchor holes 3130 may be used as a placement template for tissue anchors. Anchor holes 3130 may be evenly spaced about a circumference of liner 3110. Evenly spaced anchor holes 3130 may help to distribute forces among the tissue anchors, prevent concentration of forces in a small number of tissue anchors, and enhance conformance of liner 3110 to an inside (e.g., luminal wall) of the esophagus. Alternatively, anchor holes 3130 may be spaced in any manner about a circumference of liner 3110. Anchor holes 3130 may be substantially coplanar. Anchor holes 3130 may be arranged in a plane substantially perpendicular to longitudinal axis 3114, or angled to longitudinal axis 3114. A substantially coplanar arrangement may help to prevent concentration of forces in a small number of tissue anchors. Alternatively, anchor holes 3130 may be arranged in a staggered fashion.
Retainer 3140 may be coupled to distal portion 3112 of liner 3110. Retainer 3140 may be collapsible radially inwardly but not expandable radially outwardly. Retainer 3140 may be a circumferential channel formed in distal portion 3112 of liner 3110 by one or more folds 3141. Folds 3141 may be secured by a suture 3142, adhesive, or other means. Folds 3141 may be made more rigid by applying a stiffening substance to distal portion 3112 and/or folds 3141. The stiffening substance may be silicone or other suitable substance. Alternatively, retainer 3140 may be made of plastic or other suitable material, and coupled to distal portion 3112 of liner 3110.
Struts 3150 each include a proximal portion 3151 and a distal portion 3152. Struts 3150 may be elongate and substantially straight. Alternatively, struts 3150 may be curved or any other suitable shape. Struts 3150 may be coupled to liner 3110 between layers of liner 3110. Alternatively, struts 3150 may be coupled to an inner surface or an outer surface of liner 3110. Struts 3150 may be coupled to liner 3110 at an angle of 1 to 30 degrees or more with respect to longitudinal axis 3114 of liner 3110. Alternatively, struts 3150 may be coupled to liner 3110 longitudinally without an angle. Struts 3150 may include a first attachment element, e.g., an anchor eyelet 3154 at proximal portion 3151. Struts 3150 may include a second attachment element, e.g., a suture eyelet 3155 at distal portion 3152. Anchor eyelets 3154 may be aligned with anchor holes 3130 of liner 3110 to reinforce anchor holes 3130 of liner 3110 and prevent tissue anchors from pulling through. Struts 3150 may be coupled to liner 3110 with pockets formed by stitching together layers of liner 3110, and stitching through suture eyelets 3155. Alternatively, struts 3150 may be coupled to liner 3110 with sutures, adhesives, thermal bonding, ultrasonic or laser welding, or other suitable ways. Struts 3150 may have a uniform cross-section. Alternatively, struts 3150 may have a non-uniform cross-section which varies wider, narrower, thicker, and/or thinner. For example, struts 3150 may have a proximal portion 3151 and/or a distal portion 3152 which are thinner and/or wider, as shown in
Struts 3150 may reduce longitudinal stretching of liner 3110. Prograde forces such as peristaltic forces at distal portion 3112 of liner 3110 are transferred by struts 3150 to anchor eyelets 3154 and tissue anchors, to advantageously redistribute forces and minimize focal wear or failure points. Struts 3150 may also prevent inversion of liner 3110. Retrograde forces such as vomiting or retching forces at distal portion 3112 of liner 3110 cause liner 3110 and angled struts 3150 to twist or corkscrew about longitudinal axis 3114 and prevents inversion of liner 3110, as shown in
Attachment openings 3160 may be formed at distal portion 3112 of liner 3110. Attachment openings 3160 may be marked with a contrasting color to aid visualization. Attachment openings 3160 may be marked with stitching, ink, or other suitable marking.
Scaffold 3170 may be coupled to liner 3110 between layers of liner. Alternatively, scaffold may be coupled to an inner surface or an outer surface of liner 3110. Scaffold 3170 may be coupled to liner 3110 with sutures, adhesives, or other suitable ways. Scaffold 3170 may have any desired wall pattern, and in some embodiments resemble a sawtooth wave, sine wave, square wave, triangle wave, or other wave. Scaffold 3170 may include a plurality of proximal segments 3171 and a plurality of distal segments 3172 connected by a plurality of connecting segments 3173. Alternatively, scaffold 3170 may be a mesh, ring, or other suitable device. Scaffold 3170 may be coupled to struts 3150, or formed integrally with struts 3150. Scaffold 3170 may cross each strut 3150 through notch 3157.
Scaffold 3170 provides an outward bias to enhance conformance of liner 3110 to the luminal wall of the esophagus. This outward bias may be large enough to open liner 3110 when the esophagus opens, but not so large as to prevent the esophagus from closing. Scaffold 3170 is not necessarily meant to hold cuff 3100 in the esophagus. Scaffold 3170 may have a geometry, such as length and thickness, selected to create a desired amount of outward bias. Scaffold 3170 may be made of a material selected to create a desired amount of outward bias. Scaffold 3170 may be made of plastic such as PEEK, metal, or any other suitable material. Proximal segments 3171 may be placed at or near valleys 3122. This placement positions outward bias at valleys 3122. Any portion of scaffold 3170 may be placed across struts 3150. The placement of scaffold 3170 across struts 3150 may be selected to create a desired amount of outward bias. For example, distal segments 3172 may be placed across struts 3150. This placement provides a pivot point for connecting segments 3173 of scaffold 3170. This placement may also fold or rotate peaks 3121 when liner 3110 closes, resulting in a smaller closed profile, as shown in
Sleeve 3200 may be configured to be positioned at least partially in the stomach and the small intestine. Sleeve 3200 is configured to be coupled to cuff 3100, either in an integrally formed or removably coupled manner. Sleeve 3200 directs food and liquids into the intestine. Sleeve 3200 may include a coupling 3210, a ring 3240, a tube 3250, and one or more attachment elements 3260.
Coupling 3210 directs food and liquids from cuff 3100 to tube 3250. Coupling 3210 includes a proximal portion 3211, a distal portion 3212, and a lumen 3213. Drawstring holes 3215 may be formed at or near proximal portion 3211. Proximal portion 3211 may have a width that is the same or substantially the same as liner 3110, or in some embodiments taper down in width to restrict the flow of food and liquids through coupling 3210, which may help to create a feeling of fullness. Distal portion 3212 may have a uniform width. Alternatively, proximal portion 3211 and distal portion 3212 may have a uniform width. Coupling 3210 may be made of a material that is flexible, but does not stretch substantially in a radial or longitudinal direction. Coupling 3210 may be made of a polyurethane elastomer such as PELLETHANE, or any other suitable material.
Ring 3240 may be coupled to proximal portion 3211 of coupling 3210. Ring 3240 may be a thickened portion of coupling 3210, or a separate structure operably attached to coupling 3210. Ring 3240 may be sufficiently flexible to deform inwardly, but sufficiently rigid to spring back to its original shape. Ring 3240 is configured to interface with retainer 3140. Ring 3240 may have an interference fit with retainer 3140, or other form of attachment. Sleeve 3200 is thus coupled to cuff 3100 by ring 3240 and retainer 3140. Ring 3240 may deform when sleeve 3200 is pulled distally to allow sleeve 3200 some travel, provide some shock absorption, and more evenly distribute forces to tissue anchors. Sleeve 3200 can be exchanged for a new, second sleeve having the same or one, two, or more differing properties by inwardly deforming ring 3240 and removing sleeve 3200. Ring 3240 may be inwardly deformed using a drawstring 3241 threaded through drawstring holes 3215. Other properties of sleeves, cuffs, cuff-sleeve attachment interfaces, and sleeve exchange methods can be found, for example, in U.S. Pat. Pub. No. 2007/0198074 to Dann et al., and U.S. Pat. No. 8,070,743 to Kagan et al., each of which are hereby incorporated by reference in their entireties.
Tube 3250 includes a proximal portion 3251, a distal portion 3252, and a lumen 3253. Proximal portion 3251 of tube 3250 may be coupled to distal portion 3212 of coupling 3210 with an interference fit, heat bonded, and/or other suitable methods. Alternatively, tube 3250 may be formed integrally with coupling 3210. Tube 3250 may have a uniform width. Alternatively, tube 3250 may taper or change in width. Tube 3250 may allow food and liquids to bypass the stomach and/or part of the intestine. Tube 3250 may allow foods and liquids to be bypassed into the duodenum, jejunum, or other part of the intestine. In one embodiment, tube 3250 may have a length of approximately 80 cm to 450 cm, a diameter of approximately 15 mm to 25 mm, and/or a thickness of about 0.05 mm to about 0.5 mm, such as about 0.15 mm.
Tube 3250 may be made of a material that is floppy or flaccid, but does not stretch substantially in a radial direction. Thus, tube 3250 may be flexible and compliant inwardly to allow peristaltic forces to act on its contents, but will not balloon outwardly. Tube 3250 may also not stretch substantially in a longitudinal direction. Tube 3250 may be made of a polymer, polyethylene, polypropylene, polyurethane elastomer such as PELLETHANE, or any other suitable material. Tube 3250 may be impermeable or semi-permeable. Tube 3250 may allow nutrients and medications inside tube 3250 to pass outward. Alternatively or in addition, tube 3250 may allow digestive juices and hormones outside tube 3250 to pass inward. Tube 3250 or portions of tube 3250 may be biodegradable. Tube 3250 with a plurality of biodegradable portions may be configured such that each portion degrades at a different rate.
Tube 3250 may include one or more coatings to resist calcification, deliver medications, provide lubriciousness, and/or provide other desired properties. These coatings may include parylene, polyvinylpyrrolidone (PVP), and/or other suitable materials. Tube 3250 may include an electrical stimulation element to resist calcification and promote motility and satiety. Various electrical stimulation elements that can be utilized or modified for use with the systems and methods disclosed herein are described, for example, in U.S. Pat. No. 7,881,797 to Griffin et al., which is hereby incorporated by reference in its entirety. Tube 3250 may be made up of one or more sections which may be coupled or uncoupled to adjust a length of tube 3250. Tube 3250 may include one, two, or more additional lumens interior to, exterior to, or within walls of tube 3250 for delivery of medications, access for imaging devices for visual monitoring, and access for diagnostic sampling. Tube 3250 may have additional lumens which open at different points along the length of tube 3250 for targeted delivery or access.
Tube 3250 may include a radiopaque marker 3254. Radiopaque marker 3254 may be one or more longitudinal stripes which run along all or part of the length of tube 3250. Radiopaque marker 3254 may be configured to help prevent or reduce kinking and twisting of tube 3250. For example, radiopaque marker 3254 may be thicker and/or wider toward proximal portion 3251 of tube 3250 as shown in
Tube 3250 may include one, two, three, or more tails 3255 at distal portion 3252. Tails 3255 may be folded over each other and cinched with a grasping element, such as a loop snare, to seal distal portion 3255 of tube 3250 during deployment of sleeve 3200. Tails 3255 may be as described, for example, in U.S. Pat. No. 8,118,774 to Dann et al., which is hereby incorporated by reference in its entirety.
Coupling 3210 and/or tube 3250 may be configured to allow a nonbypassed portion of food to pass into the stomach. Coupling 3210 and/or tube 3250 may include nonbypass features 3259 which allow a desired amount of food to pass from the inside of coupling 3210 and/or tube 3250 to the outside of coupling 3210 and/or tube 3250, as shown in
Nonbypass features 3259 may be configured to allow the amount of the nonbypassed portion of food to be adjusted in situ to provide adjustable or titratable bypass. For example, nonbypass features 3259 may include temporary or removable panels which increase the number of holes or openings in coupling 3210 and/or tube 3250. As another example, nonbypass features 3259 may include temporary or removable layers which change the permeability of coupling 3210 and/or tube 3250 to ingested food.
Attachment elements 3260 are configured to be coupled to attachment openings 3160. Attachment elements 3260 and attachment openings 3160 may provide a first, e.g., a primary, or second, e.g., a backup, coupling between sleeve 3200 and cuff 3100. Attachment elements 3260 and attachment openings 3160 may be configured to keep sleeve 3200 coupled to cuff 3100 if the coupling between retainer 3140 and ring 3240 should fail.
Attachment openings 3160 may be round, oval, or any other suitable shape. Attachment openings 3160 may be deformable or substantially rigid. Attachment openings 3160 may include one or more flaps 3161 that cover attachment openings 3160 which are not in use to reduce leakage through attachment openings 3160. As shown in
Attachment element 3260 may include an elongate member 3261, a tension element 3265, and at least one grasping aid 3268. The number of attachment elements 3260 may be equal or unequal to the number of attachment openings 3160. In other applications, attachment element 3260 may be used to couple any device through an attachment opening 3160 formed in a wall of a mating device or tissue wall by deploying attachment element 3260 on an opposite side of the wall.
Elongate member 3261 includes a central portion 3262. Elongate member 3261 is configured to be passed longitudinally through attachment opening 3160 from the inside of liner 3110, and deployed transversely on the outside of liner 3110. Elongate member 3261 is of a length or other physical dimensions which will not be pulled through attachment opening 3160 after being deployed. Elongate member 3261 may be straight, curved, or any other suitable shape. Elongate member 3261 may include one or more holes 3263 through which tension element 3265 may be coupled. Elongate member 3261 may include one or more holes 3264 through which grasping aid 3268 may be coupled. One or more holes 3264 may be in communication with one or more holes 3263, as shown in
Tension element 3265 includes a proximal portion 3266 and a distal portion 3267. Proximal portion 3266 may be coupled to sleeve 3200. Distal portion 3267 may be flexibly coupled to central portion 3262 of elongate member 3261. Tension element 3265 may be a loop of suture passed through holes 3263 in elongate member 3263 and holes in sleeve 3200 and secured with one or more knots. Alternatively, tension element 3265 may be made of a length of suture, or any other suitable material. Alternatively, tension element 3265 may be a tube, stick, or other suitable element. Tension element 3265 may be substantially flexible or substantially rigid. Tension element 3265 may be stretchable to allow sleeve 3200 some travel, provide some shock absorption, and to more evenly distribute forces to tissue anchors. Tension element 3265 may be cut to release sleeve 3200 for removal or exchange.
Grasping aid 3268 may be grasped by a grasper, hook, or other suitable tool and advanced through attachment opening 3160 along with elongate member 3261 and distal portion 3267 of tension element 3265. Attachment opening 3160 may be sized or otherwise configured to allow the tool, elongate member 3261, and distal portion 3267 of tension element 3265 to pass through together. Grasping aid 3268 may be coupled to or near at least one end of elongate member 3261. Grasping aid 3268 may include a loop of suture or a length of suture. Alternatively, grasping aid 3268 may include a substantially rigid extension or stub flexibly or rigidly coupled to or near at least one end of elongate member 3261.
Tension element 3265 and grasping aid 3268 may be formed from a continuous piece of suture or other material which passes through holes 3263 and holes 3264 and is secured by one or more knots 3269, as shown in
One or more safety sutures may be used to provide a backup coupling between sleeve 3200 and cuff 3100. Safety sutures may be cut to release sleeve 3200 for removal or exchange.
The cuffs and/or sleeves described above may be anchored, for example, using tissue anchors 1300 and tissue anchors 1300A, or any other suitable tissue anchor. Other tissue anchors or features of tissue anchors that may be used with systems and methods as described herein can be found, for example, in U.S. Pat. Pub. No. 2009/0012541 to Dahl et al., which is hereby incorporated by reference in its entirety.
Tissue anchor 1300 and tissue anchor 1300A are configured to pass through a tissue wall to retain a device. For example, tissue anchor 1300 and tissue anchor 1300A may be configured to pass through an anchor hole in a cuff and transmurally through the wall of the esophagus to retain a cuff in the esophagus.
Tissue anchor 1300 and tissue anchor 1300A each include a proximal retention element 1310, a distal retention element 1320, and a tension element 1350.
