Devices and methods for heart valve repair

Information

  • Patent Grant
  • 10898328
  • Patent Number
    10,898,328
  • Date Filed
    Tuesday, September 25, 2018
    5 years ago
  • Date Issued
    Tuesday, January 26, 2021
    3 years ago
Abstract
Devices and methods provide enhanced treatment of a cardiac valve annulus. Methods generally involve contacting an anchor delivery device with the valve annulus and releasing a plurality of coupled anchors from the anchor delivery device to secure the anchors to the-annulus. Anchors, which in some embodiments are super-clastic or shape memory self-securing anchors, are then drawn together to tighten the annulus. Devices generally include an elongate catheter having a housing at or near the distal end for releasably housing a plurality of coupled anchors. The housing may be flexible, may conform to a valve annulus, and in some embodiments may be coupled with an expandable member to enhance contact of the housing with annular tissue. In one embodiment, self-securing anchors lie approximately flat with the delivery device housing, allowing anchors with relatively large deployed shapes to be housed in and deployed from a relatively narrow delivery device.
Description
BACKGROUND OF THE INVENTION
1. Field of the Invention

The present invention relates generally to medical devices and methods. More particularly, the invention relates to devices and methods for enhancing cardiovascular, valve repair, especially the repair of heart valves such as me mitral and tricuspid valves.


In recent years, many advances have been made to reduce the invasiveness of cardiac surgery. In an attempt to avoid open, stopped-heart procedures, which may be accompanied by high patient morbidity and mortality, many devices and methods have been developed for operating on a heart through smaller incisions, operating on a beating heart, and even performing cardiac procedures via transvascular access. Different types of cardiac procedures, such as cardiac ablation techniques for treating atrial fibrillation, stenting procedures for atherosclerosis, and valve repair procedures for treating conditions such as mitral valve regurgitation have experienced significant technological advances. In implementing many minimally invasive cardiac-surgery techniques, especially beating-heart techniques, one of the most significant challenges is positioning a treatment device (or multiple devices) in a desired location in or around the heart for performing the procedure. Another challenge, once a device is positioned, is to effectively deploy a given treatment into or on the target cardiac tissue.


One type of cardiac surgery which may benefit from less invasive techniques is heart valve repair. Traditional treatment of heart valve stenosis or regurgitation, such as mitral or tricuspid regurgitation, typically involves an open-heart surreal procedure to replace or repair the valve. Valve repair procedures typically involve annuloplasty, a set of techniques designed to restore the valve annulus shape and strengthen the annulus. Conventional annuloplasty surgery generally requires a large incision into the thorax of the patient (a thoracotomy), and sometimes a median sternotomy (cutting through the middle of the sternum). These open heart, open chest procedures routinely involve placing the patient on a cardiopulmonary bypass machine for sustained periods so that the patient's heart and lungs can be artificially stopped during the procedure. Finally, valve repair and replacement procedures are typically technically challenging and require a relatively large incision through the wall of the heart to access the valve.


Due to the highly invasive nature of open heart valve repair or replacement, many patients, such as elderly patients, patients having recently other surgical procedures, patients with comorbid medical conditions, children, late-stage heart failure patients, and the like, are often considered too high-risk to undergo heart valve surgery and are relegated to progressive deterioration and cardiac enlargement. Often, such patients have no feasible alternative treatments for their heart valve conditions.


To obviate this situation, a number of devices and methods for repairing cardiac valves in a less invasive manner have been described. Some devices provide for heart valve repair through minimally invasive incisions or intravascularly, while others improve upon open heart surgical procedures on beating hearts, stopped hearts or both. As mentioned above, difficulties in performing minimally invasive intracardiac surgery include positioning a minimally invasive treatment device in a desired location for performing a procedure and effectively deploying a given treatment into or on the target cardiac tissue. In heart valve repair procedures, for example, it is often essential for a physician to secure one or more treatment devices to valve annulus tissue. Annular tissue tends to be more fibrous than surrounding muscular or valve leaflet tissue, thus providing a more suitable location for securing such treatment devices, such as anchors, to treat a heart valve. Positioning an anchor deliver device in a desired location adjacent the annular tissue may often be challenging, especially in an intravascular procedure when visualization of the location is limited.


Devices and methods that address these difficulties are described in U.S. Patent Application Ser. Nos. 60/445,890, 60/459,735, 60/462,502, 60/524,622, Ser. Nos. 10/461,043, and 10/656,797, which were previously incorporated by reference. For example, these references describe devices and methods for exposing, stabilizing and/or performing a procedure on a heart valve annulus, such as a mitral valve annulus. Many of the devices and methods previously described by the inventors have been found to be highly effective, but improvements are still being sought.


Therefore, it would be beneficial, to have improved devices and methods for performing a procedure on a heart valve annulus. Ideally, such devices could be conveniently positioned in a location for treatment of a valve annulus. Also ideally, such devices and methods would provide for enhanced delivery of treatment devices to a valve annulus, for example to enhance the securing of anchors to annular tissue. At least some of these objectives will be met by the present invention.


2. Description of the Background Art

Published U.S. Application 2002/0156526 describes a catheter-based method for performing annuloplasty. Published U.S. Application 2002/0042621 describes a heart valve annuloplasty system with constrictable plication bands which are optionally attached to a linkage strip. Published U.S. Application 2002/0087169 describes a remote controlled catheter system which can be used to deliver anchors and a tether for performing an annuloplasty procedure. Other patent publications of interest include WO01/26586; US2001/0005787; US2001/0014800; US2002/0013621; US2002/0029080; US2002/0035361; US2002/0042621; US2002/0095167; and US2003/0074012; U.S. patents of interest include U.S. Pat. Nos. 4,014,492; 4,042,979; 4,043,504; 4,055,861; 4,700,250; 5,366,479; 5,450,860; 5,571,215; 5,674,279; 5,709,695; 5,752,518; 5,848,969; 5,860,992; 5,904,651; 5,961,539; 5,972,004; 6,165,183; 6,197,017; 6,250,308; 6,260,552; 6,283,993; 6,269,819; 6,312,447; 6,332,893; and 6,524,338. Publications of interest include De Simone et al. (1993) Am. J. Cardiol. 73:721 -721, and Downing et al. (2001) Heart Surgery Forum, Abstract 7025. All of the above cited references are hereby incorporated by reference in the present application.


BRIEF SUMMARY OF THE INVENTION

Devices and methods of the present invention are generally used to facilitate transvascular, minimally invasive and other “less invasive” surgical procedures; by facilitating the delivery of treatment devices at a treatment site. “Less invasive,” for the purposes of this application, means any procedure that is less invasive than traditional, large -incision, open surgical procedures. Thus, a less invasive procedure may be an open surgical procedure involving one or more relatively small incisions, a procedure performed via transvascular percutaneous access, a transvascular procedure via cut-down, a laparoscopic or other endoscopic procedure, or the like. Generally, any procedure in winch a goal is to minimize or reduce invasiveness to the patient may be considered less invasive. Furthermore, although the terms “less invasive” and “minimally invasive” may sometimes be used interchangeably in this application, neither these nor terms used to describe a particular subset of surgical or other procedures should be interpreted to limit the scope of the invention. Generally, devices and methods of the invention may be used in performing or enhancing any suitable procedure.


The present application typically describes devices and methods for performing heart valve repair procedures, and more specifically heart valve annuloplasty procedures such as mitral valve annuloplasty to treat mitral regurgitation. Devices and methods of the invention, however, may be used in any suitable procedure, both cardiac and non-cardiac. For example, they may be used in procedures to repair any heart valve, to repair an atrial-septal defect, to access and possibly perform a valve repair or other procedure from (or through) the coronary sinus, to place one or more pacemaker leads, to perform a cardiac ablation procedure such as ablating around pulmonary veins to treat atrial fibrillation, and/or the like. In other embodiments, the devices and methods may be used to enhance a laparoscopic or other endoscopic procedure on any part of the body, such as the bladder, stomach, gastroesophageal junction, vasculature, gall bladder, or the like. Therefore, although the following description typically focuses on mitral valve and other heart valve repair, such description should not be interpreted to limit the scope of the invention as defined by the claims.


That being said, the present invention generally provides devices and methods for enhanced treatment of a cardiac valve annulus. Methods generally involve contacting an anchor delivery device with a length of a valve annulus, delivering a plurality of coupled anchors from the anchor delivery device to secure the anchors to the annulus, and drawing the anchors together to circumferentially tighten the annulus. Devices generally include an elongate catheter having a housing at or near the distal end for releasably housing a plurality of coupled anchors. Devices may be positioned such that the housing abuts or is close to valve annular tissue, such as at an intersection of the left ventricular wall and one or more mitral valve leaflets of the heart. Some embodiments include self securing anchors, which may change from undeployed to deployed configurations. Anchors may be drawn together to tighten the annulus by cinching a tether slidably coupled with the anchors and/or by a self-deforming member coupled with the anchors.


In many cases, methods of the present invention will be performed on a beating heart. Access to the beating heart may be accomplished by any available technique, including intravascular, transthoracic, and the like. Intravascular access to a heart valve may be achieved using any suitable route or method. To perform a procedure on a mitral valve, for example, in one embodiment a catheter may be advanced through a femoral artery, to the aorta, and into the left ventricle of the heart, to contact a length of the mitral valve. Alternatively, access may be gained through the venous system, to a central vein, into the right atrium of the heart, and across the interatrial septum to the left side of the heart to contact a length of the mitral valve. In either of those two types of intravascular access; the catheter will often easily be advanced, once it enters the left side of the heart, into a space defined by the left ventricular wall, one or more mitral valve leaflets, and chordae tendineae of the left ventricle. This space provides a convenient conduit for further advancement of the catheter to a desired location for performing mitral valve repair. In alternative embodiments, a catheter device may access die coronary sinus and a valve procedure may be performed directly from the sinus. Furthermore, in addition to beating heart access, methods of the present invention may be used for intravascular stopped heart access as well as stopped heart open chest procedures. Any suitable intravascular or other access method is contemplated within the scope of the invention.


In one aspect of the invention, a method of constricting a valve annulus in a heart involves contacting an anchor delivery device with a length of the valve annulus, delivering a plurality of coupled anchors from the anchor delivery device to secure the anchors to the annulus, and drawing the anchors together to circumferentially tighten the valve annulus. In some embodiments, the anchors secure to the annulus by changing from an undeployed shape to a deployed shape upon their release from the anchor delivery device. Thus, the anchors may be called “self-securing” in that they secure to the tissue, at least in part, by changing from the undeployed shape to the deployed shape, and it is not required to crimp, drive or otherwise apply force to the anchors using the delivery device (although in some embodiments self-securing anchors may also be crimped, driven and/or the like.) In other embodiments, anchors non-self-securing anchors may be used, and such anchors may be secured to an annulus by driving, crimping and/or the like. “Anchors,” which are described more fully below, are generally any devices that may be secured to a valve annulus.


In some embodiments, contacting the delivery device with the annulus comprises deforming a flexible distal portion of the anchor delivery device lo conform the distal portion to the valve annulus. Deforming the distal portion may be performed by any suitable method, such as applying force to a tensioning cord, expanding a shaped expandable member coupled With the distal end, or the like. In some embodiments, for example, deforming the flexible distal portion comprises articulating the distal portion in at least two directions. For example, deforming the flexible distal portion may involve applying tension to a first tensioning cord to cause a first bend in the distal portion. Optionally, deforming the flexible distal portion may further involve applying tension to a second tensioning cord to cause a second bend in the distal portion. For example, the first bend may have approximately a C-shape to conform the distal portion to the annulus, and the second bend may be upwardly directed. In other embodiments, deforming the flexible distal portion may involve introducing air, a fluid, of the like into a shape-memory distal portion. Some embodiments may also include locking the shape of the flexible distal portion.


As mentioned previously, the contacting, delivering and drawing steps may be performed on any suitable heart valve such as a mitral, tricuspid, aortic or pulmonary valve, as well as on other heart structures, such as a patent foramen ovale, or structures outside the heart, such as a gastroesophageal junction. For exemplary purposes only, devices and methods of the invention are often described below in the context of mitral valve repair for treatment of mitral regurgitation. In such mitral valve repair embodiments, as is also mentioned above, the method may optionally include advancing the flexible distal portion of an anchor delivery device within a space defined by the left ventricular wall, at least one mitral valve leaflet and at least one chordae tendineae of the left ventricle. It has been found that an elongate, flexible catheter may be conveniently passed under a mitral valve leaflet, into this subvalvular space, and advanced circumferentially around part or all of the circumference of the mitral valve. Tissue of the mitral valve annulus is typically located at a corner of this space defined by the intersection of the left ventricular wall and the inferior side of the mitral valve leaflet(s). Thus, passing a flexible distal portion of an elongate catheter into the subvalvular space may position the flexible distal portion in a desirable location for treating the valve annulus. For example, delivering anchors to contact and secure themselves to annular tissue is favorable to delivering the anchors to contact heart muscle or valve leaflet tissue, since annular tissue is more fibrous arid thus more suitable for holding anchors, clips and the like. To further enhance contact of an anchor delivery device with a valve annulus the method may optionally include expanding an expandable member coupled with the delivery device within the treatment space to urge, wedge or press the delivery device further into the intersection of the left ventricular wall and the mitral valve leaflet(s).


In alternative embodiments, the anchor delivery device may be contacted with the valve annulus from within the left atrium of the heart. In some embodiments, a portion of the device may be contacted with the valve annulus from both the left atrium and the left ventricle. In such embodiments, the method may involve contacting the valve annulus with an anchor delivery device disposed in the left ventricle, contacting the valve annulus with a stabilizing member disposed in the left atrium, and delivering anchors from the anchor delivery device to contact and secure to the annulus. Stabilization devices and the combination of stabilization devices and anchor delivery devices ate described more fully in U.S. patent application Ser. Nos. 10/461,043 and 10/656,797, which were previously incorporated by reference.


