The present disclosure relates to devices and methods for improving voltage handling and/or bi-directionality of stacks of elements when connected between terminals.
According to a first aspect, a unit cell for a sub-circuit of a digitally tunable capacitor (DTC) is provided, the sub-circuit being adapted to be coupled between a first RF terminal and a second RF terminal, the unit cell comprising: a plurality of stacked switches, the stacked switches proceeding from a first switch closest to the first RF terminal and farthest from the second RF terminal to an n-th switch farthest from the first RF terminal and closest to the second RF terminal, wherein: the first RF terminal is a terminal through which a voltage source is adapted to be coupled to the unit cell; the stacked switches comprise a first set of switches close to the first RF terminal and far from the second RF terminal and a second set of switches far from the first RF terminal and close to the second RF terminal, each switch of the first set and second set being coupled in parallel with a compensating capacitor thus providing a compensated capacitance value for that switch when the switch is in an off state, and each switch of the first set has a corresponding switch of the second set having the same compensated capacitance value.
According to a second aspect, a circuit coupled between a first terminal and a second terminal is provided, comprising: a plurality of stacked switches, the stacked switches proceeding from a first switch closest the first terminal and farthest from the second terminal to an n-th switch farthest from the first terminal and closest to the second terminal, wherein: the first terminal is a terminal through which a voltage source is adapted to be coupled to the circuit; the stacked switches comprise a first set of switches close to the first terminal and far from the second terminal and a second set of switches far from the first terminal and close to the second terminal, each switch of the first set and second set being coupled in parallel with a compensating capacitor thus providing a compensated capacitance value for that switch when the switch is in an off state, and each switch of the first set has a corresponding switch of the second set having the same compensated capacitance value.
According to a third aspect, a circuit coupled between a first terminal and a second terminal is provided, comprising: a plurality of stacked elements, the stacked elements proceeding from a first element closest the first terminal and farthest from the second terminal to an n-th element farthest from the first terminal and closest to the second terminal, wherein: nodes between the elements exhibit parasitic capacitances, the first terminal is a terminal through which a voltage source is coupled to the circuit; the stacked elements comprise a first set of elements close to the first terminal and far from the second terminal and a second set of elements far from the first terminal and close to the second terminal, each element of the first set and second set being coupled in parallel with a compensating capacitor, and each element of the first set has a corresponding element of the second set having the same compensating capacitor value.
According to a fourth aspect, a circuit coupled between a first RF terminal and a second RF terminal is provided, comprising: a plurality of stacked elements, the stacked elements proceeding from a first element closest the first RF terminal and farthest from the second RF terminal to an n-th element farthest from the first RF terminal and closest to the second RF terminal, wherein: nodes between the elements exhibit parasitic capacitances, and the first RF terminal is a terminal through which a voltage source is coupled to the circuit, the circuit further comprising one or more compensation capacitors to compensate the parasitic capacitances, wherein combination between the stacked elements and the compensation capacitors provides a symmetrically compensated plurality of stacked elements with reference to a central node between the elements.
According to a fifth aspect, a circuit coupled between a first terminal and a second terminal is provided, comprising: a plurality of stacked elements, the stacked elements proceeding from a first element closest the first terminal and farthest from the second terminal to an n-th element farthest from the first terminal and closest to the second terminal, a plurality of compensating capacitors associated with the stacked elements, wherein: nodes between the elements exhibit parasitic capacitances, the first terminal is a terminal through which a voltage source is coupled to the circuit; the stacked elements comprise a first set of elements close to the first terminal and far from the second terminal and a second set of elements far from the first terminal and close to the second terminal, the compensating capacitors comprise a first set of compensating capacitors associated with the first set of elements and a second set of compensating capacitors associated with the second set of elements, the first set of compensating capacitors comprises i capacitors (i=1, 2, . . . ), the first capacitor of the first set of capacitors being located in parallel with a first element of the first set of elements, the second capacitor of the first set of capacitors being located in parallel with a series of the first element and a second element of the first set of elements, the third capacitor of the first set of capacitors being located in parallel with a series of the first element, the second element and a third element of the first set of elements and so on, and the second set of compensating capacitors comprises i corresponding capacitors (i=1, 2, . . . ), the first capacitor of the second set of capacitors being located in parallel with a first element of the second set of elements, the second capacitor of the second set of capacitors being located in parallel with a series of the first element and a second element of the second set of elements, the third capacitor of the second set of capacitors being located in parallel with a series of the first element, the second element and a third element of the second set of elements and so on.
According to a sixth aspect, a circuit coupled between a first terminal and a second terminal is provided, comprising: a plurality of stacked switches, the stacked switches proceeding from a first switch closest the first terminal and farthest from the second terminal to an n-th switch farthest from the first terminal and closest to the second terminal, a plurality of compensating capacitors associated with the stacked switches, wherein: nodes between the switches exhibit parasitic capacitances, the first terminal is a terminal through which a voltage source is adapted to be coupled to the circuit; the stacked switches comprise a first set of switches close to the first terminal and far from the second terminal and a second set of switches far from the first terminal and close to the second terminal, the compensating capacitors comprise a first set of compensating capacitors associated with the first set of switches, the first set of compensating capacitors comprises i capacitors (i=1, 2, . . . ), the first capacitor of the first set of capacitors being located in parallel with a first switch of the first set of switches, the second capacitor of the first set of capacitors being located in parallel with a series of the first switch and a second switch of the first set of switches, the third capacitor of the first set of capacitors being located in parallel with a series of the first switch, the second switch and a third switch of the first set of switches and so on.
According to a seventh aspect, a unit cell for a sub-circuit of a digitally tunable capacitor (DTC) is provided, the sub-circuit being adapted to be coupled between a first RF terminal and a second RF terminal, the unit cell comprising: a plurality of stacked switches coupled in series with one or more capacitors, the stacked switches proceeding from a first switch closest the first RF terminal and farthest from the second RF terminal to an n-th switch farthest from the first RF terminal and closest to the second RF terminal, wherein the one or more capacitors are placed symmetrically with respect to the plurality of stacked switches.
According to an eighth aspect, a voltage handling method is provided, comprising: providing a plurality of stacked switches, the stacked switches proceeding from a first switch closest to a first terminal and farthest from a second terminal to an n-th switch farthest from the first terminal and closest to the second terminal, the first terminal being a terminal through which a voltage source is coupled to the unit cell; and coupling the stacked switches in series with one or more capacitors, the one or more capacitors being placed symmetrically with respect to the plurality of stacked switches.
According to a ninth aspect, a method for compensating parasitic capacitances is provided, comprising: providing a plurality of stacked switches, the stacked switches proceeding from a first switch closest to a first terminal and farthest from a second terminal to an n-th switch farthest from the first terminal and closest to the second terminal, the first terminal being a terminal through which a voltage source is adapted to be coupled to the stacked switches; and sizing the stacked switches so that the first switch has the same size of the n-th switch.
According to a tenth aspect, a stacked device is provided, comprising: a plurality of stacked switches, the stacked switches proceeding from a first switch closest to a first terminal and farthest from a second terminal to an n-th switch farthest from the first terminal and closest to the second terminal, the first terminal being a terminal through which a voltage source is adapted to be coupled to the stacked switches, the stacked switches being sized such that the first and the n-th switch have the same size.
Further embodiments of the disclosure are provided in the specification, claims and drawings of the present application.
However, the presence of parasitic capacitances can be problematic.
Although the parasitic capacitances of
At larger stack heights (number S of transistors>>3), the relative Vds divergence from unity becomes worse.
Embodiments of the present disclosure are directed at solving the above mentioned problems by adding compensation capacitors across the drain and source of at least the top FETs of the stack closest to the voltage source to decrease asymmetric voltage division.
In accordance with the embodiment of
Cds3-eff=2×((Cds-off+Cp1)/2+Cp2)=Cds-off+Cp1+2Cp2
Thus, Cb3=Cp1+2 Cp2
For higher and higher stack heights it can be proven that the required additional capacitance across a given transistor Qn is:
assuming that all transistors have the same Cds-off.
This shows that there is a geometric progression in additional capacitance required to fully compensate for the voltage asymmetry as the stack increases.
In larger stacks of devices, parasitic capacitances can go to any node in the stack or signal related nodes. Thus for example, node N1 would have capacitance to N2 called Cp12, to N3 called Cp13, and so on. For purposes of the following calculations, it can be assumed that node N0 is ground, and node N1 is one transistor away from ground, and the higher the node number, the farther from ground. To properly compensate all of these capacitances on all nodes, the net charge induced on each node from all capacitors connected to that node should cancel. Since Q=CV=0 for node j:
where:
P is the total number of capacitors on node j; and
Cij is the total capacitance between node i (Ni) and node j (Nj) which includes parasitic capacitance, compensation capacitance previously added on other nodes, and device Cds-off capacitance.