Proximal retention element 1310 is configured to be deployed on a proximal side of a tissue wall. Proximal retention element 1310 may be a button, a bar, or other suitable shape. In one embodiment, proximal retention element 1310 may be a button having a diameter of approximately 2 mm to 5 mm, and a thickness of approximately 0.25 mm to 1 mm. Proximal retention element 1310 may include one or more holes 1311. Proximal retention element 1310 may be at least partially radiopaque to aid in placement and monitoring.
Distal retention element 1320 is configured to be deployed on a distal side of a tissue wall. Distal retention element 1320 may include a hub 1330 and a plurality of petals 1340.
Hub 1330 includes a proximal end 1331, a distal end 1332, and a longitudinal axis 1333. Hub 1330 includes an inner tube 1334 having a central lumen 1335. Hub 1330 also includes an outer tube 1336. Inner tube 1334 and outer tube 1336 form an annular space 1337. Inner tube 1334 and outer tube 1336 may be substantially the same length, or be of different lengths Inner tube 1334 and outer tube 1336 may be made of a stainless steel or other suitable material.
Petals 1340 each include a proximal side 1341, a distal side 1342, an open area 1344, a hub portion 1345, an inclined portion 1346, and a tissue contact portion 1347. Hub portion 1345 is coupled to tissue contact portion 1347 by inclined portion 1346. Hub portion 1345 is at least partially positioned within annular space 1337. Hub portion 1345 may be coupled to inner tube 1334 and outer tube 1336 with an adhesive 1338, solder or weld joint, laser weld, compression fit, or other suitable ways. Adhesive 1338 may be a two-part epoxy or other suitable material or adhesive. In one embodiment, hub portion 1345 may have a length of approximately 0.5 mm to 2 mm. Inclined portion 1346 extends from proximal end 1331 of hub 1330. In one embodiment, inclined portion 1346 may be inclined at an angle of approximately 30 to 60 degrees with respect to longitudinal axis 1333. Alternatively, inclined portion 1346 may be inclined at a variable angle between 0 and 90 degrees with respect to longitudinal axis 1333. In one embodiment as shown in
Tissue contact portion 1347 is configured to contact a distal surface of a tissue wall. Tissue contact portion 1347 may be substantially flat, or it may be configured to curve away from the distal surface of a tissue wall. Tissue contact portion 1347 may be substantially perpendicular to longitudinal axis 1333. Alternatively, tissue contact portion 1347 may be slightly curved to conform to the distal surface of a tissue wall. Tissue contact portion 1347 may be proximal to proximal end 1331 of hub 1330 to prevent hub 1330 from contacting the distal surface of a tissue wall. Tissue contact portion 1347 may have an open structure which reduces the amount of material coming into contact with a distal surface of a tissue wall. This open structure may reduce a response by a tissue wall to tissue contact portion 1347. In one embodiment as shown in
Petals 1340 may be sufficiently flexible to be collapsed into a delivery configuration for delivery inside a needle and expanded into a deployed configuration on a distal side of a tissue wall. Petals 1340 may be sufficiently flexible to provide shock absorption. Petals 1340 may be formed of one or more loops or lengths of wire, cut from one or more sheets of material, or made using any other suitable method. In one embodiment, petals 1340 may be formed of wire having a diameter of approximately 0.1 mm to 0.2 mm. Petals 1340 may be made of nitinol or other suitable material. Petals 1340 may be coated or treated with an antibiotic or other therapeutic agent.
In one embodiment, distal retention element 1320 may have a height of approximately 1 mm to 5 mm.
Tension element 1350 includes a proximal portion 1351 and a distal portion 1352. Proximal portion 1351 is coupled to proximal retention element 1310. Proximal portion 1351 may pass through hole 1311 of proximal retention element 1310 and coupled with one or more knots. Distal portion 1352 is positioned within central lumen 1335 of inner tube 1334. Distal portion 1352 may be coupled to inner tube 1334 with an adhesive 1339, solder or weld joint, laser weld, compression fit, or other suitable ways. Adhesive 1339 may be a two-part epoxy or other suitable material or adhesive. Distal portion 1352 may also be coupled to inner tube 1334 with one or more knots. Tension element 1350 is configured to pass through a tissue wall. Tension element 1350 may have a reduced width or thickness in order to decrease the size of the hole through a tissue wall, which may lower the likelihood of infection or other response. In one embodiment, tension element 1350 may have a diameter of approximately 0.2 mm to 0.5 mm. Tension element 1350 may be elastic or inelastic. Tension element 1350 may include a suture, wire, superelastic polymer, or other suitable material or device. Tension element 1350 may be coated or treated with an antibiotic agent. Alternatively, tension element 1350 may include an ultrathin coated stent that is stretchable and presents no interstitial spaces to surrounding tissue.
The cuffs and/or sleeves described above may be anchored, for example, using tissue anchors 2300 or any other suitable tissue anchor. Other tissue anchors or features of tissue anchors that may be used with systems and methods as described herein can be found, for example, in U.S. Pat. Pub. No. 2009/0012541 to Dahl et al., which is hereby incorporated by reference in its entirety.
Tissue anchor 2300 is configured to pass through a tissue wall to retain a device. For example, tissue anchor 2300 may be configured to pass through an anchor hole in a cuff and transmurally through the wall of the esophagus to retain a cuff in the esophagus.
Tissue anchor 2300 includes a proximal retention element 2310, a distal retention element 2320, and a tension element 2350.
Proximal retention element 2310 is configured to be deployed on a proximal side of a tissue wall. Proximal retention element 2310 may be a button, a bar, or other suitable shape. In one embodiment, proximal retention element 2310 may be a button having a diameter of approximately 2 mm to 5 mm, and a thickness of approximately 0.25 mm to 1 mm. Proximal retention element 2310 may include one or more holes 2311. Proximal retention element 2310 may be at least partially radiopaque to aid in placement and monitoring.
Distal retention element 2320 is configured to be deployed on a distal side of a tissue wall. Distal retention element 2320 may include a proximal side 2321, a distal side 2322, a hub 2330, and a plurality of petals 2340.
Hub 2330 includes a proximal end 2331, a distal end 2332, and a longitudinal axis 2333. Hub 2330 includes an inner tube 2334 having a central lumen 2335. Hub 2330 also includes an outer tube 2336. Inner tube 2334 and outer tube 2336 form an annular space 2337. Inner tube 2334 and outer tube 2336 may be substantially the same length, or be of different lengths Inner tube 2334 and outer tube 2336 may be made of a stainless steel or other suitable material.
Petals 2340 each include a proximal side 2341, a distal side 2342, an open area 2344, hub portion 2345, a connecting portion 2346, and a tissue contact portion 2347. Hub portion 2345 is coupled to tissue contact portion 2347 by connecting portion 2346. Hub portion 2345 is at least partially positioned within annular space 2337. Hub portion 2345 may be coupled to inner tube 2334 and outer tube 2336 with an adhesive 2338, solder or weld joint, laser weld, compression fit, or other suitable ways. Adhesive 2338 may be a two-part epoxy or other suitable material or adhesive. In one embodiment, hub portion 2345 may have a length of approximately 0.5 mm to 2 mm. Connecting portion 2346 extends from distal end 2332 of hub 2330. Connecting portion 2346 may include a first curved portion 2348 and a second curved portion 2349. First curved portion 2348 may couple hub portion 2345 to connecting portion 2346. First curved portion 2348 may extend from distal end 2332 of hub 2330 substantially parallel to longitudinal axis 2333, and curve approximately 135 to 180 degrees away from longitudinal axis 2333. Second curved portion 2349 may couple connecting portion 2346 to tissue contact portion 2347. Second curved portion 2349 may curve approximately 45 to 90 degrees away from longitudinal axis 2333. Thus, tissue contact portion 2347 may extend outward away from longitudinal axis 2333. Connecting portion 2346 may have a length of approximately 3 mm to 5 mm.
Tissue contact portion 2347 is configured to contact a distal surface of a tissue wall. Tissue contact portion 2347 may be substantially flat, or it may be configured to curve away from the distal surface of a tissue wall. Tissue contact portion 2347 may be substantially perpendicular to longitudinal axis 2333. Alternatively, tissue contact portion 2347 may be slightly curved to conform to the distal surface of a tissue wall. Tissue contact portion 2347 may be proximal to proximal end 2331 of hub 2330 to prevent hub 2330 from contacting the distal surface of a tissue wall. Tissue contact portion 2347 may have an open structure which reduces the amount of material coming into contact with a distal surface of a tissue wall. This open structure may reduce a response by a tissue wall to tissue contact portion 2347. In one embodiment, tissue contact portion 2347 may have a footprint having an outside diameter of approximately 7 mm to 8 mm, and an inside diameter of approximately 4 mm to 5 mm. In another embodiment, tissue contact portion 2347 may have a footprint having an outside diameter of approximately 8 mm to 10 mm, and an inside diameter of approximately 4 mm to 5 mm.
Petals 2340 may be sufficiently flexible to be collapsed into a delivery configuration for delivery inside a needle and expanded into a deployed configuration on a distal side of a tissue wall. Petals 2340 may be sufficiently flexible to provide shock absorption. Petals 2340 may be formed of one or more loops or lengths of wire, cut from one or more sheets of material, or made using any other suitable method. In one embodiment, petals 2340 may be formed of wire having a diameter of approximately 0.1 mm to 0.2 mm. Petals 2340 may be made of nitinol or other suitable material. Petals 2340 may be coated or treated with an antibiotic or other therapeutic agent.
Petals 2340, especially first curved portions 2348 of connecting portions 2346, may form a distal side 2322 which is rounded or substantially flat, which may be less traumatic to surrounding tissue. Also, because petals 2340 extend from distal end 2332 of hub 2330, hub 2330 may be positioned closer to the distal surface of a tissue wall and distal retention element 2320 may have a reduced height, which may lessen the likelihood of tumbling or tipping over. In one embodiment, distal retention element 2320 may have a height of approximately 1 mm to 5 mm.
Tension element 2350 includes a proximal portion 2351 and a distal portion 2352. Proximal portion 2351 is coupled to proximal retention element 2310. Proximal portion 2351 may pass through hole 2311 of proximal retention element 2310 and coupled with one or more knots. Distal portion 2352 is positioned within central lumen 2335 of inner tube 2334. Distal portion 2352 may be coupled to inner tube 2334 with an adhesive 2339, solder or weld joint, laser weld, compression fit, or other suitable ways. Adhesive 2339 may be a two-part epoxy or other suitable material or adhesive. Distal portion 2352 may also be coupled to inner tube 2334 with one or more knots. Tension element 2350 is configured to pass through a tissue wall. Tension element 2350 may have a reduced width or thickness in order to decrease the size of the hole through a tissue wall, which may lower the likelihood of infection or other response. In one embodiment, tension element 2350 may have a diameter of approximately 0.2 mm to 0.5 mm. Tension element 2350 may be elastic or inelastic. Tension element 2350 may include a suture, wire, superelastic polymer, or other suitable material or device. Tension element 2350 may be coated or treated with an antibiotic agent. Alternatively, tension element 2350 may include an ultrathin coated stent that is stretchable and presents no interstitial spaces to surrounding tissue.
Tissue ingrowth element 2360 may be used with any suitable tissue anchor, such as a T-tag. Tissue ingrowth element 2360 may be used with any suitable distal retention element, such as those described in U.S. Pat. Nos. 8,070,743 and 8,182,459, and U.S. Patent Application Publication 2009/0012541. Tissue ingrowth element 2360 may be used with any suitable frame or structure that is collapsible, compressible, and/or may be delivered inside a delivery needle.
Tissue ingrowth element 2360 may include a mesh made of fabric, plastic, metal, or any other suitable material. For example, tissue ingrowth element 2360 may include a knitted or woven material made of a polyester or polypropylene. Tissue ingrowth element 2360 may have a mesh size that allows or promotes tissue ingrowth, such as a mesh size ranging from about 6 ÎĽm to about 2.5 mm. Tissue ingrowth element 2360 may also have a mesh size large enough to permit macrophages to pass through, such as a mesh size greater than about 80-100 ÎĽm.
The cuffs and/or sleeves described above may be anchored, for example, using tissue anchors 3300 or any other suitable tissue anchor. Other tissue anchors or features of tissue anchors that may be used with systems and methods as described herein can be found, for example, in U.S. Pat. Pub. No. 2009/0012541 to Dahl et al., which is hereby incorporated by reference in its entirety.
Tissue anchor 3300 is configured to pass through a tissue wall to retain a device. For example, tissue anchor 3300 may be configured to pass through an anchor hole in a cuff and transmurally through the wall of the esophagus to retain a cuff in the esophagus.
Tissue anchor 3300 includes a proximal retention element 3310, a distal retention element 3320, and a tension element 3350.
Proximal retention element 3310 is configured to be deployed on a proximal side of a tissue wall. Proximal retention element 3310 may be a button, a bar, or other suitable shape. In one embodiment, proximal retention element 3310 may be a button having a diameter of approximately 2 mm to 5 mm, and a thickness of approximately 0.25 mm to 1 mm. Proximal retention element 3310 may include one or more holes 3311. Proximal retention element 3310 may be at least partially radiopaque to aid in placement and monitoring.
Distal retention element 3320 is configured to be deployed on a distal side of a tissue wall. Distal retention element 3320 may include a proximal side 3321, a distal side 3322, a hub 3330, and a plurality of petals 3340.
Hub 3330 includes a proximal end 3331, a distal end 3332, and a longitudinal axis 3333.
Petals 3340 each include a proximal side 3341, a distal side 3342, an open area 3344, a connecting portion 3346 and a tissue contact portion 3347. Tissue contact portion 3347 is coupled to hub 3330 by connecting portion 3346. Connecting portion 3346 extends from distal end 3332 of hub 3330. Connecting portion 3346 may include a first curved portion 3348 and a second curved portion 3349. First curved portion 3348 may couple hub 3330 to connecting portion 3346. First curved portion 3348 may extend from distal end 3332 of hub 3330 substantially parallel to longitudinal axis 3333, and curve approximately 135 to 180 degrees away from longitudinal axis 3333. Second curved portion 3349 may couple connecting portion 3346 to tissue contact portion 3347. Second curved portion 3349 may curve approximately 45 to 90 degrees away from longitudinal axis 3333. Thus, tissue contact portion 3347 may extend outward away from longitudinal axis 3333. Connecting portion 3346 may have a length of approximately 3 mm to 5 mm.
Tissue contact portion 3347 is configured to contact a distal surface of a tissue wall. Tissue contact portion 3347 may be substantially flat, or it may be configured to curve away from the distal surface of a tissue wall. Tissue contact portion 3347 may be substantially perpendicular to longitudinal axis 3333. Alternatively, tissue contact portion 3347 may be slightly curved to conform to the distal surface of a tissue wall. Tissue contact portion 3347 may be proximal to proximal end 3331 of hub 3330 to prevent hub 3330 from contacting the distal surface of a tissue wall. Tissue contact portion 3347 may have an open structure which reduces the amount of material coming into contact with a distal surface of a tissue wall. This open structure may reduce a response by a tissue wall to tissue contact portion 3347. In one embodiment, tissue contact portion 3347 may have a footprint having an outside diameter of approximately 7 mm to 8 mm, and an inside diameter of approximately 4 mm to 5 mm. In another embodiment, tissue contact portion 3347 may have a footprint having an outside diameter of approximately 8 mm to 10 mm, and an inside diameter of approximately 4 mm to 5 mm.
Petals 3340 may be sufficiently flexible to be collapsed into a delivery configuration for delivery inside a needle and expanded into a deployed configuration on a distal side of a tissue wall. Petals 3340 may be sufficiently flexible to provide shock absorption. Petals 2340 may be formed of one or more loops or lengths. Petals 2340 may have a thickness of approximately 0.1 mm to 0.2 mm. Hub 3330 and petals 3340 may be laser cut, stamped, or otherwise manufactured from a single piece of material, such as a sheet or tube of material. Petals 3340 may be set into a desired shape by heat setting, cold working, or other suitable ways. Hub 3330 and petals 3340 may be made of nitinol or other suitable material. Petals 3340 may be coated or treated with an antibiotic or other therapeutic agent.