In some embodiments, delivering the plurality of tethered anchors may involve simply releasing the anchors from the delivery device. Alternatively, the anchors may De driven or otherwise forced from the delivery device. In some embodiments, delivering the plurality of tethered anchors comprises applying force to each of the anchors with an anchor contacting member. The anchor contacting member may be any suitable device disposed within the delivery device for contacting and applying force to the anchors and, thus, to force the anchors out of one or more openings in the delivery device. For example, a ball, plunger or other similar device coupled with a tether or “pull cord” may be disposed in a delivery device distal to a distal-most anchor. The ball may then be pulled or retracted proximally, relative to the delivery device, to sequentially contact the anchors and force each anchor out of the device. In an alternative embodiment, delivering the plurality of anchors may involve retracting at least one anchor retaining mandrel of the-anchor delivery device to release the anchors. In some embodiments, for example, two mandrels are retracted, each mandrel positioned to retain an arm of each anchor. In another embodiment, one mandrel may be used, or any other suitable number of mandrels. In some embodiments, for example, each anchor has an opened arcuate undeployed shape and assumes a closed shape with overlapping ends after release from constraint. In such embodiments, two mandrels may be used, each mandrel retaining an “arm” of the opened arcuate shape.


Anchors, which may be any type of fastener devices, may have any suitable deployed and undeployed shapes and sizes, may be made from any suitable material(s), and the like. In some embodiments, the anchors are generally straight in their undeployed shape, so as to fit within a relatively narrow delivery catheter. Each anchor may have two sharpened tips and a small loop or similar shape between the tips, through which a tether may be passed. Upon deployment, the two sharpened tips may curve in opposite directions, to “bite” into and secure themselves to tissue. In various embodiments, the tips may continue to curve to any suitable degree—i.e., they may form semicircles, complete circles, overlapping helices, partial or complete ovoid shapes, or the like. In other embodiments, the undeployed shape may be approximately a C-shape or semicircle having two sharpened ends, and the deployed shape may be a closed circle in which the two ends overlap, wherein upon release from the delivery device the anchors secure to the annulus by penetrating the annulus with the ends and subsequently assuming the closed circle shape. These and other anchor embodiments typically have sharpened ends or tips to allow the anchors to secure to tissue. For example, the ends of an open C or semicircle bite into annular tissue, continue to close, and then overlap, so that the anchor is securely fastened to the tissue and no cuds protrude. In some embodiments, such anchors will be flush with the surface of the tissue when deployed, so that no space exists between a portion of the anchor and the tissue.


In various embodiments, the tethered anchors may be released from the delivery device simultaneously or sequentially. For example, if a retractable anchor contacting member is used, it may contact one anchor at a time to force the anchors out sequentially. In other embodiments where one or more anchor retaining mandrels are used, the mandrel(s) may be retracted quickly enough in some embodiments so that the anchors are all released from the housing simultaneously. In another embodiment, the mandrel may be retracted more slowly, such that one anchor or several anchors at a time may be released and then subsequent anchors may subsequently be released. Some embodiments may further involve driving the anchors out of the delivery device using at least one expandable balloon member disposed within the delivery device. In alternative embodiments, a staple- or clip-driving device may be used. Although coupled anchors are typically used alone to tighten a valve annulus, in some embodiments coupled anchors may be used to secure a prosthesis to a heart valve annulus, such as an artificial valve, a Dacron cuff, any type of valve repair ring, or the like.


Drawing the anchors together to tighten the valve annulus may include, for example, cinching a tether extending through an eyelet on each of the plurality of anchors. Alternatively, a tether may be disposed between each of the plurality of anchors and the annulus, without the anchors having eyelets. In some embodiments, a self-deforming coupling member extending between the anchors may be used instead of or in addition to a tether to constrict the annulus. For example, a self-deforming “backbone” made of super-elastic or shape-memory material such as Nitinol may be coupled with the anchors, such that when the tethered anchors and the backbone are released to allow the anchors to secure to the annular tissue, the backbone constricts to bring the anchors closer together and thus constrict the annulus. In one embodiment, such a backbone is shaped generally as a straight or curved line before deployment and assumes a configuration having multiple bends after deployment. The multiple bends reduce the overall length of the backbone, thus acting to cinch the anchors to constrict the annulus. In some embodiments, a tether and a self-deforming coupling member may be used together to tighten the valve annulus, and the tether and the coupling member may optionality be coupled together.


In embodiments in which the anchors are slidably tethered, the method typically further includes cinching the tether, fixing the tether to at least a terminal anchor pf the plurality of anchors, and cutting the tether to leave the cinched anchors in place, coupled with the valve annulus. Any or all of these steps may optionally be performed using a “termination device,” such as a termination catheter or sheath that is advanced over the tether to a location near the terminal anchor. The terminal anchor is typically the last anchor placed in the length of the valve annulus, which may be the most proximal anchor relative to the oter anchors. A termination catheter, for example, may be used to apply oppositely-directed force While the tether is cinched. It may also house an adhesive device, such as a Nitinol knot positioned over the tether, for securing the tether to the terminal anchor. Once the tether is cinched and attached to the terminal anchor, a cutting device, such as a guillotine, coupled with the termination catheter may be used to cut the tether proximal to the terminal anchor to leave the cinched anchors behind, secured to the valve annulus. Alternatively, any other suitable methods and devices may be used to provide cinching, attaching and/or cutting of a tether.


In some embodiments, a number of anchors may be applied to a first length of a valve annulus to tighten that length of the annulus, and then a number of additional anchors may be applied to a second length of the annulus to tighten that length. Such a method may actually be more convenient, in some instances, than contacting a delivery device with a larger portion of the circumference of the annulus and applying and clinching all the anchors. For example, in one embodiment a delivery device is contacted with an anterior length of the valve annulus, anchors are released to contact and tighten the annulus, and then the delivery device is contacted with a posterior length of the annulus and additional anchors are released to contact and tighten the posterior length.


In some embodiments, the method may also include stabilizing the annulus with the delivery device prior to releasing the anchors. Annulus stabilizing devices and methods are described in more detail, for example, in U.S. patent application Ser. Nos. 10/461,043 and 10/656,797, which were previously incorporated by reference.


Methods may also optionally include visualizing the valve annulus. Visualization devices and methods are described more fully in U.S. Provisional patent application Ser. No. 60/500,773, filed on Sep. 3, 2003, the full disclosure of which is hereby incorporated by reference. In some embodiments, for example, visualizing is performed using at least one visualization device such as an ultrasound device, an angioscopic device, a transesophageal echocardiogram device and a fluoroscopic device. In one embodiment, the ultrasound device comprises a gel-containing cone for enhancing ultrasound visualization. In one embodiment, visualizing comprises using a real-time Doppler ultrasound device to visualize a regurgitant flow across the heart valve during at least the cinching step. In some embodiments, the method may further a reduction in the regurgitant flow during the cinching step and selecting an amount of cinching based on the reduction in regurgitant flow. In some embodiments, the visualization. device is coupled with the anchor delivery device. For example, the visualization device may comprise an angioscope having a viewing end within or adjacent to a lens, bubble or inflatable balloon which displaces blood to permit viewing in the beating heart.


In another aspect of the invention, a method of constricting a valve annulus in a heart involves: contacting an anchor delivery device having a cross-sectional diameter of about 1.67 mm or less with a length of the valve annulus; delivering a plurality of coupled anchors from the anchor delivery device to secure the anchors to the annulus, each anchor having a deployed shape with a radius of at least about 3 mm; and drawing the anchors together to circumferentially tighten the valve annulus. It has been found that anchors may be disposed in and delivered from a delivery device in such away as to allow relatively large-radius anchors to be delivered from a relatively small-diameter delivery device. Anywhere from one anchor to 20 anchors may be delivered in some embodiments, although the invention is not limited to such numbers. In one embodiment, for example, at least 10 anchors, each haying a deployed radius of about 3 mm or more, may be delivered from a delivery device having a cross-sectional diameter of about 1.67 mm or less.


In another aspect, of the present invention, a device for applying coupled anchors to an annulus of a heart valve comprises: an elongate shaft having a proximal end and a distal end; a housing adjacent the distal end; a plurality of coupled anchors disposed within the housing; at least one anchor contacting member for causing the anchors to be delivered from the housing; and at least one actuator at or near the proximal end of the shaft for affecting the anchor contacting member to cause delivery of the anchors to the valve annulus.


In some embodiments, the elongate shaft comprises a flexible catheter which is advancable intravascularly to the heart. In a preferred embodiment, a flexible elongate shaft has a diameter of about 5 French (1.67 mm) or less and deploys anchors having a radius, when deployed, of about 3 mm or more. The housing itself may house any suitable number of anchors. In one embodiment, for example, the housing holds between 1 anchor and 20 anchors, and more preferably about 3-10 anchors, and in one embodiment 10 anchors. Also in some embodiments, the housing is sufficiently flexible to allow the housing to conform to the annulus. For example, the housing may conform to the annulus at an intersection of a left ventricular wall and one or more mitral valve leaflets of the heart. The housing may thus be positioned or advanced through the subvalvular space as discussed above. In some embodiments, the housing is coupled with an actuator for deforming the housing to conform it to the annulus. The housing may have any suitable configuration, but in some embodiments it has a cross section with a shape that is roughly semi-circular, circular, oval, part of an oval, a partial or complete ellipse, or the like. For example, a housing with an elliptical shape may sometimes be used to help ensure that an anchor delivering surface of the housing comes into contact with the annular tissue. In various embodiments, the housing may have one or multiple openings for allowing egress of the anchors. In one embodiment, for example, the housing has multiple openings, each opening suitable for egress of one anchor.


In some embodiments, the housing includes a shape-changing portion, typically a distal portion. Such embodiments may further include a first tensioning cord coupled with the shape-changing portion for applying tension to the shape-changing portion to cause it to bend in at least a first direction. Optionally, a second tensioning cord may be coupled with the shape-changing portion for applying tension to the shape-changing portion to cause it to bend in at least a second direction. The first direction, for example, may be approximately a C-shape for conforming to the annulus and the second direction comprises an upward or proximal direction for applying force to the annulus. In some embodiments, the shape-changing portion includes multiple notches along at least one side to control bending into a curve which conforms to the shape of the annulus. Alternatively, the shapes-changing portion may comprise multiple stacked segments coupled with at least the first tensioning member to control bending into the shape of the annulus. In other embodiments, the shape-changing portion comprises a shape-memory material configured to conform to the shape of the annulus. In some embodiments, the shape-changing portion further comprises at least one lumen for introducing a fluid to cause the shape-memory material to conform to the shape of the annulus. The distal portion of the housing may alternatively be coupled with a shaped expandable balloon for deforming the distal portion. In some embodiments, the housing may be coupled with an expandable member such that when the expandable member expands, it helps wedge, drive or press the housing against valve annulus tissue. For example, such an expandable member may help to wedge a housing into the corner formed by a ventricular wall and a valve leaflet.


As explained above, anchors of the device may have any suitable shape, size and properties and may be made of any suitable materials. Anchors may be self-deforming in some embodiments, thus having an undeployed shape when constrained in the housing, of the delivery device and assuming a deployed shape after release from the housing. In one embodiment, each of the plurality of coupled anchors has a generally straight configuration, with two sharpened tips and a loop between the two. Upon deployment, such an anchor may curve, with each tip curving in an opposite direction to bite into tissue. The loop, in turn, may act as an eye for a tether. In another embodiment, each anchor may have a C-shaped or semicircular undeployed shape and an overlapping circle or key ring deployed shape. In such an embodiment, the open ends of the C are typically sharpened, to enable the anchor to enter tissue of a valve annulus. As the C-shaped anchor contacts and enters the tissue, it also closes, and the ends overlap to form a circle or key-ring-shaped deployed anchor. Such an anchor may be applied such that it rests flush with the surface of the annular tissue without protruding sharp ends or other parts. The anchors may be made of Nitinol, shape-memory stainless steel, or any other super-elastic or shape-memory material. Alternatively, the anchors may be spring loaded or otherwise housed within the housing so as to change from an undeployed to a deployed shape upon release from the housing.


In some embodiments, the anchors are slidably coupled with a tether. In such embodiments, each of the plurality of anchors may include at least one eyelet, with the tether slidably passing through the eyelet of each anchor. Alternatively, the tether may extend along the anchors to be positioned between the anchors and annular tissue upon deployment. In other embodiments, the anchors may be coupled by a self-deforming coupling member fixedly coupled with each anchor. For example, the coupling member (or “backbone”) may comprise a Nitinol member having an undeployed shape approximating a straight line and a deployed shape of a tine having multiple bends. Upon changing from the undeployed shaped to the deployed shape, the coupling member may cinch the anchors to circumferentially tighten the valve annulus. Some embodiments may include both a tether and a self-deforming coupling member, with both being available to provide cinching of a valve annulus.


In some embodiments, the at least one anchor contacting member comprises at least one retractable force applying device which, when retracted proximally relative to the housing, sequentially contacts the anchors to apply force to the anchors such that they exit the housing via at least one opening in the housing. Such a force applying device, for example, may comprise a ball, plate, anchor, hook, plunger or the like, coupled with a cord, wire, tether or the like. When the tether is pulled proximally, the ball contacts the distal-most anchor in the delivery device and forces it out an opening in the device. When retracted further, the ball then contacts the next anchor, forcing it out, and so on. In alternative embodiments, the at least one anchor contacting member comprises at least one movable retaining member. For example, such a movable retaining member may comprise one or more anchor retaining mandrels, slidably disposed in the housing so that retracting the mandrel(s) releases one or more of the anchors. Sometimes, for example, two mandrels are positioned in the housing to retain two arms of each anchor, for example when the undeployed shape of each anchor is approximately a C-shape or semicircle. The mandrel (or mandrels) may typically be retracted to release anchors one at a time, in groups, or all at once.


In some embodiments, the at least one actuator includes means for cinching the coupled anchors to reduce the circumference of the valve annulus. Such an actuator may comprise, for example, a trigger, a handle, a plunger, a squeeze-activated device, a syringe-grip device, a foot-operated device, or the like. Some embodiments of the device also include at least one expandable member disposed within the housing for pushing the anchors out of the housing.


In yet another aspect of the invention, a device for, applying multiple tethered anchors to an annulus of a heart valve comprises; a flexible elongate catheter having a distal portion for delivering the tethered anchors, the distal portion having a cross-sectional diameter of about 1.67 mm or less; a plurality of tethered anchors disposed within the distal portion, each anchor having a radius of at least about 3 mm when deployed from the housing; and at least one anchor delivery member coupled with the catheter for causing the anchors to be delivered from the catheter.


