Diabetes, heart disease, and other obesity-related conditions may be treated surgically with bariatric procedures such as jejuno-ileal bypass, jejuno-colic bypass, biliopancreatic diversion, gastric bypass, and gastroplasty. These procedures may be effective for weight control and treatment of chronic conditions. However, these procedures carry with them substantial shortcomings, including the risk of infection and other risks accompanying surgery. Some of these procedures effect radical permanent changes to the gastrointestinal anatomy, thus foreclosing subsequent surgical intervention.
What is needed are devices and methods for gastrointestinal bypass that avoid the risks associated with surgery by using non-surgical techniques. What is also needed are devices and methods for gastrointestinal bypass that allow for additional or revision procedures to be performed. What is also needed are devices and methods for gastrointestinal bypass that are reversible.
A gastrointestinal bypass device for directing food and liquids from an esophagus and/or a proximal portion of a stomach into an intestines is described. The device comprises a receiver, a sleeve, and a device coupling.
The receiver may be configured to be positioned in the esophagus and/or the stomach. A proximal portion of the receiver may be configured to open and close to at least partially conform to an inside of the esophagus and/or a proximal portion of the stomach. The receiver may be configured to receive food and liquids from the esophagus and/or a proximal portion of the stomach into a lumen of the receiver.
The sleeve may be coupled to a distal portion of the receiver. The sleeve may be configured to be positioned in the stomach and the intestines. The sleeve may have a lumen in communication with the lumen of the receiver. The sleeve may be configured to direct the food and the liquids from the receiver into the intestines.
The device coupling may be coupled to the distal portion of the receiver and/or a proximal portion of the sleeve. The device coupling may be configured to be coupled to one or more tissue anchors.
Gastrointestinal bypass device 1000 may be used for directing food and liquids from the esophagus and/or a proximal portion of the stomach into the intestines.
Gastrointestinal bypass device 1000 may include a receiver 1100, a sleeve 1200, and a device coupling 1300. Gastrointestinal bypass device 1000 may be configured to be used with one or more tissue anchors 1500.
Receiver 1100 may include a proximal portion 1101, a distal portion 1102, a longitudinal axis 1103, and a lumen 1104. Receiver 1100 may be configured to be positioned in the esophagus and/or the stomach. Receiver 1100 may be configured to receive food and liquids from the esophagus and/or a proximal portion of the stomach into lumen 1104. Receiver 1100 may be configured to reduce the amount of food and liquids which pass to an outside of receiver 1100 instead of through lumen 1104. Proximal portion 1101 of receiver 1100 may be configured to open and close to at least partially conform to an inside of the esophagus and/or a proximal portion of the stomach.
Receiver 1100 may include a body 1110, a plurality of fingers 1120, and a receiver coupling 1150.
Body 1110 may include a proximal portion 1111 and a distal portion 1112. Body 1110 may be configured to be positioned in the esophagus and/or the stomach. Body 1110 may be configured to be positioned distal to the lower esophageal sphincter. Body 1110 may provide support to fingers 1120. Body 1110 may include a ring or a short tubular element. Body 1110 may be flexible. Body 1110 may have sufficient hoop strength to resist radial expansion. Body 1110 may be made of a polyurethane elastomer such as PELLETHANE, silicone, and/or any other suitable material.
Fingers 1120 may extend proximally from proximal portion 1111 of body 1110. Fingers 1120 may be configured to extend into a proximal portion of the stomach, at least partially through the lower esophageal sphincter, above the lower esophageal sphincter, or anywhere in the esophagus. Fingers 1120 may be configured to open and close to at least partially conform to an inside of the esophagus and/or a proximal portion of the stomach. Fingers 1120 may be configured to have an outward bias that is large enough to at least partially conform to an inside of the esophagus and/or a proximal portion of the stomach. Fingers 1120 may be configured to have an outward bias that is small enough not to substantially interfere with the closing or normal functioning of the esophagus and/or a proximal portion of the stomach. Fingers 1120 may use body 1110 as a fulcrum to maintain at least a portion of an outward bias.
Fingers 1120 may have a shape that cooperates with other fingers 1120 when fingers 1120 are closed. Fingers 1120 may have a shape that is sinusoidal, triangular, or any other suitable shape. Fingers 1120 may have a cross section that is flat, cylindrical, or any other suitable cross section. Fingers 1120 may have a uniform or varying thickness. Fingers 1120 may be flexible. Fingers 1120 may be made of a polyurethane elastomer such as PELLETHANE, silicone, and/or any other suitable material.
Fingers 1120 may include one or more stiffening elements 1125 coupled around the edge of fingers 1120. Alternatively, stiffening elements 1125 may be coupled along the center of fingers 1120 and/or any other suitable location. Stiffening elements 1125 may provide at least some support to fingers 1120 to extend proximally. Stiffening elements 1125 may provide at least some outward bias to fingers 1120 to conform to an inside of the esophagus and/or a proximal portion of the stomach. Stiffening elements 1125 may reduce the likelihood of fingers 1120 being inverted distally into lumen 1114, or help allow inverted fingers 1120 to reposition themselves. Stiffening elements 1125 may include a wire, stent, scaffold, thickened portions of fingers 1120, and/or any other suitable element. Stiffening elements 1125 may be made of a metal, plastic, and/or any other suitable material.
Alternatively, stiffening elements 1125 may be similar in part or in whole to one or more of the scaffolds and/or struts described in U.S. patent application Ser. No. 13/485,887 (VALENTX 021A1), which is hereby incorporated by reference in its entirety.
Fingers 1120 may include webbing 1126 coupled between fingers 1120. Webbing 1126 may cover a portion or substantially all of the space between adjacent fingers 1120. Webbing 1126 may reduce the amount of food and liquids leaking out between fingers 1120. Webbing 1126 may be flexible. Webbing 1126 may be stretchable or non-stretchable. Webbing 1126 may be sufficiently thin to reduce bunching when fingers 1120 close. Webbing 1126 may be made of a polyurethane elastomer such as PELLETHANE, silicone, and/or any other suitable material. For clarity, webbing 1126 is not shown in
Receiver coupling 1150 may be coupled to body 1110. Receiver coupling 1150 may be configured to be removably or irremovably coupled to sleeve 1200. Receiver coupling 1150 may include one or more clips 1156. Clips 1156 may extend distally from distal portion 1112 of body 1110. Clips 1156 may include channels 1158. Alternatively, receiver coupling 1150 may include a hook, loop, retainer, or any other suitable device.
Alternatively, receiver coupling 1150 may be similar in part or in whole to those described in U.S. patent application Ser. No. 13/485,887 (VALENTX 021A1), which is hereby incorporated by reference in its entirety.
Alternatively, receiver 1100 may be any suitably shaped structure, such as a bowl-, cup-, or cone-shaped structure, having a proximal portion configured to open and close to conform to an inside of the esophagus and/or a proximal portion of the stomach, without substantially interfering with the closing or normal functioning of the esophagus and/or a proximal portion of the stomach.
Sleeve 1200 may include a proximal portion 1201, a distal portion 1202, a longitudinal axis 1203, and a lumen 1204. Sleeve 1200 may be coupled to distal portion 1102 of receiver 1100. Sleeve 1200 may be configured to be positioned in the stomach and the intestines. Lumen 1204 of sleeve 1200 may be in communication with lumen 1104 of receiver 1100. Sleeve 1200 may be configured to direct food and liquids from receiver 1100 into the intestines.
Sleeve 1200 may include a tube 1210 and a sleeve coupling 1250. Tube 1210 may include a proximal portion 1211 and a distal portion 1212. Tube 1210 may be similar in part or in whole to one or more of the tubes described in U.S. patent application Ser. No. 13/485,887 (VALENTX 021A1), which is hereby incorporated by reference in its entirety.
Sleeve coupling 1250 may be coupled to proximal portion 1211 of tube 1210. Sleeve coupling 1250 may be configured to be coupled to receiver coupling 1150 of receiver 1100. Sleeve coupling 1250 may include a portion of proximal portion 1211 of tube 1210. Sleeve coupling 1250 may be made of a similar or different material than tube 1210. Sleeve coupling 1250 may be of the same or different thickness than tube 1210.
Sleeve coupling 1250 may include a plurality of dimples 1255, a plurality of slots 1257, and a ring 1258. Dimples 1255 may be formed circumferentially around sleeve coupling 1250. Dimples 1255 may extend inwardly. Dimples 1255 may define spaces 1256 between adjacent dimples 1255. Spaces 1256 may be configured to receive clips 1156. Slots 1257 may be formed circumferentially around sleeve coupling 1250. Slots 1257 may extend across spaces 1256. Slots 1257 may also extend partially into dimples 1255. Slots 1257 may be configured to be coupled to ring 1258. Ring 1258 may be positioned to pass through slots 1257 and pass through spaces 1256. Ring 1258 may be made of suture, wire, and/or any other suitable material. Ring 1258 may be configured to be removably or irremovably coupled to channels 1158 of clips 1156. Alternatively, sleeve coupling 1250 may include a hook, loop, retainer, or any other suitable device.
Alternatively, sleeve coupling 1250 may be similar in part or in whole to those described in U.S. patent application Ser. No. 13/485,887 (VALENTX 021A1), which is hereby incorporated by reference in its entirety.
Device coupling 1300 may be coupled to ring 1258. Alternatively, device coupling 1300 may be coupled to distal portion 1102 of receiver 1100 and/or proximal portion 1201 of sleeve 1200. Device coupling 1300 may thus be distanced from proximal portion 1101 of receiver 1100. Distancing device coupling 1300 from proximal portion 1101 of receiver 1100 serves to separate the function of coupling to tissue anchors 1500 and the function of conforming to the inside of the esophagus and/or proximal portion of the stomach. This also allows the option of delivering tissue anchors 1500 below the lower esophageal sphincter while having receiver 1100 extend into or proximal to the lower esophageal sphincter. This also allows for greater variation in the lengths of the tension element in the tissue anchors.
Device coupling 1300 may be configured to be removably or irremovably coupled to tissue anchors 1500. Device coupling 1300 may include one or more loops 1310. Loops 1310 may be coupled to ring 1258. Loops 1310 may be rigid or flexible. Loops 1310 may be coupled with a plurality of standoffs 1311. Alternatively, loops 1310 may be coupled to distal portion 1102 of receiver 1100 and/or proximal portion 1201 of sleeve 1200.
Alternatively, device coupling 1300 may be similar in part or in whole to one or more of the device couplings described in U.S. provisional patent application Ser. No. 61/756,366 (VALENTX 024), which is hereby incorporated by reference in its entirety.
One or more elements of gastrointestinal bypass device 1000 may be formed integrally as a single piece, using one or more materials. For example, receiver 1100, sleeve 1200, and device coupling 1200 may be formed integrally as a single piece. As another example, receiver 1100 and sleeve 1200 may be formed integrally as a single piece, with the exception of webbing 1126 between fingers 1120, which may be added on later.
Anchor coupling 1510 may be configured to be coupled to device coupling 1300. Anchor coupling 1510 may include a button 1511. Button 1511 may be sized larger than loop 1310.