Petals 3340, especially first curved portions 3348 of connecting portions 3346, may form a distal side 3322 which is rounded or substantially flat, which may be less traumatic to surrounding tissue. Also, because petals 3340 extend from distal end 3332 of hub 3330, hub 3330 may be positioned closer to the distal surface of a tissue wall and distal retention element 3320 may have a reduced height, which may lessen the likelihood of tumbling or tipping over. In one embodiment, distal retention element 3320 may have a height of approximately 1 mm to 5 mm.
Tension element 3350 includes a proximal portion 3351 and a distal portion 3352. Proximal portion 3351 is coupled to proximal retention element 3310. Proximal portion 3351 may pass through hole 3311 of proximal retention element 3310 and coupled with one or more knots. Distal portion 3352 is positioned within central lumen 3335 of inner tube 3334. Distal portion 3352 may be coupled to inner tube 3334 with an adhesive 3339, solder or weld joint, laser weld, compression fit, or other suitable ways. Adhesive 3339 may be a two-part epoxy or other suitable material or adhesive. Distal portion 3352 may also be coupled to inner tube 3334 with one or more knots. Tension element 3350 is configured to pass through a tissue wall. Tension element 3350 may have a reduced width or thickness in order to decrease the size of the hole through a tissue wall, which may lower the likelihood of infection or other response. In one embodiment, tension element 3350 may have a diameter of approximately 0.2 mm to 0.5 mm. Tension element 3350 may be elastic or inelastic. Tension element 3350 may include a suture, wire, superelastic polymer, or other suitable material or device. Tension element 3350 may be coated or treated with an antibiotic agent. Alternatively, tension element 3350 may include an ultrathin coated stent that is stretchable and presents no interstitial spaces to surrounding tissue.
The cuffs and/or sleeves described above may be anchored, for example, using tissue anchors 4300 or any other suitable tissue anchor. Other tissue anchors or features of tissue anchors that may be used with systems and methods as described herein can be found, for example, in U.S. Pat. Pub. No. 2009/0012541 to Dahl et al., which is hereby incorporated by reference in its entirety.
Tissue anchor 4300 is configured to pass through a tissue wall to retain a device. For example, tissue anchor 4300 may be configured to pass through an anchor hole in a cuff and transmurally through the wall of the esophagus to retain a cuff in the esophagus.
Tissue anchor 4300 includes a proximal retention element 4310, a distal retention element 4320, and a tension element 4350.
Proximal retention element 4310 is configured to be deployed on a proximal side of a tissue wall. Proximal retention element 4310 may be a button, a bar, or other suitable shape. In one embodiment, proximal retention element 4310 may be a button having a diameter of approximately 2 mm to 5 mm, and a thickness of approximately 0.25 mm to 1 mm. Proximal retention element 4310 may include one or more holes 4311. Proximal retention element 4310 may be at least partially radiopaque to aid in placement and monitoring.
Distal retention element 4320 is configured to be deployed on a distal side of a tissue wall. Distal retention element 4320 may include a proximal side 4321, a distal side 4322, a hub 4330, and a plurality of petals 4340.
Hub 4330 includes a proximal end 4331, a distal end 4332, and a longitudinal axis 4333. Hub 4330 includes an inner tube 4334 having a central lumen 4335. Hub 4330 also includes an outer tube 4336. Inner tube 4334 and outer tube 4336 form an annular space 4337. Inner tube 4334 and outer tube 4336 may be substantially the same length, or be of different lengths Inner tube 4334 and outer tube 4336 may be made of a stainless steel or other suitable material.
Petals 4340 each include a proximal side 4341, a distal side 4342, an open area 4344, hub portion 4345, a connecting portion 4346, and a tissue contact portion 4347. Hub portion 4345 is coupled to tissue contact portion 4347 by connecting portion 4346. Hub portion 4345 is at least partially positioned within annular space 4337. Hub portion 4345 may be coupled to inner tube 4334 and outer tube 4336 with an adhesive 4338, solder or weld joint, laser weld, compression fit, or other suitable ways. Adhesive 4338 may be a two-part epoxy or other suitable material or adhesive. In one embodiment, hub portion 4345 may have a length of approximately 0.5 mm to 2 mm. Connecting portion 4346 extends from distal end 4332 of hub 4330. Connecting portion 4346 may include a first curved portion 4348 and a second curved portion 4349. First curved portion 4348 may couple hub portion 4345 to connecting portion 4346. First curved portion 4348 may extend from distal end 4332 of hub 4330 substantially parallel to longitudinal axis 4333, and curve approximately 60 to 120 degrees away from longitudinal axis 4333. Second curved portion 4349 may couple connecting portion 4346 to tissue contact portion 4347. Second curved portion 4349 may curve approximately 150 to 210 degrees proximally toward longitudinal axis 4333. Thus, tissue contact portion 4347 may extend inward toward longitudinal axis 4333. Connecting portion 4346 may have a length of approximately 3 mm to 7 mm.
Tissue contact portion 4347 is configured to contact a distal surface of a tissue wall. Tissue contact portion 4347 may be substantially flat, or it may be configured to curve away from the distal surface of a tissue wall. Tissue contact portion 4347 may be substantially perpendicular to longitudinal axis 4333. Alternatively, tissue contact portion 4347 may be slightly curved to conform to the distal surface of a tissue wall. Tissue contact portion 4347 may be proximal to proximal end 4331 of hub 4330 to prevent hub 4330 from contacting the distal surface of a tissue wall. Tissue contact portion 4347 may have an open structure which reduces the amount of material coming into contact with a distal surface of a tissue wall. This open structure may reduce a response by a tissue wall to tissue contact portion 4347. In one embodiment, tissue contact portion 4347 may have a footprint having an outside diameter of approximately 7 mm to 8 mm, and an inside diameter of approximately 4 mm to 5 mm. In another embodiment, tissue contact portion 4347 may have a footprint having an outside diameter of approximately 8 mm to 10 mm, and an inside diameter of approximately 4 mm to 5 mm.
Petals 4340 may be sufficiently flexible to be collapsed into a delivery configuration for delivery inside a needle and expanded into a deployed configuration on a distal side of a tissue wall. Petals 4340 may be sufficiently flexible to provide shock absorption. Petals 4340 may be formed of one or more loops or lengths of wire, cut from one or more sheets of material, or made using any other suitable method. In one embodiment, petals 4340 may be formed of wire having a diameter of approximately 0.1 mm to 0.2 mm. Petals 4340 may be made of nitinol or other suitable material. Petals 4340 may be coated or treated with an antibiotic or other therapeutic agent.
Petals 4340, especially connecting portions 4346, may form a distal side 4322 which is rounded or substantially flat, which may be less traumatic to surrounding tissue. Also, because petals 4340 extend from distal end 4332 of hub 4330, hub 4330 may be positioned closer to the distal surface of a tissue wall and distal retention element 4320 may have a reduced height, which may lessen the likelihood of tumbling or tipping over. In one embodiment, distal retention element 4320 may have a height of approximately 1 mm to 5 mm.
Tension element 4350 includes a proximal portion 4351 and a distal portion 4352. Proximal portion 4351 is coupled to proximal retention element 4310. Proximal portion 4351 may pass through hole 4311 of proximal retention element 4310 and coupled with one or more knots. Distal portion 4352 is positioned within central lumen 4335 of inner tube 4334. Distal portion 4352 may be coupled to inner tube 4334 with an adhesive 4339, solder or weld joint, laser weld, compression fit, or other suitable ways. Adhesive 4339 may be a two-part epoxy or other suitable material or adhesive. Distal portion 4352 may also be coupled to inner tube 4334 with one or more knots. Tension element 4350 is configured to pass through a tissue wall. Tension element 4350 may have a reduced width or thickness in order to decrease the size of the hole through a tissue wall, which may lower the likelihood of infection or other response. In one embodiment, tension element 4350 may have a diameter of approximately 0.2 mm to 0.5 mm. Tension element 4350 may be elastic or inelastic. Tension element 4350 may include a suture, wire, superelastic polymer, or other suitable material or device. Tension element 4350 may be coated or treated with an antibiotic agent. Alternatively, tension element 4350 may include an ultrathin coated stent that is stretchable and presents no interstitial spaces to surrounding tissue.
Tissue ingrowth element 4360 may be used with any suitable tissue anchor, such as a T-tag. Tissue ingrowth element 4360 may be used with any suitable distal retention element, such as those described in U.S. Pat. Nos. 8,070,743 and 8,182,459, and U.S. Patent Application Publication 2009/0012541. Tissue ingrowth element 4360 may be used with any suitable frame or structure that is collapsible, compressible, and/or may be delivered inside a delivery needle.
Tissue ingrowth element 4360 may include a mesh made of fabric, plastic, metal, or any other suitable material. For example, tissue ingrowth element 4360 may include a knitted or woven material made of a polyester or polypropylene. Tissue ingrowth element 4360 may have a mesh size that allows or promotes tissue ingrowth, such as a mesh size ranging from about 6 ÎĽm to about 2.5 mm. Tissue ingrowth element 4360 may also have a mesh size large enough to permit macrophages to pass through, such as a mesh size greater than about 80-100 ÎĽm.
Tissue marking device 1400 may be used for aiding the placement of tissue anchors, identifying cancerous tissue, marking tissue before surgery, and other purposes where a temporary or permanent marking of the anatomy is desired. In some embodiments, tissue marking device 1400 may be used for purposes other than marking, such as for pinpoint delivery of a diagnostic or therapeutic agent into tissue, such as a chemotherapeutic drug for example.
Tissue marking device 1400 may include a marking tube 1410, a marking tip 1420, a dye source 1444, and a vacuum source 1460.
Marking tube 1410 includes a proximal portion 1411 and a distal portion 1412. Marking tube includes an inlet lumen 1413 and an outlet lumen 1415. Marking tube 1410 is configured to access a part of the body where the tissue is located. Marking tube 1410 may be configured to be used in a working channel of an endoscope or other device.
Marking tip 1420 may be formed at distal portion 1412 of marking tube 1410. Marking tip 1420 includes a passage 1421 formed in a wall 1414 between inlet lumen 1413 and outlet lumen 1415. Marking tip 1420 includes an opening 1426. Opening 1426 may be circular, cross-shaped, X-shaped, or any other suitable size and shape as desired for a particular tissue identification, and in some embodiments could have a first opening shape to mark a first tissue, and a second opening shape to mark a second tissue. Opening 1426 may be chamfered on the inside and/or outside. Marking tip 1420 is configured to be placed against a tissue to be marked. Marking tip 1420 may be any suitable size or shape depending on the tissue to be marked. Opening 1426 could be on a distal-facing surface of marking tip 1420 as illustrated, or on a sidewall of the marking tip 1420 in other embodiments, such as described in connection with
Dye source 1444 may be coupled to inlet lumen 1413. Dye source 1444 may be a reservoir containing a dye for marking tissue. The dye may be gentian violet or any other suitable ink or dye. Dye source 1444 may be a syringe or other device which allows the flow of the dye to be controlled.
Optionally, a rinse source 1445 may be coupled to inlet lumen 1413. Rinse source 1445 may be a reservoir containing a rinse solution such as saline or water. Rinse source 1445 may be a syringe or other device which allows the flow of the rinse solution to be controlled.
A single solution may be used which performs both functions of the dye and the rinse solution.
A manifold 1450 may be used to couple dye source 1444 and rinse source 1445 to inlet lumen 1413. Manifold 1450 may include one or more valves 1451 which allow dye source 1444 and rinse source 1445 to be turned on and off independently.
Vacuum source 1460 may be coupled to outlet lumen 1415. Vacuum source 1460 may be a pump or other suitable device. Vacuum source 1460 is configured to draw a tissue placed against marking tip 1420 and create a seal between opening 1426 and the tissue. Vacuum source 1460 is also configured to fill marking tip 1420 with a dye from dye source 1444 and a rinse solution from rinse source 1445. Vacuum source 1460 may include controls for adjusting or programming time and pressure of vacuum applied.
Tissue marking device 1400 may be a sealed system, which allows for a given fluid to be maintained in marking tip 1420 as long as a vacuum is applied and a seal with the tissue is maintained.
Tissue marking device 1400 may be used by first applying a vacuum to marking tip 1420 to draw a portion of the tissue against opening 1426, and then providing a dye to marking tip 1420 to at least partially fill marking tip 1420 with the dye and allow the dye to contact the portion of the tissue and mark the tissue. Tissue marking device 1400 may also be used to provide a rinse solution to marking tip 1420 to at least partially fill marking tip 1420 with the rinse solution and rinse the portion of the tissue. Tissue marking device 1400 may also be used to provide a prep solution to marking tip 1420 to at least partially fill marking tip 1420 with the prep solution and prepare the portion of the tissue before providing the dye.
Optionally, rinsing marking tip 1420 and/or the tissue may be performed. Valve 1451 for rinse source 1445 is opened and vacuum source 1460 fills marking tip 1420 with a rinse solution from rinse source 1445.
Tissue marking device 2400 may be used for aiding the placement of tissue anchors, identifying cancerous tissue, marking tissue before surgery, and other purposes. In some embodiments, tissue marking device 2400 may be used for purposes other than marking, such as for pinpoint delivery of a diagnostic or therapeutic agent into tissue, such as a chemotherapeutic drug for example.
Tissue marking device 2400 may include an access element 2410, a marking interface 2420, a positioning element 2430, a dye source 2444, and a vacuum source 2460.
Access element 2410 includes a proximal portion 2411 and a distal portion 2412. Access element 2410 may include an inlet tube 2413 and an outlet tube 2415. Access element 2410 is configured to access a part of the body where the tissue is located. In one embodiment, an access element 2410 used for esophageal access may be a catheter of suitable length and diameter to access the gastroesophageal junction or other part of the esophagus. Access element 2410 may be configured to be used with a visualization device. In other embodiments, access element 2410 may be an endoscope, a solid elongate member, or other suitable device used to access the esophagus or other bodily cavities.
Marking surface 2420 may be coupled to distal portion 2412 of access element 2410. Alternatively, marking surface 2420 may be coupled to any suitable part of access element 2410. Marking surface 2420 includes a lumen 2421 having an inlet 2423 and an outlet 2425. Inlet 2423 and outlet 2425 may be coupled to inlet tube 2413 and outlet tube 2415. Lumen 2421 may be linear, meandering, or U-shaped, as shown in
Positioning element 2430 may be coupled to distal portion 2412 of access element 2410. Positioning element 2430 may be an expandable element, such as balloon, expandable mesh, or other suitable device. Positioning element 2430 may be coupled a known distance proximal or distal to marking surface 2420. Positioning element 2430 may be used to position marking surface 2420 with respect to an anatomical feature. In one embodiment, positioning element 2430 is a balloon configured to be expanded in the stomach, and configured to position marking surface 2420 in the esophagus a known distance from the opening of the stomach.
Optionally, a first rinse source 2441 may be coupled to inlet tube 2413. First rinse source 2441 may be a reservoir containing a first rinse solution such as saline or water. First rinse source 2441 may be a syringe or other device which allows the flow of the first rinse solution to be controlled.
Optionally, a second rinse source 2442 may be coupled to inlet tube 2413. Second rinse source 2442 may be a reservoir containing a second rinse solution such as acetic acid. Second rinse source 2442 may be a syringe or other device which allows the flow of the second rinse solution to be controlled.
Optionally, a prep source 2443 may be coupled to inlet tube 2413. Prep source 2443 may be a reservoir containing a prep solution such as isopropyl alcohol. Prep source 2443 may be a syringe or other device which allows the flow of the prep solution to be controlled.