If it is further assumed that the only capacitances are to nodes in the device stack or ground, and that the voltage across the stack divides evenly (as desired), then the voltages all become integer relations.
where S is the integer number of transistors in the stack.
In accordance with an embodiment of the present disclosure, assuming a stack of N transistors without MIM capacitors, N−1 capacitors can be used to achieve perfect symmetry. However, embodiments are also possible where less than N−1 capacitors are added, starting with the transistor closest to the voltage source (top capacitor of the stack in
A further embodiment of the present disclosure is directed at compensation for parasitics by sizing the devices rather than adding compensation capacitance across the drain and source of the FETs. The Coff of a device is usually linearly related to the size of the device. By putting larger devices closer to the voltage source, the effects of parasitics can be reduced. Reference can be made, for example, to
The above embodiments do not consider the presence of the MIM capacitors (10) of
The embodiment shown in
Several embodiments of the present application specify the presence of a first RF terminal and a second RF terminal. However, the person skilled in the art will understand that embodiments of the present disclosure are also directed to the presence of terminals which are not RF terminals.
Additionally, several embodiments of the present application are directed to a stack of switches, such as FET switches. However, the person skilled in the art should appreciate that elements different from switches (such as inductors, resistors, capacitors, diodes and so on) can be provided and the teachings of the present disclosure can be applied to these embodiments as well.
Furthermore, while several embodiments of the present disclosure deal with digitally tuned capacitors (DTCs), the teachings of the present disclosure can be applied to fields where stacked devices are used different from the field of DTCs, such as switches or attenuators.
In the compensation schemes shown in the above figures at least one of the RF terminals is grounded. A typical application would be the DTC in shunt to ground. However, generally speaking, the stack can be used in applications where none of the terminals RF+ or RF− is grounded, e.g., using the DTC in series. In such cases, the above compensation schemes are not bidirectional and are effective only if the stack is driven with the voltage source as shown in the above figures and not vice versa. Moreover, such schemes are effective if the RF− terminal (or the Q1 source terminal in
The present disclosure overcomes the above problem by providing embodiments according to which the bottom compensation capacitors have the same value of the top compensation capacitors. More generally, assuming that the devices do not have the same Coff, embodiments are provided where compensation capacitances are provided so that the resulting capacitance of the compensated devices is such that the values of such resulting capacitances are symmetrical with respect to the center of the stack. In other words, the stack is symmetrically compensated. For example, with reference to the exemplary scheme of
Reference can be made, for example, to
Turning now to the diagram of
In this respect,
a) and 22(b) show a stack or arm of FET transistors with a MIM or MM capacitor on top in the OFF condition, where the circuit of
In particular,
A first embodiment of the present disclosure to solve the above mentioned problem is shown in the circuit of
In some embodiments, placement of a single MIM capacitor in the middle of the stack can not be advisable due to breakdown voltage limitations of the MIM capacitor. In such case, two or more MIM capacitors can be provided in series, to overcome such limitations.
According to further embodiments of the present disclosure, MIM capacitors can be placed in a variety of positions as long as they are symmetrical with respect to the center of the stack. By way of example, one possible placement could be to double the MIM capacitance and put one on each end of the stack, as shown in
As shown in
In the embodiment of
It is to be understood that the disclosure is not limited to particular methods or systems, which can, of course, vary. It is also to be understood that the terminology used herein is for the purpose of describing particular embodiments only, and is not intended to be limiting. As used in this specification and the appended claims, the singular forms “a,” “an,” and “the” include plural referents unless the content clearly dictates otherwise. The term “plurality” includes two or more referents unless the content clearly dictates otherwise. Unless defined otherwise, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which the disclosure pertains.
The examples set forth above are provided to give those of ordinary skill in the art a complete disclosure and description of how to make and use the embodiments of the devices and methods for voltage handling of digitally tunable capacitors of the disclosure, and are not intended to limit the scope of what the inventors regard as their disclosure. Modifications of the above-described modes for carrying out the disclosure may be used by persons of skill in the video art, and are intended to be within the scope of the following claims.
A number of embodiments of the disclosure have been described. Nevertheless, it will be understood that various modifications may be made without departing from the spirit and scope of the present disclosure. Accordingly, other embodiments are within the scope of the following claims.
This application is a continuation-in-part of PCT Patent International Application No. PCT/US2009/001358 filed Mar. 2, 2009, entitled “Method and Apparatus for use in Digitally Tuning a Capacitor in an Integrated Circuit Device” which claims the benefit under 35 U.S.C. §119 (e) of U.S. Provisional Application No. 61/067,634, filed Feb. 28, 2008, entitled “Method and Apparatus for Digitally Tuning a Capacitor in an Integrated Circuit Device,” both the PCT International Application No. PCT/US2009/001358 and Provisional Application No. 61/067,634 are incorporated herein by reference as if set forth in full; this application is also related to U.S. patent application Ser. No. 12/803,064 and U.S. patent application Ser. No. 12/803,139 both filed on even date herewith, both entitled “Devices And Methods For Improving Voltage Handling And/Or Bi-Directionality Of Stacks Of Elements When Connected Between Terminals”; and both of the related applications are also incorporated herein by reference as if set forth in full.
Number | Name | Date | Kind |
---|---|---|---|
3699359 | Shelby | Oct 1972 | A |
3975671 | Stoll | Aug 1976 | A |
3988727 | Scott | Oct 1976 | A |
4244000 | Ueda et al. | Jan 1981 | A |
4256977 | Hendrickson | Mar 1981 | A |
4316101 | Minner | Feb 1982 | A |
4317055 | Yoshida et al. | Feb 1982 | A |
4367421 | Baker | Jan 1983 | A |
4810911 | Noguchi | Mar 1989 | A |
4849651 | Estes, Jr. | Jul 1989 | A |
4890077 | Sun | Dec 1989 | A |