Distal retention element 1520 may be configured to be deployed outside of a wall of the esophagus and/or a proximal portion of the stomach. Distal retention element 1520 may be similar in part or in whole to one or more of the distal retention elements described in the following, which are hereby incorporated by reference in their entireties: U.S. Pat. No. 8,070,743 (VALTX.001CP2); U.S. patent application Ser. No. 12/137,473 (VALTX.020A), Ser. No. 13/485,887 (VALENTX 021A1), and Ser. No. 13/743,287 (VALENTX 021CP2); U.S. provisional patent application Ser. No. 61/756,366 (VALENTX 024).
Tension element 1550 may include a proximal portion 1551 and a distal portion 1552. Proximal portion 1551 of tension element 1550 may be fixedly or adjustably coupled to anchor coupling 1510. Distal portion 1552 of tension element 1550 may be fixedly or adjustably coupled to distal retention element 1520. Tension element 1550 may be configured to pass through a wall of the esophagus and/or a proximal portion of the stomach.
Alternatively, tissue anchor 1500 may be similar in part or in whole to one or more of the tissue anchors described in the following, which are hereby incorporated by reference in their entireties: U.S. Pat. No. 8,070,743 (VALTX.001CP2); U.S. patent application Ser. No. 12/137,473 (VALTX.020A), Ser. No. 13/485,887 (VALENTX 021A1), and Ser. No. 13/743,287 (VALENTX 021CP2); U.S. provisional patent application Ser. No. 61/756,366 (VALENTX 024).
The sleeve delivery device may be similar in part or in whole to one or more of the sleeve delivery devices described in U.S. patent application Ser. No. 13/485,887 (VALENTX 021A1), which is hereby incorporated by reference in its entirety.
The anchor site may first be marked using a tissue marking device before tissue anchors 1500 are delivered to aid in placement of tissue anchors 1500. The tissue marking device may be similar in part or in whole to one or more of the tissue marking devices described in U.S. patent application Ser. No. 13/485,887 (VALENTX 021A1), which is hereby incorporated by reference in its entirety.
Gastrointestinal bypass device 2000 and 2000A may be used for directing food and liquids from the esophagus and/or a proximal portion of the stomach into the intestines.
Gastrointestinal bypass device 2000 and 2000A may include a receiver 2100, a sleeve 2200, and a device coupling 2300. Gastrointestinal bypass device 2000 and 2000A may be configured to be used with one or more tissue anchors 2500.
Receiver 2100 may include a proximal portion 2101, a distal portion 2102, a longitudinal axis 2103, and a lumen 2104. Receiver 2100 may be configured to be positioned in the esophagus and/or the stomach. Receiver 2100 may be configured to receive food and liquids from the esophagus and/or a proximal portion of the stomach into lumen 2104. Receiver 2100 may be configured to reduce the amount of food and liquids which pass to an outside of receiver 2100 instead of through lumen 2104. Proximal portion 2101 of receiver 2100 may be configured to open and close to at least partially conform to an inside of the esophagus and/or a proximal portion of the stomach.
Receiver 2100 may include a body 2110 and a plurality of fingers 2120.
Body 2110 may include a proximal portion 2111 and a distal portion 2112. Body 2110 may be configured to be positioned in the esophagus and/or the stomach. Body 2110 may be configured to be positioned distal to the lower esophageal sphincter. Body 2110 may provide support to fingers 2120. Body 2110 may include a ring or a short tubular element. Body 2110 may be flexible. Body 2110 may have sufficient hoop strength to resist radial expansion. Body 2110 may be made of a polyurethane elastomer such as PELLETHANE, silicone, and/or any other suitable material.
Fingers 2120 may extend proximally from proximal portion 2111 of body 2110. Fingers 2120 may be configured to extend at least partially through the lower esophageal sphincter as shown in
Fingers 2120 may have a shape that cooperates with other fingers 2120 when fingers 2120 are closed, as shown in
Fingers 2120 may include one or more stiffening elements 2125 coupled around the edge of fingers 2120. Alternatively, stiffening elements 2125 may be coupled along the center of fingers 2120 and/or any other suitable location. Stiffening elements 2125 may provide at least some support to fingers 2120 to extend proximally. Stiffening elements 2125 may provide at least some outward bias to fingers 2120 to conform to an inside of the esophagus and/or a proximal portion of the stomach. Stiffening elements 2125 may reduce the likelihood of fingers 2120 being inverted distally into lumen 2114, or help allow inverted fingers 1120 to reposition themselves. Stiffening elements 2125 may include a wire, stent, scaffold, thickened portions of fingers 2120, and/or any other suitable element. Stiffening elements 2125 may be made of a metal, plastic, and/or any other suitable material.
Alternatively, stiffening elements 2125 may be similar in part or in whole to one or more of the scaffolds and/or struts described in U.S. patent application Ser. No. 13/485,887 (VALENTX 021A1), which is hereby incorporated by reference in its entirety.
Fingers 2120 may include webbing 2126 coupled between fingers 2120. Webbing 2126 may cover a portion or substantially all of the space between adjacent fingers 2120. Webbing 2126 may reduce the amount of food and liquids leaking out between fingers 2120. Webbing 2126 may be flexible. Webbing 2126 may be stretchable or non-stretchable. Webbing 2126 may be sufficiently thin to reduce bunching when fingers 2120 close. Webbing 2126 may be made of a polyurethane elastomer such as PELLETHANE, silicone, and/or any other suitable material.
Alternatively, receiver 2100 may be any suitably shaped structure, such as a bowl-, cup-, or cone-shaped structure, having a proximal portion configured to open and close to conform to an inside of the esophagus and/or a proximal portion of the stomach, without substantially interfering with the closing or normal functioning of the esophagus and/or a proximal portion of the stomach.
Sleeve 2200 may include a proximal portion 2201, a distal portion 2202, a longitudinal axis 2203, and a lumen 2204. Sleeve 2200 may be coupled to distal portion 2102 of receiver 2100. Sleeve 2200 may be configured to be positioned in the stomach and the intestines. Lumen 2204 of sleeve 2200 may be in communication with lumen 2104 of receiver 2100. Sleeve 2200 may be configured to direct food and liquids from receiver 2100 into the intestines.
Sleeve 2200 may include a tube 2210. Tube 2210 may include a proximal portion 2211 and a distal portion 2212. Tube 2210 may be similar in part or in whole to one or more of the tubes described in U.S. patent application Ser. No. 13/485,887 (VALENTX 021A1), which is hereby incorporated by reference in its entirety.
Device coupling 2300 may be coupled to distal portion 2102 of receiver 2100. Alternatively, device coupling 2300 may be coupled to proximal portion 2201 of sleeve 2200. Device coupling 2300 may thus be distanced from proximal portion 2101 of receiver 2100. Distancing device coupling 2300 from proximal portion 2101 of receiver 2100 serves to separate the function of coupling to tissue anchors 2500 and the function of conforming to the inside of the esophagus and/or proximal portion of the stomach. This also allows the option of delivering tissue anchors 2500 below the lower esophageal sphincter while having receiver 2100 extend into or proximal to the lower esophageal sphincter. This also allows for greater variation in the lengths of the tension element in the tissue anchors.
Device coupling 2300 may be configured to be removably or irremovably coupled to tissue anchors 2500. Device coupling 2300 may include a halo 2310. Halo 2310 may be coupled to distal portion 2102 of receiver 2100 and/or proximal portion of 2201 sleeve 2200. Halo 2310 may be coupled with a plurality of standoffs 2311.
Alternatively, device coupling 2300 may be similar in part or in whole to one or more of the device couplings described in U.S. provisional patent application Ser. No. 61/756,366 (VALENTX 024), which is hereby incorporated by reference in its entirety.
One or more elements of gastrointestinal bypass device 2000 and 2000A may be formed integrally as a single piece, using one or more materials. For example, receiver 2100, sleeve 2200, and device coupling 3200 may be formed integrally as a single piece. As another example, receiver 2100 and sleeve 2200 may be formed integrally as a single piece, with the exception of webbing 2126 between fingers 2120, which may be added on later.
Anchor coupling 2510 may be configured to be coupled to device coupling 2300. Anchor coupling 2510 may include a hook 2511. Hook 2511 may include a retainer 2512 configured to retain halo 2310 once coupled to hook 2511.
Distal retention element 2520 may be configured to be deployed outside of a wall of the esophagus and/or a proximal portion of the stomach. Distal retention element 2520 may be similar in part or in whole to one or more of the distal retention elements described in the following, which are hereby incorporated by reference in their entireties: U.S. Pat. No. 8,070,743 (VALTX.001CP2); U.S. patent application Ser. No. 12/137,473 (VALTX.020A), Ser. No. 13/485,887 (VALENTX 021A1), and Ser. No. 13/743,287 (VALENTX 021CP2); U.S. provisional patent application Ser. No. 61/756,366 (VALENTX 024).
Tension element 2550 may include a proximal portion 2551 and a distal portion 2552. Proximal portion 2551 of tension element 2550 may be fixedly or adjustably coupled to anchor coupling 2510. Distal portion 2552 of tension element 2550 may be fixedly or adjustably coupled to distal retention element 2520. Tension element 2550 may be configured to pass through a wall of the esophagus and/or a proximal portion of the stomach.
Alternatively, tissue anchor 2500 may be similar in part or in whole to one or more of the tissue anchors described in the following, which are hereby incorporated by reference in their entireties: U.S. Pat. No. 8,070,743 (VALTX.001CP2); U.S. patent application Ser. No. 12/137,473 (VALTX.020A), Ser. No. 13/485,887 (VALENTX 021A1), and Ser. No. 13/743,287 (VALENTX 021CP2); U.S. provisional patent application Ser. No. 61/756,366 (VALENTX 024).
The sleeve delivery device may be similar in part or in whole to one or more of the sleeve delivery devices described in U.S. patent application Ser. No. 13/485,887 (VALENTX 021A1), which is hereby incorporated by reference in its entirety.
The anchor site may first be marked using a tissue marking device before tissue anchors 2500 are delivered to aid in placement of tissue anchors 2500. The tissue marking device may be similar in part or in whole to one or more of the tissue marking devices described in U.S. patent application Ser. No. 13/485,887 (VALENTX 021A1), which is hereby incorporated by reference in its entirety.
Gastrointestinal bypass device 3000 may be used for directing food and liquids from the esophagus into the intestines.
Gastrointestinal bypass device 3000 may include a receiver 3100, a sleeve 3200, and a device coupling 3300. Gastrointestinal bypass device 3000 may be configured to be used with one or more tissue anchors 3500.
Receiver 3100 may include a proximal portion 3101, a distal portion 3102, a longitudinal axis 3103, and a lumen 3104. Receiver 3100 may be configured to be positioned in the esophagus and/or the stomach. Receiver 3100 may be configured to receive food and liquids from the esophagus into lumen 3104. Receiver 3100 may be configured to reduce the amount of food and liquids which pass to an outside of receiver 3100 instead of through lumen 3104. Proximal portion 3101 of receiver 3100 may be configured to open and close to at least partially conform to an inside of the esophagus.
Receiver 3100 may include a body 3110, a plurality of fingers 3120, and an extension 3130.