Dye source 2444 may be coupled to inlet tube 2413. Dye source 2444 may be a reservoir containing a dye for marking tissue. The dye may be gentian violet or any other suitable ink or dye. Dye source 2444 may be a syringe or other device which allows the flow of the dye to be controlled.
Optionally, a third rinse source 2445 may be coupled to inlet tube 2413. Third rinse source 2445 may be a reservoir containing a third rinse solution such as saline or water. Third rinse source 2445 may be a syringe or other device which allows the flow of the third rinse solution to be controlled.
A single solution may be used which performs two or more functions of the first rinse solution, second rinse solution, prep solution, dye, and third rinse solution.
A manifold 2450 may be used to couple first rinse source 2441, second rinse source 2442, prep source 2443, dye source 2444, and third rinse source 2445 to inlet tube 2413. Manifold 2450 may include one or more valves 2451 which allow first rinse source 2441, second rinse source 2442, prep source 2443, dye source 2444, and third rinse source 2445 to be turned on and off independently.
Vacuum source 2460 is coupled to outlet tube 2415. Vacuum source 2460 may be a pump or other suitable device. Vacuum source 2460 is configured to create a vacuum within lumen 2421 of marking surface 2420. Vacuum source 2460 is configured to draw a tissue placed against marking surface 2420 and create a seal between openings 2426 and the tissue. Vacuum source 2460 is configured to fill lumen 2421 with a first rinse solution from first rinse source 2441, a second rinse solution from second rinse source 2442, a prep solution from prep source 2443, a dye from dye source 2444, and/or a third rinse solution from third rinse source 2445. Vacuum source 2460 may include controls for adjusting or programming time and pressure of vacuum applied.
Tissue marking device 2400 may be a sealed system, which allows for a given fluid to be maintained in lumen 2421 as long as a vacuum is applied and a seal with the tissue is maintained.
Tissue marking device 2400 may be used to first apply a vacuum to outlet 2425 of lumen 2421 to draw a portion of the tissue against opening 2426, and then to provide a dye to inlet 2423 of lumen 2421 to at least partially fill lumen 2421 with the dye and allow the dye to contact the portion of the tissue and mark the tissue. Tissue marking device 2400 may also be used to provide a rinse solution to inlet 2423 of lumen 2421 to at least partially fill lumen 2421 with the rinse solution and rinse the portion of the tissue. Tissue marking device 2400 may also be used to provide a prep solution to inlet 2423 of lumen 2421 to at least partially fill lumen 2421 with the prep solution and prepare the portion of the tissue before providing the dye.
Optionally, rinsing the tissue may be performed one or more times. Valve 2451 for first rinse source 2441 is opened and vacuum source 2460 fills lumen 2421 with a first rinse solution from first rinse source 2441 to rinse the tissue exposed through openings 2426. Valve 2451 for second rinse source 2442 is opened and vacuum source 2460 fills lumen 2421 with a second rinse solution from second rinse source 2442 to rinse the tissue exposed through openings 2426.
Optionally, preparing the tissue may be performed. Valve 2451 for prep source 2443 is opened and vacuum source 2460 fills lumen 2421 with a prep solution from prep source 2443 to prepare the tissue exposed through openings 2426.
Optionally, rinsing lumen 2421 and/or the tissue may be performed. Valve 2451 for third rinse source 2445 is opened and vacuum source 2460 fills lumen 2421 with a third rinse solution from third rinse source 2445 to rinse lumen 2421 and/or the tissue exposed through openings 2426.
Sleeve delivery device 1500 may be used to deliver a gastrointestinal sleeve. Sleeve delivery device 1500 may also be used to deliver a gastrointestinal cuff together with or apart from a gastrointestinal sleeve.
Sleeve delivery device 1500 may include a handle 1510, a delivery catheter 1520, a sealing element 1540, a release element 1550, and a pump 1570.
Handle 1510 may include a sealing port 1514, a release port 1515, a pump port 1517, and a snare port 1518. Snare port 1518 is configured to receive a loop snare or other grasping device.
Delivery catheter 1520 includes a proximal portion 1521 and a distal portion 1522. Proximal portion 1521 is coupled to handle 1510. Distal portion 1522 is configured to receive a proximal portion of a gastrointestinal sleeve. Distal portion 1522 may be curved to facilitate placement into the pylorus and/or intestine. Delivery catheter 1520 includes a delivery lumen 1523, a sealing lumen 1524, and a release lumen 1525. Delivery lumen 1523 is configured to receive at least a distal portion of a gastrointestinal sleeve which may be inverted inside delivery lumen 1523. Sealing lumen 1524 is in communication with a sealing opening 1534 formed in a side of distal portion 1522. Release lumen 1525 is in communication with a release opening 1535 formed in a side of distal portion 1522.
Sealing element 1540 is configured to form a substantially fluid-tight seal between a proximal portion of a sleeve, such as a gastrointestinal sleeve, and distal portion 1522 of delivery catheter 1520, when a proximal portion of a gastrointestinal sleeve is placed over distal portion 1522 of delivery catheter 1520. Sealing element 1540 is also configured to retain a gastrointestinal sleeve to delivery catheter 1520 during delivery. Sealing element 1540 may be, for example, a suture, wire, or other means that runs through sealing lumen 1524, exits out of sealing opening 1534, and wraps one or more times around a proximal portion of a gastrointestinal sleeve placed over distal portion 1522 of delivery catheter 1520. Sealing element 1540 may include a distal portion 1542 having a loop or a ring.
Release element 1550 is slidably disposed in release lumen 1525. Release element 1550 is configured to retain a distal portion 1542 of sealing element 1540. Release element 1550 is exposed at release opening 1535. Release element 1550 may be a wire. Alternatively, release element 1550 may be a suture or other suitable device.
Pump 1570 is configured to be coupled to pump port 1517. Pump 1570 is configured to pump a fluid such as water into delivery lumen 1523 to evert a gastrointestinal sleeve loaded onto delivery catheter 1520. Pump 1570 may include controls for pressure, volume, flow rate, time, or other parameters.
Sleeve delivery device 2500 may be used to deliver a gastrointestinal sleeve. Sleeve delivery device 2500 may also be used to deliver a gastrointestinal cuff together with or apart from a gastrointestinal sleeve.
Sleeve delivery device 2500 may include a handle 2510, a delivery catheter 2520, a sealing element 2540, one or more rings 2550, and a pump 2570.
Handle 2510 may include a sealing port 2514, a pump port 2517, and a snare port 2518. Snare port 2518 is configured to receive a loop snare or other grasping device.
Delivery catheter 2520 includes a proximal portion 2521 and a distal portion 2522. Proximal portion 2521 is coupled to handle 2510. Distal portion 2522 is configured to receive a proximal portion of a gastrointestinal sleeve. Distal portion 2522 may be curved to facilitate placement into the pylorus and/or intestine. Delivery catheter 2520 includes a delivery lumen 2523 and a sealing lumen 2524. Delivery lumen 2523 is configured to receive at least a distal portion of a gastrointestinal sleeve which may be inverted inside delivery lumen 2523. Sealing lumen 2524 is in communication with a sealing opening 2534 formed in a side of distal portion 2522.
Sealing element 2540 is configured to form a substantially fluid-tight seal between a proximal portion of a sleeve, such as a gastrointestinal sleeve, and distal portion 2522 of delivery catheter 2520, when a proximal portion of a gastrointestinal sleeve is placed over distal portion 2522 of delivery catheter 2520. Sealing element 2540 is also configured to retain a gastrointestinal sleeve to delivery catheter 2520 during delivery. Sealing element 2540 may be, for example, a suture, wire, or other means that runs through sealing lumen 2524, exits out of sealing opening 2534, and wraps one or more times around a proximal portion of a gastrointestinal sleeve placed over distal portion 2522 of delivery catheter 2520. Sealing element 2540 may include a distal portion 2542 that may be tied to sealing element 2540 with a releasable knot.
Rings 2550, which may include any radially outwardly protruding structure, may be formed or coupled around distal portion 2522 of delivery catheter 2520. Rings 2550 may be coupled with heat shrink tubing, an adhesive, or other suitable methods. Rings 2550 are configured to fit inside a proximal portion of a gastrointestinal sleeve. Rings 2550 may cooperate with sealing element 2540 to help seal and retain a proximal portion of a gastrointestinal sleeve around distal portion 2522 of delivery catheter 2520.
Pump 2570 is configured to be coupled to pump port 2517. Pump 2570 is configured to pump a fluid such as water into delivery lumen 2523 to evert a gastrointestinal sleeve loaded onto delivery catheter 2520. Pump 2570 may include controls for pressure, volume, flow rate, time, or other parameters.
Sleeve delivery device 3500 may be used to deliver a gastrointestinal sleeve. Sleeve delivery device 3500 may also be used to deliver a gastrointestinal cuff together with or apart from a gastrointestinal sleeve.
Sleeve delivery device 3500 may include a handle 3510, a delivery catheter 3520, a balloon 3540, a boot 3560, and a pump 3570.
Handle 3510 may include an inflation port 3514, a boot release port 3516, a pump port 3517, and a snare port 3518. Inflation port 3514 is configured to be coupled to an inflation source. Snare port 3518 is configured to receive a loop snare or other grasping device.
Delivery catheter 3520 includes a proximal portion 3521 and a distal portion 3522. Proximal portion 3521 is coupled to handle 3510. Distal portion 3522 is configured to receive a proximal portion of a gastrointestinal sleeve. Distal portion 3522 may be curved to facilitate placement into the pylorus and/or intestine. Delivery catheter 3520 includes a delivery lumen 3523, an inflation lumen 3524, and a boot release lumen 3526. Delivery lumen 3523 is configured to receive at least a distal portion of a gastrointestinal sleeve which may be inverted inside delivery lumen 3523. Inflation lumen 3524 is in communication with balloon 3540. Boot release lumen 3526 is in communication with a boot release opening 3536 formed in a side of distal portion 3522.
Balloon 3540 is coupled to distal portion 3522 of delivery catheter 3520. Balloon 3540 is configured to form a substantially fluid-tight seal between a proximal portion of a sleeve, such as a gastrointestinal sleeve, and distal portion 3522 of delivery catheter 3520, when a proximal portion of a gastrointestinal sleeve is placed over distal portion 3522 of delivery catheter 3520. Balloon 3540 is also configured to retain a gastrointestinal sleeve to delivery catheter 3520 during delivery. Balloon 3540 may be a circumferential balloon coupled around distal portion 3522 of delivery catheter 3520.
Boot 3560 is configured to wrap around a proximal portion of a gastrointestinal sleeve placed over distal portion 3522 of delivery catheter 3520. Boot 3560 is configured to prevent damage to or snagging of a proximal portion of a gastrointestinal sleeve during delivery. Boot 3560 has an outside profile configured to minimize trauma and damage to esophagus and other tissue during delivery. Boot 3560 may also help to retain a gastrointestinal sleeve to delivery catheter 3520. Boot 3560 includes a boot release 3561. Boot release 3561 may be, for example, a suture, wire, or other means that runs through boot release lumen 3526, exits out of boot release opening 3536, and attaches to boot 3560. Boot release 3561 is configured to unzip, tear open, cut, degrade, or otherwise disassociate boot 3560 to release it from delivery catheter 3520. Boot 3560 may include perforations 3562 and a tongue 3563 to facilitate release. Boot 3560 may be made of plastic, fabric, or other suitable material. When sleeve delivery device 3500 is used to deliver a gastrointestinal cuff together with a gastrointestinal sleeve, boot 3560 may be long enough to wrap around both the gastrointestinal cuff and the proximal portion of the gastrointestinal sleeve. A boot 3560 may also be used with sleeve delivery devices 1500 and 2500.
Pump 3570 is configured to be coupled to pump port 3517. Pump 3570 is configured to pump a fluid such as water into delivery lumen 3523 to evert a gastrointestinal sleeve loaded onto delivery catheter 3520. Pump 3570 may include controls for pressure, volume, flow rate, time, or other parameters.
Anchor delivery device 1600 includes a handle 1610, a sheath 1650, a delivery needle 1660, and a stylet 1670.
Handle 1610 includes a needle control 1616 and a stylet control 1617.
Sheath 1650 includes a proximal portion 1651, a distal portion 1652, and a sheath lumen 1655. Proximal portion 1651 of sheath 1650 may be coupled to handle 1610. Sheath 1650 is configured to be slidably disposed in a working lumen of an endoscope.
Delivery needle 1660 is slidably disposed in sheath lumen 1655. Delivery needle 1660 includes a proximal portion 1661, a distal portion 1662, and a needle lumen 1665. Proximal portion 1661 may be coupled to needle control 1616. Distal portion 1662 may include a tip 1668 that is sharp. Alternatively, tip 1668 may be atraumatic and coupled to an RF or other energy source. Distal portion 1662 may be advanced out of and refracted into sheath 1620. Distal portion 1662 may be preformed with a curve, or made of a shape memory material. This curve may be straightened out when distal portion 1662 is retracted into sheath 1620. Distal portion 1662 may be made of the same material as the rest of delivery needle 1660. Alternatively, distal portion 1662 may be made of a different material for greater curve and/or flexibility. For example, distal portion 1662 may be made of a polyamide and the rest of delivery needle 1660 may be made of nitinol. Delivery needle 1660 is configured to receive a tissue anchor collapsed into a delivery configuration.
Stylet 1670 is slidably disposed in needle lumen 1665. Stylet 1670 includes a proximal portion 1671 and a distal portion 1672. Proximal portion 1671 may be coupled to stylet control 1617. Distal portion 1672 may be advanced out of and retracted into delivery needle 1660. Stylet 1670 is configured to push out a tissue anchor loaded in delivery needle 1660.
Stent 1690 may be removably coupled to a gastrointestinal cuff to create a working space inside the esophagus. Stent 1690 may also be used without being coupled to the gastrointestinal cuff. Stent 1690 may be used in conjunction with anchor delivery device 1600.
Stent 1690 includes a plurality of proximal segments 1691 and a plurality of distal segments 1692 connected by connecting segments 1693. Proximal segments 1691 may include proximal drawstring holes 1694. A proximal drawstring 1695 may be threaded through proximal drawstring holes 1692. A proximal drawstring control 1696 may be coupled to proximal drawstring 1695. Proximal drawstring control 1696 is configured to loosen and tighten proximal drawstring 1695 to expand and collapse a proximal portion of stent 1690. Distal segments 1692 may include distal drawstring holes 1697. A distal drawstring 1698 may be threaded through distal drawstring holes 1697. A distal drawstring control 1699 may be coupled to distal drawstring 1698. Distal drawstring control 1699 is configured to loosen and tighten distal drawstring to expand and collapse a distal portion of stent 1690.
Stent 1690 may be removably coupled to an inner surface of a proximal portion of a gastrointestinal cuff. Stent 1690 may be sutured to the gastrointestinal cuff. Stent 1690 may be delivered in a collapsed configuration together with the gastrointestinal cuff, and expanded at a cuff position to create a working space. When the working space is no longer needed, the sutures may be cut and removed, and stent 1690 collapsed and removed.
Stent 1690 may also be used without being coupled to a gastrointestinal cuff. Stent 1690 may be delivered in a collapsed configuration into a previously placed gastrointestinal cuff, and expanded to create a working space. When the working space is no longer needed, the stent 1690 may be collapsed and removed.
Anchor delivery device 2600 includes a handle 2610, a catheter 2620, a side port 2630, a sled 2650, a delivery needle 2660, pushrod 2670, and a holder 2680.
Handle 2610 includes a needle control 2616, a pushrod control 2617, and a holder control 2618.
Catheter 2620 includes a proximal portion 2621, a distal portion 2622, and a longitudinal axis 2623. Catheter 2620 also includes a central lumen 2625. Distal portion 2622 may include a nose 2626 having an opening 2627. Nose 2626 may be soft and flexible. Nose 2626 may be elongate. Nose 2626 may be curved. Opening 2627 may be configured to allow an endoscope or other tool to pass through. Distal portion 2622 may also include an alignment slot 2628 and a stop 2629.