4893070 | Milberger et al. | Jan 1990 | A |
4929855 | Ezzeddine | May 1990 | A |
4939485 | Eisenberg | Jul 1990 | A |
4984040 | Yap | Jan 1991 | A |
4985647 | Kawada | Jan 1991 | A |
5012123 | Ayasli et al. | Apr 1991 | A |
5023494 | Tsukii et al. | Jun 1991 | A |
5061911 | Weidman et al. | Oct 1991 | A |
5081706 | Kim | Jan 1992 | A |
5124762 | Childs et al. | Jun 1992 | A |
5146178 | Nojima et al. | Sep 1992 | A |
5272457 | Heckaman et al. | Dec 1993 | A |
5274343 | Russell et al. | Dec 1993 | A |
5285367 | Keller | Feb 1994 | A |
5306954 | Chan et al. | Apr 1994 | A |
5313083 | Schindler | May 1994 | A |
5345422 | Redwine | Sep 1994 | A |
5350957 | Cooper et al. | Sep 1994 | A |
5375257 | Lampen | Dec 1994 | A |
5416043 | Burgener et al. | May 1995 | A |
5442327 | Longbrake et al. | Aug 1995 | A |
5448207 | Kohama | Sep 1995 | A |
5477184 | Uda et al. | Dec 1995 | A |
5488243 | Tsuruta et al. | Jan 1996 | A |
5492857 | Reedy et al. | Feb 1996 | A |
5493249 | Manning | Feb 1996 | A |
5548239 | Kohama | Aug 1996 | A |
5553295 | Pantelakis et al. | Sep 1996 | A |
5554892 | Norimatsu | Sep 1996 | A |
5572040 | Reedy et al. | Nov 1996 | A |
5576647 | Sutardja | Nov 1996 | A |
5596205 | Reedy et al. | Jan 1997 | A |
5597739 | Sumi et al. | Jan 1997 | A |
5600169 | Burgener et al. | Feb 1997 | A |
5629655 | Dent | May 1997 | A |
5663570 | Reedy et al. | Sep 1997 | A |
5681761 | Kim | Oct 1997 | A |
5694308 | Cave | Dec 1997 | A |
5699018 | Yamamoto et al. | Dec 1997 | A |
5717356 | Kohama | Feb 1998 | A |
5731607 | Kohama | Mar 1998 | A |
5748053 | Kameyama et al. | May 1998 | A |
5760652 | Yamamoto et al. | Jun 1998 | A |
5774792 | Tanaka et al. | Jun 1998 | A |
5777530 | Nakatuka | Jul 1998 | A |
5784687 | Itoh et al. | Jul 1998 | A |
5793246 | Vest et al. | Aug 1998 | A |
5801577 | Tailliet | Sep 1998 | A |
5807772 | Takemura | Sep 1998 | A |
5812939 | Kohama | Sep 1998 | A |
5818099 | Burgharz | Oct 1998 | A |
5818278 | Yamamoto et al. | Oct 1998 | A |
5818283 | Tonami et al. | Oct 1998 | A |
5818766 | Song | Oct 1998 | A |
5821800 | Le et al. | Oct 1998 | A |
5825227 | Kohama et al. | Oct 1998 | A |
5861336 | Reedy et al. | Jan 1999 | A |
5863823 | Burgener | Jan 1999 | A |
5874836 | Nowak et al. | Feb 1999 | A |
5874849 | Marotta et al. | Feb 1999 | A |
5878331 | Yamamoto et al. | Mar 1999 | A |
5883396 | Reedy et al. | Mar 1999 | A |
5883541 | Tahara et al. | Mar 1999 | A |
5895957 | Reedy et al. | Apr 1999 | A |
5903178 | Miyatsuji et al. | May 1999 | A |
5912560 | Pasternak | Jun 1999 | A |
5917362 | Kohama | Jun 1999 | A |
5920233 | Denny | Jul 1999 | A |
5926466 | Ishida et al. | Jul 1999 | A |
5930638 | Reedy et al. | Jul 1999 | A |
5945867 | Uda et al. | Aug 1999 | A |
5969560 | Kohama et al. | Oct 1999 | A |
5973363 | Staab et al. | Oct 1999 | A |
5973382 | Burgener et al. | Oct 1999 | A |
5973636 | Okubo et al. | Oct 1999 | A |
5986518 | Dougherty | Nov 1999 | A |
5990580 | Weigand | Nov 1999 | A |
6057555 | Reedy et al. | May 2000 | A |
6057723 | Yamaji et al. | May 2000 | A |
6064872 | Vice | May 2000 | A |
6066993 | Yamamoto et al. | May 2000 | A |
6081694 | Matsuura et al. | Jun 2000 | A |
6094088 | Yano | Jul 2000 | A |
6114923 | Mizutani | Sep 2000 | A |
6118343 | Winslow | Sep 2000 | A |
6133752 | Kawagoe | Oct 2000 | A |
6177826 | Mashiko et al. | Jan 2001 | B1 |
6188247 | Storino et al. | Feb 2001 | B1 |
6188590 | Chang et al. | Feb 2001 | B1 |
6215360 | Callaway, Jr. | Apr 2001 | B1 |
6218890 | Yamaguchi et al. | Apr 2001 | B1 |
6288458 | Berndt | Sep 2001 | B1 |
6300796 | Troutman et al. | Oct 2001 | B1 |
6308047 | Yamamoto et al. | Oct 2001 | B1 |
6356536 | Repke | Mar 2002 | B1 |
6365488 | Liao | Apr 2002 | B1 |
6380793 | Bancal et al. | Apr 2002 | B1 |
6380796 | Sakai et al. | Apr 2002 | B2 |
6392440 | Nebel | May 2002 | B2 |
6407614 | Takahashi | Jun 2002 | B1 |
6452232 | Adan | Sep 2002 | B1 |
6461902 | Xu et al. | Oct 2002 | B1 |
6486511 | Nathanson et al. | Nov 2002 | B1 |
6512269 | Bryant et al. | Jan 2003 | B1 |
6563366 | Kohama | May 2003 | B1 |
6642578 | Arnold et al. | Nov 2003 | B1 |
6653697 | Hidaka et al. | Nov 2003 | B2 |
6683499 | Lautzenhiser et al. | Jan 2004 | B2 |
6684065 | Bult | Jan 2004 | B2 |
6693498 | Sasabata et al. | Feb 2004 | B1 |
6698082 | Crenshaw et al. | Mar 2004 | B2 |
6698498 | Ziegelaar et al. | Mar 2004 | B1 |
6711397 | Petrov et al. | Mar 2004 | B1 |
6747522 | Pietruszynski et al. | Jun 2004 | B2 |
6753738 | Baird | Jun 2004 | B1 |
6774701 | Heston et al. | Aug 2004 | B1 |
6781805 | Urakawa | Aug 2004 | B1 |
6803680 | Brindle et al. | Oct 2004 | B2 |
6804502 | Burgener et al. | Oct 2004 | B2 |
6836172 | Okashita | Dec 2004 | B2 |
6871059 | Piro et al. | Mar 2005 | B1 |
6889036 | Ballweber et al. | May 2005 | B2 |
6906653 | Uno | Jun 2005 | B2 |
6917258 | Kushitani et al. | Jul 2005 | B2 |
6947720 | Razavi et al. | Sep 2005 | B2 |
6975271 | Adachi et al. | Dec 2005 | B2 |
6978122 | Kawakyu et al. | Dec 2005 | B2 |
7057472 | Fukamachi et al. | Jun 2006 | B2 |
7082293 | Rofougaran et al. | Jul 2006 | B1 |
7092677 | Zhang et al. | Aug 2006 | B1 |
7123898 | Burgener et al. | Oct 2006 | B2 |
7129545 | Cain | Oct 2006 | B2 |
7132873 | Hollmer | Nov 2006 | B2 |
7138846 | Suwa et al. | Nov 2006 | B2 |
7161197 | Nakatsuka et al. | Jan 2007 | B2 |
7173471 | Nakatsuka et al. | Feb 2007 | B2 |
7190933 | De Ruijter et al. | Mar 2007 | B2 |
7199635 | Nakatsuka et al. | Apr 2007 | B2 |
7212788 | Weber et a | May 2007 | B2 |
7269392 | Nakajima et al. | Sep 2007 | B2 |
7299018 | Van Rumpt | Nov 2007 | B2 |
7307490 | Kizuki | Dec 2007 | B2 |
7345342 | Challa | Mar 2008 | B2 |
7345521 | Takahashi et al. | Mar 2008 | B2 |
7391282 | Nakatsuka et al. | Jun 2008 | B2 |
7432552 | Park | Oct 2008 | B2 |
7460852 | Burgener et al. | Dec 2008 | B2 |
7515882 | Kelcourse et al. | Apr 2009 | B2 |
7546089 | Bellantoni | Jun 2009 | B2 |
7561853 | Miyazawa | Jul 2009 | B2 |
7796969 | Kelly et al. | Sep 2010 | B2 |
7825715 | Greenberg | Nov 2010 | B1 |
7860499 | Burgener et al. | Dec 2010 | B2 |
7910993 | Brindle et al. | Mar 2011 | B2 |
7960772 | Englekirk | Jun 2011 | B2 |
8044739 | Rangarajan et al. | Oct 2011 | B2 |
8536636 | Englekirk | Sep 2013 | B2 |
20010040479 | Zhang | Nov 2001 | A1 |
20020120103 | Rosen et al. | Aug 2002 | A1 |
20030002452 | Sahota | Jan 2003 | A1 |
20030090313 | Burgener et al. | May 2003 | A1 |
20030181167 | Iida | Sep 2003 | A1 |
20040080364 | Sander et al. | Apr 2004 | A1 |
20040204013 | Ma et al. | Oct 2004 | A1 |
20040242182 | Hidaka et al. | Dec 2004 | A1 |
20050017789 | Burgener et al. | Jan 2005 | A1 |
20050068103 | Dupuis et al. | Mar 2005 | A1 |
20050079829 | Ogawa et al. | Apr 2005 | A1 |
20050151575 | Sibrai et al. | Jul 2005 | A1 |
20050285684 | Burgener et al. | Dec 2005 | A1 |
20050287976 | Burgener et al. | Dec 2005 | A1 |
20060009164 | Kataoka | Jan 2006 | A1 |
20060077082 | Shanks et al. | Apr 2006 | A1 |
20060160520 | Miyazawa | Jul 2006 | A1 |
20060161520 | Brewer et al. | Jul 2006 | A1 |
20060194558 | Kelly | Aug 2006 | A1 |
20060194567 | Kelly et al. | Aug 2006 | A1 |
20060270367 | Burgener et al. | Nov 2006 | A1 |
20070018247 | Brindle et al. | Jan 2007 | A1 |