Body 3110 may include a proximal portion 3111 and a distal portion 3112. Body 3110 may be configured to be positioned in the esophagus proximal to the lower esophageal sphincter. Body 3110 may provide support to fingers 3120. Body 3110 may include a ring or a short tubular element. Body 3110 may be flexible. Body 3110 may have sufficient hoop strength to resist radial expansion. Body 3110 may be made of a polyurethane elastomer such as PELLETHANE, silicone, and/or any other suitable material.
Fingers 3120 may extend proximally from proximal portion 3111 of body 3110. Fingers 3120 may be configured to extend into the esophagus. Fingers 3120 may be configured to open and close to at least partially conform to an inside of the esophagus. Fingers 3120 may be configured to have an outward bias that is large enough to at least partially conform to an inside of the esophagus. Fingers 3120 may be configured to have an outward bias that is small enough not to substantially interfere with the closing or normal functioning of the esophagus. Fingers 3120 may use body 3110 as a fulcrum to maintain at least a portion of an outward bias.
Fingers 3120 may have a shape that cooperates with other fingers 3120 when fingers 3120 are closed. Fingers 3120 may have a shape that is sinusoidal, triangular, or any other suitable shape. Fingers 3120 may have a cross section that is flat, cylindrical, or any other suitable cross section. Fingers 3120 may have a uniform or varying thickness. Fingers 3120 may be flexible. Fingers 3120 may be made of a polyurethane elastomer such as PELLETHANE, silicone, and/or any other suitable material.
Fingers 3120 may include one or more stiffening elements 3125 coupled around the edge of fingers 3120. Alternatively, stiffening elements 3125 may be coupled along the center of fingers 3120 and/or any other suitable location. Stiffening elements 3125 may provide at least some support to fingers 3120 to extend proximally. Stiffening elements 3125 may provide at least some outward bias to fingers 3120 to conform to an inside of the esophagus. Stiffening elements 3125 may reduce the likelihood of fingers 3120 being inverted distally into lumen 3114, or help allow inverted fingers 1120 to reposition themselves. Stiffening elements 3125 may include a wire, stent, scaffold, thickened portions of fingers 3120, and/or any other suitable element. Stiffening elements 3125 may be made of a metal, plastic, and/or any other suitable material.
Alternatively, stiffening elements 3125 may be similar in part or in whole to one or more of the scaffolds and/or struts described in U.S. patent application Ser. No. 13/485,887 (VALENTX 021A1), which is hereby incorporated by reference in its entirety.
Fingers 3120 may include webbing 3126 coupled between fingers 3120. Webbing 3126 may cover a portion or substantially all of the space between adjacent fingers 3120. Webbing 3126 may reduce the amount of food and liquids leaking out between fingers 3120. Webbing 3126 may be flexible. Webbing 3126 may be stretchable or non-stretchable. Webbing 3126 may be sufficiently thin to reduce bunching when fingers 3120 close. Webbing 3126 may be made of a polyurethane elastomer such as PELLETHANE, silicone, and/or any other suitable material.
Extension 3130 may include a proximal portion 3131 and a distal portion 3132. Extension 3130 may be coupled to distal portion 3112 of body 3110. Extension 3130 may be configured to be positioned at least partially through the lower esophageal sphincter. Extension 3130 may support body 3110 and fingers 3120 at least partially above the lower esophageal sphincter. Extension 3130 may include a tubular structure. Extension 3130 may have a uniform or varying diameter, such as hourglass-shaped.
Extension 3130 may have sufficient column strength to support body 3110 and fingers 3120 at least partially above the lower esophageal sphincter. Extension 3130 may be configured not to substantially interfere with the closing of the esophagus and/or the lower esophageal sphincter, and/or prevent the substantially normal functioning of esophagus and/or the lower esophageal sphincter. Extension 3130 may be sufficiently thin to reduce bunching when the esophagus and/or the lower esophageal sphincter closes. Extension 3130 may be made of a polyurethane elastomer such as PELLETHANE, silicone, and/or any other suitable material.
Extension 3130 may include one or more stiffening elements 3135. Stiffening elements 3135 may be coupled along an inside, outside, or between layers of extension 3130. Stiffening elements 3135 may provide at least some column strength to extension 3130. Stiffening elements 3135 may include a wire, stent, scaffold, thickened portions of extension 3130, and/or any other suitable element. Stiffening element 3135 may be made of a metal, plastic, and/or any other suitable material. Stiffening elements 3135 of extension 3130 may be integral with or discrete from stiffening elements 3125 of fingers 3120.
Alternatively, stiffening elements 3135 may be similar in part or in whole to one or more of the scaffolds and/or struts described in U.S. patent application Ser. No. 13/485,887 (VALENTX 021A1), which is hereby incorporated by reference in its entirety.
Alternatively, receiver 3100 may be any suitably shaped structure, such as a bowl-, cup-, or cone-shaped structure, having a proximal portion configured to open and close to conform to an inside of the esophagus, without substantially interfering with the closing or normal functioning of the esophagus.
Sleeve 3200 may include a proximal portion 3201, a distal portion 3202, a longitudinal axis 3203, and a lumen 3204. Sleeve 3200 may be coupled to distal portion 3102 of receiver 3100. Sleeve 3200 may be configured to be positioned in the stomach and the intestines. Lumen 3204 of sleeve 3200 may be in communication with lumen 3104 of receiver 3100. Sleeve 3200 may be configured to direct food and liquids from receiver 3100 into the intestines.
Sleeve 3200 may include a tube 3210. Tube 3210 may include a proximal portion 3211 and a distal portion 3212. Tube 3210 may be similar in part or in whole to one or more of the tubes described in U.S. patent application Ser. No. 13/485,887 (VALENTX 021A1), which is hereby incorporated by reference in its entirety.
Device coupling 3300 may be coupled to distal portion 3102 of receiver 3100. Alternatively, device coupling 3300 may be coupled to proximal portion 3201 of sleeve 3200. Device coupling 3300 may thus be distanced from proximal portion 3101 of receiver 3100. Distancing device coupling 3300 from proximal portion 3101 of receiver 3100 serves to separate the function of coupling to tissue anchors 3500 and the function of conforming to the inside of the esophagus. This also allows the option of delivering tissue anchors 3500 below the lower esophageal sphincter while having receiver 3100 extend proximal to the lower esophageal sphincter. This also allows for greater variation in the lengths of the tension element in the tissue anchors.
Device coupling 3300 may be configured to be removably or irremovably coupled to tissue anchors 3500. Device coupling 3300 may include a halo 3310. Halo 3310 may be coupled to distal portion 3102 of receiver 3100 or proximal portion 3201 of sleeve 3200. Halo 3310 may be coupled with a plurality of standoffs 3311.
Alternatively, device coupling 3300 may be similar in part or in whole to one or more of the device couplings described in U.S. provisional patent application Ser. No. 61/756,366 (VALENTX 024), which is hereby incorporated by reference in its entirety.
One or more elements of gastrointestinal bypass device 3000 may be formed integrally as a single piece, using one or more materials. For example, receiver 3100, sleeve 3200, and device coupling 3300 may be formed integrally as a single piece. As another example, receiver 3100 and sleeve 3200 may be formed integrally as a single piece, with the exception of webbing 3126 between fingers 3120, which may be added on later.
Anchor coupling 3510 may be configured to be coupled to device coupling 3300. Anchor coupling 3510 may include a hook 3511. Hook 3511 may include one or more prongs 3512. Prongs 3512 may be radially arranged, which may reduce the need to rotate or orient hook 3511 when coupling halo 3310.
Distal retention element 3520 may be configured to be deployed outside of a wall of the esophagus and/or a proximal portion of the stomach. Distal retention element 3520 may be similar in part or in whole to one or more of the distal retention elements described in the following, which are hereby incorporated by reference in their entireties: U.S. Pat. No. 8,070,743 (VALTX.001CP2); U.S. patent application Ser. No. 12/137,473 (VALTX.020A), Ser. No. 13/485,887 (VALENTX 021A1), and Ser. No. 13/743,287 (VALENTX 021CP2); U.S. provisional patent application Ser. No. 61/756,366 (VALENTX 024).
Tension element 3550 may include a proximal portion 3551 and a distal portion 3552. Proximal portion 3551 of tension element 3550 may be fixedly or adjustably coupled to anchor coupling 3510. Distal portion 3552 of tension element 3550 may be fixedly or adjustably coupled to distal retention element 3520. Tension element 3550 may be configured to pass through a wall of the esophagus and/or a proximal portion of the stomach.
Alternatively, tissue anchor 3500 may be similar in part or in whole to one or more of the tissue anchors described in the following, which are hereby incorporated by reference in their entireties: U.S. Pat. No. 8,070,743 (VALTX.001CP2); U.S. patent application Ser. No. 12/137,473 (VALTX.020A), Ser. No. 13/485,887 (VALENTX 021A1), and Ser. No. 13/743,287 (VALENTX 021CP2); U.S. provisional patent application Ser. No. 61/756,366 (VALENTX 024).
The sleeve delivery device may be similar in part or in whole to one or more of the sleeve delivery devices described in U.S. patent application Ser. No. 13/485,887 (VALENTX 021A1), which is hereby incorporated by reference in its entirety.
The anchor site may first be marked using a tissue marking device before tissue anchors 3500 are delivered to aid in placement of tissue anchors 3500. The tissue marking device may be similar in part or in whole to one or more of the tissue marking devices described in U.S. patent application Ser. No. 13/485,887 (VALENTX 021A1), which is hereby incorporated by reference in its entirety.
While the foregoing has been with reference to particular embodiments of the invention, it will be appreciated by those skilled in the art that changes in these embodiments may be made without departing from the principles and spirit of the invention, including embodiments that do not provide all the features and benefits described herein. It will be understood by those skilled in the art that the present disclosure extends beyond the specifically disclosed embodiments to other alternative or additional embodiments and/or uses and obvious modifications and equivalents thereof. In addition, while a number of variations have been shown and described in varying detail, other modifications, which are within the scope of the present disclosure, will be readily apparent to those of skill in the art based upon this disclosure. It is also contemplated that various combinations or subcombinations of the specific features and aspects of the embodiments may be made and still fall within the scope of the present disclosure. Accordingly, it should be understood that various features and aspects of the disclosed embodiments can be combined with or substituted for one another in order to form varying modes of the present disclosure. Thus, it is intended that the scope of the present disclosure herein disclosed should not be limited by the particular disclosed embodiments described above. For all of the embodiments described above, the steps of any methods need not be performed sequentially.