Side port 2630 is formed in a side of distal portion 2622 of catheter 2620. Side port 2630 includes a proximal side 2631 and a distal side 2632. Side port 2630 may optionally include a tissue brace 2634 slidably disposed within a brace lumen of catheter 2620. Tissue brace 2634 may be configured to removably cover side port 2630 to prevent tissue from prematurely entering side port 2630. Side port 2630 may be coupled to a vacuum source. Side port 2630 may be configured to be placed against and draw in a tissue wall. Side port 2630 may be sized larger to allow enough of a tissue wall to be drawn in for single-wall (transmural) anchor delivery, or sized smaller for double-wall (plication) anchor delivery. For single-wall anchor delivery, side port 2630 may have a length of 10 mm to 50 mm or greater, such as a length of 20 mm to 30 mm.
Sled 2650 is slidably disposed in central lumen 2625. Sled 2650 includes a sheathing channel 2655 having a proximal opening 2656. Sled 2650 may be coupled to a sled control rod 2657 configured to move sled 2650. Sled control rod 2657 may be coupled to handle 2610. Sled 2650 may include an alignment tab 2658 which cooperates with alignment slot 2628 to align proximal opening 2656 with side port 2630. Sled 2650 may be configured to slide in central lumen 2625 distally until it reaches stop 2629. When sled 2650 has reached stop 2629, proximal opening 2656 of sheathing channel 2655 may be positioned at distal side 2632 of side port 2630. Sled 2650 may be removed from catheter 2620 for reloading.
Delivery needle 2660 is slidably disposed in sheathing channel 2655. Delivery needle 2660 includes a distal control portion 2661, a proximal delivery portion 2662, and a needle lumen 2665. Distal control portion 2661 may be coupled to a needle control rod 2667. Needle control rod 2667 may be coupled to needle control 2616. Proximal delivery portion 2662 includes a tip 2668 that is sharp. Alternatively, tip 2668 may be atraumatic and coupled to an RF or other energy source. Delivery needle 2660 has a reverse orientation, with tip 2668 pointed proximally (e.g., toward the oropharynx, when the device 2600 is deployed transesophageally via an endoscopic technique) and movable from a first, e.g., distal retracted position to a second, e.g., proximal position for delivering a tissue anchor across a body luminal wall. Proximal delivery portion 2662 may be advanced out of and retracted into sheathing channel 2655. When advanced out of sheathing channel 2655, proximal delivery portion 2662 may enter distal side 2632 of side port 2630. Delivery needle 2660 is configured to receive a tissue anchor collapsed into a delivery configuration. Delivery needle 2660 may include a slot 2669 configured to allow a tension element of a tissue anchor to pass through.
Pushrod 2670 is slidably disposed in needle lumen 2664. Pushrod 2670 includes a distal control portion 2671 and a proximal delivery portion 2672. Distal control portion 2671 may be coupled to a pushrod control rod 2677. Pushrod control rod 2677 may be coupled to pushrod control 2617. Pushrod 2670 has a reverse orientation, with proximal delivery portion 2672 pointed proximally. Proximal delivery portion 2672 may be advanced out of and retracted into delivery needle 2660. Pushrod 2670 is configured to push out a tissue anchor loaded in delivery needle 2660. Pushrod 2670 may include at least a portion, e.g., proximal delivery portion 2672, sized small enough to push against a hub of a tissue anchor without damaging the tissue anchor or a portion thereof, e.g., the petals. Pushrod 2670 may include a channel 2679 configured to allow a tension element of a tissue anchor to pass through. Channel 2679 of pushrod 2670 may be aligned with slot 2669 of delivery needle 2660.
Holder 2680 may be coupled to a holder control rod 2687. Holder control rod 2687 may be coupled to holder control 2618. Holder 2680 may be configured to hold an anchor hole of a gastrointestinal cuff over proximal opening 2656 of sheathing channel 2655. Holder 2680 may be configured to hold an anchor hole of a gastrointestinal cuff over tip 2668 of delivery needle 2660. Holder 2680 may be slidably and/or rotatably manipulated. Holder 2680 may be stowed when not in use.
The control rods may be arranged coaxially. For example, sled control rod 2657 may be slidably disposed in a hollow pushrod control rod 2677, which is slidably disposed in a hollow needle control rod 2667, which is slidably disposed in a hollow holder control rod 2687, as shown in
Sleeve delivery device 1500 is mounted with cuff 1100 and sleeve 1200. Sleeve delivery device 2500 or sleeve delivery device 3500 may also be used. Stent 1690 is coupled to cuff 1100. Stent 1690 is cinched around sleeve delivery device 1500.
Sleeve delivery device 1500 is mounted with cuff 3100 and sleeve 3200. Sleeve delivery device 2500 or sleeve delivery device 3500 may also be used.
Alternatively, the method may include first deploying sleeve 3200 without cuff 3100, then anchoring cuff 3100 at the cuff position, and then grasping sleeve 3200 to attach sleeve 3200 to cuff 3100.
While the foregoing has been with reference to particular embodiments of the invention, it will be appreciated by those skilled in the art that changes in these embodiments may be made without departing from the principles and spirit of the invention, including embodiments that do not provide all the features and benefits described herein. It will be understood by those skilled in the art that the present disclosure extends beyond the specifically disclosed embodiments to other alternative or additional embodiments and/or uses and obvious modifications and equivalents thereof. In addition, while a number of variations have been shown and described in varying detail, other modifications, which are within the scope of the present disclosure, will be readily apparent to those of skill in the art based upon this disclosure. It is also contemplated that various combinations or subcombinations of the specific features and aspects of the embodiments may be made and still fall within the scope of the present disclosure. Accordingly, it should be understood that various features and aspects of the disclosed embodiments can be combined with or substituted for one another in order to form varying modes of the present disclosure. Thus, it is intended that the scope of the present disclosure herein disclosed should not be limited by the particular disclosed embodiments described above. For all of the embodiments described above, the steps of any methods need not be performed sequentially.
This application is a continuation-in-part of U.S. patent application Ser. No. 13/896,838, filed May 17, 2013, which is a continuation-in-part of U.S. patent application Ser. Nos. 13/743,285 and 13/743,287, both filed on Jan. 16, 2013, which are continuations-in-part of U.S. patent application Ser. Nos. 13/485,887, 13/485,889, 13/485,893, 13/485,896, and 13/485,898, all filed on May 31, 2012. The applications listed above are hereby incorporated by reference in their entireties.
Number | Name | Date | Kind |
---|---|---|---|
3357432 | Sparks | Dec 1967 | A |
3589356 | Silverman | Jun 1971 | A |
3982544 | Dyck | Sep 1976 | A |
4006747 | Kronenthal et al. | Feb 1977 | A |
4043345 | Kramann et al. | Aug 1977 | A |
4109659 | Sheridan | Aug 1978 | A |
4133315 | Berman et al. | Jan 1979 | A |
4134405 | Smit | Jan 1979 | A |
4217664 | Faso | Aug 1980 | A |
4235238 | Ogiu et al. | Nov 1980 | A |
4252131 | Hon et al. | Feb 1981 | A |
4271839 | Fogarty et al. | Jun 1981 | A |
4315509 | Smit | Feb 1982 | A |
4329995 | Anthracite | May 1982 | A |
4416267 | Garren et al. | Nov 1983 | A |
4493711 | Chin et al. | Jan 1985 | A |
4501264 | Rockey | Feb 1985 | A |
4532926 | O'Holla | Aug 1985 | A |
4606347 | Fogarty et al. | Aug 1986 | A |
4613323 | Norton et al. | Sep 1986 | A |
4630609 | Chin | Dec 1986 | A |
4641653 | Rockey | Feb 1987 | A |
4719916 | Ravo | Jan 1988 | A |
4763653 | Rockey | Aug 1988 | A |
4826481 | Sacks et al. | May 1989 | A |
4846836 | Reich | Jul 1989 | A |
4863440 | Chin | Sep 1989 | A |
4905693 | Ravo | Mar 1990 | A |
4946440 | Hall | Aug 1990 | A |
5085661 | Moss | Feb 1992 | A |
5104399 | Lazarus | Apr 1992 | A |
RE34021 | Mueller et al. | Aug 1992 | E |
5171305 | Schickling et al. | Dec 1992 | A |
5236423 | Mix et al. | Aug 1993 | A |
5269809 | Hayhurst et al. | Dec 1993 | A |
5306300 | Berry | Apr 1994 | A |
5314473 | Godin | May 1994 | A |
5318530 | Nelson, Jr. | Jun 1994 | A |
5411508 | Bessler et al. | May 1995 | A |
5425765 | Tiefenbrun et al. | Jun 1995 | A |
5431666 | Sauer et al. | Jul 1995 | A |
5443499 | Schmitt | Aug 1995 | A |
5458573 | Summers | Oct 1995 | A |
5470337 | Moss | Nov 1995 | A |
5503634 | Christy | Apr 1996 | A |
5582616 | Bolduc et al. | Dec 1996 | A |
5613975 | Christy | Mar 1997 | A |
5645568 | Chervitz et al. | Jul 1997 | A |
5676688 | Jaker et al. | Oct 1997 | A |
5681324 | Kammerer et al. | Oct 1997 | A |
5695517 | Marin et al. | Dec 1997 | A |
5785684 | Zimmon | Jul 1998 | A |
5807303 | Bays | Sep 1998 | A |
5820584 | Crabb | Oct 1998 | A |
5824008 | Bolduc et al. | Oct 1998 | A |
5824036 | Lauterjung | Oct 1998 | A |
5843164 | Frantzen et al. | Dec 1998 | A |
5861036 | Godin | Jan 1999 | A |
5887594 | LoCicero, III | Mar 1999 | A |
5957940 | Tanner et al. | Sep 1999 | A |
5972023 | Tanner et al. | Oct 1999 | A |
5997556 | Tanner | Dec 1999 | A |
6007544 | Kim | Dec 1999 | A |
6066146 | Carroll et al. | May 2000 | A |
6113609 | Adams | Sep 2000 | A |
6159158 | Lowe | Dec 2000 | A |
6193733 | Adams | Feb 2001 | B1 |
6206895 | Levinson | Mar 2001 | B1 |
6250922 | Bassett et al. | Jun 2001 | B1 |
6254642 | Taylor | Jul 2001 | B1 |
6264700 | Kilcoyne et al. | Jul 2001 | B1 |
6285897 | Kilcoyne et al. | Sep 2001 | B1 |
6302917 | Dua et al. | Oct 2001 | B1 |
6309343 | Lentz et al. | Oct 2001 | B1 |
6312437 | Kortenbach | Nov 2001 | B1 |
6338345 | Johnson et al. | Jan 2002 | B1 |
6387104 | Pugsley, Jr. et al. | May 2002 | B1 |
6402780 | Williamson, IV et al. | Jun 2002 | B2 |
6409656 | Sangouard et al. | Jun 2002 | B1 |
6432064 | Hibner et al. | Aug 2002 | B1 |
6447533 | Adams | Sep 2002 | B1 |
6464707 | Bjerken | Oct 2002 | B1 |
6494888 | Laufer et al. | Dec 2002 | B1 |
6520974 | Tanner et al. | Feb 2003 | B2 |
6535764 | Imran et al. | Mar 2003 | B2 |
6544291 | Taylor | Apr 2003 | B2 |
6558400 | Deem et al. | May 2003 | B2 |
6558429 | Taylor | May 2003 | B2 |
6592596 | Geitz | Jul 2003 | B1 |
6595911 | LoVuolo | Jul 2003 | B2 |
6626916 | Yeung et al. | Sep 2003 | B1 |
6626919 | Swanstrom | Sep 2003 | B1 |
6635066 | Tanner et al. | Oct 2003 | B2 |
6675809 | Stack et al. | Jan 2004 | B2 |
6692506 | Ory et al. | Feb 2004 | B1 |
6699263 | Cope | Mar 2004 | B2 |
6702735 | Kelly | Mar 2004 | B2 |
6736828 | Adams et al. | May 2004 | B1 |
6740121 | Geitz | May 2004 | B2 |
6746489 | Dua et al. | Jun 2004 | B2 |
6764518 | Godin | Jul 2004 | B2 |
6773452 | Shaker | Aug 2004 | B2 |
6790237 | Stinson | Sep 2004 | B2 |
6845776 | Stack et al. | Jan 2005 | B2 |
6946002 | Geitz | Sep 2005 | B2 |
6994095 | Burnett | Feb 2006 | B2 |
7025791 | Levine et al. | Apr 2006 | B2 |
7037344 | Kagan et al. | May 2006 | B2 |
7083629 | Weller et al. | Aug 2006 | B2 |
7097665 | Stack et al. | Aug 2006 | B2 |
7111627 | Stack et al. | Sep 2006 | B2 |
7120498 | Imran et al. | Oct 2006 | B2 |
7121283 | Stack et al. | Oct 2006 | B2 |
7122058 | Levine et al. | Oct 2006 | B2 |
7146984 | Stack et al. | Dec 2006 | B2 |
7152607 | Stack et al. | Dec 2006 | B2 |
7160312 | Saadat | Jan 2007 | B2 |
7175669 | Geitz | Feb 2007 | B2 |
RE39533 | Ranoux | Mar 2007 | E |
7211114 | Bessler et | May 2007 | B2 |
7220237 | Gannoe et al. | May 2007 | B2 |
7220284 | Kagan et al. | May 2007 | B2 |
7229428 | Gannoe et al. | Jun 2007 | B2 |
7244270 | Lesh | Jul 2007 | B2 |
7267694 | Levine et al. | Sep 2007 | B2 |
7288099 | Deem et al. | Oct 2007 | B2 |
7288101 | Deem et al. | Oct 2007 | B2 |
7306614 | Weller et al. | Dec 2007 | B2 |
7309341 | Ortiz et al. | Dec 2007 | B2 |
7314489 | McKenna et al. | Jan 2008 | B2 |
7316716 | Egan | Jan 2008 | B2 |
7329285 | Levine et al. | Feb 2008 | B2 |