In another aspect of the invention, a self-securing anchor for attaching to annular tissue of a heart valve comprises a super-elastic or shape-memory material having a relatively elongate undeployed shape allowing the anchor to be disposed within a delivery catheter having across-sectional diameter of 1.67 mm or less, and assuming a deployed shape with a radius of at least 3 mm upon its release from the delivery device. Generally, such an anchor may have two sharpened tips of the anchor curve in opposite directions when the anchor is released from the delivery device. Optionally, the anchor may include an eyelet disposed between the two sharpened tips.


In still another aspect of the present invention, a self-securing anchor for attaching to annular tissue of a heart valve comprises a shape-memory material having an opened arcuate undeployed shape and assuming a closed shape with overlapping ends after release from constraint. The undeployed and deployed shapes may be any suitable shapes. In one embodiment, for example, the undeployed shape is approximately a C-shape or semicircle having two sharpened ends, and the deployed shape is a closed circle in which the two ends overlap. In some embodiments, the anchor is configured to lie flush with the annular tissue when secured to the tissue. Any super-elastic or shape-memory material may be used to form the anchor, such as Nitinol or any other suitable material.


These and other embodiments are described more fully below with reference to the drawing figures.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is a cross-sectional view of a heart with a flexible anchor delivery device being positioned for treatment of a mitral valve annulus, according to one embodiment of the present invention;



FIGS. 2A and 2B are cross-sectional views of a portion of a heart, schematically showing positioning of a flexible device for treatment of a mitral valve annulus, according to one embodiment of the present invention;



FIGS. 2C and 2D are cross-sectional views of a portion of a heart, showing positioning of a flexible anchor delivery device for treatment of mitral valve annulus, according to one embodiment of the present invention;



FIG. 3 is a perspective view of a distal portion of an anchor delivery device, according to one embodiment of the invention;



FIG. 4 is a perspective view of a segment of a distal portion of an anchor delivery device, with anchors in an undeployed shape and position;



FIG. 5 is a different perspective view of the segment of the device shown in FIG. 4;



FIG. 6 is a perspective view of a segment of a distal portion of an anchor delivery device, with anchors a deployed shape and position;



FIGS. 7A-7E are cross-sectional views of an anchor delivery device, illustrating a method for delivering anchors to valve annulus tissue, according to one embodiment of the invention;



FIGS. 8A and 8B are top-views of a plurality of anchors coupled to a self-deforming coupling member or “backbone,” with the backbone shown in ah undeployed shape and a deployed shape;



FIGS. 9A-9C are various perspective views of a distal portion of a flexible anchor delivery device according to one embodiment of the present invention; and



FIGS. 10A-10F demonstrate a method for applying anchors to a valve annulus and cinching the anchors to tighten the annulus, using an anchor delivery device according to an embodiment of the invention.





DETAILED DESCRIPTION OF THE INVENTION

Devices and methods of the present invention are generally used to facilitate transvascular, minimally invasive and other “less invasive” surgical procedures, by facilitating the delivery of treatment devices at a treatment site. Although the following description focuses on vise of devices and methods of the invention for mitral valve repair, the devices and methods may be used in any suitable procedure, both cardiac and non-cardiac. When used for treatment of a cardiac valve annulus, the inventive methods generally involve contacting an anchor delivery device with a length of the valve annulus, delivering a plurality of coupled anchors from the anchor delivery device, and drawing the anchors together to tighten the annulus. Devices generally include an elongate catheter having a housing at or near the distal end for releasably housing a plurality of coupled anchors. Devices may be positioned such that the housing abuts or is close to valve annular tissue, such as in a location within the loft ventricle defined by the left ventricular wall, a mitral valve leaflet and chordae tendineae. Self-securing anchors having any of a number of different configurations may be used in some embodiments.


In many cases, methods of the present invention will be performed on a beating heart. Access to the beating heart may be accomplished by any available technique, including intravascular, transthoracic, and the like. In addition to beating heart access, the methods of the present invention may be used for intravascular stopped heart access as well as stopped heart open chest procedures.


Referring now to FIG. 1, a heart H is shown in cross section, with an elongate anchor delivery device 100 introduced within the heart H. Generally, delivery device 100 comprises an elongate body with a distal portion 102 configured to deliver anchors to a heart valve annulus. (In FIGS. 1, 2A and 2B, distal portion 102 is shown diagrammatically without anchors or anchor-delivery mechanism to enhance clarity of the figures.) In some embodiments, the elongate body comprises a rigid shaft, while in other embodiments it comprises a flexible catheter, so that distal portion 102 may be positioned in the heart H and under one or more valve leaflets to engage a valve annulus via a transvascular approach. Transvascular access may be gained, for example, through the internal jugular vein (not shown) to the superior vena cava SVC to the right atrium RA, across the interatrial spectrum to the left atrium LA, and then under one or more mitral Valve leaflets MVL to a position within the left ventricle (LV) under the valve annulus (not shown). Alternatively, access to the heart may be achieved via the femoral vein and the inferior vena cava. In other embodiments, access may be gained via the coronary sinus (not shown) and through the atrial wall into the left atrium. In still other embodiments, access may be achieved via a femoral artery and the aorta, into the left ventricle, and under the mitral valve. Any other suitable access route is also contemplated within the scope of the present invention.


In other embodiments, access to the heart H may be transthoracic, with delivery device 100 being introduced into the heart via an incision or port on the heart wall. Even open heart surreal procedures may benefit from methods and devices of the invention. Furthermore, some embodiments may be used to enhance procedures on the tricuspid valve annulus, adjacent the tricuspid valve leaflets TVL, or any other cardiac or vascular valve. Therefore, although the following description typically focuses on minimally invasive or less invasive mitral valve repair for treating mitral regurgitation, the invention is in ho way limited to that use.


With reference now to FIGS. 2A and 2B, a method for positioning delivery device 100 for treating a mitral valve annulus VA is depicted diagrammaUcally in a cross-sectional view. First, as in FIG. 2A, distal portion 102 is positioned in a desired location under a mitral valve leaflet L and adjacent a ventricular wall VW. (Again, distal portion 102 is shown without anchors or anchor-delivery mechanism for demonstrative purposes.) The valve annulus VA generally comprises an area of heart wall tissue at the junction of the ventricular wall VW and the atrial wall AW that is relatively fibrous and, thus, significantly stronger that leaflet tissue and other heart wall tissue.


Distal portion 102 maybe advanced into position under the valve annulus by any suitable technique, some of which are described below in further detail. Generally, distal portion 102 may be used to deliver anchors to the valve annulus, to stabilize and/or expose the annulus, or both. In one embodiment, using a delivery device having a flexible elongate body as shown in FIG. 1, a flexible distal portion 102 may be passed from the right atrium RA through the interatrial septum in the area of the foramen ovale (not shown—behind the aorta A), into the left atrium LA and thus the left ventricle LV. Alternatively, flexible distal portion 102 maybe advanced through the aorta A and into the left ventricle LV, for example using access through a femoral artery. Oftentimes, distal portion 102 will then naturally travel, upon further advancement, under the posterior valve leaflet L into a space defined above a subvalvular space 104 roughly defined for the purposes of this application as a space bordered by the inner surface of the led ventricular wall VW, the inferior surface of mitral valve leaflets L, and cordae tendineae CT connected to the ventricular wall VW and the leaflet L. It has been found that a flexible anchor delivery catheter, such as the delivery devices of the present invention, when passed under the mitral valve via an intravascular approach, often enters subvalvular space 104 relatively easily and may be advanced along space 104 either partially or completely around the circumference of the valve. Once in space 104, distal portion 102 may be conveniently positioned at the intersection of the valve leaflets) and the ventricular wall VW, which intersection is immediately adjacent or very near to the valve annulus VA, as shown in FIG. 2A. These are but examples of possible access routes of an anchor delivery device to a valve annulus, and any other access routes may be used.


In some embodiments, distal portion 102 includes a shape-changing portion which enables distal portion 102 to conform to the shape of the valve annulus VA. The catheter may be introduced through the vasculature with the shape-changing distal portion in a generally straight, flexible configuration. Once it is in place beneath the leaflet at the intersection between the leaflet and the interior ventricular wall, the shape of distal portion 102 is changed to conform to the annulus and usually the shape is “locked” to provide sufficient stiffness or rigidity to permit the application of force from distal portion 102 to the annulus. Shaping and optionally locking distal portion 102 maybe accomplished in any of a number of ways. For example, in some embodiments, a shape-changing portion may be sectioned, notched, slotted or segmented and one of more tensioning cords, wires or other tensioning devices coupled with the shape-changing portion may be used to shape and rigidity distal portion 102. A segmented distal portion, for example, may include multiple segments coupled with two tensioning cords, each cord providing a different direction of articulation to die distal portion. A first bend may be created by tensioning a first cord to give the distal portion a C-shape or similar shape to conform to the valve annulus, while a second bend may be created by tensioning a second cord to articulate the C-shaped member upwards against the annulus. In another embodiment, a shaped expandable member, such as a balloon, may be coupled with distal portion 102 to provide for shape changing/deforming. In various embodiments, any configurations and combinations may be used to give distal portion 102 a desired shape.


In transthoracic and other embodiments, distal portion 102 may be pre-shaped, and the method may simply involve introducing distal portion 102 under the valve leaflets. The pre-shaped distal portion 102 may be rigid or formed from any suitable super-elastic or shape memory material, such as nitinol, spring stainless steel, or the like.


In addition to delivering anchors to the valve annulus VA, delivery device 100 (and specifically distal portion 102) may be used to stabilize and/or expose the valve annulus VA. Such stabilization and exposure are described fully in U.S. patent application Ser. No. 10/656,797, which was previously incorporated by reference. For example, once distal portion 102 is positioned under the annulus, force maybe applied to distal portion 102 to stabilize the valve annulus VA, as shown in FIG. 2B. Such force may be directed in any suitable direction to expose, position and/or stabilize the annulus. For example, upward and lateral force is shown in FIG. 2B by the solid-headed arrow drawn from the center of distal portion 102. In other cases, only upward, only lateral, or any other suitable force(s) may be applied. With application of force to distal portion 102, the valve annulus VA is caused to rise or project outwardly, thus exposing tbc annulus for easier viewing and access. The applied force may also stabilize the valve annulus VA, also facilitating surgical procedures and visualization.


Some embodiments may include a stabilization component as well as an anchor delivery component. For example, some embodiments may include two flexible members, one for contacting the atrial side of a valve annulus and me other for contacting the ventricular side. In some embodiments, such flexible members may be used to “clamp” the annulus between them. One of such members may be an anchor delivery member and the other may be a stabilization member, for example. Any combination and configuration of stabilization and/or anchor delivery members is contemplated.


Referring now to FIGS. 2C and 2D, an anchor delivery device 108 is shown delivering an anchor 110 to a valve annulus VA. Of course, these are again representational figures and are not drawn to scale. Anchor 110 is shown first housed within delivery device 108 (FIG. 2C) and then delivered to the annulus VA (FIG. 2D). As is shown, in one embodiment anchors 110 may have a relatively straight configuration when housed in delivery device 108, perhaps with two sharpened tips and a loop in between the tips. Upon deployment from delivery device 108, the tips of anchor 110 may curve in opposite directions to form two semi-circles, circles, ovals, overlapping helices or the like. This is but one example of a type of self-securing anchor which may be delivered to a valve annulus. Typically, multiple coupled anchors 110 are delivered, and the anchors 110 are drawn together to tighten the valve annulus. Methods for anchor delivery and for drawing anchors together are described further below.


Although delivery device 108 is shown having a circular cross-sectional shape in FIGS. 2C and 2D, it may alternatively have any other suitable shape. In one embodiment, for example, it may be advantageous to provide a delivery device having an ovoid or elliptical cross-sectional shape. Such a shape may help ensure that the device is aligned, when positioned between in a corner formed by a ventricular wall and a valve leaflet, such that one or more openings in the delivery device is oriented to deliver the anchors into valve annulus tissue. To further enhance contacting of the valve annulus and/or orientation of the delivery device, some embodiments may further include an expandable member, coupled with the delivery device, which expands to urge or press or wedge the delivery device into the corner formed by the ventricle wall and the leaflet to contact the valve annulus. Such enhancements are described further below.


With reference now to FIG. 3, one embodiment of a portion of an anchor delivery device 200 suitably includes an elongate shaft 204 having a distal portion 202 configured to deliver a plurality of anchors 210, coupled with a tether 212, to tissue of a valve annulus. Tethered anchors 210 are housed within a housing 206 of distal portion 202, along with one or more anchor retaining mandrels 214 and an expandable member 208. Many variations may be made to one or more of these features, and various parts maybe added or eliminated, without departing from the scope of the invention. Some of these variations are described further below, but no specific embodiment(s) should be construed to limit the scope of the invention as defined by the appended claims.


Housing 206 may be flexible or rigid in various embodiments. In some embodiments, for example, flexible housing 206 may be comprised of multiple segments configured such that housing 206 is deformable by tensioning a tensioning cord coupled to the segments. In some embodiments, housing 206 is formed from an elastic material having a geometry selected to engage and optionally shape or constrict the valve stimulus. For example, the rings may be formed from super-elastic material, shape memory alloy such us Nitinol, spring stainless steel, or the like. In other instances, housing 206 could be formed from an inflatable or other structure can be selectively rigidified in situ, such as a gooseneck or lockable element shaft, any of the rigidifying structures described above, or any other rigidifying structure.


“Anchors,” for the purposes of this application, is defined to mean any fasteners. Thus, anchors 210 may comprise C-shaped or semicircular hooks, curved hooks of other shapes, straight hooks, barbed hooks, clips of any kind, T-tags, or any other suitable fastener(s). In one embodiment, as described above, anchors may comprise two tips that curve in opposite directions upon deployment; forming two intersecting semi-circles, circles, ovals, helices or the like. In some embodiments, anchors 210 are self-deforming. By “self-deforming” it is meant that anchors 210 change from a first undeployed shape to a second deployed shape upon release of anchors 210 from restraint in housing 206. Such self-deforming anchors 210 may change shape as they are released from housing 206 and enter valve annulus tissue, to secure themselves to the tissue. Thus, a crimping device or other similar mechanism is not required on distal end 202 to apply force to anchors 210 to attach them to annular tissue. Self-deforming anchors 210 may be made of any suitable material, such as a super-elastic, or shape-memory material like Nitinol or spring stainless steel. In other embodiments, anchors 210 may be made of a non-shape-memory material and made be loaded into housing 206 in such a way that they change shape upon release. Alternatively, anchors 210 that are not self-deforming may be used, and such anchors may be secured to tissue via crimping, firing or the like. Even self-securing anchors may be crimped in some embodiments, to provide enhanced attachment to tissue. Delivery of anchors maybe accomplished by any suitable device and technique, such as by simply releasing the anchors by hydraulic balloon delivery as discussed further below. Any number, size and shape of anchors 210 may be included in housing 206.