This application claims the benefit of U.S. provisional patent application Ser. No. 61/780,777, filed Mar. 13, 2013, which is hereby incorporated by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
3357432 | Sparks | Dec 1967 | A |
3589356 | Silverman | Jun 1971 | A |
3982544 | Dyck | Sep 1976 | A |
4006747 | Kronenthal et al. | Feb 1977 | A |
4043345 | Kramann et al. | Aug 1977 | A |
4109659 | Sheridan | Aug 1978 | A |
4133315 | Berman et al. | Jan 1979 | A |
4134405 | Smit | Jan 1979 | A |
4217664 | Faso | Aug 1980 | A |
4235238 | Ogiu et al. | Nov 1980 | A |
4252131 | Hon et al. | Feb 1981 | A |
4271839 | Fogarty et al. | Jun 1981 | A |
4315509 | Smit | Feb 1982 | A |
4329995 | Anthracite | May 1982 | A |
4416267 | Garren et al. | Nov 1983 | A |
4493711 | Chin et al. | Jan 1985 | A |
4501264 | Rockey | Feb 1985 | A |
4532926 | O'Holla | Aug 1985 | A |
4606347 | Fogarty et al. | Aug 1986 | A |
4613323 | Norton et al. | Sep 1986 | A |
4630609 | Chin | Dec 1986 | A |
4641653 | Rockey | Feb 1987 | A |
4719916 | Ravo | Jan 1988 | A |
4763653 | Rockey | Aug 1988 | A |
4826481 | Sacks et al. | May 1989 | A |
4846836 | Reich | Jul 1989 | A |
4863440 | Chin | Sep 1989 | A |
4905693 | Ravo | Mar 1990 | A |
4946440 | Hall | Aug 1990 | A |
5085661 | Moss | Feb 1992 | A |
5104399 | Lazarus | Apr 1992 | A |
RE34021 | Mueller et al. | Aug 1992 | E |
5171305 | Schickling et al. | Dec 1992 | A |
5236423 | Mix et al. | Aug 1993 | A |
5269809 | Hayhurst et al. | Dec 1993 | A |
5306300 | Berry | Apr 1994 | A |
5314473 | Godin | May 1994 | A |
5318530 | Nelson, Jr. | Jun 1994 | A |
5411508 | Bessler et al. | May 1995 | A |
5425765 | Tiefenbrun et al. | Jun 1995 | A |
5431666 | Sauer et al. | Jul 1995 | A |
5443499 | Schmitt | Aug 1995 | A |
5458573 | Summers | Oct 1995 | A |
5470337 | Moss | Nov 1995 | A |
5503634 | Christy | Apr 1996 | A |
5582616 | Bolduc et al. | Dec 1996 | A |
5613975 | Christy | Mar 1997 | A |
5645568 | Chervitz et al. | Jul 1997 | A |
5676688 | Jaker et al. | Oct 1997 | A |
5681324 | Kammerer et al. | Oct 1997 | A |
5695517 | Marin et al. | Dec 1997 | A |
5785684 | Zimmon | Jul 1998 | A |
5807303 | Bays | Sep 1998 | A |
5820584 | Crabb | Oct 1998 | A |
5824008 | Bolduc et al. | Oct 1998 | A |
5824036 | Lauterjung | Oct 1998 | A |
5843164 | Frantzen et al. | Dec 1998 | A |
5861036 | Godin | Jan 1999 | A |
5887594 | LoCicero, III | Mar 1999 | A |
5957940 | Tanner et al. | Sep 1999 | A |
5972023 | Tanner et al. | Oct 1999 | A |
5997556 | Tanner | Dec 1999 | A |
6007544 | Kim | Dec 1999 | A |
6066146 | Carroll et al. | May 2000 | A |
6113609 | Adams | Sep 2000 | A |
6159158 | Lowe | Dec 2000 | A |
6193733 | Adams | Feb 2001 | B1 |
6206895 | Levinson | Mar 2001 | B1 |
6250922 | Bassett et al. | Jun 2001 | B1 |
6254642 | Taylor | Jul 2001 | B1 |
6264700 | Kilcoyne et al. | Jul 2001 | B1 |
6285897 | Kilcoyne et al. | Sep 2001 | B1 |
6302917 | Dua et al. | Oct 2001 | B1 |
6309343 | Lentz et al. | Oct 2001 | B1 |
6312437 | Kortenbach | Nov 2001 | B1 |
6338345 | Johnson et al. | Jan 2002 | B1 |
6387104 | Pugsley, Jr. et al. | May 2002 | B1 |
6402780 | Williamson, IV et al. | Jun 2002 | B2 |
6409656 | Sangouard et al. | Jun 2002 | B1 |
6432064 | Hibner et al. | Aug 2002 | B1 |
6447533 | Adams | Sep 2002 | B1 |
6464707 | Bjerken | Oct 2002 | B1 |
6494888 | Laufer et al. | Dec 2002 | B1 |
6520974 | Tanner et al. | Feb 2003 | B2 |
6535764 | Imran et al. | Mar 2003 | B2 |
6544291 | Taylor | Apr 2003 | B2 |
6558400 | Deem et al. | May 2003 | B2 |
6558429 | Taylor | May 2003 | B2 |
6592596 | Geitz | Jul 2003 | B1 |
6595911 | LoVuolo | Jul 2003 | B2 |
6626916 | Yeung et al. | Sep 2003 | B1 |
6626919 | Swanstrom | Sep 2003 | B1 |
6635066 | Tanner et al. | Oct 2003 | B2 |
6675809 | Stack et al. | Jan 2004 | B2 |
6692506 | Ory et al. | Feb 2004 | B1 |
6699263 | Cope | Mar 2004 | B2 |
6702735 | Kelly | Mar 2004 | B2 |
6736828 | Adams et al. | May 2004 | B1 |
6740121 | Geitz | May 2004 | B2 |
6746489 | Dua et al. | Jun 2004 | B2 |
6764518 | Godin | Jul 2004 | B2 |
6773452 | Shaker | Aug 2004 | B2 |
6790237 | Stinson | Sep 2004 | B2 |
6845776 | Stack et al. | Jan 2005 | B2 |
6946002 | Geitz | Sep 2005 | B2 |
6994095 | Burnett | Feb 2006 | B2 |
7025791 | Levine et al. | Apr 2006 | B2 |
7037344 | Kagan et al. | May 2006 | B2 |
7083629 | Weller et al. | Aug 2006 | B2 |
7097665 | Stack et al. | Aug 2006 | B2 |
7111627 | Stack et al. | Sep 2006 | B2 |
7120498 | Imran et al. | Oct 2006 | B2 |
7121283 | Stack et al. | Oct 2006 | B2 |
7122058 | Levine et al. | Oct 2006 | B2 |
7146984 | Stack et al. | Dec 2006 | B2 |
7152607 | Stack et al. | Dec 2006 | B2 |
7160312 | Saadat | Jan 2007 | B2 |
7175669 | Geitz | Feb 2007 | B2 |
RE39533 | Ranoux | Mar 2007 | E |
7211114 | Bessler et | May 2007 | B2 |
7220237 | Gannoe et al. | May 2007 | B2 |
7220284 | Kagan et al. | May 2007 | B2 |
7229428 | Gannoe et al. | Jun 2007 | B2 |
7244270 | Lesh | Jul 2007 | B2 |
7267694 | Levine et al. | Sep 2007 | B2 |
7288099 | Deem et al. | Oct 2007 | B2 |
7288101 | Deem et al. | Oct 2007 | B2 |
7306614 | Weller et al. | Dec 2007 | B2 |
7309341 | Ortiz et al. | Dec 2007 | B2 |
7314489 | McKenna et al. | Jan 2008 | B2 |
7316716 | Egan | Jan 2008 | B2 |
7329285 | Levine et al. | Feb 2008 | B2 |
7338505 | Belson | Mar 2008 | B2 |
7347868 | Burnett et al. | Mar 2008 | B2 |
7347875 | Levine et al. | Mar 2008 | B2 |
7354454 | Stack et al. | Apr 2008 | B2 |
7361180 | Saadat et al. | Apr 2008 | B2 |
7371215 | Colliou et al. | May 2008 | B2 |
7390329 | Westra et al. | Jun 2008 | B2 |
7416554 | Lam et al. | Aug 2008 | B2 |
7431725 | Stack et al. | Oct 2008 | B2 |
7468060 | Utley et al. | Dec 2008 | B2 |
7476256 | Meade et al. | Jan 2009 | B2 |
7483754 | Imran et al. | Jan 2009 | B2 |
7509175 | Sparks et al. | Mar 2009 | B2 |
7520884 | Swanstrom et al. | Apr 2009 | B2 |
7571729 | Saadat et al. | Aug 2009 | B2 |
7615064 | Bjerken | Nov 2009 | B2 |
7628821 | Stack et al. | Dec 2009 | B2 |
7666180 | Holsten et al. | Feb 2010 | B2 |
7678068 | Levine et al. | Mar 2010 | B2 |
7678135 | Maahs et al. | Mar 2010 | B2 |
7682330 | Meade et al. | Mar 2010 | B2 |
7703459 | Saadat et al. | Apr 2010 | B2 |
7704261 | Sakamoto et al. | Apr 2010 | B2 |
7704264 | Ewers et al. | Apr 2010 | B2 |
7708684 | Demarais et al. | May 2010 | B2 |
7736374 | Vaughan et al. | Jun 2010 | B2 |
7736378 | Maahs et al. | Jun 2010 | B2 |
7753870 | Demarais et al. | Jul 2010 | B2 |
7766973 | Levine et al. | Aug 2010 | B2 |
7780592 | Tronnes | Aug 2010 | B2 |
7794447 | Dann et al. | Sep 2010 | B2 |
7815589 | Meade et al. | Oct 2010 | B2 |
7833280 | Stack et al. | Nov 2010 | B2 |
7837669 | Dann et al. | Nov 2010 | B2 |
7841978 | Gertner | Nov 2010 | B2 |
7846138 | Dann et al. | Dec 2010 | B2 |
7881797 | Griffin et al. | Feb 2011 | B2 |
7892214 | Kagan et al. | Feb 2011 | B2 |
7935073 | Levine et al. | May 2011 | B2 |
7942884 | Vahid et al. | May 2011 | B2 |
7981162 | Stack et al. | Jul 2011 | B2 |
8012135 | Dann et al. | Sep 2011 | B2 |
8012140 | Kagan et al. | Sep 2011 | B1 |
8020741 | Cole et al. | Sep 2011 | B2 |
8029455 | Stack et al. | Oct 2011 | B2 |
8034063 | Binmoeller | Oct 2011 | B2 |
8070743 | Kagan et al. | Dec 2011 | B2 |
8083758 | Hsu et al. | Dec 2011 | B2 |
8096966 | Levine et al. | Jan 2012 | B2 |
8100925 | Hsu et al. | Jan 2012 | B2 |
8105342 | Onuki et al. | Jan 2012 | B2 |
8118767 | Laufer | Feb 2012 | B2 |
8118774 | Dann et al. | Feb 2012 | B2 |
8147441 | Gannoe et al. | Apr 2012 | B2 |
8182441 | Swain et al. | May 2012 | B2 |
8182459 | Dann et al. | May 2012 | B2 |
8206417 | Maahs et al. | Jun 2012 | B2 |
8206456 | Stack et al. | Jun 2012 | B2 |
8211186 | Belhe et al. | Jul 2012 | B2 |
8257374 | Hsu et al. | Sep 2012 | B2 |
8282598 | Belhe et al. | Oct 2012 | B2 |
8298291 | Ewers et al. | Oct 2012 | B2 |
8303669 | Meade et al. | Nov 2012 | B2 |
8372158 | Levy et al. | Feb 2013 | B2 |
8376981 | Laufer | Feb 2013 | B2 |
8382800 | Maahs et al. | Feb 2013 | B2 |
8425451 | Levine et al. | Apr 2013 | B2 |
8444657 | Saadat et al. | May 2013 | B2 |
8702641 | Belhe et al. | Apr 2014 | B2 |
8808270 | Dann et al. | Aug 2014 | B2 |
8956318 | Miller et al. | Feb 2015 | B2 |
8968270 | Kagan et al. | Mar 2015 | B2 |
9039649 | Neisz et al. | May 2015 | B2 |
9050168 | Neisz et al. | Jun 2015 | B2 |