7338505 | Belson | Mar 2008 | B2 |
7347868 | Burnett et al. | Mar 2008 | B2 |
7347875 | Levine et al. | Mar 2008 | B2 |
7354454 | Stack et al. | Apr 2008 | B2 |
7361180 | Saadat et al. | Apr 2008 | B2 |
7371215 | Colliou et al. | May 2008 | B2 |
7390329 | Westra et al. | Jun 2008 | B2 |
7416554 | Lam et al. | Aug 2008 | B2 |
7431725 | Stack et al. | Oct 2008 | B2 |
7468060 | Utley et al. | Dec 2008 | B2 |
7476256 | Meade et al. | Jan 2009 | B2 |
7483754 | Imran et al. | Jan 2009 | B2 |
7509175 | Sparks et al. | Mar 2009 | B2 |
7520884 | Swanstrom et al. | Apr 2009 | B2 |
7571729 | Saadat et al. | Aug 2009 | B2 |
7615064 | Bjerken | Nov 2009 | B2 |
7628821 | Stack et al. | Dec 2009 | B2 |
7666180 | Holsten et al. | Feb 2010 | B2 |
7678068 | Levine et al. | Mar 2010 | B2 |
7678135 | Maahs et al. | Mar 2010 | B2 |
7682330 | Meade et al. | Mar 2010 | B2 |
7703459 | Saadat et al. | Apr 2010 | B2 |
7704261 | Sakamoto et al. | Apr 2010 | B2 |
7704264 | Ewers et al. | Apr 2010 | B2 |
7708684 | Demarais et al. | May 2010 | B2 |
7736374 | Vaughan et al. | Jun 2010 | B2 |
7736378 | Maahs et al. | Jun 2010 | B2 |
7753870 | Demarais et al. | Jul 2010 | B2 |
7766973 | Levine et al. | Aug 2010 | B2 |
7780592 | Tronnes | Aug 2010 | B2 |
7794447 | Dann et al. | Sep 2010 | B2 |
7815589 | Meade et al. | Oct 2010 | B2 |
7833280 | Stack et al. | Nov 2010 | B2 |
7837669 | Dann et al. | Nov 2010 | B2 |
7841978 | Gertner | Nov 2010 | B2 |
7846138 | Dann et al. | Dec 2010 | B2 |
7881797 | Griffin et al. | Feb 2011 | B2 |
7892214 | Kagan et al. | Feb 2011 | B2 |
7935073 | Levine et al. | May 2011 | B2 |
7942884 | Vahid et al. | May 2011 | B2 |
7981162 | Stack et al. | Jul 2011 | B2 |
8012135 | Dann et al. | Sep 2011 | B2 |
8012140 | Kagan et al. | Sep 2011 | B1 |
8020741 | Cole et al. | Sep 2011 | B2 |
8029455 | Stack et al. | Oct 2011 | B2 |
8034063 | Binmoeller | Oct 2011 | B2 |
8070743 | Kagan et al. | Dec 2011 | B2 |
8083758 | Hsu et al. | Dec 2011 | B2 |
8096966 | Levine et al. | Jan 2012 | B2 |
8100925 | Hsu et al. | Jan 2012 | B2 |
8105342 | Onuki et al. | Jan 2012 | B2 |
8118767 | Laufer | Feb 2012 | B2 |
8118774 | Dann et al. | Feb 2012 | B2 |
8147441 | Gannoe et al. | Apr 2012 | B2 |
8182441 | Swain et al. | May 2012 | B2 |
8182459 | Dann et al. | May 2012 | B2 |
8206417 | Maahs et al. | Jun 2012 | B2 |
8206456 | Stack et al. | Jun 2012 | B2 |
8211186 | Belhe et al. | Jul 2012 | B2 |
8257374 | Hsu et al. | Sep 2012 | B2 |
8282598 | Belhe et al. | Oct 2012 | B2 |
8298291 | Ewers et al. | Oct 2012 | B2 |
8303669 | Meade et al. | Nov 2012 | B2 |
8372158 | Levy et al. | Feb 2013 | B2 |
8376981 | Laufer | Feb 2013 | B2 |
8382800 | Maahs et al. | Feb 2013 | B2 |
8425451 | Levine et al. | Apr 2013 | B2 |
8444657 | Saadat et al. | May 2013 | B2 |
8702641 | Belhe et al. | Apr 2014 | B2 |
8808270 | Dann et al. | Aug 2014 | B2 |
8956318 | Miller et al. | Feb 2015 | B2 |
8968270 | Kagan et al. | Mar 2015 | B2 |
9039649 | Neisz et al. | May 2015 | B2 |
9050168 | Neisz et al. | Jun 2015 | B2 |
9060844 | Kagan et al. | Jun 2015 | B2 |
9173759 | Nelson et al. | Nov 2015 | B2 |
9265596 | Shank et al. | Feb 2016 | B2 |
20010016748 | Tanner et al. | Aug 2001 | A1 |
20010020189 | Taylor | Sep 2001 | A1 |
20010020190 | Taylor | Sep 2001 | A1 |
20010044595 | Reydel et al. | Nov 2001 | A1 |
20010056282 | Sonnenschein et al. | Dec 2001 | A1 |
20020016607 | Bonadio et al. | Feb 2002 | A1 |
20020026214 | Tanner et al. | Feb 2002 | A1 |
20020035370 | Kortenbach | Mar 2002 | A1 |
20020040226 | Laufer et al. | Apr 2002 | A1 |
20020058960 | Hudson et al. | May 2002 | A1 |
20020082621 | Schurr et al. | Jun 2002 | A1 |
20020111658 | Greenberg et al. | Aug 2002 | A1 |
20020143387 | Soetikno et al. | Oct 2002 | A1 |
20020165589 | Imran et al. | Nov 2002 | A1 |
20020183768 | Deem et al. | Dec 2002 | A1 |
20020188344 | Bolea et al. | Dec 2002 | A1 |
20020188354 | Peghini | Dec 2002 | A1 |
20020198588 | Armstrong et al. | Dec 2002 | A1 |
20030014064 | Blatter | Jan 2003 | A1 |
20030018358 | Saadat | Jan 2003 | A1 |
20030040804 | Stack et al. | Feb 2003 | A1 |
20030040808 | Stack et al. | Feb 2003 | A1 |
20030055313 | Anderson et al. | Mar 2003 | A1 |
20030055442 | Laufer et al. | Mar 2003 | A1 |
20030065340 | Geitz | Apr 2003 | A1 |
20030065359 | Weller et al. | Apr 2003 | A1 |
20030093117 | Saadat | May 2003 | A1 |
20030109892 | Deem et al. | Jun 2003 | A1 |
20030109931 | Geitz | Jun 2003 | A1 |
20030120285 | Kortenbach | Jun 2003 | A1 |
20030120292 | Park et al. | Jun 2003 | A1 |
20030130560 | Suzuki et al. | Jul 2003 | A1 |
20030130561 | Suzuki et al. | Jul 2003 | A1 |
20030139752 | Pasricha et al. | Jul 2003 | A1 |
20030171775 | Belson | Sep 2003 | A1 |
20030176912 | Chuter et al. | Sep 2003 | A1 |
20030181929 | Geitz | Sep 2003 | A1 |
20030191497 | Cope | Oct 2003 | A1 |
20030199989 | Stack et al. | Oct 2003 | A1 |
20030199990 | Stack et al. | Oct 2003 | A1 |
20030199991 | Stack et al. | Oct 2003 | A1 |
20030208209 | Gambale et al. | Nov 2003 | A1 |
20040002734 | Fallin et al. | Jan 2004 | A1 |
20040006351 | Gannoe et al. | Jan 2004 | A1 |
20040024427 | Imran et al. | Feb 2004 | A1 |
20040039250 | Tholfsen et al. | Feb 2004 | A1 |
20040039452 | Bessler | Feb 2004 | A1 |
20040044364 | DeVries et al. | Mar 2004 | A1 |
20040059349 | Sixto, Jr. et al. | Mar 2004 | A1 |
20040059354 | Smith et al. | Mar 2004 | A1 |
20040082963 | Gannoe et al. | Apr 2004 | A1 |
20040087976 | DeVries et al. | May 2004 | A1 |
20040087977 | Nolan et al. | May 2004 | A1 |
20040088023 | Imran et al. | May 2004 | A1 |
20040089313 | Utley et al. | May 2004 | A1 |
20040092892 | Kagan et al. | May 2004 | A1 |
20040092974 | Gannoe et al. | May 2004 | A1 |
20040093065 | Yachia et al. | May 2004 | A1 |
20040097986 | Adams | May 2004 | A1 |
20040097987 | Pugsley et al. | May 2004 | A1 |
20040102855 | Shank | May 2004 | A1 |
20040107004 | Levine et al. | Jun 2004 | A1 |
20040116949 | Ewers et al. | Jun 2004 | A1 |
20040117031 | Stack | Jun 2004 | A1 |
20040122453 | Deem et al. | Jun 2004 | A1 |
20040122456 | Saadat et al. | Jun 2004 | A1 |
20040122473 | Ewers et al. | Jun 2004 | A1 |
20040133089 | Kilcoyne et al. | Jul 2004 | A1 |
20040133147 | Woo | Jul 2004 | A1 |
20040133219 | Forsell | Jul 2004 | A1 |
20040133238 | Cerier | Jul 2004 | A1 |
20040138525 | Saadat et al. | Jul 2004 | A1 |
20040138529 | Wiltshire et al. | Jul 2004 | A1 |
20040138761 | Stack et al. | Jul 2004 | A1 |
20040143342 | Stack et al. | Jul 2004 | A1 |
20040147958 | Lam et al. | Jul 2004 | A1 |
20040148034 | Kagan et al. | Jul 2004 | A1 |
20040153167 | Stack et al. | Aug 2004 | A1 |
20040158331 | Stack et al. | Aug 2004 | A1 |
20040162567 | Adams | Aug 2004 | A9 |
20040162568 | Saadat et al. | Aug 2004 | A1 |
20040167546 | Saadat et al. | Aug 2004 | A1 |
20040172142 | Stack et al. | Sep 2004 | A1 |
20040176799 | Chanduszko et al. | Sep 2004 | A1 |
20040181242 | Stack et al. | Sep 2004 | A1 |
20040186514 | Swain et al. | Sep 2004 | A1 |
20040193190 | Liddicoat et al. | Sep 2004 | A1 |
20040199189 | Gifford, III et al. | Oct 2004 | A1 |
20040204768 | Geitz | Oct 2004 | A1 |
20040220682 | Levine et al. | Nov 2004 | A1 |
20040225183 | Michlitsch et al. | Nov 2004 | A1 |
20040225305 | Ewers et al. | Nov 2004 | A1 |
20040243152 | Taylor et al. | Dec 2004 | A1 |
20040243195 | Imran et al. | Dec 2004 | A1 |
20040249362 | Levine et al. | Dec 2004 | A1 |
20040249367 | Saadat et al. | Dec 2004 | A1 |
20050033240 | Oishi et al. | Feb 2005 | A1 |
20050033330 | Vargas et al. | Feb 2005 | A1 |
20050033331 | Burnett et al. | Feb 2005 | A1 |
20050033332 | Burnett | Feb 2005 | A1 |
20050043749 | Breton et al. | Feb 2005 | A1 |
20050043757 | Arad et al. | Feb 2005 | A1 |
20050049718 | Dann et al. | Mar 2005 | A1 |
20050055039 | Burnett et al. | Mar 2005 | A1 |
20050065401 | Saadat et al. | Mar 2005 | A1 |
20050075653 | Saadat et al. | Apr 2005 | A1 |
20050075654 | Kelleher | Apr 2005 | A1 |
20050080431 | Levine et al. | Apr 2005 | A1 |
20050080444 | Kraemer et al. | Apr 2005 | A1 |
20050085787 | Laufer | Apr 2005 | A1 |
20050085900 | Case et al. | Apr 2005 | A1 |
20050085923 | Levine et al. | Apr 2005 | A1 |
20050096673 | Stack et al. | May 2005 | A1 |
20050096750 | Kagan et al. | May 2005 | A1 |
20050101977 | Gannoe et al. | May 2005 | A1 |
20050125020 | Meade et al. | Jun 2005 | A1 |
20050125075 | Meade et al. | Jun 2005 | A1 |
20050143784 | Imran | Jun 2005 | A1 |
20050177181 | Kagan et al. | Aug 2005 | A1 |
20050187567 | Baker et al. | Aug 2005 | A1 |
20050192629 | Saadat et al. | Sep 2005 | A1 |
20050197714 | Sayet | Sep 2005 | A1 |
20050197715 | Kugler et al. | Sep 2005 | A1 |
20050203547 | Weller et al. | Sep 2005 | A1 |
20050222592 | Gannoe et al. | Oct 2005 | A1 |
20050228413 | Binmoeller et al. | Oct 2005 | A1 |
20050228504 | Demarais | Oct 2005 | A1 |
20050240279 | Kagan et al. | Oct 2005 | A1 |
20050245948 | Khalaj | Nov 2005 | A1 |
20050247320 | Stack et al. | Nov 2005 | A1 |
20050250984 | Lam et al. | Nov 2005 | A1 |
20050251159 | Ewers et al. | Nov 2005 | A1 |
20050251176 | Swanstrom et al. | Nov 2005 | A1 |
20050251208 | Elmer et al. | Nov 2005 | A1 |
20050251209 | Saadat et al. | Nov 2005 | A1 |
20050256587 | Egan | Nov 2005 | A1 |
20050261549 | Hewit et al. | Nov 2005 | A1 |
20050261712 | Balbierz et al. | Nov 2005 | A1 |
20050267499 | Stack et al. | Dec 2005 | A1 |
20050267595 | Chen et al. | Dec 2005 | A1 |
20060009858 | Levine et al. | Jan 2006 | A1 |
20060015125 | Swain | Jan 2006 | A1 |
20060020164 | Butler et al. | Jan 2006 | A1 |
20060020247 | Kagan et al. | Jan 2006 | A1 |
20060020254 | Hoffmann | Jan 2006 | A1 |
20060020277 | Gostout et al. | Jan 2006 | A1 |
20060020278 | Burnett et al. | Jan 2006 | A1 |
20060025819 | Nobis et al. | Feb 2006 | A1 |
20060047289 | Fogel | Mar 2006 | A1 |
20060064120 | Levine et al. | Mar 2006 | A1 |
20060074458 | Imran | Apr 2006 | A1 |
20060135971 | Swanstrom et al. | Jun 2006 | A1 |
20060155312 | Levine et al. | Jul 2006 | A1 |
20060155375 | Kagan et al. | Jul 2006 | A1 |
20060161139 | Levine et al. | Jul 2006 | A1 |
20060161172 | Levine et al. | Jul 2006 | A1 |
20060161187 | Levine et al. | Jul 2006 | A1 |
20060161265 | Levine et al. | Jul 2006 | A1 |
20060173422 | Reydel et al. | Aug 2006 | A1 |
20060206063 | Kagan et al. | Sep 2006 | A1 |
20060206064 | Kagan et al. | Sep 2006 | A1 |
20060212052 | Shin et al. | Sep 2006 | A1 |
20060217762 | Maahs et al. | Sep 2006 | A1 |
20060235446 | Godin | Oct 2006 | A1 |
20060247718 | Starkebaum | Nov 2006 | A1 |
20060253126 | Bjerken et al. | Nov 2006 | A1 |
20060264982 | Viola et al. | Nov 2006 | A1 |
20060265021 | Herbert et al. | Nov 2006 | A1 |
20060265042 | Catanese et al. | Nov 2006 | A1 |
20060265082 | Meade et al. | Nov 2006 | A1 |
20060287734 | Stack et al. | Dec 2006 | A1 |
20060293742 | Dann et al. | Dec 2006 | A1 |
20070005147 | Levine et al. | Jan 2007 | A1 |
20070010794 | Dann et al. | Jan 2007 | A1 |
20070010864 | Dann et al. | Jan 2007 | A1 |
20070010865 | Dann et al. | Jan 2007 | A1 |
20070010866 | Dann et al. | Jan 2007 | A1 |
20070016244 | Behl et al. | Jan 2007 | A1 |
20070027548 | Levine et al. | Feb 2007 | A1 |
20070027549 | Godin | Feb 2007 | A1 |
20070032821 | Chin-Chen et al. | Feb 2007 | A1 |
20070032879 | Levine et al. | Feb 2007 | A1 |
20070083271 | Levine et al. | Apr 2007 | A1 |
20070100367 | Quijano et al. | May 2007 | A1 |
20070100368 | Quijano et al. | May 2007 | A1 |
20070106233 | Huang et al. | May 2007 | A1 |
20070106313 | Golden et al. | May 2007 | A1 |
20070129719 | Kendale et al. | Jun 2007 | A1 |
20070149994 | Sosnowski et al. | Jun 2007 | A1 |
20070156248 | Marco et al. | Jul 2007 | A1 |
20070178160 | Burnett | Aug 2007 | A1 |
20070198074 | Dann et al. | Aug 2007 | A1 |
20070208360 | Demarais et al. | Sep 2007 | A1 |
20070219571 | Balbierz et al. | Sep 2007 | A1 |
20070225555 | Stefanchik | Sep 2007 | A1 |
20070233162 | Gannoe et al. | Oct 2007 | A1 |
20070250132 | Burnett | Oct 2007 | A1 |
20070293716 | Baker et al. | Dec 2007 | A1 |
20070293885 | Binmoeller | Dec 2007 | A1 |
20080004606 | Swain et al. | Jan 2008 | A1 |
20080009888 | Ewers et al. | Jan 2008 | A1 |
20080033574 | Bessler et al. | Feb 2008 | A1 |
20080058840 | Albrecht et al. | Mar 2008 | A1 |