20070120103 | Burgener et al. | May 2007 | A1 |
20080265978 | Englekirk | Oct 2008 | A1 |
20090224843 | Radoias et al. | Sep 2009 | A1 |
20110227666 | Manssen et al. | Sep 2011 | A1 |
20130208396 | Bawell et al. | Aug 2013 | A1 |
20130222075 | Reedy et al. | Aug 2013 | A1 |
Number | Date | Country |
---|---|---|
19832565 | Aug 1999 | DE |
385641 | Sep 1990 | EP |
0622901 | Nov 1994 | EP |
782267 | Jul 1997 | EP |
913939 | May 1999 | EP |
625831 | Nov 1999 | EP |
2568608 | Mar 2013 | EP |
55-75348 | Jun 1980 | JP |
1254014 | Oct 1989 | JP |
2161769 | Jun 1990 | JP |
4183008 | Jun 1992 | JP |
5299995 | Nov 1993 | JP |
6112795 | Apr 1994 | JP |
06-314985 | Nov 1994 | JP |
06-334506 | Dec 1994 | JP |
6334506 | Dec 1994 | JP |
7046109 | Feb 1995 | JP |
07-070245 | Mar 1995 | JP |
07106937 | Apr 1995 | JP |
8023270 | Jan 1996 | JP |
8070245 | Mar 1996 | JP |
8148949 | Jun 1996 | JP |
11163704 | Jun 1996 | JP |
6-307305 | Nov 1996 | JP |
8330930 | Dec 1996 | JP |
9008627 | Jan 1997 | JP |
9041275 | Feb 1997 | JP |
9055682 | Feb 1997 | JP |
9092785 | Apr 1997 | JP |
9148587 | Jun 1997 | JP |
9163721 | Jun 1997 | JP |
09163721 | Jun 1997 | JP |
09-200021 | Jul 1997 | JP |
9181641 | Jul 1997 | JP |
9186501 | Jul 1997 | JP |
09200021 | Jul 1997 | JP |
9200074 | Jul 1997 | JP |
9238059 | Sep 1997 | JP |
9243738 | Sep 1997 | JP |
09-008621 | Oct 1997 | JP |
9270659 | Oct 1997 | JP |
9284114 | Oct 1997 | JP |
9284170 | Oct 1997 | JP |
9298493 | Oct 1997 | JP |
9326642 | Dec 1997 | JP |
10079467 | Mar 1998 | JP |
10-93471 | Apr 1998 | JP |
10-242829 | Sep 1998 | JP |
10242826 | Sep 1998 | JP |
10335901 | Dec 1998 | JP |
10344247 | Dec 1998 | JP |
11026776 | Jan 1999 | JP |
11112316 | Apr 1999 | JP |
11-136111 | May 1999 | JP |
11163642 | Jun 1999 | JP |
11205188 | Jul 1999 | JP |
11274804 | Oct 1999 | JP |
2000031167 | Jan 2000 | JP |
2000183353 | Jun 2000 | JP |
2000188501 | Jul 2000 | JP |
2000208614 | Jul 2000 | JP |
2000223713 | Aug 2000 | JP |
2000243973 | Sep 2000 | JP |
2000277703 | Oct 2000 | JP |
2000294786 | Oct 2000 | JP |
2000311986 | Nov 2000 | JP |
2001089448 | Mar 2001 | JP |
2001-119281 | Apr 2001 | JP |
2001157487 | May 2001 | JP |
2001156182 | Jun 2001 | JP |
2001274265 | Oct 2001 | JP |
2004515937 | May 2002 | JP |
2002164441 | Jun 2002 | JP |
2003060451 | Feb 2003 | JP |
2003167615 | Jun 2003 | JP |
2003189248 | Jul 2003 | JP |
2002156602 | Dec 2003 | JP |
2004166470 | Jun 2004 | JP |
2004199950 | Jul 2004 | JP |
1994027615 | Dec 1994 | KR |
WO8601037 | Feb 1986 | WO |
WO9523460 | Aug 1995 | WO |
WO9806174 | Feb 1998 | WO |
WO9935695 | Jul 1999 | WO |
WO0227920 | Apr 2002 | WO |
WO2007033045 | Mar 2007 | WO |
WO-2008133621 | Nov 2008 | WO |
WO-2009108391 | Sep 2009 | WO |
Entry |
---|
Le, Dinh Thanh, Office Action received from the USPTO dated Jun. 23, 2011 for U.S. Appl. No. 12/803,064, 16 pgs. |
Brosa, Anna-Maria, extended European Search Report received from the EPO dated Jul. 15, 2011 for related application No. 09715932.1, 12 pgs. |
Le, Dinh, Office Action from the USPTO dated Dec. 1, 2011 for related U.S. Appl. No. 12/803,064, 23 pgs. |
Patel, Reema, Office Action from the USPTO dated Dec. 5, 2011 for related U.S. Appl. No. 13/046,560, 13 pgs. |
Dang, Hung, Office Action from the USPTO dated Dec. 22, 2011 for related U.S. Appl. No. 12/735,954, 32 pgs. |
Copenheaver, Brian, International Search Report and Written Opinion for related appln. No. PCT/US2009/001358 dated May 27, 2009, 11 pages. |
Peregrine Semiconductor Corporation, Article 19 Amendment Letter Under Section 205(b) and Rule 46.5 (b) PCT filed in WIPO for related appln. No. PCT/US2009/001358, dated Aug. 11, 2009, 12 pages. |
Kao, W.H., et al., “Parasitic extraction: current state of the art and future trends”, Proceedings of the IEEE, May 2001, vol. 89, Issue 5, pp. 729-739. |
Brambilla, A., et al., “Measurements and extractions of parasitic capacitances in ULSI layouts”, Electron Devices, IEEE Transactions, Nov. 2003, vol. 50, Issue 11, pp. 2236-2247. |
Xu, et al., “An efficient formulation for substrate parasitic extraction accounting for nonuniform current distribution”, Circuits and Systems I: Regular papers, IEEE Transactions, Jun. 2004, vol. 51, Issue 6, pp. 1223-1233. |
Nabors, et al., “FastCap: A Multipole Accelerated 3-D Capacitance Extraction Program”, IEEE Transactions on Computer-Aided Design, vol. 10, No. 11, Nov. 1991, pp. 1447-1459. |
Nabors, et al., “Fast Capacitance Extraction of General Three-Dimensional Structures”, IEEE Transactions on Microwave Theory and Techniques, vol. 40, No. 7, Jul. 1992, pp. 1496-1506. |
Nabors, et al., “Multipole-Accelerated Capacitance Extraction Algorithms for 3-D Structures with Multiple Dielectrics” IEEE Transactions on Circuit and Systems, 1: Fundamental Theory and Applications, vol. 39, No. 11, Nov. 1992, pp. 946-954. |
Tausch, et al., “Capacitance Extraction of 3-D Conductor Systems in Dielectric Media with High-Permittivity Ratios”, IEEE Transactions on Microwave Theory and Techniques, vol. 47, No. 1, Jan. 1999, pp. 18-26. |
Nabors, et al., “A Fast Multipole Algorithm for Capacitance Extraction of Complex 3-D Geometries”, IEEE 1989 Custom Integrated Circuits Conference, May 1989, pp. 21.7.1-21.7.4. |
Nabors, et al., “Fast Capacitance Extraction of General Three-Dimensional Structures”, Proc. Int. Conf. on Computer Design, Cambridge, MA, Oct. 1991, pp. 479-484. |
Nabors, et al., “Including Conformal Dielectrics in Multipole-Accelerated Three-Dimensional Interconnect Capacitance Extraction”, proceedings of NUPAD IV, Seattle, WA, May 1992, 2 pgs. |
Nabors, et al., “Multipole-Accelerated 3-D Capacitance Extraction Algorithms for Structures with Conformal Dielectrics”, Proceeding of the 29th Design Automation Conference, Anaheim, CA, Jun. 1992, pp. 710-715. |
Phillips, et al., “A Precorrected-FFT method for Capacitance Extraction of Complicated 3-D Structures”, Int. Conf. on Computer-Aided Design, Santa Clara, CA, Nov. 1994, 4 pgs. |
Phillips, et al., “Efficient Capacitance Extraction of 3D Structures Using Generalized Pre-Corrected FFT Methods”, Proceedings of the IEEE 3rd Tropical Meeting on Electrical Performance of Electronic Packaging, Monterey, CA, Nov. 1994, 3 pgs. |
Cai, et al., “Efficient Galerkin Techniques for Multipole-Accelerated Capacitance Extraction of 3-D Structures with Multiple Dielectrics” Proceedings of the 16th Conference on Advanced Research in VLSI, Chapel Hill, North Carolina, Mar. 1995, 12 pages. |
Kamon, et al., “FastPep: A Fast Parasitic Extraction Program for Complex Three-Dimensional Geometries”, Proceedings of the IEEE Conference on Computer-Aided Design, San Jose, Nov. 199, pp. 456-460. |
Young, Lee W., International Search Report received from USRO for related appln. No. PCT/US2007/10331 dated Feb. 15, 2008, 14 pages. |
Englekirk, Robert, Preliminary Amendment filed in the USPTO for related U.S. Appl. No. 11/796,522 dated Sep. 11, 2009, 9 pgs. |
Patel, Reema, Office Action received from the USPTO for related U.S. Appl. No. 11/796,522 dated Oct. 2, 2009, 6 pages. |
Englekirk, Robert, Response filed in the USPTO for related U.S. Appl. No. 11/796,522 dated Nov. 2, 2009, 3 pgs. |