In one embodiment, anchors 210 are generally C-shaped or semicircular in their undeployed form, with the ends of the C being sharpened to penetrate tissue. Midway along the C-shaped anchor 210, an eyelet may be formed for allowing slidable passage of tether 212. To maintain anchors 210 in their C-shaped, undeployed state, anchors 210 may be retained within housing 206 by two mandrels 214, one mandrel 214 retaining each of the two arms of the C-shape of each anchor 210. Mandrels 214 may be retractable within elongate catheter body 204 to release anchors 210 and allow them to change from their undeployed C-shape to a deployed shape. The deployed shape, for example, may approximate a complete circle or a circle with overlapping ends, the latter appearing similar to a key ring. Such anchors are described further below, but generally may be advantageous in their ability to secure themselves to annular tissue by changing from their undeployed to their deployed shape. In some embodiments, anchors 210 are also configured to lie flush with a tissue surface after being deployed. By “flush” it is meant that no significant amount of an anchor protrudes from the surface, although some small portion may protrude.


Tether 212 may be one long piece of material or two or more pieces and may comprise any suitable material, such as suture, suture-like material, a Dacron strip or the like. Retaining mandrels 214 may also have any suitable configuration and be made of any suitable material, such as stainless steel, titanium, Nitinol, or the like. Various embodiments may have one mandrel, two mandrels, or more than two mandrels.


In some embodiments, anchors 210 may be released from mandrels 214 to contact and secure themselves to annular tissue without any further force applied by delivery device 200. Some embodiments, however, may also include one or more expandable members 208, which may be expanded to help drive anchors 210 into tissue. Expandable member(s) 208 may have any suitable size and configuration and may be made of any suitable material(s). Hydraulic systems such as expandable members are known in the art, and any known or as yet undiscovered expandable member may be included in housing 206 as part of the present invention.


Referring now to FIGS. 4 and 5, a segment of a distal portion 302 of an anchor delivery device suitably includes a housing 306, multiple tensioning cords 320 for applying tension to housing 306 to change its shape, two anchor retaining mandrels 314 slidably disposed in housing 306, multiple anchors 310 slidably coupled with a tether 312, and an expandable member 308 disposed between anchors 310 and housing 306. As can be seen in FIGS. 4 and 5, housing 306 may include multiple segments to allow the overall shape of housing 306 to be changed by applying tension to tensioning cords 320. As also is evident from the drawings, “C-shaped” anchors 310 may actually have an almost straight configuration when retained by mandrels 314 in housing 306. Thus, for the purposes of this application, “C-shaped” or “semicircular” refers to a very broad range of shapes including a portion of a circle, a slightly curved line, a slightly curved line with an eyelet at one point along the line, and the like.


With reference now to FIG 6, the same segment of distal portion 302 is shown, but mandrels 314 have been withdrawn from two mandrel apertures 322, to release anchors 310 from housing 306. Additionally, expandable member 308 has been expanded to drive anchors out of housing 306. Anchors 310, having been released from mandrels 314, have begun to change from their undeployed, retained shape to their deployed, released shape.


Referring now to FIGS. 7A-7E, a cross-section of a distal portion 402 of an anchor delivery device is shown in various stages of delivering an anchor to tissue of a valve annulus VA. In FIG. 7A, distal portion 402 is positioned against the valve annulus, an anchor 410 is retained by two mandrels 414, a tether 412 is slidably disposed through an eyelet on anchor 410, and an expandable member 408 is coupled with housing 406 in a position to drive anchor 410 out of housing 406. When retained by mandrels 414, anchor 410 is in its undeployed shape. As discussed above, mandrels 414 may be slidably retracted, as designated by solid-tipped arrows in FIG. 7A, to release anchor 410. In various embodiments, anchors 410 may be released one at a time, such as by retracting mandrels 414 slowly, may be released in groups, or may all be released simultaneously, such as by rapid retraction of mandrels 414.


In FIG. 7B, anchor 410 has begun to change from its undeployed shape to its deployed shape (as demonstrated by the hollow-tipped arrows) and has also begun to penetrate the annular tissue VA. Empty mandrel apertures 422 demonstrate that mandrels 414 have been retracted at least far enough to release anchor 410. In FIG. 7B, expandable member 408 has been expanded to drive anchor 410 partially put of housing 406 and further into the valve annulus VA. Anchor 430 also continues to move from its undeployed towards its deployed shape, as shown by the hollow-tipped arrows. In FIG. 7D, anchor 410 has reached its deployed shape, which is roughly a completed circle with overlapping ends or a “key ring” shape. In FIG. 7E, delivery device 402 has been removed, leaving a tethered anchor in place in the valve annulus. Of course, there will typically be a plurality of tethered anchors secured to the annular tissue. Tether 412 may then be cinched to apply force to anchors 410 und cinch and tighten the valve annulus.


With reference now to FIGS. 8A and 8B, a diagrammatic representation of another embodiment of coupled anchors is shown. Here, anchors 510 are coupled to a self-deforming or deformable coupling member or backbone 505. Backbone 505 may be fabricated, for example, from Nitinol, spring stainless steel, or the like, and may have any suitable size or configuration. In one embodiment, as in FIG. 8A, backbone 505 is shaped as a generally straight line when held in an undeployed state, such as when restrained within a housing of art anchor deliver device. When released from the delivery device, backbone 505 may change to a deployed shape having multiple bends, as shown in FIG. 8B. By bending, backbone 505 shortens the longitudinal distance between anchors, as demonstrated by the solid-tipped arrows in FIG. 8B. This shortening process may act to cinch a valve annulus into which anchors 510 have be secured. Thus, anchors 510 coupled to backbone 505 may be housed to cinch a valve annulus without using a tether or applying tethering force. Alternatively, a tether may also be coupled with anchors 510 to further cinch the annulus. In such an embodiment, backbone 505 will beat least partiality conformable or cinchable, such that when force is applied to anchors 510 and backbone 505 via a tether, backbone 505 bends further to allow further cinching of the annulus.


Referring now to FIGS. 9A-9C, in one embodiment a flexible distal portion of an anchor delivery device 520 suitably includes a housing 522 coupled with an expandable member 524. Housing 522 may be configured to house multiple coupled anchors 526 and an anchor contacting member 530 coupled with a pull cord 532. Housing 522 may also include multiple apertures 528 for allowing egress of anchors 526. For clarity, delivery device 520 is shown without a tether in FIGS. 9A and 9C, but FIG. 9B shows that a tether 534 may extend through an eyelet, loop or other portion of each anchor 526, and may exit each aperture 528 to allow for release of the plurality of anchors 526. The various features of this embodiment are described former below.


In the embodiment shown in FIGS. 9A-9C, anchors 526 are relatively straight and lie relatively in parallel with the long axis of delivery device 522. Anchor contacting member 530, which may comprise any suitable device, such as a ball, plate, hook, knot, plunger, piston, or the like, generally has an outer diameter that is nearly equal to or slightly less than the inner diameter of housing 522. Contacting member 530 is disposed within the housing distal to a distal-most anchor 526, and is retracted relative to housing 522 by pulling pull cord 532. When retracted, anchor contacting member 530 contacts and applies force to a distal-most anchor 526 to release cause that anchor 526 to exit housing 522 via one of-the apertures 528. Contacting member 530 is then pulled farther proximally to contact and apply force to the next anchor 526 to deploy that anchor 526, and so on.


Retracting contacting member 530 to push anchors 526 out of apertures 528 may help cause anchors 526 to avidly secure themselves to adjacent tissue. Using anchors 526 that are relatively straight/flat when undeployed allows anchors 526 with relatively large deployed sizes to be disposed in (and delivered from) a relatively small housing 522. In one embodiment, for example, anchors 526 that deploy into a shape approximating two intersecting semi-circles, circles, ovals, helices, or the like, and that have a radius of one of the semi-circles of about 3 mm may be disposed within a housing 522 having a diameter of about 5 French (1.67 mm) and more preferably 4 French (1.35 mm) or even smaller. Such anchors 526 may measure about 6 mm or more in their widest dimension. These are only examples, however, and other larger or smaller anchors 526 may be disposed within a larger or smaller housing 522. Furthermore, any convenient number of anchors 526 may be disposed within housing 522. In one embodiment, for example, housing 522 may hold about 1-20 anchors 526, and more preferably about 3-10 anchors 526. Other embodiments may hold more anchors 526.


Anchor contacting member 530 and pull cord 532 may have any suitable configuration and may be manufactured from any material or combination of materials. In alternative embodiments, contacting member 530 may be pushed by a pusher member to contact and deploy anchors 526. Alternatively, any of the anchor deployment devices and methods previously described may be used.


Tether 534, as shown in FIG. 9B, may comprise any of the tethers 534 or tether -like devices already described above, or any other suitable device. Tether 534 is generally attached to a distal-most anchor 526 at an attachment point 536. The attachment itself may be achieved via a knot, weld, adhesive, or by any other suitable attachment means. Tether 234 then extends through an eyelet, loop or other similar configuration on each on each of the anchors 526 so as to be slidably coupled with the anchors 526. In the embodiment shown, tether 534 exits each aperture 528, then enters the next-most-proximal aperture, passes slidably through a loop on an anchor 526, and exits the same aperture 528. By entering and exiting each aperture 528, tether 534 allows the plurality of anchors 526 to be deployed into tissue and cinched. Other configurations of housing 522, anchors 526 and tether 534 may alternatively be used. For example, housing 522 may include a longitudinal slit through which tether 534 may pass, thus allowing tether 534 to reside wholly within housing before deployment.


Expandable member 524 is an optional feature of anchor delivery device 520, and thus maybe included in some embodiments and hot in others. In other words, a distal portion of anchor delivery device 520 may include housing, contents of housing, and other features either with or/without an attached expandable member. Expandable member 524 may comprise any suitable expandable member currently known or discovered in the future, and any method and substance(s) may be used to expand expandable member 524. Typically, expandable member 524 will be coupled with a surface of housing 522, will have a larger radius than housing 522, and will be configured such that when it is expanded as housing 522 nears or contacts the valve annulus, expandable member 524 will push or press housing 522 into enhanced contact with me annulus. For example, expandable member 524 may be configured to expand within a space near the corner formed by a left ventricular wall and a mitral valve leaflet.


With reference now to FIGS. 10A-10F, a method is shown for applying a plurality of tethered anchors 526 to a valve annulus VA in a heart. As shown in FIG. 10A, an anchor delivery device 520 is first contacted with the valve annulus VA such that openings 528 are oriented to deploy anchors 526 into the annulus. Such orientation may be achieved by any suitable technique. In one embodiment, for example, a housing 522 having an elliptical cross-sectional shape may be used to orient openings 528. As just described, contact between housing 522 and the valve annulus VA may be enhanced by expanding expandable member 524 to wedge housing-within a corner adjacent the annulus.


Generally, delivery device 520 may be advanced into any suitable location for treating any valvs by any suitable advancing or device lacement method. Many catheter-based, minimally invasive devices and methods for performing intravascular procedures, for example, are well known, and any such devices and methods, as well as any other devices or method later developed, may be used to advance or position delivery device 520 in a desired location. For example, in one embodiment a steerable guide catheter is first advanced in retrograde fashion through an aorta, typically via access from a femoral artery. The steerable catheter is passed into the left ventricle of the heart and thus into the space formed by the mitral valve leaflets, the left ventricular wall and cordae tendineae of the left ventricle. Once in this space, the steerable catheter is easily advanced along a portion (or all) of the circumference of the mitral valve. A sheath is advanced over the steerable catheter within the space below the valve leaflets, and the steerable catheter is removed through the sheath. Anchor delivery device 520 may then be advanced through the sheath to a desired position within the space, and the sheath may be removed. In some cases, au expandable member coupled to delivery device 520 may be expanded to wedge or otherwise move delivery device 520 into the corner formed by the left ventricular wall and the valve leaflets to enhance its contact with the valve annulus. Of course, this is but one exemplary method for advancing delivery device 520 to a position for heating a valve, and any other suitable method, combination of devices, etc. may be used.


As shown in FIG. 10B, when delivery device 520 is positioned in a desired location for deploying anchors 526, anchor contacting member 530 is retracted to contact and apply force to a most-distal anchor 526 to begin deploying anchor 526 through aperture 528 and into tissue of the valve annulus VA. FIG. 10C show anchor 526 further deployed out of aperture 528 and into valve annulus VA. FIG. 10D shows the valve annulus VA transparently so that further deployment of anchors 526 can be seen. As shown, in one embodiment of the invention, anchors 526 include two sharpened tips that move in opposite directions upon release from housing 522 and upon contacting the valve annulus VA. Between the two sharpened tips, an anchor 526 may be looped or have any other suitable eyelet or other device for allowing slidable coupling with a tether 534.


Referring now to FIG. 10E, anchors 526 are seen in their fully deployed or nearly fully deployed shape, with each pointed tip (or “arm”) of each anchor 526 having curved to form a circle or semi-circle. Of course, in various embodiments anchors 526 may have any other suitable deployed and undeployed shapes, as described more fully above. FIG. 10F shows anchors 526 deployed into the valve annulus VA and coupled with tether 534, with the distal-most anchor 526 coupled attached fixedly to tether 524 at attachment point 536. At this stage, tether 534 may be cinched to tighten the annulus, thus reducing valve regurgitation. In some embodiments, valve function may be monitored by means such as echocardiogram and/or fluoroscopy, and tether 534 may be cinched, loosened, and adjusted to achieve a desired amount of tightening as evident via the employed visualization technique(s). When a desired amount of tightening is achieved, tether 534 is then attached to a most-proximal anchor 526 (or two or more most-proximal anchors 526), using any suitable technique, and tether 534 is then cut proximal to the most-proximal anchor 526, thus leaving the cinched, tethered anchors 526 in place along the valve annulus VA. Attachment of tether 534 to the most-proximal anchor(s) 526 may be achieved via adhesive, knotting, crimping, tying or any other technique, and cutting tether 534 may also be performed via any technique, such as with a cutting member coupled with housing 522.