20080058887 | Griffin et al. | Mar 2008 | A1 |
20080082167 | Edidin et al. | Apr 2008 | A1 |
20080103604 | Levine et al. | May 2008 | A1 |
20080167606 | Dann et al. | Jul 2008 | A1 |
20080167610 | Dann et al. | Jul 2008 | A1 |
20080167629 | Dann et al. | Jul 2008 | A1 |
20080190989 | Crews et al. | Aug 2008 | A1 |
20080195226 | Williams et al. | Aug 2008 | A1 |
20080208355 | Stack et al. | Aug 2008 | A1 |
20080208356 | Stack et al. | Aug 2008 | A1 |
20080208357 | Melanson et al. | Aug 2008 | A1 |
20080221597 | Wallace et al. | Sep 2008 | A1 |
20080228030 | Godin | Sep 2008 | A1 |
20080243071 | Quijano et al. | Oct 2008 | A1 |
20080249533 | Godin | Oct 2008 | A1 |
20080255587 | Cully et al. | Oct 2008 | A1 |
20080255594 | Cully et al. | Oct 2008 | A1 |
20080255678 | Cully et al. | Oct 2008 | A1 |
20080269797 | Stack et al. | Oct 2008 | A1 |
20080294179 | Balbierz et al. | Nov 2008 | A1 |
20090012356 | Dann et al. | Jan 2009 | A1 |
20090012541 | Dahl et al. | Jan 2009 | A1 |
20090012544 | Thompson et al. | Jan 2009 | A1 |
20090012553 | Swain et al. | Jan 2009 | A1 |
20090018603 | Mitelberg et al. | Jan 2009 | A1 |
20090024143 | Crews et al. | Jan 2009 | A1 |
20090062881 | Gross et al. | Mar 2009 | A1 |
20090125040 | Hambly et al. | May 2009 | A1 |
20090149871 | Kagan et al. | Jun 2009 | A9 |
20090177215 | Stack et al. | Jul 2009 | A1 |
20090182355 | Levine et al. | Jul 2009 | A1 |
20090182413 | Burkart et al. | Jul 2009 | A1 |
20090216337 | Egan et al. | Aug 2009 | A1 |
20100016988 | Stack et al. | Jan 2010 | A1 |
20100023130 | Henry et al. | Jan 2010 | A1 |
20100030017 | Baker et al. | Feb 2010 | A1 |
20100049224 | Vargas | Feb 2010 | A1 |
20100121462 | Sobrino-Serrano et al. | May 2010 | A1 |
20100217151 | Gostout et al. | Aug 2010 | A1 |
20100256775 | Belhe | Oct 2010 | A1 |
20100276469 | Crews et al. | Nov 2010 | A1 |
20100280529 | Crews et al. | Nov 2010 | A1 |
20100331623 | Sauer et al. | Dec 2010 | A1 |
20110004229 | Priplata et al. | Jan 2011 | A1 |
20110082471 | Holcomb et al. | Apr 2011 | A1 |
20110098630 | Gagner et al. | Apr 2011 | A1 |
20110106273 | Belhe | May 2011 | A1 |
20110125211 | Griffin et al. | May 2011 | A1 |
20110172584 | Chin | Jul 2011 | A1 |
20110213469 | Chin et al. | Sep 2011 | A1 |
20110245752 | Levine et al. | Oct 2011 | A1 |
20110245854 | Buxbaum et al. | Oct 2011 | A1 |
20110275912 | Boyden et al. | Nov 2011 | A1 |
20110276091 | Melanson et al. | Nov 2011 | A1 |
20110319980 | Ryan | Dec 2011 | A1 |
20120029413 | Meade et al. | Feb 2012 | A1 |
20120029535 | Swain | Feb 2012 | A1 |
20120029611 | Weidman et al. | Feb 2012 | A1 |
20120053504 | Kagan et al. | Mar 2012 | A1 |
20120065571 | Thompson et al. | Mar 2012 | A1 |
20120095384 | Babkes et al. | Apr 2012 | A1 |
20120184893 | Thompson et al. | Jul 2012 | A1 |
20120209164 | Kagan et al. | Aug 2012 | A1 |
20120215235 | Fogel | Aug 2012 | A1 |
20120232459 | Dann et al. | Sep 2012 | A1 |
20120245504 | Tzvetanov et al. | Sep 2012 | A1 |
20120253324 | Lee et al. | Oct 2012 | A1 |
20120259317 | Baldwin et al. | Oct 2012 | A1 |
20120296254 | Swain et al. | Nov 2012 | A1 |
20130030351 | Belhe et al. | Jan 2013 | A1 |
20130079603 | Vargas | Mar 2013 | A1 |
20130184723 | Swope et al. | Jul 2013 | A1 |
20130184808 | Hall et al. | Jul 2013 | A1 |
20130261368 | Schwartz | Oct 2013 | A1 |
20130324902 | Miller et al. | Dec 2013 | A1 |
20130324905 | Nelson et al. | Dec 2013 | A1 |
20130324926 | Nelson et al. | Dec 2013 | A1 |
20130331759 | Neisz et al. | Dec 2013 | A1 |
20140180192 | Ortiz et al. | Jun 2014 | A1 |
20140188245 | Neisz et al. | Jul 2014 | A1 |
20140358065 | Dann et al. | Dec 2014 | A1 |
20150238340 | Kagan et al. | Aug 2015 | A1 |
20150366693 | Kagan et al. | Dec 2015 | A1 |
Number | Date | Country |
---|---|---|
0817598 | Jan 1998 | EP |
1237501 | Sep 2002 | EP |
WO 8000007 | Jan 1980 | WO |
WO 911117 | Feb 1991 | WO |
WO 9629954 | Oct 1996 | WO |
WO 9856440 | Dec 1998 | WO |
WO 9921490 | May 1999 | WO |
WO 9960931 | Dec 1999 | WO |
WO 0012027 | Mar 2000 | WO |
WO 0135834 | May 2001 | WO |
WO 0143663 | Jun 2001 | WO |
WO 0183017 | Nov 2001 | WO |
WO 0185034 | Nov 2001 | WO |
WO 02094132 | Nov 2002 | WO |
WO 02102227 | Dec 2002 | WO |
WO 03017882 | Mar 2003 | WO |
WO 03086246 | Oct 2003 | WO |
WO 03086247 | Oct 2003 | WO |
WO 03094785 | Nov 2003 | WO |
WO 2004017863 | Mar 2004 | WO |
WO 2004021894 | Mar 2004 | WO |
WO 2004041119 | May 2004 | WO |
WO 2004041133 | May 2004 | WO |
WO 2004047686 | Jun 2004 | WO |
WO 2004049982 | Jun 2004 | WO |
WO 2004064680 | Aug 2004 | WO |
WO 2004064685 | Aug 2004 | WO |
WO 2004080336 | Sep 2004 | WO |
WO 2004086984 | Oct 2004 | WO |
WO 2004087014 | Oct 2004 | WO |
WO 2004087233 | Oct 2004 | WO |
WO 2004103214 | Dec 2004 | WO |
WO 2004103430 | Dec 2004 | WO |
WO 2004105643 | Dec 2004 | WO |
WO 2005011463 | Feb 2005 | WO |
WO 2005011519 | Feb 2005 | WO |
WO 2005032422 | Apr 2005 | WO |
WO 2005037152 | Apr 2005 | WO |
WO 2005060869 | Jul 2005 | WO |
WO 2005060882 | Jul 2005 | WO |
WO 2005110280 | Nov 2005 | WO |
WO 2006044640 | Apr 2006 | WO |
WO 2006055847 | May 2006 | WO |
WO 2006130836 | Dec 2006 | WO |
WO 2007056583 | May 2007 | WO |
WO 2008121409 | Oct 2008 | WO |
WO 2009011881 | Jan 2009 | WO |
WO 2011031981 | Mar 2011 | WO |
Entry |
---|
Awan et al., Endoscopic vertical band gastroplasty with an endoscopic sewing machine, Gastrointestinal Endoscopy, vol. 55, no. 2, pp. 254-256, Feb 2002. |
Berger et al., Progression rate of self-propelled feeding tubes in critically ill patients, Intensive Care Medicine, vol. 28, no. 12, pp. 1768-1774, Dec 2002. |
Boston Scientific Corp., Website, Microvasive WALLSTENT® Colonic & Duodenal Endoprosthesis, Sep. 2002. |
C.R. Bard, Inc., Website, The Bard EndoCinch Procedure, 2002. |
Chuttani, Endoscopic full-thickness plication: the device, technique, pre-clinical and early clinical experience, Gastrointestinal Endoscopy Clinics of North America, vol. 13, No. 1, pp. 109-116, Jan. 2003. |
Cook Inc., Brochure, Cope Gastrointestinal Suture Anchor Set, 2000. |
Cook Inc., Website, Geenen® Pancreatic Stent Sets, Sep 2002. |
Crampton et al., Silastic Ring Gastric Bypass: Results in 64 Patients, Obesity Surgery, vol. 7, No. 6, pp. 489-494, Dec. 1997. |
De La Fuente et al., Evaluation of porcine-derived small intestine submucosa as a biodegradable graft for gastrointestinal healing, Journal of Gastrointestinal Surgery (abstract), vol. 7, No. 1, pp. 96-101, Jan. 2003. |
Demeester, Microvasive gastric stapler: the device, technique, and preclinical results, Gastrointestinal Endoscopy Clinics of North America, vol. 13, No. 1, pp. 117-133, Jan. 2003. |
Espinet-Coll et al., Current endoscopic techniques in the treatment of obesity, Revista Espanola de Enfermedades Digestivas, vol. 104, No. 2, pp. 72-87, Feb. 2012. |
Felsher et al., A Novel Endolaparoscopic Intragastric Partitioning for Treatment of Morbid Obesity, Surgical Laparoscopy, Endoscopy & Percutaneous Techniques, vol. 14, No. 5, pp. 243-246, Oct. 2004. |
Fennerty, Endoscopic suturing for treatment of GERD, Gastrointestinal Endoscopy, vol. 57, No. 3, pp. 390-395, Mar. 2003. |
Fobi et al., Gastric Bypass Operation for Obesity, World Journal of Surgery, vol. 22, No. 9, pp. 925-935, Sep. 1998. |
Fritscher-Ravens et al., A through-the-scope device for suturing and tissue approximation under EUS control, Gastrointestinal Endoscopy, vol. 56, No. 5, pp. 737-742, Nov. 2002. |
Fritscher-Ravens et al., Abstract, Endoscopic Gastropexy and Crural Repair for Gastro-Esophageal Reflux: Transgastric Surgery Under Endoscopic Ultrasound Control II, Gastroenterology, vol. 124, No. 4, supp. 1, p. A38, Apr. 2003. |
Fritscher-Ravens et al., Transgastric gastropexy and hiatal hernia repair for Gerd under Eus control: a porcine model, Gastrointestinal Endoscopy, vol. 59, No. 1, pp. 89-95, Jan. 2004. |
Gleason, Bioabsorbable Polymers, 1998. |
Godin et al., Abstract, Endoscopic suturing of a novel gastroesophageal antireflux device (GARD) a preliminary report, Gastrointestinal Endoscopy, vol. 43, No. 4, p. 336, Apr. 1996. |
Kadirkamanathan et al., Antireflux operations at flexible endoscopy using endoluminal stitching techniques: an experimental study, Gastrointestinal Endoscopy, vol. 44, No. 2, pp. 133-143, Aug. 1996. |
Keyser et al., Double Closed Loop Obstruction and Perforation in a Previous Roux-en-Y Gastric Bypass, Obesity Surgery, vol. 8, No. 4, pp. 475-479, Aug. 1998. |
Kuo et al., Esophagus—anatomy and development, GI Motility online, Figure 8, 2006. http://www.nature.com/gimo/contents/pt1/full/gimo6.html#f8. |
Long et al., Abstract, Techniques for advancing guide wires and devices in the lumen of the gastrointestinal tract, Gastrointestinal Endoscopy, vol. 57, No. 5, p. AB177, Apr. 2003. |
Merlini et al., [Development of a gastroplasty with variable diameter. Experimental study using artificial sphincters] (abstract), Helvetica Chirurgica Acta., vol. 58, No. 6, pp. 789-793, May 1992. |
Middleton et al., Synthetic Biodegradable Polymers as Medical Devices, Medical Plastics and Biomaterials Magazine, Mar. 1998. |
Mittal et al., Sphincter mechanisms at the lower end of the esophagus, GI Motility online, 2006. http://www.nature.com/gimo/contents/pt1/full/gimo14.html. |
Nakamura et al., Experimental study on in situ tissue engineering of the stomach by an acellular collage sponge scaffold graft (abstract), ASAIO Journal, vol. 47, No. 3, pp. 206-210, May-Jun. 2001. |
Oh et al., Weight Loss Following Transected Gastric Bypass with Proximal Roux-en-Y, Obesity Surgery, vol. 7, No. 2, pp. 142-147, Apr. 1997. |
Oh et al., Repair of Full-Thickness Defects in Alimentary Tract Wall With Patches of Expanded Polytetrafluoroethylene, Annals of Surgery, vol. 235, No. 5, pp. 708-712, May 2002. |
ParéSurgical, Inc., Brochure, Successful uses in approximation ligation & fixation using the Quik Stitch Endoscopic Suturing System, 2001. |
Pories et al., Who Would Have Thought It? An Operation Proves to Be the Most Effective Therapy for Adult-Onset Diabetes Mellitus, Annals of Surgery, vol. 222, No. 3, pp. 339-352, Sep. 1995. |
Redmond et al., Iatrogenic Intussusception: a Complication of Long Intestinal Tubes, American Journal of Gastroenterology, vol. 77, No. 1, pp. 39-42, Jan. 1982. |
Rosen et al., Wilson-Cook sewing device: the device, technique, and preclinical studies, Gastrointestinal Endoscopy Clinics of North America, vol. 13, No. 1, pp. 103-108, Jan. 2003. |
Rothstein et al., Endoscopic suturing for gastroesophageal reflux disease: clinical outcome with the Bard EndoCinch, Gastrointestinal Endoscopy Clinics of North America, vol. 13, No. 1, pp. 89-101, Jan. 2003. |
Rubino et al., Effect of Duodenal-Jejunal Exclusion in a Non-obese Animal Model of Type 2 Diabetes, Annals of Surgery, vol. 239, No. 1, pp. 1-11, Jan. 2004. |
Singh et al., Stents in the small intestine, Current Gastroenterology Reports (abstract), vol. 4, No. 5, pp. 383 391, Oct. 2002. |
Stein et al., Three-dimensional pressure image and muscular structure of the human lower esophageal sphincter, Surgery, vol. 117, No. 6, pp. 692-698, Jun. 1995. |
Sugermen et al., Weight Loss With Vertical Banded Gastroplasty and Roux-Y Gastric Bypass for Morbid Obesity With Selective Versus Random Assignment, The American Journal of Surgery, vol. 157, pp. 93 102, Jan. 1989. |
Swain et al., An endoscopic stapling device: the development of a new flexible endoscopically controlled device for placing multiple transmural staples in gastrointestinal tissue, Gastrointestinal Endoscopy, vol. 35, No. 4, pp. 338-339, 1989. |
Swain et al., Abstract, Design and testing of a new, small diameter, single stitch endoscopic sewing machine, Gastrointestinal Endoscopy, vol. 36, No. 2, pp. 213-214, Mar. 1990. |
Swain et al., An endoscopically deliverable tissue-transfixing device for securing biosensors in the gastrointestinal tract, Gastrointestinal Endoscopy, vol. 40, No. 6, pp. 730-734, Nov. 1994. |
Swain, Endoscopic suturing, Balliere's Clinical Gastroenterology, vol. 13, No. 1, pp. 97-108, 1999. |
Swain et al., Bard EndoCinch: the device, the technique, and pre-clinical studies, Gastrointestinal Endoscopy Clinics of North America, vol. 13, No. 1, pp. 75-88, Jan. 2003. |