9060844 | Kagan et al. | Jun 2015 | B2 |
9173759 | Nelson et al. | Nov 2015 | B2 |
9265596 | Shank et al. | Feb 2016 | B2 |
20010016748 | Tanner et al. | Aug 2001 | A1 |
20010020189 | Taylor | Sep 2001 | A1 |
20010020190 | Taylor | Sep 2001 | A1 |
20010044595 | Reydel et al. | Nov 2001 | A1 |
20010056282 | Sonnenschein et al. | Dec 2001 | A1 |
20020016607 | Bonadio et al. | Feb 2002 | A1 |
20020026214 | Tanner et al. | Feb 2002 | A1 |
20020035370 | Kortenbach | Mar 2002 | A1 |
20020040226 | Laufer et al. | Apr 2002 | A1 |
20020058960 | Hudson et al. | May 2002 | A1 |
20020082621 | Schurr et al. | Jun 2002 | A1 |
20020111658 | Greenberg et al. | Aug 2002 | A1 |
20020143387 | Soetikno et al. | Oct 2002 | A1 |
20020165589 | Imran et al. | Nov 2002 | A1 |
20020183768 | Deem et al. | Dec 2002 | A1 |
20020188344 | Bolea et al. | Dec 2002 | A1 |
20020188354 | Peghini | Dec 2002 | A1 |
20020198588 | Armstrong et al. | Dec 2002 | A1 |
20030014064 | Blatter | Jan 2003 | A1 |
20030018358 | Saadat | Jan 2003 | A1 |
20030040804 | Stack et al. | Feb 2003 | A1 |
20030040808 | Stack et al. | Feb 2003 | A1 |
20030055313 | Anderson et al. | Mar 2003 | A1 |
20030055442 | Laufer et al. | Mar 2003 | A1 |
20030065340 | Geitz | Apr 2003 | A1 |
20030065359 | Weller et al. | Apr 2003 | A1 |
20030093117 | Saadat | May 2003 | A1 |
20030109892 | Deem et al. | Jun 2003 | A1 |
20030109931 | Geitz | Jun 2003 | A1 |
20030120285 | Kortenbach | Jun 2003 | A1 |
20030120292 | Park et al. | Jun 2003 | A1 |
20030130560 | Suzuki et al. | Jul 2003 | A1 |
20030130561 | Suzuki et al. | Jul 2003 | A1 |
20030139752 | Pasricha et al. | Jul 2003 | A1 |
20030171775 | Belson | Sep 2003 | A1 |
20030176912 | Chuter et al. | Sep 2003 | A1 |
20030181929 | Geitz | Sep 2003 | A1 |
20030191497 | Cope | Oct 2003 | A1 |
20030199989 | Stack et al. | Oct 2003 | A1 |
20030199990 | Stack et al. | Oct 2003 | A1 |
20030199991 | Stack et al. | Oct 2003 | A1 |
20030208209 | Gambale et al. | Nov 2003 | A1 |
20040002734 | Fallin et al. | Jan 2004 | A1 |
20040006351 | Gannoe et al. | Jan 2004 | A1 |
20040024427 | Imran et al. | Feb 2004 | A1 |
20040039250 | Tholfsen et al. | Feb 2004 | A1 |
20040039452 | Bessler | Feb 2004 | A1 |
20040044364 | DeVries et al. | Mar 2004 | A1 |
20040059349 | Sixto, Jr. et al. | Mar 2004 | A1 |
20040059354 | Smith et al. | Mar 2004 | A1 |
20040082963 | Gannoe et al. | Apr 2004 | A1 |
20040087976 | DeVries et al. | May 2004 | A1 |
20040087977 | Nolan et al. | May 2004 | A1 |
20040088023 | Imran et al. | May 2004 | A1 |
20040089313 | Utley et al. | May 2004 | A1 |
20040092892 | Kagan et al. | May 2004 | A1 |
20040092974 | Gannoe et al. | May 2004 | A1 |
20040093065 | Yachia et al. | May 2004 | A1 |
20040097986 | Adams | May 2004 | A1 |
20040097987 | Pugsley et al. | May 2004 | A1 |
20040102855 | Shank | May 2004 | A1 |
20040107004 | Levine | Jun 2004 | A1 |
20040116949 | Ewers et al. | Jun 2004 | A1 |
20040117031 | Stack et al. | Jun 2004 | A1 |
20040122453 | Deem et al. | Jun 2004 | A1 |
20040122456 | Saadat et al. | Jun 2004 | A1 |
20040122473 | Ewers et al. | Jun 2004 | A1 |
20040133089 | Kilcoyne et al. | Jul 2004 | A1 |
20040133147 | Woo | Jul 2004 | A1 |
20040133219 | Forsell | Jul 2004 | A1 |
20040133238 | Cerier | Jul 2004 | A1 |
20040138525 | Saadat et al. | Jul 2004 | A1 |
20040138529 | Wiltshire et al. | Jul 2004 | A1 |
20040138761 | Stack et al. | Jul 2004 | A1 |
20040143342 | Stack et al. | Jul 2004 | A1 |
20040147958 | Lam et al. | Jul 2004 | A1 |
20040148034 | Kagan et al. | Jul 2004 | A1 |
20040153167 | Stack et al. | Aug 2004 | A1 |
20040158331 | Stack et al. | Aug 2004 | A1 |
20040162567 | Adams | Aug 2004 | A9 |
20040162568 | Saadat et al. | Aug 2004 | A1 |
20040167546 | Saadat et al. | Aug 2004 | A1 |
20040172142 | Stack et al. | Sep 2004 | A1 |
20040176799 | Chanduszko et al. | Sep 2004 | A1 |
20040181242 | Stack et al. | Sep 2004 | A1 |
20040186514 | Swain et al. | Sep 2004 | A1 |
20040193190 | Liddicoat et al. | Sep 2004 | A1 |
20040199189 | Gifford, III et al. | Oct 2004 | A1 |
20040204768 | Geitz | Oct 2004 | A1 |
20040220682 | Levine et al. | Nov 2004 | A1 |
20040225183 | Michlitsch et al. | Nov 2004 | A1 |
20040225305 | Ewers et al. | Nov 2004 | A1 |
20040243152 | Taylor et al. | Dec 2004 | A1 |
20040243195 | Imran et al. | Dec 2004 | A1 |
20040249362 | Levine et al. | Dec 2004 | A1 |
20040249367 | Saadat et al. | Dec 2004 | A1 |
20050033240 | Oishi et al. | Feb 2005 | A1 |
20050033330 | Vargas et al. | Feb 2005 | A1 |
20050033331 | Burnett et al. | Feb 2005 | A1 |
20050033332 | Burnett | Feb 2005 | A1 |
20050043749 | Breton et al. | Feb 2005 | A1 |
20050043757 | Arad et al. | Feb 2005 | A1 |
20050049718 | Dann et al. | Mar 2005 | A1 |
20050055039 | Burnett et al. | Mar 2005 | A1 |
20050065401 | Saadat et al. | Mar 2005 | A1 |
20050075653 | Saadat et al. | Apr 2005 | A1 |
20050075654 | Kelleher | Apr 2005 | A1 |
20050080431 | Levine et al. | Apr 2005 | A1 |
20050080444 | Kraemer et al. | Apr 2005 | A1 |
20050085787 | Laufer | Apr 2005 | A1 |
20050085900 | Case et al. | Apr 2005 | A1 |
20050085923 | Levine et al. | Apr 2005 | A1 |
20050096673 | Stack et al. | May 2005 | A1 |
20050096750 | Kagan et al. | May 2005 | A1 |
20050101977 | Gannoe et al. | May 2005 | A1 |
20050125020 | Meade et al. | Jun 2005 | A1 |
20050125075 | Meade et al. | Jun 2005 | A1 |
20050143784 | Imran | Jun 2005 | A1 |
20050177181 | Kagan et al. | Aug 2005 | A1 |
20050187567 | Baker et al. | Aug 2005 | A1 |
20050192629 | Saadat et al. | Sep 2005 | A1 |
20050197714 | Sayet | Sep 2005 | A1 |
20050197715 | Kugler et al. | Sep 2005 | A1 |
20050203547 | Weller et al. | Sep 2005 | A1 |
20050222592 | Gannoe et al. | Oct 2005 | A1 |
20050228413 | Binmoeller et al. | Oct 2005 | A1 |
20050228504 | Demarais | Oct 2005 | A1 |
20050240279 | Kagan et al. | Oct 2005 | A1 |
20050245948 | Khalaj | Nov 2005 | A1 |
20050247320 | Stack et al. | Nov 2005 | A1 |
20050250984 | Lam et al. | Nov 2005 | A1 |
20050251159 | Ewers et al. | Nov 2005 | A1 |
20050251176 | Swanstrom et al. | Nov 2005 | A1 |
20050251208 | Elmer et al. | Nov 2005 | A1 |
20050251209 | Saadat et al. | Nov 2005 | A1 |
20050256587 | Egan | Nov 2005 | A1 |
20050261549 | Hewit et al. | Nov 2005 | A1 |
20050261712 | Balbierz et al. | Nov 2005 | A1 |
20050267499 | Stack et al. | Dec 2005 | A1 |
20050267595 | Chen et al. | Dec 2005 | A1 |
20060009858 | Levine et al. | Jan 2006 | A1 |
20060015125 | Swain | Jan 2006 | A1 |
20060020164 | Butler et al. | Jan 2006 | A1 |
20060020247 | Kagan et al. | Jan 2006 | A1 |
20060020254 | van Hoffmann | Jan 2006 | A1 |
20060020277 | Gostout et al. | Jan 2006 | A1 |
20060020278 | Burnett et al. | Jan 2006 | A1 |
20060025819 | Nobis et al. | Feb 2006 | A1 |
20060047289 | Fogel | Mar 2006 | A1 |
20060064120 | Levine et al. | Mar 2006 | A1 |
20060074458 | Imran | Apr 2006 | A1 |
20060135971 | Swanstrom et al. | Jun 2006 | A1 |
20060155312 | Levine et al. | Jul 2006 | A1 |
20060155375 | Kagan | Jul 2006 | A1 |
20060161139 | Levine et al. | Jul 2006 | A1 |
20060161172 | Levine et al. | Jul 2006 | A1 |
20060161187 | Levine et al. | Jul 2006 | A1 |
20060161265 | Levine et al. | Jul 2006 | A1 |
20060173422 | Reydel et al. | Aug 2006 | A1 |
20060206063 | Kagan et al. | Sep 2006 | A1 |
20060206064 | Kagan et al. | Sep 2006 | A1 |
20060212052 | Shin et al. | Sep 2006 | A1 |
20060217762 | Maahs et al. | Sep 2006 | A1 |
20060235446 | Godin | Oct 2006 | A1 |
20060247718 | Starkebaum | Nov 2006 | A1 |
20060253126 | Bjerken et al. | Nov 2006 | A1 |
20060264982 | Viola et al. | Nov 2006 | A1 |
20060265021 | Herbert et al. | Nov 2006 | A1 |
20060265042 | Catanese, III et al. | Nov 2006 | A1 |
20060265082 | Meade et al. | Nov 2006 | A1 |
20060287734 | Stack et al. | Dec 2006 | A1 |
20060293742 | Dann et al. | Dec 2006 | A1 |
20070005147 | Levine et al. | Jan 2007 | A1 |
20070010794 | Dann et al. | Jan 2007 | A1 |
20070010864 | Dann et al. | Jan 2007 | A1 |
20070010865 | Dann et al. | Jan 2007 | A1 |
20070010866 | Dann et al. | Jan 2007 | A1 |
20070016244 | Behl et al. | Jan 2007 | A1 |
20070027548 | Levine et al. | Feb 2007 | A1 |
20070027549 | Godin | Feb 2007 | A1 |
20070032821 | Chin-Chen et al. | Feb 2007 | A1 |
20070032879 | Levine et al. | Feb 2007 | A1 |
20070083271 | Levine et al. | Apr 2007 | A1 |