Shifrin, M., et al., “Monolithic FET Structures for High-Power Control Component Applications”, IEEE Transactions on Microwave Theory and Techniques, IEEE Service Center, Piscataway, NJ, US., vol. 37, No. 12, Dec. 1, 1989, pp. 2134-2141. |
Shifrin, M., et al., “High Power Control Components using a New Monolithic FET Structure”, Jun. 12, 1989-Jun. 13, 1989; pp. 51-56, XP010087270. |
Volker, Simon, Communication from the European Patent Office for related application No. 09174085.2-1233 dated Dec. 3, 2009, 6 pgs. |
European Patent Office, Communication Pursuant to Rules 161 and 162 EPC received for related appln. No. 07794407.2 dated Dec. 10, 2009, 2 pgs. |
Volker, Simon, European Search Report received from the EPO for related appln. No. 07794407.2, dated Mar. 12, 2010, 8 pgs. |
Patel, Reema, Office Action received from the USPTO for related U.S. Appl. No. 11/796,522, dated Mar. 2, 2010, 8 pages. |
Englekirk, Robert, Amendment filed in the USPTO for related U.S. Appl. No. 11/796,522, dated Jun. 2, 2010, 10 pgs. |
Volker, Simon, Communication Pursuant to Article 94(3) EPC received from the EPO for related appln. No. 09174085.2 dated May 4, 2010, 1 pg. |
Volker, Simon, Communication Pursuant to Article 94(3) EPC received from the EPO for related appln. No. 07794407.2 dated Jun. 15, 2010, 1 pg. |
Peregrine Semiconductor Corporation, Response filed in the EPO for related appln. No. 07794407.2 dated Oct. 20, 2010, 13 pgs. |
Peregrine Semiconductor Corporation, Response filed in the EPO for related appln. No. 09174085.2 dated Oct. 20, 2010, 14 pgs. |
Patel, Reema, Office Action received from the USPTO for related U.S. Appl. No. 11/796,522, dated Aug. 30, 2010, 15 pgs. |
Englekirk, Robert, response filed in the USPTO for related U.S. Appl. No. 11/796,522, dated Dec. 30, 2010, 17 pgs. |
Novak, Rodd, “Overcoming the RF Challenges of Multiband Mobile Handset Design”, RF/Microwave Switches and Connectors, published Jul. 20, 2007, www.rfdesign.com, 3 pgs. |
Qiao, et al., “Antenna Impedance Mismatch Measurement and Correction for Adaptive CDMA Transceivers”, Published Jun. 12-17, 2005, by the IEEE in the 2005 Microwave Symposium Digest, 2005 IEEE MTT-S International, pp. 4, et seq. |
Sjoblom, Peter, “An Adaptive Impedance Tuning CMOS Circuit for ISM 2.4-GHz Band”, Published in the IEEE Transactions on Circuits and Systems—1: Regular Papers, vol. 52, No. 6, pp. 1115-1124, Jun. 2005. |
Sjoblom, Peter, “Measured CMOS Switched High-Quality Capacitors in a Reconfigurable Matching Network”, IEEE Transactions on Circuits and Systems—II: Express Briefs, vol. 54, No. 10, Oct. 2007, pp. 858-862. |
Patel, Reema, Notice of Allowance received from the USPTO for related U.S. Appl. No. 11/796,522, dated Jan. 29, 2011, 9 pgs. |
Peregrine Semiconductor Corporation, Response filed in the EPO dated Feb. 10, 2012 or related application No. 09715932.1, 47 pgs. |
Englekirk, Robert Mark, Amendment filed in the USPTO dated Mar. 5, 2012 for related U.S. Appl. No. 13/046,560, 4 pgs. |
Ranta, Tero Tapio, Amendment filed in the USPTO dated Mar. 21, 2012 for related U.S. Appl. No. 12/735,954, 16 pgs. |
Ranta, Tero Tapio, Amendment filed with RCE in the USPTO dated Apr. 30, 2012 for related U.S. Appl. No. 12/803,064, 16 pgs. |
Kurisu, Masakazu, Office Action and translation received from the Japanese Patent Office dated Apr. 17, 2012 for related appln. No. 2010-506156, 4 pgs. |
Patel, Reema, Notice of Allowance received from the USPTO dated May 24, 2012 for related U.S. Appl. No. 13/046,560, 15 pgs. |
Le, Dinh Thanh, Office Action received from the USPTO dated Jun. 13, 2012 for related U.S. Appl. No. 12/803,064, 14 pgs. |
Theunissen, Lars, Communication under Rule 71(3) EPC received from the EPO dated Jul. 2, 2012 for related appln. No. 09715932.1, 98 pgs. |
Dang, Hung Q., Notice of Allowance received from the USPTO dated Jul. 12, 2012 for related U.S. Appl. No. 12/735,954, 20 pgs. |
Dang, Hung Q., Notice of Allowance received from USPTO dated May 10, 2013 for related U.S. Appl. No. 12/735,954, 22 pgs. |
Ranta, et al., Response filed in USPTO dated May 20, 2013 for related U.S. Appl. No. 12/803,139, 8 pgs. |
Peregrine Semiconductor Corporation, Response filed in the EPO dated May 23, 2013 for related appln. No. 09174085.2, 16 pgs. |
Englekirk, Robert Mark, Issue Fee Transmittal and Comments on Examiner's Statement of Reasons for Allowance filed in the USPTO dated Jun. 17, 2013 for related U.S. Appl. No. 13/046,560, 4 pgs. |
Gu, et al., “Low Insertion Loss and High Linearity PHEMT SPDT and SP3T Switch Ics for WLAN 802.11a/b/g Application”, 2004 IEEE Radio Frequency Integrated Circuits Symposium, 2004, pp. 505-508. |
Koudymov, et al., “Low Loss High Power RF Switching Using Multifinger AlGaN/GaN MOSHFETs”, University of South Carolina Scholar Commons, 2002, pp. 449-451. |
Abidi, “Low Power Radio Frequency IC's for Portable Communications”, IEEE, 1995, pp. 544-569. |
Kuo, et al., “Low Voltage SOI CMOS VLSI Devices and Circuits”, Wiley, 2001, pp. 57-60, 349-354. |
Wei, et al., “Measuremenets of Transient Effects in SOI DRAM/SRAM Access Transistors”, IEEE Electron Device Letters, vol. 17, No. 5, May 1996. |
De La Houssaye, et al., “Microwave Performance of Optically Fabricated T-Gate Thin Film Silicon on Sapphire Based MOSFET's”, IEEE Electron Device Letters, 1995, pp. 289-292. |
Shifrin, et al., “Monolithic FET Structure for HighPower Control Component Applications”, IEEE Transactions on Microwave Theory and Techniques, 1989, pp. 2134-2142. |
Smuk, et al., “Monolithic GaAs Multi-Throw Switches with Integrated Low Power Decoder/Driver Logic”, 1997, IEEE Radio Frequency Integrated Circuits. |
McGrath, et al., “Multi Gate FET Power Switches”, Applied Microwave, 1991, pp. 77-88. |
Smuk, et al., “Multi-Throw Plastic MMIC Switches up to 6GHz with Integrated Positive Control Logic”, IEEE, 1999, pp. 259-262. |
Razavi, “Next Generation RF Circuits and Systems”, IEEE, 1997, pp. 270-282. |
Gould, et al., “NMOS SPDT Switch MMIC with >48dB Isolation and 30dBm IIP3 for Applications within GSM and UMTS Bands”, Bell Labs, 2001, pp. 1-4. |
Caverly, “Nonlinear Properties of Gallium Arsenide and Silicon FET-Based RF and Microwave Switches”, IEEE, 1998, pp. 1-4. |
Tieu, Notice of Allowance and Fee(s) Due from the USPTO dated May 2004 relating to U.S. Appl. No. 10/267,531. |
Tieu, Notice of Allowance and Fee(s) Due from the USPTO dated Jul. 2008 relating to U.S. Appl. No. 11/582,206. |
Tieu, Notice of Allowance and Fee(s) Due from the USPTO dated Jun. 2006 relating to U.S. Appl. No. 10/922,135. |
Tran, Notice of Allowance and Fee(s) Due from the USPTO dated Jun. 2010 relating to U.S. Appl. No. 11/501,125. |
Tieu, Notice of Allowance and Fee(s) Due from the USPTO dated Apr. 2010 relating to U.S. Appl. No. 11/347,014. |
Tieu, Notice of Allowance and Fee(s) Due from the USPTO dated Dec. 2008 relating to U.S. Appl. No. 11/127,520. |
Luu, Notice of Allowance and Fee(s) Due from the USPTO dated Jul. 2009 relating to U.S. Appl. No. 11/351,342. |
Miyajima, Notice of Reasons for Refusal from the Japanese Patent Office dated Feb. 2006 relating to appln. No. 2003-535287. |