Swain et al., Abstract, Radiocontrolled Movement of a Robot Endoscope in the Human Gastrointestinal Tract, Gastrointestinal Endoscopy, vol. 61, No. 5 , p. AB101, Apr. 2005. |
Yamamoto et al., A new method of enteroscopy—The double-balloon method, Canadian Journal of Gastroenterology, vol. 17, No. 4, pp. 273-274, Apr. 2003. |
PCT application PCT/US2003/034822, Apr. 2, 2004 ISR. |
U.S. Appl. No. 10/699,589, Dec. 13, 2004 non-final office action. |
U.S. Appl. No. 10/699,589, Jun. 6, 2005 final office action. |
PCT application PCT/US2005/015795, Nov. 14, 2005 ISR/WO. |
U.S. Appl. No. 10/698,148, Aug. 23, 2006 non-final office action. |
U.S. Appl. No. 10/903,255, Aug. 23, 2006 non-final office action. |
U.S. Appl. No. 11/025,364, Nov. 17, 2006 non-final office action. |
U.S. Appl. No. 11/169,341, Dec. 13, 2006 non-final office action. |
U.S. Appl. No. 10/903,255, Apr. 18, 2007 non-final office action. |
PCT application PCT/US2004/044049, May 30, 2007 ISR/WO. |
U.S. Appl. No. 11/430,278, Jul. 3, 2007 non-final office action. |
U.S. Appl. No. 10/698,148, Jul. 24, 2007 final office action. |
EP patent application EP 03781672, Aug. 29, 2007 communication. |
U.S. Appl. No. 10/903,255, Sep. 24, 2007 final office action. |
U.S. Appl. No. 11/430,275, Oct. 9, 2007 non-final office action. |
U.S. Appl. No. 11/400,724, Oct. 10, 2007 non-final office action. |
PCT application PCT/US2007/008882, Dec. 26, 2007 ISR/WO. |
PCT application PCT/US2007/009956, Dec. 28, 2007 ISR/WO. |
U.S. Appl. No. 11/025,364, Jan. 3, 2008 final office action. |
U.S. Appl. No. 10/903,255, Jan. 10, 2008 non-final office action. |
U.S. Appl. No. 10/698,148, Mar. 18, 2008 non-final office action. |
U.S. Appl. No. 11/236,212, Mar. 18, 2008 non-final office action. |
U.S. Appl. No. 11/400,724, Mar. 24, 2008 final office action. |
U.S. Appl. No. 11/430,278, Mar. 25, 2008 final office action. |
PCT application PCT/US2007/079460, May 19, 2008 ISR/WO. |
U.S. Appl. No. 11/125,820, May 30, 2008 non-final office action. |
U.S. Appl. No. 11/430,278, Jun. 4, 2008 non-final office action. |
U.S. Appl. No. 10/698,148, Jul. 21, 2008 final office action. |
U.S. Appl. No. 11/430,275, Sep. 16, 2008 final office action. |
EP patent application EP 05747626, Sep. 18, 2008 supplemental search. |
EP patent application EP 04816031, Sep. 22, 2008 supplemental search. |
PCT application PCT/US2008/066214, Oct. 1, 2008 ISR/WO. |
U.S. Appl. No. 11/861,172, Nov. 10, 2008 non-final office action. |
U.S. Appl. No. 10/903,255, Nov. 14, 2008 final office action. |
PCT application PCT/US2008/066590, Dec. 5, 2008 ISR/WO. |
U.S. Appl. No. 11/400,724, Dec. 15, 2008 non-final office action. |
U.S. Appl. No. 11/430,278, Dec. 16, 2008 final office action. |
U.S. Appl. No. 11/430,275, Dec. 29, 2008 non-final office action. |
EP patent application EP 03781672, Jan. 9, 2009 communication. |
U.S. Appl. No. 11/025,364, Feb. 12, 2009 non-final office action. |
U.S. Appl. No. 10/698,148, Feb. 19, 2009 non-final office action. |
EP patent application EP 04816031, Feb. 19, 2009 communication. |
U.S. Appl. No. 11/430,677, Apr. 2, 2009 non-final office action. |
U.S. Appl. No. 11/861,156, Jun. 2, 2009 non-final office action. |
U.S. Appl. No. 10/698,148, Jul. 9, 2009 final office action. |
U.S. Appl. No. 11/400,724, Jul. 9, 2009 non-final office action. |
U.S. Appl. No. 11/861,172, Jul. 14, 2009 final office action. |
U.S. Appl. No. 11/430,275, Jul. 21, 2009 final office action. |
U.S. Appl. No. 11/125,820, Aug. 14, 2009 final office action. |
EP patent application EP 05747626, Aug. 25, 2009 communication. |
U.S. Appl. No. 11/430,274, Oct. 5, 2009 non-final office action. |
U.S. Appl. No. 11/236,212, Oct. 7, 2009 final office action. |
U.S. Appl. No. 11/430,278, Oct. 20, 2009 non-final office action. |
U.S. Appl. No. 10/903,255, Oct. 30, 2009 non-final office action. |
U.S. Appl. No. 11/025,364, Nov. 16, 2009 non-final office action. |
U.S. Appl. No. 11/861,156, Dec. 31, 2009 final office action. |
U.S. Appl. No. 11/430,677, Jan. 11, 2010 final office action. |
U.S. Appl. No. 11/125,820, Feb. 4, 2010 non-final office action. |
U.S. Appl. No. 10/903,255, Feb. 22, 2010 non-final office action. |
U.S. Appl. No. 11/789,561, Mar. 29, 2010 non-final office action. |
U.S. Appl. No. 11/236,212, Apr. 26, 2010 non-final office action. |
U.S. Appl. No. 11/430,274, May 11, 2010 final office action. |
U.S. Appl. No. 11/124,634, May 13, 2010 non-final office action. |
U.S. Appl. No. 11/123,889, May 24, 2010 non-final office action. |
U.S. Appl. No. 11/429,934, May 26, 2010 non-final office action. |
U.S. Appl. No. 10/903,255, Jun. 8, 2010 final office action. |
U.S. Appl. No. 10/998,424, Jun. 9, 2010 non-final office action. |
EP patent application EP 04816031, Jun. 11, 2010 communication. |
EP patent application EP 08770415, Jul. 7, 2010 supplemental search. |
U.S. Appl. No. 11/430,278, Jul. 22, 2010 final office action. |
U.S. Appl. No. 10/903,255, Jul. 27, 2010 notice of allowance. |
U.S. Appl. No. 11/025,364, Aug. 6, 2010 final office action. |
U.S. Appl. No. 12/135,989, Sep. 16, 2010 non-final office action. |
U.S. Appl. No. 11/400,724, Sep. 20, 2010 notice of allowance. |
U.S. Appl. No. 11/861,156, Sep. 22, 2010 non-final office action. |
U.S. Appl. No. 11/430,677, Sep. 23, 2010 notice of allowance. |
U.S. Appl. No. 12/136,003, Sep. 27, 2010 non-final office action. |
U.S. Appl. No. 12/137,473, Sep. 29, 2010 non-final office action. |
U.S. Appl. No. 11/430,274, Sep. 30, 2010 notice of allowance. |
U.S. Appl. No. 11/125,820, Oct. 15, 2010 final office action. |
U.S. Appl. No. 11/431,040, Oct. 15, 2010 non-final office action. |
U.S. Appl. No. 11/430,275, Oct. 19, 2010 non-final office action. |
U.S. Appl. No. 11/431,054, Oct. 27, 2010 non-final office action. |
U.S. Appl. No. 11/548,605, Nov. 9, 2010 non-final office action. |
U.S. Appl. No. 10/698,148, Nov. 12, 2010 examiner's answer. |
U.S. Appl. No. 11/789,561, Nov. 16, 2010 notice of allowance. |
U.S. Appl. No. 10/998,424, Nov. 24, 2010 final office action. |
U.S. Appl. No. 11/124,634, Nov. 30, 2010 final office action. |
U.S. Appl. No. 11/123,889, Feb. 2, 2011 final office action. |
U.S. Appl. No. 11/429,934, Feb. 17, 2011 final office action. |
U.S. Appl. No. 11/236,212, May 4, 2011 final office action. |
U.S. Appl. No. 12/136,003, May 10, 2011 final office action. |
EP patent application EP 08770736, May 23, 2011 supplemental search. |
U.S. Appl. No. 11/548,605, May 24, 2011 final office action. |
U.S. Appl. No. 12/135,989, May 25, 2011 final office action. |
U.S. Appl. No. 11/430,278, Jun. 20, 2011 notice of allowance. |
U.S. Appl. No. 12/137,473, May 31, 2011 final office action. |
U.S. Appl. No. 11/431,040, Jun. 21, 2011 notice of allowance. |
U.S. Appl. No. 11/861,156, Jun. 23, 2011 final office action. |
U.S. Appl. No. 11/124,634, Sep. 23, 2011 notice of allowance. |
U.S. Appl. No. 11/861,156, Oct. 11, 2011 notice of allowance. |
EP patent application EP 05747626, Nov. 15, 2011 communication. |
U.S. Appl. No. 12/136,003, Mar. 13, 2012 notice of allowance. |
U.S. Appl. No. 11/548,605, Mar. 15, 2012 notice of allowance. |
U.S. Appl. No. 13/196,812, Jun. 18, 2012 non-final office action. |
U.S. Appl. No. 13/373,999, Jul. 9, 2012 non-final office action. |
U.S. Appl. No. 13/018,179, Aug. 2, 2012 non-final office action. |
U.S. Appl. No. 13/289,885, Aug. 15, 2012 non-final office action. |
U.S. Appl. No. 13/196,812, Feb. 7, 2013 final office action. |
U.S. Appl. No.10/698,148, Feb. 21, 2013 patent board decision. |
U.S. Appl. No. 13/018,179, Mar. 12, 2013 final office action. |
U.S. Appl. No. 13/476,884, Apr. 9, 2013 non-final office action. |
U.S. Appl. No. 11/861,172, May 21, 2013 non-final office action. |
U.S. Appl. No. 13/373,999, May 24, 2013 final office action. |
U.S. Appl. No. 10/698,148, Jun. 6, 2013 non-final office action. |
U.S. Appl. No. 13/485,898, Jul. 3, 2013 non-final office action. |
U.S. Appl. No. 13/485,887, Aug. 6, 2013 non-final office action. |
U.S. Appl. No. 13/485,889, Aug. 8, 2013 non-final office action. |
U.S. Appl. No.13/485,893, Aug. 23, 2013 non-final office action. |
EP patent application EP 07843175, Oct. 1, 2013 supplemental search. |
U.S. Appl. No. 13/196,812, Oct. 17, 2013 non-final office action. |
U.S. Appl. No. 12/137,473, Dec. 2, 2013 non-final office action. |
PCT application PCT/US2013/043741, Dec. 2, 2013 ISR/WO. |
U.S. Appl. No. 10/698,148, Dec. 18, 2013 final office action. |
U.S. Appl. No. 13/476,884, Dec. 24, 2013 non-final office action. |
U.S. Appl. No. 13/485,898, Feb. 14, 2014 final office action. |
U.S. Appl. No. 13/485,887, Mar. 17, 2014 final office action. |
U.S. Appl. No. 11/861,172, Apr. 11, 2014 notice of allowance. |
PCT application PCT/US2014/013069, Apr. 17, 2014 ISR/WO. |
U.S. Appl. No. 13/018,179, Apr. 23, 2014 non-final office action. |
U.S. Appl. No. 13/196,812, May 5, 2014 final office action. |
U.S. Appl. No. 13/485,898, Jun. 6, 2014 non-final office action. |
EP patent application EP 07809011, Jun. 10, 2014 supplemental search. |
EP patent application EP 07843175, Jun. 11, 2014 communication. |
U.S. Appl. No. 12/137,473, Jun. 25, 2014 final office action. |
U.S. Appl. No. 13/485,887, Oct. 2, 2014 notice of allowance. |
U.S. Appl. No. 13/476,837, Oct. 14, 2014 non-final office action. |
U.S. Appl. No. 13/373,999, Oct. 21, 2014 notice of allowance. |
U.S. Appl. No. 13/485,898, Dec. 29, 2014 final office action. |
U.S. Appl. No. 12/137,473, Jan. 28, 2015 non-final office action. |
U.S. Appl. No. 10/698,148, Feb. 18, 2015 notice of allowance. |
U.S. Appl. No. 13/485,896, Mar. 5, 2015 non-final office action. |
U.S. Appl. No. 13/476,884, Mar. 20, 2015 non-final office action. |
U.S. Appl. No. 13/743,285, Mar. 20, 2015 non-final office action. |
EP patent application EP 08770736, Mar. 23, 2015 communication. |
U.S. Appl. No. 13/743,287, Mar. 23, 2015 non-final office action. |
U.S. Appl. No. 13/896,838, Apr. 10, 2015 non-final office action. |
U.S. Appl. No. 14/461,774, Apr. 17, 2015 final office action. |
U.S. Appl. No. 13/485,898, Jun. 18, 2015 notice of allowance. |
U.S. Appl. No. 13/743,287, Jul. 9, 2015 final office action. |
U.S. Appl. No. 14/634,548, Jul. 15, 2015 non-final office action. |
U.S. Appl. No. 14/139,859, Jul. 17, 2015 non-final office action. |
U.S. Appl. No. 13/476,884, Jul. 20, 2015 final office action. |
U.S. Appl. No. 13/485,896, Jul. 28, 2015 final office action. |
U.S. Appl. No. 13/896,838, Sep. 2, 2015 final office action. |
U.S. Appl. No. 14/461,774, Sep. 21, 2015 non-final office action. |
U.S. Appl. No. 14/738,597, Nov. 6, 2015 non-final office action. |
U.S. Appl. No. 14/208,642, Jan. 11, 2016 non-final office action. |
U.S. Appl. No. 14/164,112, Jan. 14, 2016 non-final office action. |
PCT application PCT/US2015/058691, Jan. 27, 2016 ISR/WO. |
EP patent application EP 13796584, Feb. 18, 2016 communication. |
PCT application PCT/US2015/058690, Mar. 17, 2016 ISR/WO. |
U.S. Appl. No. 13/896,838, Apr. 11, 2016 non-final office action. |
U.S. Appl. No. 13/485,896, Apr. 26, 2016 notice of allowance. |
U.S. Appl. No. 14/461,774, Apr. 29, 2016 final office action. |
U.S. Appl. No. 14/634,548, Jun. 15, 2016 final office action. |
U.S. Appl. No. 14/738,597, Sep. 21, 2016 notice of allowance. |
U.S. Appl. No. 13/476,884, Oct. 3, 2016 examiner's answer. |
U.S. Appl. No.15/000,959, Oct. 6, 2016 non-final office action. |
U.S. Appl. No. 13/896,838, Nov. 15, 2016 notice of allowance. |
U.S. Appl. No. 14/208,642, Nov. 16, 2016 notice of allowance. |
U.S. Appl. No. 14/987,398, filed Jan. 4, 2016, Thompson et al. |
Number | Date | Country | |
---|---|---|---|
20150018745 A1 | Jan 2015 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 13896838 | May 2013 | US |
Child | 14315330 | US | |
Parent | 13743285 | Jan 2013 | US |
Child | 13896838 | US | |
Parent | 13743287 | Jan 2013 | US |
Child | 13743285 | US | |
Parent | 13485887 | May 2012 | US |
Child | 13743287 | US | |
Parent | 13485889 | May 2012 | US |
Child | 13485887 | US | |
Parent | 13485893 | May 2012 | US |
Child | 13485889 | US | |
Parent | 13485896 | May 2012 | US |
Child | 13485893 | US | |
Parent | 13485898 | May 2012 | US |
Child | 13485896 | US |