20070100367 | Quijano et al. | May 2007 | A1 |
20070100368 | Quijano et al. | May 2007 | A1 |
20070106233 | Huang et al. | May 2007 | A1 |
20070106313 | Golden et al. | May 2007 | A1 |
20070129719 | Kendale et al. | Jun 2007 | A1 |
20070149994 | Sosnowski et al. | Jun 2007 | A1 |
20070156248 | Marco et al. | Jul 2007 | A1 |
20070178160 | Burnett | Aug 2007 | A1 |
20070198074 | Dann et al. | Aug 2007 | A1 |
20070208360 | Demarais et al. | Sep 2007 | A1 |
20070219571 | Balbierz et al. | Sep 2007 | A1 |
20070225555 | Stefanchik | Sep 2007 | A1 |
20070233162 | Gannoe et al. | Oct 2007 | A1 |
20070250132 | Burnett | Oct 2007 | A1 |
20070293716 | Baker et al. | Dec 2007 | A1 |
20070293885 | Binmoeller | Dec 2007 | A1 |
20080004606 | Swain et al. | Jan 2008 | A1 |
20080009888 | Ewers et al. | Jan 2008 | A1 |
20080033574 | Bessler et al. | Feb 2008 | A1 |
20080058840 | Albrecht et al. | Mar 2008 | A1 |
20080058887 | Griffin et al. | Mar 2008 | A1 |
20080082167 | Edidin et al. | Apr 2008 | A1 |
20080103604 | Levine et al. | May 2008 | A1 |
20080167606 | Dann et al. | Jul 2008 | A1 |
20080167610 | Dann et al. | Jul 2008 | A1 |
20080167629 | Dann et al. | Jul 2008 | A1 |
20080190989 | Crews et al. | Aug 2008 | A1 |
20080195226 | Williams et al. | Aug 2008 | A1 |
20080208355 | Stack et al. | Aug 2008 | A1 |
20080208356 | Stack et al. | Aug 2008 | A1 |
20080208357 | Melanson et al. | Aug 2008 | A1 |
20080221597 | Wallace et al. | Sep 2008 | A1 |
20080228030 | Godin | Sep 2008 | A1 |
20080243071 | Quijano et al. | Oct 2008 | A1 |
20080249533 | Godin | Oct 2008 | A1 |
20080255587 | Cully et al. | Oct 2008 | A1 |
20080255594 | Cully et al. | Oct 2008 | A1 |
20080255678 | Cully et al. | Oct 2008 | A1 |
20080269797 | Stack et al. | Oct 2008 | A1 |
20080294179 | Balbierz et al. | Nov 2008 | A1 |
20090012356 | Dann et al. | Jan 2009 | A1 |
20090012541 | Dahl et al. | Jan 2009 | A1 |
20090012544 | Thompson et al. | Jan 2009 | A1 |
20090012553 | Swain et al. | Jan 2009 | A1 |
20090018603 | Mitelberg et al. | Jan 2009 | A1 |
20090024143 | Crews et al. | Jan 2009 | A1 |
20090062881 | Gross et al. | Mar 2009 | A1 |
20090125040 | Hambly et al. | May 2009 | A1 |
20090149871 | Kagan et al. | Jun 2009 | A9 |
20090177215 | Stack et al. | Jul 2009 | A1 |
20090182355 | Levine et al. | Jul 2009 | A1 |
20090182413 | Burkart et al. | Jul 2009 | A1 |
20090216337 | Egan et al. | Aug 2009 | A1 |
20100016988 | Stack et al. | Jan 2010 | A1 |
20100023130 | Henry et al. | Jan 2010 | A1 |
20100030017 | Baker et al. | Feb 2010 | A1 |
20100049224 | Vargas | Feb 2010 | A1 |
20100121462 | Sobrino-Serrano et al. | May 2010 | A1 |
20100217151 | Gostout et al. | Aug 2010 | A1 |
20100256775 | Belhe et al. | Oct 2010 | A1 |
20100276469 | Crews et al. | Nov 2010 | A1 |
20100280529 | Crews et al. | Nov 2010 | A1 |
20100331623 | Sauer et al. | Dec 2010 | A1 |
20110004229 | Priplata et al. | Jan 2011 | A1 |
20110082471 | Holcomb et al. | Apr 2011 | A1 |
20110098630 | Gagner et al. | Apr 2011 | A1 |
20110106273 | Belhe et al. | May 2011 | A1 |
20110125211 | Griffin et al. | May 2011 | A1 |
20110172584 | Chin | Jul 2011 | A1 |
20110213469 | Chin et al. | Sep 2011 | A1 |
20110245752 | Levine et al. | Oct 2011 | A1 |
20110245854 | Buxbaum et al. | Oct 2011 | A1 |
20110275912 | Boyden et al. | Nov 2011 | A1 |
20110276091 | Melanson et al. | Nov 2011 | A1 |
20110319980 | Ryan | Dec 2011 | A1 |
20120029413 | Meade et al. | Feb 2012 | A1 |
20120029535 | Swain | Feb 2012 | A1 |
20120029611 | Weidman et al. | Feb 2012 | A1 |
20120053504 | Kagan et al. | Mar 2012 | A1 |
20120065571 | Thompson et al. | Mar 2012 | A1 |
20120095384 | Babkes et al. | Apr 2012 | A1 |
20120184893 | Thompson et al. | Jul 2012 | A1 |
20120209164 | Kagan et al. | Aug 2012 | A1 |
20120215235 | Fogel | Aug 2012 | A1 |
20120232459 | Dann et al. | Sep 2012 | A1 |
20120245504 | Tzvetanov et al. | Sep 2012 | A1 |
20120253324 | Lee et al. | Oct 2012 | A1 |
20120259317 | Baldwin et al. | Oct 2012 | A1 |
20120296254 | Swain et al. | Nov 2012 | A1 |
20130030351 | Belhe et al. | Jan 2013 | A1 |
20130079603 | Vargas | Mar 2013 | A1 |
20130184723 | Swope et al. | Jul 2013 | A1 |
20130184808 | Hall et al. | Jul 2013 | A1 |
20130261368 | Schwartz | Oct 2013 | A1 |
20130324902 | Miller et al. | Dec 2013 | A1 |
20130324905 | Nelson et al. | Dec 2013 | A1 |
20130324926 | Nelson et al. | Dec 2013 | A1 |
20130331759 | Neisz | Dec 2013 | A1 |
20140180192 | Ortiz et al. | Jun 2014 | A1 |
20140188245 | Neisz et al. | Jul 2014 | A1 |
20140358065 | Dann et al. | Dec 2014 | A1 |
20150238340 | Kagan et al. | Aug 2015 | A1 |
20150366693 | Kagan et al. | Dec 2015 | A1 |
Number | Date | Country |
---|---|---|
0817598 | Jan 1998 | EP |
1237501 | Sep 2002 | EP |
WO 8000007 | Jan 1980 | WO |
WO 9101117 | Feb 1991 | WO |
WO 96029954 | Oct 1996 | WO |
WO 9856440 | Dec 1998 | WO |
WO 9921490 | May 1999 | WO |
WO 9960931 | May 1999 | WO |
WO 0012027 | Mar 2000 | WO |
WO 0135834 | May 2001 | WO |
WO 0143663 | Jun 2001 | WO |
WO 0183017 | Nov 2001 | WO |
WO 0185034 | Nov 2001 | WO |
WO 0294132 | Nov 2002 | WO |
WO 02102227 | Dec 2002 | WO |
WO 03017882 | Mar 2003 | WO |
WO 03086246 | Oct 2003 | WO |
WO 03086247 | Oct 2003 | WO |
WO 03094785 | Nov 2003 | WO |
WO 2004017863 | Mar 2004 | WO |
WO 2004021894 | Mar 2004 | WO |
WO 2004041119 | May 2004 | WO |
WO 2004041133 | May 2004 | WO |
WO 2004047686 | Jun 2004 | WO |
WO 2004049982 | Jun 2004 | WO |
WO 2004064680 | Aug 2004 | WO |
WO 2004064685 | Aug 2004 | WO |
WO 2004080336 | Sep 2004 | WO |
WO 2004086984 | Oct 2004 | WO |
WO 2004087014 | Oct 2004 | WO |
WO 2004087233 | Oct 2004 | WO |
WO 2004103214 | Dec 2004 | WO |
WO 2004103430 | Dec 2004 | WO |
WO 2004105643 | Dec 2004 | WO |
WO 2005011463 | Feb 2005 | WO |
WO 2005011519 | Feb 2005 | WO |
WO 2005032422 | Apr 2005 | WO |
WO 2005037152 | Apr 2005 | WO |
WO 2005060869 | Jul 2005 | WO |
WO 2005060882 | Jul 2005 | WO |
WO 2005110280 | Nov 2005 | WO |
WO 2006044640 | Apr 2006 | WO |
WO 2006055847 | May 2006 | WO |
WO 2006130836 | Dec 2006 | WO |
WO 2007056583 | May 2007 | WO |
WO 2008121409 | Oct 2008 | WO |
WO 2009011881 | Jan 2009 | WO |
WO 2011031981 | Mar 2011 | WO |
Entry |
---|
U.S. Appl. No. 14/987,398 dated Jan. 4, 2016, Thompson et al. |
Awan et al., Endoscopic vertical band gastroplasty with an endoscopic sewing machine, Gastrointestinal Endoscopy, vol. 55, No. 2, pp. 254-256, Feb. 2002. |
Berger et al., Progression rate of self-propelled feeding tubes in critically ill patients, Intensive Care Medicine, vol. 28, No. 12, pp. 1768-1774, Dec. 2002. |
Boston Scientific Corp., Website, Microvasive Wallstent® Colonic & Duodenal Endoprosthesis, Sep. 2002. |
C.R. Bard, Inc., Website, The Bard EndoCinch Procedure, 2002. |
Chuttani, Endoscopic full-thickness plication: the device, technique, pre-clinical and early clinical experience, Gastrointestinal Endoscopy Clinics of North America, vol. 13, No. 1, pp. 109-116, Jan. 2003. |
Cook Inc., Brochure, Cope Gastrointestinal Suture Anchor Set, 2000. |
Cook Inc., Website, Geenen® Pancreatic Stent Sets, Sep. 2002. |
Crampton et al., Silastic Ring Gastric Bypass: Results in 64 Patients, Obesity Surgery, vol. 7, No. 6, pp. 489-494, Dec. 1997. |
De La Fuente et al., Evaluation of porcine-derived small intestine submucosa as a biodegradable graft for gastrointestinal healing, Journal of Gastrointestinal Surgery (abstract), vol. 7, No. 1, pp. 96-101, Jan. 2003. |
Demeester, Microvasive gastric stapler: the device, technique, and preclinical results, Gastrointestinal Endoscopy Clinics of North America, vol. 13, No. 1, pp. 117-133, Jan. 2003. |
Espinet-Coll et al., Current endoscopic techniques in the treatment of obesity, Revista Española de Enfermedades Digestivas, vol. 104, No. 2, pp. 72-87, Feb. 2012. |
Felsher et al., A Novel Endolaparoscopic Intragastric Partitioning for Treatment of Morbid Obesity, Surgical Laparoscopy, Endoscopy & Percutaneous Techniques, vol. 14, No. 5, pp. 243-246, Oct. 2004. |
Fennerty, Endoscopic suturing for treatment of GERD, Gastrointestinal Endoscopy, vol. 57, No. 3, pp. 390-395, Mar. 2003. |
Fobi et al., Gastric Bypass Operation for Obesity, World Journal of Surgery, vol. 22, No. 9, pp. 925-935, Sep. 1998. |