In one embodiment, cinching tether 534, attaching tether 534 to most-proximal anchor 526, and cutting tether 534 are achieved using a termination device (not shown). The termination device may comprise, for example, a catheter advancable over tether 534 that includes a cutting member and a nitinol knot or other attachment member for attaching tether 534 to most-proximal anchor. The termination catheter may be advanced over tether 534 to a location at or near the proximal end of the tethered anchors 526. It may then be used to apply opposing force to the most-proximal anchor 526 while tether 534 is cinched. Attachment and cutting members may then be used to attach tether 534 to most-proximal anchor 526 and cut tether 534 just proximal to most-proximal anchor 526. Such a termination device is only one possible way of accomplishing the cinching, attachment and cutting steps, and any other suitable device(s) or technique(s) may be used.


In some embodiments, it may be advantageous to deploy a first number of anchors 526 along a first portion of a valve annulus VA, cinch the first anchors to tighten that portion of the annulus, move the delivery device 520 to another portion of the annulus, and deploy and cinch a second number of anchors 526 along a second portion of the annulus. Such a method may be more convenient, in some cases, than extending delivery device 520 around all or most of the circumference of the annulus, and may allow a shorter, more maneuverable housing 522 to be used. In some embodiments, for example, an anterior, portion of a valve annulus may first be tightened, and then a posterior portion may be tightened.


Although the foregoing is a complete and accurate description of the present invention, the description provided above is for exemplary purposes only, and variations may be made to the embodiments described without departing from the scope of the invention. Thus, the above description should not be construed to limit the scope of the invention as described in the appended claims.

Claims
  • 1. A method of constricting a valve annulus in a heart, the method comprising: securing a first implant to a first length of a valve annulus;securing a second implant to a second length of the valve annulus, the second implant comprising a plurality of anchors coupled to a tether;applying tension to the tether to cinch the anchors together to constrict the valve annulus; andsecuring the tether in its tensioned state.
  • 2. The method of claim 1, wherein the first length of the valve annulus is located on a vertricular side of the valve annulus.
  • 3. The method of claim 2, wherein the second length of the valve annulus is also located on a ventricular side of the valve annulus.
  • 4. The method of claim 1, wherein the valve annulus comprises an area of heart wall tissue at a junction of a ventricular wall and an atrial wall.
  • 5. The method of claim 1, wherein the valve annulus is a mitral valve annulus of the heart.
  • 6. The method of claim 5, wherein the second length of the valve annulus is at an intersection of a left ventricular wall and a mitral valve leaflet.
  • 7. The method of claim 5, wherein the second length of the valve annulus is located in a space defined by an intersection of a left ventricular wall and an inferior side of a mitral valve leaflet.
  • 8. The method of claim 5, wherein the second length of the valve annulus comprises tissue located between a left ventricular wall, at least one mitral valve leaflet and at least one chordae tendineae of the heart.
  • 9. The method of claim 1, wherein the first length of the valve annulus is an anterior length of the valve annulus and the second length of the valve annulus is a posterior length of the valve annulus.
  • 10. The method of claim 1, wherein the first implant comprises a second plurality of anchors coupled to a second tether.
  • 11. The method of claim 1, wherein the first implant comprises a stabilization device.
  • 12. The method of claim 1, wherein the first implant comprises a prosthesis.
  • 13. The method of claim 12, wherein securing the first implant to the first length of the valve annulus comprises securing the prosthesis to the annulus using a second plurality of anchors coupled to a second tether.
  • 14. The method of claim 1, wherein the first implant comprises an artificial valve.
  • 15. The method of claim 1, wherein the first implant comprises a cuff.
  • 16. The method of claim 1, wherein the first implant comprises a valve repair ring.
  • 17. The method of claim 1, wherein the valve annulus is a tricuspid valve annulus of the heart.
  • 18. The method of claim 1, wherein securing the first implant comprises contacting the valve annulus from a left atrium of the heart with a delivery device.
  • 19. The method of claim 1, wherein the valve annulus is a mitral valve annulus, the second length of the valve annulus is located on an inferior side of an intersection of a left ventricular wall and at least one mitral valve leaflet of the heart, and wherein securing the second implant comprises advancing an anchor delivery device through an aorta and into a left ventricle of the heart to contact the second length of the valve annulus.
  • 20. The method of claim 1, wherein securing the first implant, securing the second implant, applying tension to the tether and securing the tether are performed as part of an open heart surgical procedure.
  • 21. The method of claim 1, wherein securing the first implant, securing the second implant, applying tension to the tether and securing the tether are performed without stopping the heart.
  • 22. The method of claim 1, wherein securing the first implant, securing the second implant, applying tension to the tether and securing the tether are performed through one or more minimally invasive incisions.
  • 23. The method of claim 1, wherein securing the tether in its tensioned state comprises securing the tether to a terminal anchor of the plurality of anchors, and the method further comprises cutting the tether to leave the cinched anchors secured to the second length of the valve annulus.
  • 24. The method of claim 23, further comprising advancing a termination device having an attachment member and a cutting member over the tether, attaching the tether to the terminal anchor using the attachment member, and cutting the tether using the cutting member.
  • 25. The method of claim 1, wherein securing the first implant to the first length of the valve annulus comprises securing at least one heart valve prosthesis to the first length using a second plurality of anchors coupled to a second tether.
CROSS REFERENCE TO RELATED APPLICATIONS

The present application is a continuation of U.S. patent application Ser. No. 15/6265,781, filed on Sep. 14, 2016, now issued as U.S. Pat No. 10,092,402, which is a continuation of U.S. patent application Ser. No. 14/156,347, filed on Jan. 15, 2014, now issued as U.S. Pat. No. 9,468,528, which is a continuation of U.S. patent application Ser. No. 12/132,161, filed on Jun. 3, 2008, now issued as U.S. Pat. No. 8,641,727, which is a divisional of U.S. patent application Ser. No. 10/741,130, filed on Dec. 19, 2003, now issued as U.S. Pat. No. 8,287,555, which is a continuation-in-part of U.S. patent application Ser. No. 10/656,797, filed on Sep. 4, 2003, now issued as U.S. Pat. No. 7,753,922, the full disclosures of which are incorporated herein by reference. Patent application Ser. No. 10/741,130, now issued as U.S. Pat. No. 8,287,555, is also a continuation-in part of U.S. patent application Ser. No. 10/461,043, filed on Jun. 13, 2003, now issued as U.S. Pat. No. 6,986,775, which claims the benefit of U.S. Provisional Application Nos. 60/388,935, filed on Jun. 13, 2002; 60/429,288, filed on Nov. 25, 2002; 60/445,890, filed on Feb. 6,2003; and 60/462,502, filed on Apr. 10, 2003, the full disclosures of which are all incorporated herein by reference. U.S. patent application Ser. No. 10/741,130, filed on Dec. 19, 2003, now issued as U.S. Pat. No. 8,287,555, also claims the benefit of U.S. Provisional Application Nos.: 60/459,735, filed on Apr. 1, 2003; and 60/524,922, filed Nov. 24, 2003, the full disclosures of which are hereby incorporated by reference.