McGrath, et al., “Novel High Performance SPDT Power Switches Using Multi-Gate FET's”, IEEE, 1991, pp. 839-842. |
Tieu, Office Action from the USPTO dated Nov. 2007 relating to U.S. Appl. No. 11/582,206. |
Tieu, Office Action from the USPTO dated Jun. 2005 relating to U.S. Appl. No. 10/922,135. |
Tieu, Notice of Allowance from the USPTO dated Jun. 2006 relating to U.S. Appl. No. 10/922,135. |
Chow, Office Action from the USPTO dated Apr. 2010 relating to U.S. Appl. No. 11/347,671. |
Tieu, Office Action from the USPTO dated Sep. 2009 relating to U.S. Appl. No. 11/347,014. |
Luu, Office Action from the USPTO dated Oct. 2008 relating to U.S. Appl. No. 11/351,342. |
Chow, Office Action from the USPTO dated Aug. 2010 relating to U.S. Appl. No. 11/347,671. |
Suematsu, “On-Chip Matching SI-MMIC for Mobile Communication Terminal Application”, IEEE, 1997, pp. 9-12. |
Caverly, et al., “On-State Distortion in High Electron Mobility Transistor Microwave and RF Switch Control Circuits”, IEEE Transactions on Microwave Theory and Techniques, 2000, pp. 98-103. |
Kelly, Proposed Amendment After Final from the USPTO dated Jun. 2009 relating to U.S. Appl. No. 11/351,342. |
“Radiation Hardened CMOS Dual DPST Analog Switch”, Intersil, 1999, pp. 1-2. |
Yamamoto, Kazuya, et al., “A 2.2-V Operation, 2.4-GHz Single-Chip GaAs MMIC Transceiver for Wireless Applications”, IEEE Journal of Solid-State Circuits, vol. 34. No. 4, Apr. 1999, pp. 502-512. |
Ajjkuttira, et al., “A Fully Integrated CMOS RFIC for Bluetooth Applications”, IEEE International Solid-State Circuits Conference, 2001, pp. 1-3. |
Apel, et al., “A GaAs MMIC Transceiver for 2.45 GHz Wireless Commercial Products”, Microwave and Millimeter-Wave Monolithic Circuits Symposium, 1994, pp. 15-18. |
Assaderaghi, et al., “Dynamic Threshold Voltage MOSFET (DTMOS) for Ultra Low Voltage VLSI”, IEEE Transactions on Electron Devices, vol. 44, No. 3, Mar. 1997, pp. 414-422. |
Bolam, et al., “Reliability Issues for Silicon-on-Insulator”, IEEE, 2000, pp. 6.4.1-6.4.4. |
Bolam, et al., “Reliability Issues for Silicon-on-Insulator”, IBM Micro Electronics Division, IEEE 2000, pp. 6.4.1-6.4.4. |
Caverly, et al., “CMOS RF Circuits for Integrated Wireless Systems”, IEEE, 1998, pp. 1-4. |
Chao, et al., “High-Voltage and High-Temperature Applications of DTMOS with Reverse Schottky Barrier on Substrate Contacts”, IEEE Electron Device Letters, vol. 25, No. 2, Feb. 2004, pp. 86-88. |
Devlin, et al., “A 2.4 GHz Single Chip Transceiver”, Microwave and Millimeter-Wave Monolithic Circuits Symposium, 1993, pp. 23-26. |
Fiorenza, et al., “RF Power Performance of LDMOSFETs on SOI: An Experimental Comparison with Bulk Si MOSFETs”, IEEE Radio Frequency Integrated Circuits Symposium, 2001, pp. 43-46. |
Giffard, et al., “Dynamic Effects in SOI MOSFETs”, IEEE SOS/SOI Technology Conference, Oct. 1991, pp. 160-161. |
Hirano, et al., “Impact of Actively Body-Bias Controlled (ABC) SOI SRAM by Using Direct Body Contact Technology for Low-Voltage Applications”, IEEE, 2003, pp. 2.4.1-2.4.4. |
Imai, et al., “Novel High Isolation FET Switches”, IEEE Transactions on Microwave Theory and Techniques, 1996, pp. 685-691. |
Ishida, et al., “A Low Power GaAs Front End IC with Current Reuse Configuration Using 0.15um Gate GaAs MODFETs”, IEEE, 1997, pp. 669-672. |
Iwata, et al., “Gate Over Driving CMOS Architecture for 0.5V Single Power Supply Operated Devices”, IEEE, 1997, pp. 290-291, 473. |
Kumar, et al., “A Simple High Performance Complementary TFSOI BiCMOS Technology with Excellent Cross-Talk Isolation”, 2000 IEEE International SOI Conference, 2000, pp. 142-143. |
Kwok, “An X-Band SOS Resistive Gate Insulator Semiconductor (RIS) Switch”, IEEE Transactions on Electron Device, 1980, pp. 442-448. |
Lee, et al., “Effect of Body Structure on Analog Performance of SOI NMOSFETs”, 1998 IEEE International SOI Conference, Oct. 1998, pp. 61-62. |
Lee, “CMOS RF: (Still) No Longer an Oxymoron (Invited)”, IEEE Radio Frequency Integrated Circuits Symposium, 1999, pp. 3-6. |
Madihian, et al., “A 2-V, 1-10GHz BiCMOS Transceiver Chip for Multimode Wireless Communications Networks”, IEEE, 1997, pp. 521-525. |
McRory, et al., “Transformer Coupled Stacked FET Power Amplifier”, IEEE Journal of Solid State Circuits, vol. 34, No. 2, Feb. 1999, pp. 157-161. |
Nagayama, et al., “Low Insertion Los DP3T MMIC Switch for Dual Band Cellular Phones”, IEEE Jounral of Solid State Circuits, 1999, pp. 1051-1055. |
Nishijima, et al., “A High Performance Transceiver Hybrid IC for PHS Hand Set Operating with Single Positive Voltage Supply”, Microwave Symposium Digest, 1997, pp. 1155-1158. |
O, et al., “CMOS Components for 802.11b Wireless LAN Applications”, IEEE Radio Frequency Integrated Circuits Symposium, 2002, pp. 103-106. |
Peczalski, “RF/Analog/Digital SOI Technology GPS Receivers and Other Systems on a Chip”, IEEE Aerospace Conference Proceedings, 2002, pp. 2013-2017. |
Shifrin, et al., “A New Power Amplifier Topology with Series Biasing and Power Combining of Transistors”, IEEE 1992 Microwave and Millimeter-Wave Monolithic Circuits Symposium, 1992, pp. 39-41. |
Shimura, et al., “High Isolation V-Band SPDT Switch MMIC for High Power Use”, IEEE MTT-S International Microwave Symposium Digest, 2001, pp. 245-248. |
Uda, et al., “A High Performance and Miniturized Dual Use (antenna/local) GaAs SPDT Switch IC Operating at +3V/0V”, Microwave Symposium Digest, 1996, pp. 141-144. |
Uda, et al., “High Performance GaAs Switch IC's Fabricated Using MESFETs with Two Kinds of Pinch Off Voltages and a Symmetrical Pattern Configuration”, IEEE Journal of Solid-State Circuits, 1994, pp. 1262-1269. |
“An Ultra-Thin Silicon Technology that Provides Integration Solutions on Standard CMOS”, Peregrine Semiconductor, 1998. |
Caverly, “Distortion in Microwave Control Devices”, 1997. |
Masuda, et al., “RF Current Evaluation of ICs by MP-10L”, NEC Research & Development, vol. 40-41, 1999, pp. 253-258. |
“Miniature Dual Control SP4T Switches for Low Cost Multiplexing”, Hittite Microwave, 1995. |
Uda, “Miniturization and High Isolation of a GaAs SPDT Switch IC Mounted in Plastic Package”, 1996. |
Marshall, et al., “SOI Design: Analog, Memory, and Digital Techniques”, Kluwer Academic Publishers, 2002. |
Brinkman, et al., Respondents' Notice of Prior Art, Investigation No. 337-TA-848, dated Aug. 31, 2012, 59 pgs. |
Lauterbach, et al., “Charge Sharing Concept and New Clocking Scheme for Power Efficiency and Electromagnetic Emission Improvement of Boosted Charge Pumps”, IEEE Journal of Solid-State Circuits, vol. 35, No. 5, May 2000, pp. 719-723. |
Caverly, “Development of a CMOS Cell Library for RF Wireless and Telecommunications Applications”, VLSI Symposium, 1998. |
Caverly, “Distortion Properties of Gallium Arsenide and Silicon RF and Microwave Switches”, IEEE, 1997, pp. 153-156. |
Luu, Final Office Action received from the USPTO dated Apr. 2009 relating to U.S. Appl. No. 11/351,342. |
Colinge, “Fully Depleted SOI CMOS for Analog Applications”, IEEE Transactions on Electron Devices, 1998, pp. 1010-1016. |
Flandre, et al., “Fully Depleted SOI CMOS Technology for Low Voltage Low Power Mixed Digital/Analog/Microwave Circuits”, Analog Integrated Circuits and Signal Processing, 1999, pp. 213-228. |