Fritscher-Ravens et al., A through-the-scope device for suturing and tissue approximation under EUS control, Gastrointestinal Endoscopy, vol. 56, No. 5, pp. 737-742, Nov. 2002. |
Fritscher-Ravens et al., Abstract, Endoscopic Gastropexy and Crural Repair for Gastro-Esophageal Reflux: Transgastric Surgery Under Endoscopic Ultrasound Control II, Gastroenterology, vol. 124, No. 4, supp. 1, p. A38, Apr. 2003. |
Fritscher-Ravens et al., Transgastric gastropexy and hiatal hernia repair for GERD under EUS control: a porcine model, Gastrointestinal Endoscopy, vol. 59, No. 1, pp. 89-95, Jan. 2004. |
Gleason, Bioabsorbable Polymers, 1998. |
Godin et al., Abstract, Endoscopic suturing of a novel gastroesophageal antireflux device (GARD) a preliminary report, Gastrointestinal Endoscopy, vol. 43, No. 4, p. 336, Apr. 1996. |
Kadirkamanathan et al., Antireflux operations at flexible endoscopy using endoluminal stitching techniques: an experimental study, Gastrointestinal Endoscopy, vol. 44, No. 2, pp. 133-143, Aug. 1996. |
Keyser et al., Double Closed Loop Obstruction and Perforation in a Previous Roux-en-Y Gastric Bypass, Obesity Surgery, vol. 8, No. 4, pp. 475-479, Aug. 1998. |
Kuo et al., Esophagus—anatomy and development, GI Motility online, Figure 8, 2006. http://www.nature.com/gimo/contents/pt1/full/gimo6.html#f8. |
Long et al., Abstract, Techniques for advancing guide wires and devices in the lumen of the gastrointestinal tract, Gastrointestinal Endoscopy, vol. 57, No. 5, p. AB177, Apr. 2003. |
Merlini et al., [Development of a gastroplasty with variable diameter. Experimental study using artificial sphincters] (abstract), Helvetica Chirurgica Acta., vol. 58, No. 6, pp. 789-793, May 1992. |
Middleton et al., Synthetic Biodegradable Polymers as Medical Devices, Medical Plastics and Biomaterials Magazine, Mar. 1998. |
Mittal et al., Sphincter mechanisms at the lower end of the esophagus, GI Motility online, 2006. http://www.nature.com/gimo/contents/pt1/full/gimo14.html. |
Nakamura et al., Experimental study on in situ tissue engineering of the stomach by an acellular collage sponge scaffold graft (abstract), ASAIO Journal, vol. 47, No. 3, pp. 206-210, May-Jun. 2001. |
Oh et al., Weight Loss Following Transected Gastric Bypass with Proximal Roux-en-Y, Obesity Surgery, vol. 7, No. 2, pp. 142-147, Apr. 1997. |
Oh et al., Repair of Full-Thickness Defects in Alimentary Tract Wall With Patches of Expanded Polytetrafluoroethylene, Annals of Surgery, vol. 235, No. 5, pp. 708-712, May 2002. |
Paré Surgical, Inc., Brochure, Successful uses in approximation ligation & fixation using the Quik Stitch Endoscopic Suturing System, 2001. |
Pories et al., Who Would Have Thought It? An Operation Proves to Be the Most Effective Therapy for Adult-Onset Diabetes Mellitus, Annals of Surgery, vol. 222, No. 3, pp. 339-352, Sep. 1995. |
Redmond et al., Iatrogenic Intussusception: a Complication of Long Intestinal Tubes, American Journal of Gastroenterology, vol. 77, No. 1, pp. 39-42, Jan. 1982. |
Rosen et al., Wilson-Cook sewing device: the device, technique, and preclinical studies, Gastrointestinal Endoscopy Clinics of North America, vol. 13, No. 1, pp. 103-108, Jan. 2003. |
Rothstein et al., Endoscopic suturing for gastroesophageal reflux disease: clinical outcome with the Bard EndoCinch, Gastrointestinal Endoscopy Clinics of North America, vol. 13, No. 1, pp. 89-101, Jan. 2003. |
Rubino et al., Effect of Duodenal-Jejunal Exclusion in a Non-obese Animal Model of Type 2 Diabetes, Annals of Surgery, vol. 239, No. 1, pp. 1-11, Jan. 2004. |
Singh et al., Stents in the small intestine, Current Gastroenterology Reports (abstract), vol. 4, No. 5, pp. 383-391, Oct. 2002. |
Stein et al., Three-dimensional pressure image and muscular structure of the human lower esophageal sphincter, Surgery, vol. 117, No. 6, pp. 692-698, Jun. 1995. |
Sugermen et al., Weight Loss With Vertical Banded Gastroplasty and Roux-Y Gastric Bypass for Morbid Obesity With Selective Versus Random Assignment, The American Journal of Surgery, vol. 157, pp. 93-102, Jan. 1989. |
Swain et al., An endoscopic stapling device: the development of a new flexible endoscopically controlled device for placing multiple transmural staples in gastrointestinal tissue, Gastrointestinal Endoscopy, vol. 35, No. 4, pp. 338-339, 1989. |
Swain et al., Abstract, Design and testing of a new, small diameter, single stitch endoscopic sewing machine, Gastrointestinal Endoscopy, vol. 36, No. 2, pp. 213-214, Mar. 1990. |
Swain et al., An endoscopically deliverable tissue-transfixing device for securing biosensors in the gastrointestinal tract, Gastrointestinal Endoscopy, vol. 40, No. 6, pp. 730-734, Nov. 1994. |
Swain, Endoscopic suturing, Balliere's Clinical Gastroenterology, vol. 13, No. 1, pp. 97-108, 1999. |
Swain et al., Bard EndoCinch: the device, the technique, and pre-clinical studies, Gastrointestinal Endoscopy Clinics of North America, vol. 13, No. 1, pp. 75-88, Jan. 2003. |
Swain et al., Abstract, Radiocontrolled Movement of a Robot Endoscope in the Human Gastrointestinal Tract, Gastrointestinal Endoscopy, vol. 61, No. 5 , p. AB101, Apr. 2005. |
Yamamoto et al., A new method of enteroscopy—The double-balloon method, Canadian Journal of Gastroenterology, vol. 17, No. 4, pp. 273-274, Apr. 2003. |
U.S. Appl. No. 10/698,148, Aug. 8, 2006 non-final office action. |
U.S. Appl. No. 10/698,148, Jul. 24, 2007 final office action. |
U.S. Appl. No. 10/698,148, Mar. 18, 2008 non-final office action. |
U.S. Appl. No. 10/698,148, Jul. 21, 2008 final office action. |
U.S. Appl. No. 10/698,148, Feb. 19, 2009 non-final office action. |
U.S. Appl. No. 10/698,148, Jul. 9, 2009 final office action. |
U.S. Appl. No. 10/698,148, Nov. 12, 2010 examiner's answer. |
U.S. Appl. No. 10/698,148, Feb. 21, 2013 patent board decision. |
U.S. Appl. No. 10/698,148, Jun. 6, 2013 non-final office action. |
U.S. Appl. No. 10/698,148, Dec. 18, 2013 final office action. |
U.S. Appl. No. 10/698,148, Feb. 18, 2015 notice of allowance. |
EP patent application EP 03781672, Aug. 29, 2007 communication. |
EP patent application EP 03781672, Jan. 9, 2009 communication. |
PCT application PCT/US2003/034822, Apr. 2, 2004 ISR. |
U.S. Appl. No. 10/998,424, Jun. 9, 2010 non-final office action. |
U.S. Appl. No. 10/998,424, Nov. 24, 2010 final office action. |
U.S. Appl. No. 14/738,597, Nov. 6, 2015 non-final office action. |
U.S. Appl. No. 14/738,597, Sep. 21, 2016 notice of allowance. |
U.S. Appl. No. 11/025,364, Nov. 17, 2006 non-final office action. |
U.S. Appl. No. 11/025,364, Jan. 3, 2008 final office action. |
U.S. Appl. No. 11/025,364, Feb. 12, 2009 non-final office action. |
U.S. Appl. No. 11/025,364, Nov. 16, 2009 non-final office action. |
U.S. Appl. No. 11/025,364, Aug. 6, 2010 final office action. |
EP patent application EP 04816031, Sep. 22, 2008 supplemental search. |
EP patent application EP 04816031, Feb. 19, 2009 communication. |
EP patent application EP 04816031, Jun. 11, 2010 communication. |
PCT application PCT/US2004/044049, May 30, 2007 ISR/WO. |
U.S. Appl. No. 11/124,634, May 13, 2010 non-final office action. |
U.S. Appl. No. 11/124,634, Nov. 30, 2010 final office action. |
U.S. Appl. No. 11/124,634, Sep. 23, 2011 notice of allowance. |
EP patent application EP 05747626, Sep. 18, 2008 supplemental search. |
EP patent application EP 05747626, Aug. 25, 2009 communication. |
EP patent application EP 05747626, Nov. 15, 2011 communication. |
PCT application PCT/US2005/015795, Nov. 14, 2005 ISR/WO. |
U.S. Appl. No. 11/400,724, Oct. 10, 2007 non-final office action. |
U.S. Appl. No. 11/400,724, Mar. 24, 2008 final office action. |
U.S. Appl. No. 11/400,724, Dec. 15, 2008 non-final office action. |
U.S. Appl. No. 11/400,724, Jul. 7, 2009 non-final office action. |
U.S. Appl. No. 11/400,724, Sep. 20, 2010 notice of allowance. |
U.S. Appl. No. 11/548,605, Nov. 9, 2010 non-final office action. |
U.S. Appl. No. 11/548,605, May 24, 2011 final office action. |
U.S. Appl. No. 11/548,605, Mar. 15, 2012 notice of allowance. |
EP patent application EP 07809011, Jun. 10, 2014 supplemental search. |
PCT application PCT/US2007/008882, Dec. 26, 2007 ISR/WO. |
U.S. Appl. No. 13/373,999, Jul. 9, 2012 non-final office action. |
U.S. Appl. No. 13/373,999, May 24, 2013 final office action. |