US Referenced Citations (451)
Number Name Date Kind
2108206 Meeker Feb 1938 A
3656185 Carpentier Apr 1972 A
3727614 Kniazuk Apr 1973 A
3773034 Burns et al. Nov 1973 A
3837345 Matar Sep 1974 A
3961419 Schwartz Jun 1976 A
3976079 Samuels et al. Aug 1976 A
4014492 Rothfuss Mar 1977 A
4034473 May Jul 1977 A
4042979 Angell Aug 1977 A
4043504 Hueil et al. Aug 1977 A
4053979 Tuthill et al. Oct 1977 A
4055861 Carpentier et al. Nov 1977 A
4069825 Akiyama Jan 1978 A
4169303 Lemelson Oct 1979 A
4290151 Massana Sep 1981 A
4384406 Tischlinger May 1983 A
4445892 Hussein et al. May 1984 A
4489446 Reed Dec 1984 A
4494542 Lee Jan 1985 A
4619247 Inoue et al. Oct 1986 A
4700250 Kuriyama Oct 1987 A
4726371 Gibbens Feb 1988 A
4758221 Jureidini Jul 1988 A
4784133 Mackin Nov 1988 A
4798594 Hillstead Jan 1989 A
4845851 Warthen Jul 1989 A
4848341 Ahmad Jul 1989 A
4850354 McGurk-Burleson et al. Jul 1989 A
4961738 Mackin Oct 1990 A
4969893 Swor Nov 1990 A
4976710 Mackin Dec 1990 A
5053047 Yoon Oct 1991 A
5064431 Gilbertson et al. Nov 1991 A
5084058 Li Jan 1992 A
5103804 Abele et al. Apr 1992 A
5108368 Hammerslag et al. Apr 1992 A
5133723 Li et al. Jul 1992 A
5221255 Mahurkar et al. Jun 1993 A
5221269 Miller et al. Jun 1993 A
5234448 Wholey et al. Aug 1993 A
5242456 Nash et al. Sep 1993 A
5242457 Akopov et al. Sep 1993 A
5257975 Foshee Nov 1993 A
5306296 Wright et al. Apr 1994 A
5312341 Turi May 1994 A
5324298 Phillips et al. Jun 1994 A
5346500 Suchart Sep 1994 A
5358479 Wilson Oct 1994 A
5358514 Schulman et al. Oct 1994 A
5364407 Poll Nov 1994 A
5366479 McGarry et al. Nov 1994 A
5368591 Lennox et al. Nov 1994 A
5372604 Trott Dec 1994 A
5383897 Wholey Jan 1995 A
5383905 Golds et al. Jan 1995 A
5409483 Campbell et al. Apr 1995 A
5417700 Egan May 1995 A
5423837 Mericle et al. Jun 1995 A
5437680 Yoon Aug 1995 A
5439470 Li Aug 1995 A
5450860 O'Connor Sep 1995 A
5452513 Zinnbauer et al. Sep 1995 A
5474572 Hayhurst Dec 1995 A
5507760 Wynne et al. Apr 1996 A
5520702 Sauer et al. May 1996 A
5522873 Jackman et al. Jun 1996 A
5524630 Crowley Jun 1996 A
5527323 Jervis et al. Jun 1996 A
5531686 Lundquist et al. Jul 1996 A
5545134 Hilaire et al. Aug 1996 A
5545168 Burke Aug 1996 A
5565122 Zinnbauer et al. Oct 1996 A
5571215 Sterman et al. Nov 1996 A
5591194 Berthiaume Jan 1997 A
5626590 Wilk May 1997 A
5626614 Hart May 1997 A
5630824 Hart May 1997 A
5643289 Sauer et al. Jul 1997 A
5669917 Sauer et al. Sep 1997 A
5674279 Wright et al. Oct 1997 A
5690655 Hart et al. Nov 1997 A
5709695 Northrup, III Jan 1998 A
5713950 Cox Feb 1998 A
5716370 Williamson, IV et al. Feb 1998 A
5718725 Sterman et al. Feb 1998 A
5725542 Yoon Mar 1998 A
5735290 Sterman et al. Apr 1998 A
5741260 Songer et al. Apr 1998 A
5741301 Pagedas Apr 1998 A
5752518 McGee et al. May 1998 A
5752964 Mericle May 1998 A
5752966 Chang May 1998 A
5755730 Swain et al. May 1998 A
5766240 Johnson Jun 1998 A
5769812 Stevens et al. Jun 1998 A
5782861 Cragg et al. Jul 1998 A
5810848 Hayhurst Sep 1998 A
5810853 Yoon Sep 1998 A
5817107 Schaller Oct 1998 A
5824066 Gross Oct 1998 A
5827171 Dobak, III et al. Oct 1998 A
5843169 Taheri Dec 1998 A
5848969 Panescu et al. Dec 1998 A
5855601 Bessler et al. Jan 1999 A
5860992 Daniel et al. Jan 1999 A
5860993 Thompson et al. Jan 1999 A
5868733 Ockuly et al. Feb 1999 A
5879371 Gardiner et al. Mar 1999 A
5885238 Stevens et al. Mar 1999 A
5888240 Carpentier et al. Mar 1999 A
5902321 Caspari et al. May 1999 A
5904651 Swanson et al. May 1999 A
5911717 Jacobsen et al. Jun 1999 A
5919208 Valenti Jul 1999 A
5935149 Ek Aug 1999 A
5947983 Solar et al. Sep 1999 A
5961440 Schweich, Jr. et al. Oct 1999 A
5961539 Northrup, III et al. Oct 1999 A
5972004 Williamson, IV et al. Oct 1999 A
5984933 Yoon Nov 1999 A
5989284 Laufer Nov 1999 A
5991650 Swanson et al. Nov 1999 A
6010531 Donlon et al. Jan 2000 A
6015428 Pagedas Jan 2000 A
6045497 Schweich, Jr. et al. Apr 2000 A
6050936 Schweich, Jr. et al. Apr 2000 A
6042534 Gellman et al. May 2000 A
6059715 Schweich, Jr. et al. May 2000 A
6066160 Colvin et al. May 2000 A
6074401 Gardiner et al. Jun 2000 A
6077214 Mortier et al. Jun 2000 A
6077989 Kandel et al. Jun 2000 A
6099553 Hart et al. Aug 2000 A
6102945 Campbell Aug 2000 A
6125852 Stevens et al. Oct 2000 A
6149658 Gardiner et al. Nov 2000 A
6162168 Schweich, Jr. et al. Dec 2000 A
6165183 Kuehn et al. Dec 2000 A
6171329 Shaw et al. Jan 2001 B1
6183469 Thapliyal et al. Feb 2001 B1
6197017 Brock et al. Mar 2001 B1
6221084 Fleenor Apr 2001 B1
6228055 Foerster et al. May 2001 B1
6228096 Marchand May 2001 B1
6250308 Cox Jun 2001 B1
6254620 Koh et al. Jul 2001 B1
6258118 Baum et al. Jul 2001 B1
6260552 Mortier et al. Jul 2001 B1
6269819 Oz et al. Aug 2001 B1
6283993 Cosgrove et al. Sep 2001 B1
6299622 Snow Oct 2001 B1
6306149 Meade Oct 2001 B1
6312447 Grimes Nov 2001 B1
6328727 Frazier et al. Dec 2001 B1
6332893 Mortier et al. Dec 2001 B1
6355030 Aldrich et al. Mar 2002 B1
6378289 Trudeau et al. Apr 2002 B1
6391048 Ginn et al. May 2002 B1
6406420 McCarthy et al. Jun 2002 B1
6409743 Fenton, Jr. Jun 2002 B1
6423088 Fenton, Jr. Jul 2002 B1
6432123 Schwartz et al. Aug 2002 B2
6461327 Addis et al. Oct 2002 B1
6514265 Ho et al. Feb 2003 B2
6524338 Gundry Feb 2003 B1
6533753 Haarstad et al. Mar 2003 B1
6551332 Nguyen et al. Apr 2003 B1
6575971 Hauck et al. Jun 2003 B2
6575987 Gellman et al. Jun 2003 B2
6589160 Schweich, Jr. et al. Jul 2003 B2
6602288 Cosgrove et al. Aug 2003 B1
6602289 Colvin et al. Aug 2003 B1
6607541 Gardiner et al. Aug 2003 B1
6613059 Schaller et al. Sep 2003 B2
6619291 Hlavka et al. Sep 2003 B2
6626899 Houser et al. Sep 2003 B2
6626910 Hugues Sep 2003 B1
6629534 St. Goar et al. Oct 2003 B1
6641593 Schaller et al. Nov 2003 B1
6648903 Pierson, III Nov 2003 B1
6651671 Donlon et al. Nov 2003 B1
6655386 Makower et al. Dec 2003 B1
6669687 Saadat Dec 2003 B1
6676702 Mathis Jan 2004 B2
6689164 Seguin Feb 2004 B1
6699263 Cope Mar 2004 B2
6702826 Liddicoat et al. Mar 2004 B2
6716243 Colvin et al. Apr 2004 B1
6718985 Hlavka et al. Apr 2004 B2
6723038 Schroeder et al. Apr 2004 B1
6723107 Skiba et al. Apr 2004 B1
6733509 Nobles et al. May 2004 B2
6746457 Dana et al. Jun 2004 B2
6749622 McGuckin et al. Jun 2004 B2
6752813 Goldfarb et al. Jun 2004 B2
6790231 Liddicoat et al. Sep 2004 B2
6793618 Schweich, Jr. et al. Sep 2004 B2
6802851 Jones et al. Oct 2004 B2
6811560 Jones et al. Nov 2004 B2
6818001 Wulfman et al. Nov 2004 B2
6875224 Grimes Apr 2005 B2
6908424 Mortier et al. Jun 2005 B2
6913608 Liddicoat et al. Jul 2005 B2
6923818 Muramatsu et al. Aug 2005 B2
6932792 St. Goar et al. Aug 2005 B1
6986775 Morales et al. Jan 2006 B2
6991643 Saadat Jan 2006 B2
6997931 Sauer et al. Feb 2006 B2
7004958 Adams et al. Feb 2006 B2
7037334 Hlavka et al. May 2006 B1
7044957 Foerster et al. May 2006 B2
7048754 Martin et al. May 2006 B2
7101395 Tremulis et al. Sep 2006 B2
7125421 Tremulis et al. Oct 2006 B2
7160312 Saadat Jan 2007 B2
7166127 Spence et al. Jan 2007 B2
7186262 Saadat Mar 2007 B2
7186264 Liddicoat et al. Mar 2007 B2
7189199 McCarthy et al. Mar 2007 B2
7235086 Sauer et al. Jun 2007 B2
7241310 Taylor et al. Jul 2007 B2
7326231 Phillips et al. Feb 2008 B2
7335213 Hyde et al. Feb 2008 B1
7344544 Bender et al. Mar 2008 B2
7452325 Schaller Nov 2008 B2
7534204 Starksen et al. May 2009 B2
7588582 Starksen et al. Sep 2009 B2
7618449 Tremulis et al. Nov 2009 B2
7655040 Douk et al. Feb 2010 B2
7666193 Starksen et al. Feb 2010 B2
7753858 Starksen et al. Jul 2010 B2
7753922 Starksen Jul 2010 B2
7753924 Starksen et al. Jul 2010 B2
7758637 Starksen et al. Jul 2010 B2
7766812 Schroeder et al. Aug 2010 B2
7850600 Piskun Dec 2010 B1
7883538 To et al. Feb 2011 B2
7918787 Saadat Apr 2011 B2
7922762 Starksen Apr 2011 B2
7993368 Gambale et al. Aug 2011 B2
8066766 To et al. Nov 2011 B2
8287555 Starksen et al. Oct 2012 B2
8287557 To et al. Oct 2012 B2
8343173 Starksen et al. Jan 2013 B2
8641727 Starksen et al. Feb 2014 B2
9072513 To et al. Jul 2015 B2
9226825 Starksen et al. Jan 2016 B2
9468528 Starksen et al. Oct 2016 B2
9636106 Meier et al. May 2017 B2
9861350 Serina et al. Jan 2018 B2
9949829 Starksen et al. Apr 2018 B2
10092402 Starksen et al. Oct 2018 B2
10624741 Starksen et al. Apr 2020 B2
20010005787 Oz et al. Jun 2001 A1
20010014800 Frazier et al. Aug 2001 A1
20010023332 Hahnen Sep 2001 A1
20010031979 Ricci Oct 2001 A1
20010034528 Foerster et al. Oct 2001 A1
20010041821 Wilk Nov 2001 A1
20020002401 McGuckin, Jr. et al. Jan 2002 A1
20020013571 Goldfarb et al. Jan 2002 A1
20020013621 Stobie et al. Jan 2002 A1
20020026201 Foerster et al. Feb 2002 A1
20020029080 Mortier et al. Mar 2002 A1
20020035361 Houser et al. Mar 2002 A1
20020042621 Liddicoat et al. Apr 2002 A1
20020065536 Hart et al. May 2002 A1
20020072757 Ahmed et al. Jun 2002 A1
20020077524 Schweich, Jr. et al. Jun 2002 A1
20020077661 Saadat Jun 2002 A1
20020087048 Brock et al. Jul 2002 A1
20020087049 Brock et al. Jul 2002 A1
20020087148 Brock et al. Jul 2002 A1
20020087169 Brock et al. Jul 2002 A1
20020095167 Liddicoat et al. Jul 2002 A1
20020095175 Brock et al. Jul 2002 A1
20020099439 Schwartz et al. Jul 2002 A1
20020138044 Streeter et al. Sep 2002 A1
20020156526 Hlavka et al. Oct 2002 A1
20020161378 Downing Oct 2002 A1
20020165486 Bertolero et al. Nov 2002 A1
20020173841 Ortiz et al. Nov 2002 A1
20020183835 Taylor et al. Dec 2002 A1
20020193815 Foerster et al. Dec 2002 A1
20030009196 Peterson Jan 2003 A1
20030014060 Wilson Jan 2003 A1
20030018358 Saadat Jan 2003 A1
20030032979 Mortier et al. Feb 2003 A1
20030033006 Phillips et al. Feb 2003 A1
20030060813 Loeb et al. Mar 2003 A1
20030069593 Tremulis et al. Apr 2003 A1
20030074012 Nguyen et al. Apr 2003 A1
20030074021 Morriss et al. Apr 2003 A1
20030078465 Pai et al. Apr 2003 A1
20030078601 Shikhman et al. Apr 2003 A1
20030078603 Schaller et al. Apr 2003 A1
20030093117 Saadat May 2003 A1
20030093118 Ho et al. May 2003 A1
20030105520 Alferness et al. Jun 2003 A1
20030125739 Bagga et al. Jul 2003 A1
20030125767 Collier et al. Jul 2003 A1
20030130731 Vidlund et al. Jul 2003 A1
20030144697 Mathis et al. Jul 2003 A1
20030158464 Bertolero Aug 2003 A1
20030158581 Levinson Aug 2003 A1
20030167071 Martin et al. Sep 2003 A1
20030181926 Dana et al. Sep 2003 A1
20030199974 Lee et al. Oct 2003 A1
20030220685 Hlvaka et al. Nov 2003 A1
20030225420 Wardle Dec 2003 A1
20030233105 Gayton Dec 2003 A1
20030233142 Morales et al. Dec 2003 A1
20030236535 Onuki et al. Dec 2003 A1
20040003819 St. Goar et al. Jan 2004 A1
20040019378 Hlavka et al. Jan 2004 A1
20040024414 Downing Feb 2004 A1
20040030382 St. Goar et al. Feb 2004 A1
20040039442 St. Goar et al. Feb 2004 A1
20040092962 Thornton et al. May 2004 A1
20040093024 Lousararian et al. May 2004 A1
20040097788 Mourlas et al. May 2004 A1
20040122450 Oren et al. Jun 2004 A1
20040152947 Schroeder et al. Aug 2004 A1
20040172046 Hlavka et al. Sep 2004 A1
20040181238 Zarbatany et al. Sep 2004 A1
20040186378 Gesswein Sep 2004 A1
20040193191 Starksen et al. Sep 2004 A1
20040204724 Kissel et al. Oct 2004 A1
20040210238 Nobles et al. Oct 2004 A1
20040236372 Anspach, III et al. Nov 2004 A1
20040236419 Milo Nov 2004 A1
20040243227 Starksen et al. Dec 2004 A1
20040260317 Bloom et al. Dec 2004 A1
20050021054 Ainsworth et al. Jan 2005 A1
20050055052 Lombardo et al. Mar 2005 A1
20050055087 Starksen Mar 2005 A1
20050065550 Starksen et al. Mar 2005 A1
20050065589 Schneider et al. Mar 2005 A1
20050075723 Schroeder et al. Apr 2005 A1
20050080454 Drews et al. Apr 2005 A1
20050107810 Morales et al. May 2005 A1
20050107811 Starksen et al. May 2005 A1
20050107871 Realyvasquez et al. May 2005 A1
20050119523 Starksen et al. Jun 2005 A1
20050119673 Gordon et al. Jun 2005 A1
20050119734 Spence et al. Jun 2005 A1
20050137689 Salahieh et al. Jun 2005 A1
20050177180 Kaganov et al. Aug 2005 A1
20050184122 Hlavka et al. Aug 2005 A1
20050192599 Demarais Sep 2005 A1
20050192629 Saadat et al. Sep 2005 A1
20050197694 Pai et al. Sep 2005 A1
20050209690 Mathis et al. Sep 2005 A1
20050216078 Starksen et al. Sep 2005 A1
20050224884 Li Oct 2005 A1