Yamao, “GaAs Broadband Monolithic Switches”, 1986, pp. 63-71. |
Gopinath, et al., “GaAs FET RF Switches”, IEEE Transactions on Electron Devices, 1985, pp. 1272-1278. |
Lee, et al., “Harmonic Distortion Due to Narrow Width Effects in Deep Submicron SOI-CMOS Device for Analog RF Applications”, 2002 IEEE International SOI Conference, Oct. 2002. |
HI-5042 thru HI-5051 Datasheet, Harris Corporation, 1999. |
Eisenberg, et al., “High Isolation 1-20GHz MMIC Switches with On-Chip Drivers”, IEEE Microwave and Millimeter-Wave Monolithic Circuits Symposium, 1989, pp. 41-45. |
Shifrin et al., “High Power Control Components Using a New Monolithic FET Structure”, IEEE Microwave and Millimeter-Wave Monolithic Circuits Symposium, 1988, pp. 51-56. |
Kohama, et al., “High Power DPDT Antenna Switch MMIC for Digital Cellular Systems”, GaAs IC Symposium, 1995, pp. 75-78. |
Kohama, et al., “High Power DPDT Antenna Switch MMIC for Digital Cellular Systems”, IEEE Journal of Solid-State Circuits, 1996, pp. 1406-1411. |
Yun, et al., “High Power-GaAs MMIC Switches wtih Planar Semi-Insulated Gate FETs (SIGFETs)”, International Symposium on Power Semiconductor Devices & ICs, 1990, pp. 55-58. |
Caverly, “High Power Gallium Nitride Devices for Microwave and RF Control Applications”, 1999, pp. 1-30. |
Caverly, “High Power Gallium Nitride Devices for Microwave and RF Control Applications”, 2000, pp. 1-33. |
Masuda, et al., “High Power Heterojunction GaAs Switch IC with P-1dB of more than 38dBm for GSM Application”, IEEE, 1998, pp. 229-232. |
De Boer, et al., “Highly Integrated X-Band Multi-Function MMIC with Integrated LNA and Driver Amplifier”, TNO Physics and Electronics Laboratory, 2002, pp. 1-4. |
Kanda, et al., “High Performance 19GHz Band GaAs FET Switches Using LOXI (Layerd Oxide Isolation)—MESFETs”, IEEE, 1997, pp. 62-65. |
Uda, et al., “High-Performance GaAs Switch IC's Fabricated Using MESFET's with Two Kinds of Pinch-Off Voltages and a Symmetrical Pattern Configuration”, IEEE Journal of Solid-State Circuits, vol. 29, No. 10, Oct. 1994, pp. 1262-1269. |
Uda, et al., “High Performance GaAs Switch IC's Fabricated Using MESFETs with Two Kinds of Pinch Off Voltages”, IEEE GaAs IC Symposium, 1993, pp. 247-250. |
Armijos, “High Speed DMOS FET Analog Switches and Switch Arrays”, Temic Semiconductors 1994, pp. 1-10. |
Katzin, et al., “High Speed 100+ W RF Switches Using GaAs MMICs”, IEEE Transactions on Microwave Theory and Techniques, 1992, pp. 1989-1996. |
Honeywell, “Honeywell SPDT Absorptive RF Switch”, Honeywell, 2002, pp. 1-6. |
Honeywell, “Honeywell SPDT Reflective RF Switch”, Honeywell Advance Information, 2001, pp. 1-3. |
Hirano, et al., “Impact of Actively Body Bias Controlled (ABC) SOI SRAM by Using Direct Body Contact Technology for Low Voltage Application”, IEEE, 2003, pp. 2.4.1-2.4.4. |
Larson, “Integrated Circuit Technology Options for RFIC's—Present Status and Future Directions”, IEEE Journal of Solid-State Circuits, 1998, pp. 387-399. |
Burghartz, “Integrated RF and Microwave Components in BiCMOS Technology”, IEEE Transactions on Electron Devices, 1996, pp. 1559-1570. |
Kelly, “Integrated Ultra CMIS Designs in GSM Front End”, Wireless Design Magazine, 2004, pp. 18-22. |
Bonkowski, et al., “Integraton of Triple Band GSM Antenna Switch Module Using SOI CMOS”, IEEE Radio Frequency Integrated Circuits Symposium, 2004, pp. 511-514. |
Le, International Search Report from the USPTO dated Mar. 2003 relating to U.S. Appl. No. 10/267,531. |
Marenk, et al., “Layout Optimization of Cascode RF SOI Transistors”, IEEE International SOI Conference, 2001, pp. 105-106. |
Suematsu, et al., “L-Band Internally Matched Si-MMIC Front End”, IEEE, 1996, pp. 2375-2378. |
Iyama, et al., “L-Band SPDT Switch Using Si-MOSFET”, IEICE Trans. Electron, vol. E79-C, No. 5, May 1996, pp. 636-643. |
Caverly, “Linear and Nonlinear Characteristics of the Silicon CMOS Monolithic 50-Omega Microwave and RF Control Element”, IEEE Journal of Solid-State Circuits, 1999, pp. 124-126. |
Adan, et al., “Linearity and Low Noise Performance of SOIMOSFETs for RF Applications”, IEEE International SOI Conference, 2000, pp. 30-31. |
Megahed, et al., “Low Cost UTSi Technology for RF Wireless Applications”, IEEE MTT-S Digest, 1998. |
Suehle, et al., “Low Electric Field Breakdown of Thin Si02 Films Under Static and Dynamic Stress”, IEEE Transactions on Electron Devices, vol. 44, No. 5, May 1997. |
Newman, “Radiation Hardened Power Electronics”, Intersil Corporation, 1999, pp. 1-4. |
Kelly, Response and Terminal Disclaimer filed in the USPTO dated Mar. 2010 relating to U.S. Appl. No. 11/347,014. |
Burgener, et al., Response filed in the USPTO dated May 2006 relating to U.S. Appl. No. 10/922,135. |
Kelly, Response to Office Action mailed to USPTO relating to U.S. Appl. No. 11/351,342 dated Jan. 30, 2009. |
“RF & Microwave Device Overview 2003—Silicon and GaAs Semiconductors”, NEC, 2003. |
“RF Amplifier Design Using HFA3046, HFA3096, HFA3127, HFA3128 Transistor Arrays”, Intersil Corporation, 1996, pp. 1-4. |
“SA630 Single Pole Double Throw (SPDT) Switch”, Philips Semiconductors, 1997. |
Narendra, et al., “Scaling of Stack Effects and its Application for Leakage Reduction”, ISLPED 2001, 2001, pp. 195-200. |
Huang, “Schottky Clamped MOS Transistors for Wireless CMOS Radio Frequency Switch Application”, University of Florida, 2001, pp. 1-167. |
Botto, et al., “Series Connected Soft Switched IGBTs for High Power, High Voltage Drives Applications: Experimental Results”, IEEE, 1997, pp. 3-7. |
Baker, et al., “Series Operation of Power MOSFETs for High Speed Voltage Switching Applications”, American Institute of Physics, 1993, pp. 1655-1656. |
Lovelace, et al., “Silicon MOSFET Technology for RF ICs”, IEEE, 1995, pp. 1238-1241. |
RODGERs, et al., “Silicon UTSi CMOS RFIC for CDMA Wireless Communications System”, IEEE MTT-S Digest, 1999, pp. 485-488. |
“Silicon Wave SiW1502 Radio Modem IC”, Silicon Wave, 2000, pp. 1-21. |
Johnson, et al., “Silicon-On-Sapphire MOSFET Transmit/Receive Switch for L and S Band Transceiver Applications”, Electronic Letters, 1997, pp. 1324-1326. |
Reedy, et al., “Single Chip Wireless Systems Using SOI”, IEEE International SOI Conference, 1999, pp. 8-11. |
Stuber, et al., “SOI CMOS with High Performance Passive Components for Analog, RF and Mixed Signal Designs”, IEEE International SOI Conference, 1998, pp. 99-100. |
Chung, et al., “SOI MOSFET Structure with a Junction Type Body Contact for Suppression of Pass Gate Leakage”, IEEE Transactions on Electron Devices, vol. 48, No. 7, Jul. 2001. |
Rozeau, “SOI Technologies Overview for Low Power Low Voltage Radio Frequency Applications”, Analog Integrated Circuits and Signal Processing, Nov. 2000, pp. 93-114. |
Fukuda, et al., “SOI CMOS Device Technology”, Special Edition on 21st Century Solutions, 2001, pp. 54-57. |
Fukuda, et al., “SOI CMOS Device Technology”, OKI Technical Review, 2001, pp. 54-57. |
Kusunoki, et al., “SPDT Switch MMIC Using E/D Mode GaAs JFETs for Personal Communications”, IEEE GaAs IC Symposium, 1992, pp. 135-138. |
Caverly, et al., “Spice Modeling of Microwave and RF Control Diodes”, IEEE, 2000, pp. 28-31. |