U.S. Appl. No. 13/373,999, Oct. 21, 2014 notice of allowance. |
U.S. Appl. No. 14/634,548, Jul. 15, 2015 non-final office action. |
U.S. Appl. No. 14/634,548, Jun. 15, 2016 final office action. |
U.S. Appl. No. 13/476,884, Apr. 9, 2013 non-final office action. |
U.S. Appl. No. 13/476,884, Dec. 24, 2013 non-final office action. |
U.S. Appl. No. 13/476,884, Mar. 20, 2015 non-final office action. |
U.S. Appl. No. 13/476,884, Jul. 20, 2015 final office action. |
U.S. Appl. No. 13/476,884, Oct. 3, 2016 examiner's answer. |
U.S. Appl. No. 11/431,040, Oct. 15, 2010 non-final office action. |
U.S. Appl. No. 11/431,040, Jun. 21, 2011 notice of allowance. |
U.S. Appl. No. 11/430,677, Apr. 2, 2009 non-final office action. |
U.S. Appl. No. 11/430,677, Jan. 11, 2010 final office action. |
U.S. Appl. No. 11/430,677, Sep. 23, 2010 notice of allowance. |
U.S. Appl. No. 11/431,054, Oct. 27, 2010 non-final office action. |
U.S. Appl. No. 11/430,275, Oct. 9, 2007 non-final office action. |
U.S. Appl. No. 11/430,275, Sep. 16, 2008 final office action. |
U.S. Appl. No. 11/430,275, Dec. 29, 2008 non-final office action. |
U.S. Appl. No. 11/430,275, Jul. 21, 2009 final office action. |
U.S. Appl. No. 11/430,275, Oct. 19, 2010 non-final office action. |
U.S. Appl. No. 11/430,278, Jul. 3, 2007 non-final office action. |
U.S. Appl. No. 11/430,278, Mar. 25, 2008 final office action. |
U.S. Appl. No. 11/430,278, Jun. 4, 2008 non-final office action. |
U.S. Appl. No. 11/430,278, Dec. 16, 2008 final office action. |
U.S. Appl. No. 11/430,278, Oct. 20, 2009 non-final office action. |
U.S. Appl. No. 11/430,278, Jul. 22, 2010 final office action. |
U.S. Appl. No. 11/430,278, Jun. 20, 2011 notice of allowance. |
U.S. Appl. No. 11/430,274, Oct. 5, 2009 non-final office action. |
U.S. Appl. No. 11/430,274, May 11, 2010 final office action. |
U.S. Appl. No. 11/430,274, Sep. 30, 2010 notice of allowance. |
U.S. Appl. No. 11/429,934, May 26, 2010 non-final office action. |
U.S. Appl. No. 11/429,934, Feb. 17, 2011 final office action. |
U.S. Appl. No. 10/699,589, Dec. 13, 2004 non-final office action. |
U.S. Appl. No. 10/699,589, Jun. 6, 2005 final office action. |
U.S. Appl. No. 10/903,255, Aug. 23, 2006 non-final office action. |
U.S. Appl. No. 10/903,255, Apr. 18, 2007 non-final office action. |
U.S. Appl. No. 10/903,255, Sep. 24, 2007 final office action. |
U.S. Appl. No. 10/903,255, Jan. 10, 2008 non-final office action. |
U.S. Appl. No. 10/903,255, Nov. 14, 2008 final office action. |
U.S. Appl. No. 10/903,255, Oct. 30, 2009 non-final office action. |
U.S. Appl. No. 10/903,255, Feb. 22, 2010 non-final office action. |
U.S. Appl. No. 10/903,255, Jun. 8, 2010 final office action. |
U.S. Appl. No. 10/903,255, Jul. 27, 2010 notice of allowance. |
U.S. Appl. No. 11/169,341, Dec. 13, 2006 non-final office action. |
U.S. Appl. No. 11/236,212, Mar. 18, 2008 non-final office action. |
U.S. Appl. No. 11/236,212, Oct. 7, 2009 final office action. |
U.S. Appl. No. 11/236,212, Apr. 26, 2010 non-final office action. |
U.S. Appl. No. 11/236,212, May 4, 2011 final office action. |
U.S. Appl. No. 13/289,885, Aug. 15, 2012 non-final office action. |
U.S. Appl. No. 11/123,889, May 24, 2010 non-final office action. |
U.S. Appl. No. 11/123,889, Feb. 2, 2011 final office action. |
U.S. Appl. No. 13/196,812, Jun. 18, 2012 non-final office action. |
U.S. Appl. No. 13/196,812, Feb. 7, 2013 final office action. |
U.S. Appl. No. 13/196,812, Oct. 17, 2013 non-final office action. |
U.S. Appl. No. 13/196,812, May 5, 2014 final office action. |
U.S. Appl. No. 11/125,820, May 30, 2008 non-final office action. |
U.S. Appl. No. 11/125,820, Aug. 14, 2009 final office action. |
U.S. Appl. No. 11/125,820, Feb. 4, 2010 non-final office action. |
U.S. Appl. No. 11/125,820, Oct. 15, 2010 final office action. |
U.S. Appl. No. 11/789,561, Mar. 29, 2010 non-final office action. |
U.S. Appl. No. 11/789,561, Nov. 16, 2010 notice of allowance. |
PCT application PCT/US2007/009956, Dec. 28, 2007 ISR/WO. |
U.S. Appl. No. 13/018,179, Aug. 2, 2012 non-final office action. |
U.S. Appl. No. 13/018,179, Mar. 12, 2013 final office action. |
U.S. Appl. No. 13/018,179, Apr. 23, 2014 non-final office action. |
U.S. Appl. No. 11/861,172, Nov. 10, 2008 non-final office action. |
U.S. Appl. No. 11/861,172, Jul. 14, 2009 final office action. |
U.S. Appl. No. 11/861,172, May 21, 2013 non-final office action. |
U.S. Appl. No. 11/861,172, Apr. 11, 2014 notice of allowance. |
U.S. Appl. No. 14/461,774, Apr. 17, 2015 final office action. |
U.S. Appl. No. 14/461,774, Sep. 21, 2015 non-final office action. |
U.S. Appl. No. 14/461,774, Apr. 29, 2016 final office action. |
U.S. Appl. No. 11/861,156, Jun. 2, 2009 non-final office action. |
U.S. Appl. No. 11/861,156, Dec. 31, 2009 final office action. |
U.S. Appl. No. 11/861,156, Sep. 22, 2010 non-final office action. |
U.S. Appl. No. 11/861,156, Jun. 23, 2011 final office action. |
U.S. Appl. No. 11/861,156, Oct. 11, 2011 notice of allowance. |
EP patent application EP 07843175, Oct. 1, 2013 supplemental search. |
EP patent application EP 07843175, Jun. 11, 2014 communication. |
PCT application PCT/US2007/079460, May 19, 2008 ISR/WO. |
U.S. Appl. No. 12/136,003, Sep. 27, 2010 non-final office action. |
U.S. Appl. No. 12/136,003, May 10, 2011 final office action. |
U.S. Appl. No. 12/136,003, Mar. 13, 2012 notice of allowance. |
EP patent application EP 08770415, Jul. 7, 2010 supplemental search. |
PCT application PCT/US2008/066214, Oct. 1, 2008 ISR/WO. |
U.S. Appl. No. 13/476,837, Oct. 14, 2014 non-final office action. |
U.S. Appl. No. 12/135,989, Sep. 16, 2010 non-final office action. |
U.S. Appl. No. 12/135,989, May 25, 2011 final office action. |
U.S. Appl. No. 12/137,473, Sep. 29, 2010 non-final office action. |
U.S. Appl. No. 12/137,473, May 31, 2011 final office action. |
U.S. Appl. No. 12/137,473, Dec. 2, 2013 non-final office action. |
U.S. Appl. No. 12/137,473, Jun. 25, 2014 final office action. |
U.S. Appl. No. 12/137,473, Jan. 28, 2015 non-final office action. |
EP patent application EP 08770736, May 23, 2011 supplemental search. |
EP patent application EP 08770736, Mar. 23, 2015 communication. |
PCT application PCT/US2008/066590, Dec. 5, 2008 ISR/WO. |
U.S. Appl. No. 13/485,887, Aug. 6, 2013 non-final office action. |
U.S. Appl. No. 13/485,887, Mar. 17, 2014 final office action. |
U.S. Appl. No. 13/485,887, Oct. 2, 2014 notice of allowance. |
U.S. Appl. No. 13/485,889, Aug. 8, 2013 non-final office action. |
U.S. Appl. No. 13/485,893, Aug. 23, 2013 non-final office action. |
U.S. Appl. No. 13/485,896, Mar. 5, 2015 non-final office action. |
U.S. Appl. No. 13/485,896, Jul. 28, 2015 final office action. |
U.S. Appl. No. 13/485,896, Apr. 26, 2016 notice of allowance. |
U.S. Appl. No. 13/485,898, Jul. 3, 2013 non-final office action. |
U.S. Appl. No. 13/485,898, Feb. 14, 2014 final office action. |
U.S. Appl. No. 13/485,898, Jun. 6, 2014 non-final office action. |
U.S. Appl. No. 13/485,898, Dec. 29, 2014 final office action. |
U.S. Appl. No. 13/485,898, Jun. 18, 2015 notice of allowance. |
U.S. Appl. No. 13/743,285, Mar. 20, 2015 non-final office action. |
U.S. Appl. No. 13/743,287, Mar. 23, 2015 non-final office action. |
U.S. Appl. No. 13/743,287, Jul. 9, 2015 final office action. |
U.S. Appl. No. 13/896,838, Apr. 10, 2015 non-final office action. |
U.S. Appl. No. 13/896,838, Sep. 2, 2015 final office action. |
U.S. Appl. No. 13/896,838, Apr. 11, 2016 non-final office action. |
U.S. Appl. No. 13/896,838, Nov. 15, 2016 notice of allowance. |
EP patent application EP 13796584, Feb. 18, 2016 communication. |
PCT application PCT/US2013/043741, Dec. 2, 2013 ISR/WO. |
U.S. Appl. No. 14/315,330, Feb. 12, 2016 non-final office action. |
U.S. Appl. No. 14/139,859, Jul. 17, 2015 non-final office action. |
U.S. Appl. No. 15/000,959, Oct. 6, 2016 non-final office action. |
U.S. Appl. No. 14/164,112, Jan. 14, 2016 non-final office action. |
PCT application PCT/US2014/013069, Apr. 17, 2014 ISR/WO. |
PCT application PCT/US2015/058690, Mar. 17, 2016 ISR/WO. |
PCT application PCT/US2015/058691, Jan. 27, 2016 ISR/WO. |
Number | Date | Country | |
---|---|---|---|
20140276333 A1 | Sep 2014 | US |
Number | Date | Country | |
---|---|---|---|
61780777 | Mar 2013 | US |