20050228452 Mourlas et al. Oct 2005 A1
20050251157 Saadat et al. Nov 2005 A1
20050251159 Ewers et al. Nov 2005 A1
20050251166 Vaughan et al. Nov 2005 A1
20050251177 Saadat et al. Nov 2005 A1
20050251205 Ewers et al. Nov 2005 A1
20050251207 Flores et al. Nov 2005 A1
20050251208 Elmer et al. Nov 2005 A1
20050251209 Saadat et al. Nov 2005 A1
20050251210 Westra et al. Nov 2005 A1
20050267495 Ginn et al. Dec 2005 A1
20050273138 To et al. Dec 2005 A1
20050277966 Ewers et al. Dec 2005 A1
20050277981 Maahs et al. Dec 2005 A1
20050277983 Saadat et al. Dec 2005 A1
20060009789 Gambale et al. Jan 2006 A1
20060015144 Burbank et al. Jan 2006 A1
20060025750 Starksen et al. Feb 2006 A1
20060025784 Starksen et al. Feb 2006 A1
20060025787 Morales et al. Feb 2006 A1
20060058817 Starksen et al. Mar 2006 A1
20060069429 Spence et al. Mar 2006 A1
20060122633 To et al. Jun 2006 A1
20060129188 Starksen et al. Jun 2006 A1
20060161040 McCarthy et al. Jul 2006 A1
20060178682 Boehlke Aug 2006 A1
20060184203 Martin et al. Aug 2006 A1
20060190030 To et al. Aug 2006 A1
20060241656 Starksen et al. Oct 2006 A1
20060241748 Lee et al. Oct 2006 A1
20060264975 Pipenhagen et al. Nov 2006 A1
20060271101 Saadat et al. Nov 2006 A1
20060282161 Huynh et al. Dec 2006 A1
20060287661 Bolduc et al. Dec 2006 A1
20070005081 Findlay, III et al. Jan 2007 A1
20070005394 Bleyendaal et al. Jan 2007 A1
20070010857 Sugimoto et al. Jan 2007 A1
20070016287 Cartledge et al. Jan 2007 A1
20070032820 Chin-Chen et al. Feb 2007 A1
20070038293 St. Goar et al. Feb 2007 A1
20070049942 Hindrichs et al. Mar 2007 A1
20070051377 Douk et al. Mar 2007 A1
20070055206 To et al. Mar 2007 A1
20070080188 Spence et al. Apr 2007 A1
20070083259 Bloom et al. Apr 2007 A1
20070112244 McCarthy et al. May 2007 A1
20070112422 Dehdashtian May 2007 A1
20070112424 Spence et al. May 2007 A1
20070250161 Dolan Oct 2007 A1
20080045977 To et al. Feb 2008 A1
20080045982 To et al. Feb 2008 A1
20080045983 To et al. Feb 2008 A1
20080051810 To et al. Feb 2008 A1
20080051832 To et al. Feb 2008 A1
20080051837 To et al. Feb 2008 A1
20080058765 Jais et al. Mar 2008 A1
20080058868 To et al. Mar 2008 A1
20080172035 Starksen et al. Jul 2008 A1
20080228032 Starksen et al. Sep 2008 A1
20080234701 Morales et al. Sep 2008 A1
20080234702 Morales et al. Sep 2008 A1
20080234704 Starksen et al. Sep 2008 A1
20080234728 Starksen et al. Sep 2008 A1
20080234815 Starksen Sep 2008 A1
20080243150 Starksen et al. Oct 2008 A1
20080294177 To et al. Nov 2008 A1
20090182417 Tremulis et al. Jul 2009 A1
20090182418 Solem et al. Jul 2009 A1
20090222083 Nguyen et al. Sep 2009 A1
20090234318 Loulmet et al. Sep 2009 A1
20090264994 Saadat Oct 2009 A1
20090276038 Tremulis et al. Nov 2009 A1
20100023117 Yoganathan et al. Jan 2010 A1
20100049213 Serina et al. Feb 2010 A1
20100076548 Konno Mar 2010 A1
20100082098 Starksen et al. Apr 2010 A1
20100094314 Hernlund et al. Apr 2010 A1
20100121349 Meier et al. May 2010 A1
20110098743 Lyons et al. Apr 2011 A1
20110160528 Starksen Jun 2011 A1
20110276091 Melanson et al. Nov 2011 A1
20120101442 Legaspi et al. Apr 2012 A1
20120271331 To et al. Oct 2012 A1
20130190863 Call et al. Jul 2013 A1
20130304093 Serina et al. Nov 2013 A1
20140135799 Henderson May 2014 A1
20140155783 Starksen et al. Jun 2014 A1
20140188140 Meier et al. Jul 2014 A1
20140194976 Starksen et al. Jul 2014 A1
20140303649 Nguyen et al. Oct 2014 A1
20150182216 Morales et al. Jul 2015 A1
20170224489 Starksen et al. Aug 2017 A1
20180140421 Sampson et al. May 2018 A1
20180228609 Starksen et al. Aug 2018 A1
20190239872 Serina et al. Aug 2019 A1
Foreign Referenced Citations (69)
Number Date Country
0 363 661 Apr 1990 EP
0 669 101 Aug 1995 EP
1370546 Oct 1974 GB
H 06-510460 Nov 1994 JP
H 11-506628 Jun 1999 JP
2004-000601 Jan 2004 JP
2007-514455 Jun 2007 JP
48-23295 Nov 2011 JP
WO 9308740 May 1993 WO
WO 9403227 Feb 1994 WO
WO 9515715 Jun 1995 WO
WO 9608208 Mar 1996 WO
WO 9639081 Dec 1996 WO
WO 9639942 Dec 1996 WO
WO 9727799 Aug 1997 WO
WO 9727807 Aug 1997 WO
WO 9807375 Feb 1998 WO
WO 0060995 Oct 2000 WO
WO 0060995 Oct 2000 WO
WO 0067640 Nov 2000 WO
WO 0067640 Nov 2000 WO
WO 0126586 Apr 2001 WO
WO 0154618 Aug 2001 WO
WO 0203892 Jan 2002 WO
WO 200234167 May 2002 WO
WO 200234167 May 2002 WO
WO 02051329 Jul 2002 WO
WO 02053011 Jul 2002 WO
WO 02053011 Jul 2002 WO
WO 02085251 Oct 2002 WO
WO 02085252 Oct 2002 WO
WO 03053289 Jul 2003 WO
WO 03088875 Oct 2003 WO
WO 03105667 Dec 2003 WO
WO 03105667 Dec 2003 WO
WO 03105670 Dec 2003 WO
WO 03105670 Dec 2003 WO
WO 2004037317 May 2004 WO
WO 2004037317 May 2004 WO
WO 2004082523 Sep 2004 WO
WO 2004082523 Sep 2004 WO
WO 2004082538 Sep 2004 WO
WO 2004082538 Sep 2004 WO
WO 2005025644 Mar 2005 WO
WO 2005025644 Mar 2005 WO
WO 2005062931 Jul 2005 WO
WO 2005062931 Jul 2005 WO
WO 2005102181 Nov 2005 WO
WO 2006037073 Apr 2006 WO
WO 2006097931 Sep 2006 WO
WO 2006097931 Sep 2006 WO
WO 2006116558 Nov 2006 WO
WO 2006116558 Nov 2006 WO
WO 2006116558 Nov 2006 WO
WO 2007005495 Jan 2007 WO
WO 2007021564 Feb 2007 WO
WO 2007021597 Feb 2007 WO
WO 2007021597 Feb 2007 WO
WO 2007021834 Feb 2007 WO
WO 2007035449 Mar 2007 WO
WO 2007056502 May 2007 WO
WO 2007095052 Aug 2007 WO
WO 2007100409 Sep 2007 WO
WO 2008028135 Mar 2008 WO
WO 2008028135 Mar 2008 WO
WO 2008088716 Jul 2008 WO
WO 2009052509 Apr 2009 WO
WO 2012031204 Mar 2012 WO
WO 2012031204 Mar 2012 WO
Non-Patent Literature Citations (165)
Entry
De Simone, R. et al. (Apr. 15, 1993). “Adjustable Tricuspid Valve Annuloplasty Assisted by Intraoperative Transesophageal Color Doppler Echocardiography,” Am. J. Cardiol. 71(11):926-931.
De Simone, R. et al. (Apr. 1, 1994). “Adjustable Annuloplasty for Tricuspid Insufficiency with External Control,” Reader's Comments and Reply, Am. J. Cardiol. 73(9):721-722.
Downing, S.W. et al. (2002). “Feasibility of Off-Pump ASD Closure Using Real-Time 3-D Echocardiography,” The Heart Surgery Forum 5(2):96-99, Abstract 7025.
European Examination Communication dated Dec. 8, 2009, for EP Application No. 06 837 222.6 filed on Nov. 8, 2006, 3 pages.
Extended European Search Report dated Sep. 9, 2011, for EP Patent Application No. 11158896.8, filed on Sep. 1, 2004, 7 pages.
Extended European Search Report dated Sep. 16, 2011, for EP Patent Application No. 11158898.4, filed on Sep. 1, 2004, 8 pages.
Extended European Search Report dated Dec. 12, 2018, for EP Patent Application No. 18170269.7, filed on Sep. 1, 2004, 7 pages.
Extended European Search Report dated Dec. 3, 2018, for EP Patent Application No. 18167829.3, filed on Oct. 16, 2007, 8 pages.
Final Office Action dated Feb. 6, 2007, for U.S. Appl. No. 10/656,797, filed Sep. 4, 2003, 8 pages.
Final Office Action dated Jul. 12, 2007, for U.S. Appl. No. 11/202,474, filed Aug. 11, 2005, 10 pages.
Final Office Action dated Jul. 24, 2007, for U.S. Appl. No. 10/741,130, filed Dec. 19, 2003, 10 pages.
Final Office Action dated Aug. 6, 2007, for U.S. Appl. No. 10/901,019, filed Jul. 27, 2004, 12 pages.
Final Office Action dated Aug. 6, 2007, for U.S. Appl. No. 11/137,833, filed May 24, 2005, 8 pages.
Final Office Action dated Aug. 13, 2007, for U.S. Appl. No. 10/900,980, filed Jul. 27, 2004, 9 pages.
Final Office Action dated Aug. 14, 2007, for U.S. Appl. No. 11/255,400, filed Oct. 20, 2005, 8 pages.
Final Office Action dated Aug. 30, 2007, for U.S. Appl. No. 11/232,190, filed Sep. 20, 2005, 9 pages.
Final Office Action dated Oct. 30, 2007, for U.S. Appl. No. 10/656,797, filed Sep. 4, 2003, 6 pages.
Final Office Action dated Apr. 2, 2008, for U.S. Appl. No. 10/792,681, filed Mar. 2, 2004, 15 pages.
Final Office Action dated Apr. 14, 2008, for U.S. Appl. No. 10/901,019, filed Jul. 27, 2004, 11 pages.
Final Office Action dated May 28, 2008, for U.S. Appl. No. 11/270,034, filed Nov. 8, 2005, 10 pages.
Final Office Action dated Jun. 4, 2008, for U.S. Appl. No. 11/202,474, filed Aug. 11, 2005, 10 pages.
Final Office Action dated Aug. 1, 2008, for U.S. Appl. No. 11/232,190, filed Sep. 20, 2005, 8 pages.
Final Office Action dated Sep. 30, 2008, for U.S. Appl. No. 10/900,980, filed Jul. 27, 2004, 7 pages.
Final Office Action dated Oct. 14, 2008, for U.S. Appl. No. 10/741,130, filed Dec. 19, 2003, 9 pages.
Final Office Action dated Jan. 22, 2009, for U.S. Appl. No. 11/255,400, filed Oct. 20, 2005, 9 pages.
Final Office Action dated Mar. 11, 2009, for U.S. Appl. No. 10/656,797, filed Sep. 4, 2003, 10 pages.
Final Office Action dated Apr. 10, 2009, for U.S. Appl. No. 11/414,657, filed Apr. 27, 2006, 8 pages.
Final Office Action dated Apr. 10, 2009, for U.S. Appl. No. 11/255,400, filed Oct. 20, 2005, 8 pages.
Final Office Action dated Apr. 27, 2009, for U.S. Appl. No. 10/901,455, filed Jul. 27, 2004, 11 pages.
Final Office Action dated Apr. 29, 2009, for U.S. Appl. No. 10/901,019, filed Jul. 27, 2004, 9 pages.
Final Office Action dated Jul. 21, 2009, for U.S. Appl. No. 11/270,034, filed Nov. 8, 2005, 8 pages.
Final Office Action dated Sep. 2, 2009, for U.S. Appl. No. 11/232,190, filed Sep. 20, 2005, 8 pages.
Final Office Action dated Sep. 28, 2009, for U.S. Appl. No. 11/202,474, filed Aug. 11, 2005, 10 pages.
Final Office Action dated Oct. 13, 2009, for U.S. Appl. No. 10/901,554, filed Jul. 27, 2004, 11 pages.
Final Office Action dated Nov. 10, 2009, for U.S. Appl. No. 10/741,130, filed Dec. 19, 2003, 9 pages.
Final Office Action dated Mar. 3, 2010, for U.S. Appl. No. 11/414,657, filed Apr. 27, 2006, 7 pages.
Final Office Action dated Mar. 25, 2010, for U.S. Appl. No. 10/900,980, filed Jul. 27, 2004, 8 pages.
Final Office Action dated Jun. 8, 2010, for U.S. Appl. No. 10/792,681, filed Mar. 2, 2004, 17 pages.
Final Office Action dated Jul. 26, 2010, for U.S. Appl. No. 11/270,034, filed Nov. 8, 2005, 8 pages.
Final Office Action dated Sep. 15, 2010, for U.S. Appl. No. 11/894,401, filed Aug. 20, 2007, 6 pages.
Final Office Action dated Sep. 27, 2010, for U.S. Appl. No. 11/656,141, filed Jan. 19, 2007, 10 pages.
Final Office Action dated Oct. 6, 2010, for U.S. Appl. No. 12/132,375, filed Jun. 3, 2008, 9 pages.
Final Office Action dated Nov. 26, 2010, for U.S. Appl. No. 11/894,340, filed Aug. 20, 2007, 12 pages.
Final Office Action dated Nov. 29, 2010, for U.S. Appl. No. 11/894,463, filed Aug. 20, 2007, 12 pages.
Final Office Action dated Feb. 24, 2011, for U.S. Appl. No. 11/894,397, filed Aug. 20, 2007, 12 pages.
Final Office Action dated Feb. 24, 2011, for U.S. Appl. No. 11/894,468, filed Aug. 20, 2007, 12 pages.
Final Office Action dated Mar. 17, 2011, for U.S. Appl. No. 10/901,554, filed Jul. 27, 2004, 13 pages.
Final Office Action dated Mar. 17, 2011, for U.S. Appl. No. 11/202,474, filed Aug. 11, 2005, 9 pages.
Final Office Action dated Apr. 20, 2011, for U.S. Appl. No. 11/414,657, filed Apr. 27, 2006, 8 pages.
Final Office Action dated Aug. 4, 2011, for U.S. Appl. No. 10/900,980, filed Jul. 27, 2004, 9 pages.
Final Office Action dated Nov. 3, 2011, for U.S. Appl. No. 12/581,040, filed Oct. 16, 2009, 5 pages.
Final Office Action dated Nov. 10, 2011, for U.S. Appl. No. 10/792,681, filed Mar. 2, 2004, 20 pages.
Final Office Action dated Dec. 6, 2011, for U.S. Appl. No. 12/366,553, filed Feb. 5, 2009, 7 pages.
Final Office Action dated Mar. 19, 2012, for U.S. Appl. No. 12/574,563, filed Oct. 6, 2009, 6 pages.
Final Office Action dated Jun. 11, 2012, for U.S. Appl. No. 12/132,161, filed Jun. 3, 2008, 13 pages.
Final Office Action dated Feb. 5, 2015, for U.S. Appl. No. 13/540,499, filed Jul. 2, 2012, 10 pages.
Final Office Action dated Jun. 11, 2012, for U.S. Appl. No. 12/187,331, filed Jun. 6, 2008, 7 pages.
Final Office Action dated Jan. 17, 2012, for U.S. Appl. No. 11/656,141, filed Jan. 19, 2007, 12 pages.
Final Office Action dated Dec. 26, 2014, for U.S. Appl. No. 13/820,447, filed Sep. 2, 2011, 8 pages.
Final Office Action dated May 15, 2015, for U.S. Appl. No. 13/820,447, filed Oct. 18, 2013, 11 pages.
Final Office Action dated Feb. 4, 2016, for U.S. Appl. No. 14/626,826, filed Feb. 19, 2015, 9 pages.
Final Office Action dated May 19, 2016, for U.S. Appl. No. 13/820,447, filed Oct. 18, 2013, 10 pages.
Final Office Action dated Sep. 14, 2017, for U.S. Appl. No. 14/626,826, filed Feb. 19, 2015, 8 pages.
Final Office Action dated Nov. 3, 2017, for U.S. Appl. No. 13/540,499, filed Jul. 2, 2012, 10 pages.
International Preliminary Report on Patentability dated Jul. 21, 2009, for PCT Application No. PCT/US2008/000351, filed on Jan. 9, 2008, 7 pages.
International Search Report dated Dec. 19, 2006, for PCT Application No. PCT/US2006/031190, filed Aug. 10, 2006, 4 pages.
International Search Report dated Apr. 2, 2007, for PCT Application No. PCT/US2006/043597, filed Nov. 8, 2006, 7 pages.
International Search Report dated May 21, 2008, for PCT Application No. PCT/US2008/000351, filed on Jan. 9, 2008, 4 pages.
International Search Report dated Feb. 21, 2012, for PCT Patent Application No. PCT/US2011/050331, filed on Sep. 2, 2011, 4 pages.
International Search Report dated Mar. 7, 2007, for PCT Patent Application No. PCT/US2004/028431, filed on Sep. 1, 2004, 1 page.
Nagy, Z.L. et al. (Dec. 2000). “Mitral Annuloplasty with a Suture Technique,” European Journal of Cardio-thoracic Surgery 18(6):739-740.
Non-Final Office Action dated Aug. 9, 2006, for U.S. Appl. No. 10/900,980, filed Jul. 27, 2004, 17 pages.
Non-Final Office Action dated Aug. 22, 2006, for U.S. Appl. No. 10/656,797, filed Sep. 4, 2003, 6 pages.
Non-Final Office Action dated Nov. 15, 2006, for U.S. Appl. No. 11/137,833, filed May 24, 2005, 12 pages.
Non-Final Office Action dated Nov. 28, 2006, for U.S. Appl. No. 10/901,019, filed Jul. 27, 2004, 20 pages.
Non-Final Office Action dated Dec. 27, 2006, for U.S. Appl. No. 10/741,130, filed Dec. 19, 2003, 9 pages.
Non-Final Office Action dated Dec. 27, 2006, for U.S. Appl. No. 11/270,034, filed Nov. 8, 2005, 8 pages.
Non-Final Office Action dated Jan. 4, 2007, for U.S. Appl. No. 11/255,400, filed Oct. 20, 2005, 7 pages.
Non-Final Office Action dated Feb. 27, 2007, for U.S. Appl. No. 11/202,474, filed Aug. 11, 2005, 8 pages.
Non-Final Office Action dated Mar. 12, 2007, for U.S. Appl. No. 11/232,190, filed Sep. 20, 2005, 11 pages.
Non-Final Office Action dated Jul. 24, 2007, for U.S. Appl. No. 10/656,797, filed Sep. 4, 2003, 6 pages.
Non-Final Office Action dated Aug. 1, 2007, for U.S. Appl. No. 10/792,681, filed Mar. 2, 2004, 16 pages.
Non-Final Office Action dated Aug. 30, 2007, for U.S. Appl. No. 11/270,034, filed Nov. 8, 2005, 10 pages.
Non-Final Office Action dated Oct. 19, 2007, for U.S. Appl. No. 11/202,474, filed Aug. 11, 2005, 7 pages.
Non-Final Office Action dated Oct. 29, 2007, for U.S. Appl. No. 10/901,019, filed Jul. 27, 2004, 10 pages.
Non-Final Office Action dated Nov. 14, 2007, for U.S. Appl. No. 10/741,130, filed Dec. 19, 2003, 8 pages.
Non-Final Office Action dated Nov. 14, 2007, for U.S. Appl. No. 11/137,833, filed May 24, 2005, 8 pages.
Non-Final Office Action dated Jan. 9, 2008, for U.S. Appl. No. 11/232,190, filed Sep. 20, 2005, 8 pages.
Non-Final Office Action dated Jan. 31, 2008, for U.S. Appl. No. 11/255,400, filed Oct. 20, 2005, 7 pages.
Non-Final Office Action (Supplementary) dated May 9, 2008, for U.S. Appl. No. 11/255,400, filed Oct. 20, 2005, 7 pages.
Non-Final Office Action dated Mar. 27, 2008, for U.S. Appl. No. 10/900,980, filed Jul. 27, 2004, 7 pages.
Non-Final Office Action dated Apr. 29, 2008, for U.S. Appl. No. 10/901,455, filed Jul. 27, 2004, 9 pages.
Non-Final Office Action dated Jun. 6, 2008, for U.S. Appl. No. 10/656,797, filed Sep. 4, 2003, 5 pages.
Non-Final Office Action dated Aug. 29, 2008, for U.S. Appl. No. 10/792,681, filed Mar. 2, 2004, 15 pages.
Non-Final Office Action dated Sep. 26, 2008, for U.S. Appl. No. 11/414,657, filed Apr. 27, 2006, 11 pages.
Non-Final Office Action dated Oct. 24, 2008, for U.S. Appl. No. 10/901,019, filed Jul. 27, 2004, 11 pages.
Non-Final Office Action dated Jan. 13, 2009, for U.S. Appl. No. 10/901,555, filed Jul. 27, 2004, 11 pages.
Non-Final Office Action dated Jan. 23, 2009, for U.S. Appl. No. 11/232,190, filed Sep. 20, 2005, 8 pages.
Non-Final Office Action dated Jan. 23, 2009, for U.S. Appl. No. 11/270,034, filed Nov. 8, 2005, 8 pages.
Non-Final Office Action dated Jan. 29, 2009, for U.S. Appl. No. 10/900,980, filed Jul. 27, 2004, 6 pages.
Non-Final Office Action dated Mar. 5, 2009, for U.S. Appl. No. 11/202,474, filed Aug. 11, 2005, 10 pages.
Non-Final Office Action dated Mar. 18, 2009, for U.S. Appl. No. 10/901,554, filed Jul. 27, 2004, 12 pages.
Non-Final Office Action dated Mar. 27, 2009, for U.S. Appl. No. 10/741,130, filed Dec. 19, 2003, 9 pages.
Non-Final Office Action dated Mar. 31, 2009, for U.S. Appl. No. 10/792,681, filed Mar. 2, 2004, 15 pages.
Non-Final Office Action dated Aug. 25, 2009, for U.S. Appl. No. 10/900,980, filed Jul. 27, 2004, 7 pages.
Non-Final Office Action dated Aug. 26, 2009, for U.S. Appl. No. 11/414,657, filed Apr. 27, 2006, 6 pages.
Non-Final Office Action dated Sep. 17, 2009, for U.S. Appl. No. 10/656,797, filed Sep. 4, 2003, 13 pages.
Non-Final Office Action dated Oct. 8, 2009, for U.S. Appl. No. 10/901,455, filed Jul. 27, 2004, 10 pages.
Non-Final Office Action dated Oct. 19, 2009, for U.S. Appl. No. 10/901,019, filed Jul. 27, 2004, 21 pages.
Non-Final Office Action dated Jan. 19, 2010, for U.S. Appl. No. 11/270,034, filed Nov. 8, 2005, 10 pages.
Non-Final Office Action dated Feb. 18, 2010, for U.S. Appl. No. 11/894,401, filed Aug. 20, 2007, 6 pages.
Non-Final Office Action dated Mar. 16, 2010, for U.S. Appl. No. 11/894,340, filed Aug. 20, 2007, 14 pages.
Non-Final Office Action dated Mar. 29, 2010, for U.S. Appl. No. 11/894,463, filed Aug. 20, 2007, 14 pages.
Non-Final Office Action dated Apr. 2, 2010, for U.S. Appl. No. 12/132,375, filed Jun. 3, 2008, 9 pages.
Non-Final Office Action dated Apr. 14, 2010, for U.S. Appl. No. 11/656,141, filed Jan. 19, 2007, 10 pages.
Non-Final Office Action dated Jun. 9, 2010, for U.S. Appl. No. 11/894,468, filed Aug. 20, 2007, 14 pages.
Non-Final Office Action dated Jun. 21, 2010, for U.S. Appl. No. 11/894,397, filed Aug. 20, 2007, 13 pages.
Non-Final Office Action dated Aug. 17, 2010, for U.S. Appl. No. 11/414,657, filed Apr. 27, 2006, 7 pages.
Non-Final Office Action dated Aug. 20, 2010, for U.S. Appl. No. 10/901,554, filed Jul. 27, 2004, 13 pages.
Non-Final Office Action dated Oct. 8, 2010, for U.S. Appl. No. 11/894,368, filed Aug. 20, 2007, 10 pages.
Non-Final Office Action dated Oct. 25, 2010, for U.S. Appl. No. 11/202,474, filed Aug. 11, 2005, 8 pages.
Non-Final Office Action dated Oct. 29, 2010, for U.S. Appl. No. 11/894,530, filed Aug. 20, 2007, 11 pages.
Non-Final Office Action dated Nov. 24, 2010, for U.S. Appl. No. 10/900,980, filed Jul. 27, 2004, 8 pages.
Non-Final Office Action dated Feb. 2, 2011, for U.S. Appl. No. 12/581,040, filed Oct. 16, 2009, 5 pages.
Non-Final Office Action dated Apr. 27, 2011, for U.S. Appl. No. 12/366,533, filed Feb. 5, 2009, 9 pages.
Non-Final Office Action dated Jul. 29, 2011, for U.S. Appl. No. 12/574,563, filed Oct. 6, 2009, 5 pages.
Non-Final Office Action dated Oct. 13, 2011, for U.S. Appl. No. 12/187,331, filed Aug. 6, 2008, 5 pages.
Non-Final Office Action dated Oct. 18, 2011, for U.S. Appl. No. 12/132,161, filed Jun. 3, 2008, 15 pages.
Non-Final Office Action dated Oct. 18, 2011, for U.S. Appl. No. 10/741,130, filed Dec. 19, 2003, 9 pages.
Non-Final Office Action dated Oct. 20, 2011, for U.S. Appl. No. 12/824,051, filed Jun. 25, 2010, 8 pages.
Non-Final Office Action dated Dec. 22, 2011, for U.S. Appl. No. 11/270,034, filed Nov. 8, 2005, 9 pages.
Non-Final Office Action dated Jun. 7, 2012, for U.S. Appl. No. 12/850,531, filed Aug. 4, 2010, 8 pages.
Non-Final Office Action dated Apr. 8, 2013, for U.S. Appl. No. 11/414,657, filed Apr. 27, 2006, 9 pages.
Non-Final Office Action dated Nov. 7, 2014, for U.S. Appl. No. 12/187,331, filed Aug. 6, 2008, 8 pages.
Non-Final Office Action dated Nov. 24, 2015, for U.S. Appl. No. 14/156,347, filed Jan. 15, 2014, 5 pages.
Non-Final Office Action dated Apr. 21, 2016, for U.S. Appl. No. 13/540,499, filed Jul. 2, 2012, 12 pages.
Non-Final Office Action dated Jan. 26, 2017, for U.S. Appl. No. 13/540,499, filed Jul. 2, 2012, 10 pages.
Non-Final Office Action dated Feb. 17, 2017, for U.S. Appl. No. 14/626,826, filed Feb. 19, 2015, 11 pages.
Non-Final Office Action dated Feb. 17, 2017, for U.S. Appl. No. 13/820,447, filed Oct. 18, 2013, 11 pages.
Non-Final Office Action dated Jun. 12, 2018, for U.S. Appl. No. 13/948,009, filed Jul. 22, 2013, 23 pages.
Notice of Allowance dated Aug. 4, 2009, for U.S. Appl. No. 10/901,555, filed Jul. 27, 2004, 7 pages.
Notice of Allowance dated Feb. 24, 2010, for U.S. Appl. No. 10/656,797, filed Sep. 4, 2003, 10 pages.
Notice of Allowance dated Apr. 28, 2010, for U.S. Appl. No. 10/901,019, filed Jul. 27, 2004, 7 pages.
Notice of Allowance dated May 5, 2010, for U.S. Appl. No. 10/901,455, filed Jul. 27, 2004, 8 pages.
Notice of Allowance dated Nov. 17, 2010, for U.S. Appl. No. 11/232,190, filed Sep. 20, 2005, 11 pages.
Notice of Allowance dated Dec. 6, 2010, for U.S. Appl. No. 12/132,375, filed Jun. 3, 2008, 9 pages.
Notice of Allowance dated Jul. 26, 2011, for U.S. Appl. No. 11/894,530, filed Aug. 20, 2007, 10 pages.
Notice of Allowance dated Jun. 11, 2012, for, for U.S. Appl. No. 10/741,130, filed Dec. 19, 2003, 9 pages.
Notice of Allowance dated Sep. 25, 2013, for U.S. Appl. No. 12/132,161, filed Jun. 3, 2008, 12 pages.
Notice of Allowance dated Jun. 15, 2016, for U.S. Appl. No. 14/156,347, filed Jan. 15, 2014, 7 pages.
Notice of Allowance dated Oct. 29, 2015, for U.S. Appl. No. 10/901,554, filed Jul. 27, 2004, 8 pages.
Notice of Allowance dated Mar. 2, 2015, for U.S. Appl. No. 12/187,331, filed Aug. 6, 2008, 5 pages.
Notice of Allowance dated Nov. 8, 2017, for, for U.S. Appl. No. 13/820,447, filed Oct. 18, 2013, 8 pages.
Notice of Allowance dated Dec. 19, 2017, for U.S. Appl. No. 14/626,826, filed Feb. 19, 2015, 8 pages.
Notice of Allowance dated Jun. 22, 2018, for U.S. Appl. No. 15/265,781, filed Sep. 14, 2016, 7 pages.
Notice of Allowance dated Aug. 16, 2018, for U.S. Appl. No. 15/265,781, filed Sep. 14, 2016, 7 pages.
Shumway, S.J. et al. (Dec. 1988). “A ‘Designer’ Annuloplasty Ring for Patients with Massive Mitral Annular Dilatation,” Ann. Thorac. Surg. 46(6):695-696.
Supplementary European Search Report dated Nov. 10, 2008, for EP Application No. 04 782 847.0, filed on Sep. 1, 2004, 2 pages.
Written Opinion of the International Searching Authority dated May 21, 2008, for PCT Application No. PCT/US2008/000351, filed on Jan. 9, 2008, 6 pages.
Written Opinion of the International Searching Authority dated Feb. 21, 2012, for PCT Patent Application No. PCT/US2011/050331, filed on Sep. 2, 2011, 4 pages.
Written Opinion of the International Searching Authority dated Mar. 7, 2007, for PCT Patent Application No. PCT/US2004/028431, filed on Sep. 1, 2004, 4 pages.
Written Opinion of the International Searching Authority dated Dec. 19, 2006, for PCT Application No. PCT/US2006/031190, filed Aug. 10, 2006, 6 pages.
Written Opinion of the International Searching Authority dated Apr. 2, 2007, for PCT Application No. PCT/US2006/043597, filed Nov. 8, 2006, 7 pages.
Non-Final Office Action dated Sep. 3, 2020, for U.S. Appl. No. 16/211,109, filed Dec. 5, 2018, 14 pages.
Notice of Allowance dated Feb. 24, 2020, for U.S. Appl. No. 15/955,564, filed Apr. 17, 2018, 9 pages.
Related Publications (1)
Number Date Country
20190091023 A1 Mar 2019 US
Provisional Applications (6)
Number Date Country
60524922 Nov 2003 US
60462502 Apr 2003 US
60459735 Apr 2003 US
60445890 Feb 2003 US
60429288 Nov 2002 US
60388935 Jun 2002 US
Divisions (1)
Number Date Country
Parent 10741130 Dec 2003 US
Child 12132161 US
Continuations (3)
Number Date Country
Parent 15265781 Sep 2016 US
Child 16141627 US
Parent 14156347 Jan 2014 US
Child 15265781 US
Parent 12132161 Jun 2008 US
Child 14156347 US
Continuation in Parts (2)
Number Date Country
Parent 10656797 Sep 2003 US
Child 10741130 US
Parent 10461043 Jun 2003 US
Child 10656797 US