Kuang, et al., “SRAM Bitline Circuits on PD SOI: Advantages and Concerns”, IEEE Journal of Solid State Circuits, vol. 32, No. 6, Jun. 1997. |
Baker, et al., “Stacking Power MOSFETs for Use in High Speed Instrumentation”, American Institute of Physics, 1992, pp. 5799-5801. |
Sanders, “Statistical Modeling of SOI Devices for the Low Power Electronics Program”, AET, Inc., 1995, pp. 1-109. |
Maeda, et al., “Substrate Bias Effect and Source Drain Breakdown Characteristics in Body Tied Short Channel SOI MOSFETs”, IEEE Transactions on Electron Devices, vol. 46, No. 1, Jan. 1999, pp. 151-158. |
Makioka, et al., “Super Self Aligned GaAs RF Switch IC with 0.25dB Extremely Low Insertion Loss for Mobile Communication Systems”, IEEE Transactions on Electron Devices, vol. 48, No. 8, Aug. 2001, pp. 1510-1514. |
Karandikar, et al., “Technology Mapping for SOI Domino Logic Incorporating Solutions for the Parasitic Bipolar Effect”, ACM, 2001, pp. 1-14. |
NEC Corporation, “uPG13xG Series L-Band SPDT Switch GaAs MMIC”, Document No. P1096EJ1VOANDO (1st Edition), Feb. 1996, 30 pgs. |
Pozar, “Microwave and RF Design of Wireless Systems”, Wiley, 2001. |
Maas, “The RF and Microwave Circuit Design Cookbook”, Artech House, 1998. |
Smith, “Modern Communication Systems”, McGraw-Hill, 1998. |
Van Der Pujie, “Telecommunication Circuit Design”, Wiley, 2002. |
Razavi, “RF Microelectronics”, Prentice-Hall, 1998. |
Van Der Pujie, “Telecommunication Circuit Design”, Wiley, 1992. |
Weisman, “The Essential Guide to RF and Wireless”, Prentice-Hall, 2000. |
Wetzel, “Silicon-on-Sapphire Technology for Microwave Power Application”, University of California, San Diego, 2001. |
Johnson, “Silicon-on-Sapphire Technology for Microwave Circuit Applications”, Dissertation, UCSD, 1997, pp. 1-184. |
Yamamoto, et al., “A Single-Chip GaAs RF Transceiver for 1.9GHz Digital Mobile Communication Systems”, IEEE Journal of Solid-State Circuits, 1996. |
Yamamoto, et al., “A Single-Chip GaAs RF Transceiver for 1.9GHz Digital Mobile Communication Systems”, IEEE, 1996, pp. 1964-1973. |
Tsutsumi, et al., “A Single Chip PHS Front End MMIC with a True Single +3 Voltage Supply”, IEEE Radio Frequency Integrated Circuits Symposium, 1998, pp. 105-108. |
Wambacq, et al., “A Single Package Solution for Wireless Transceivers”, IEEE, 1999, pp. 1-5. |
Eggert, et al., A SOI-RF-CMOS Technology on High Resistivity SIMOX Substrates for Microwave Applications to 5 GHz, IEEE Transactions on Electron Devices, 1997, pp. 1981-1989. |
Hu, et al., “A Unified Gate Oxide Reliability Model”, IEEE 37th Annual International Reliability Physic Symposium, 1999, pp. 47-51. |
Szedon, et al., “Advanced Silicon Technology for Microwave Circuits”, Naval Research Laboratory, 1994, pp. 1-110. |
Johnson, et al., “Advanced Thin Film Silicon-on-Sapphire Technology: Microwave Circuit Applications”, IEEE Transactions on Electron Devices, 1998, pp. 1047-1054. |
Burgener, et al., Amendment filed in the USPTO dated Dec. 2005 relating to U.S. Appl. No. 10/922,135. |
Burgener, et al., Amendment filed in the USPTO dated May 2008 relating to U.S. Appl. No. 11/582,206. |
Kai, An English translation of an Office Action received from the Japanese Patent Office dated Jul. 2010 relating to appln. No. 2007-518298. |
Burgener, et al., Amendment filed in the USPTO dated Apr. 2010 relating to U.S. Appl. No. 11/501,125. |
Heller, et al., “Cascode Voltage Switch Logic: A Different CMOS Logic Family”, IEEE International Solid-State Circuits Conference, 1984, pp. 16-17. |
Pylarinos, “Charge Pumps: An Overview”, Proceedings of the IEEE International Symposium on Circuits and Systems, 2003, pp. 1-7. |
Doyama, “Class E Power Amplifier for Wireless Transceivers”, University of Toronto, 1999, pp. 1-9. |
“CMOS Analog Switches”, Harris, 1999, pp. 1-9. |
Madihian, et al., “CMOS RF Ics for 900MHz-2.4GHz Band Wireless Communication Networks”, IEEE Radio Frequency Integrated Circuits Symposium, 1999, pp. 13-16. |
“CMOS SOI RF Switch Family”, Honeywell, 2002, pp. 1-4. |
“CMOS SOI Technology”, Honeywell, 2001, pp. 1-7. |
Burgener, “CMOS SOS Switches Offer Useful Features, High Integration”, Microwaves & RF, 2001, pp. 107-118. |
Analog Devices, “CMOS, Low Voltage RF/Video, SPST Switch”, Analog Devices, inc., 1999, pp. 1-10. |
Eggert, et al., “CMOS/SIMOX-RF-Frontend for 1.7GHz”, Solid State Circuits Conference, 1996. |
Orndorff, et al., CMOS/SOS/LSI Switching Regulator Control Device, IEEE International, vol. XXI, Feb. 1978, pp. 234-235. |
Burgener, et al., Comments on Examiners Statements of Reasons for Allowance filed in the USPTO dated Aug. 2004 relating to U.S. Appl. No. 10/267,531. |
Aquilani, Communication and supplementary European Search Report dated Nov. 2009 relating to appln. No. 05763216. |
Van Der Peet, Communications pursuant to Article 94(3) EPC received from the EPO dated Jun. 2008 relating to appln. No. 02800982.7-2220. |
Aquilani, Communications pursuant to Article 94(3) EPC received from the EPO dated Mar. 2010 relating to appln. No. 05763216.8. |
Weman, Communication under Rule 71(3) EPC and Annex Form 2004 received from the EPO dated Nov. 2009 relating to appln. No. 020800982.7. |
Van Der Peet, Communications pursuant to Article 94(3) EPC dated Aug. 2009 relating to appln. No. 02800982.7-2220. |
Yamamoto, et al., “Design and Experimental Results of a 2V-Operation Single-Chip GaAs T/R MMIC Front-End for 1.9GHz Personal Communications”, IEEE, 1998, pp. 7-12. |
Savla, “Design and Simulation of a Low Power Bluetooth Transceiver”, The University of Wisconsin, 2001, pp. 1-90. |
Henshaw, “Design of an RF Transceiver”, IEEE Colloquium on Analog Signal Processing, 1998. |
Baker, et al., “Designing Nanosecond High Voltage Pulse Generators Using Power MOSFET's”, Electronic Letters, 1994, pp. 1634-1635. |
Huang, et al., “TFSOI Can It Meet the Challenge of Single Chip Portable Wireless Systems”, IEEE International SOI Conference, 1997, pp. 1-3. |
Devlin, “The Design of Integrated Switches and Phase Shifters”, 1999. |
Edwards, et al., “The Effect of Body Contact Series Resistance on SOI CMOS Amplifier Stages”, IEEE Transactions on Electron Devices, vol. 44, No. 12, Dec. 1997, pp. 2290-2294. |
Hess, et al., “Transformerless Capacitive Coupling of Gate Signals for Series Operation of Power MOS Devices”, IEEE, 1999, pp. 673-675. |
Sleight, et al., “Transient Measurements of SOI Body Contact Effectiveness”, IEEE Electron Device Letters, vol. 19, No. 12, Dec. 1998. |
“uPG13xG Series L-Band SPDT Switch GaAs MMIC”, NEC, 1996, pp. 1-30. |
Reedy, et al., “UTSi CMOS: A Complete RF SOI Solution”, Peregrine Semiconductor, 2001, pp. 1-6. |
Hittite Microwave, “Wireless Symposium 2000 is Stage for New Product Introductions”, Hittite Microwave, 2000, pp. 1-8. |
Montoriol, et al., “3.6V and 4.8V GSM/DCS1800 Dual Band PA Application with DECT Capability Using Standard Motorola RFICs”, 2000, pp. 1-20. |
Wang, et al., “Efficiency Improvement in Charge Pump Circuits”, IEEE Journal of Solid-State Circuits, vol. 32, No. 6, Jun. 1997, pp. 852-860. |
Lee, et al., “Analysis of Body Bias Effect with PD-SOI for Analog and RF Application”, Solid State Electron, vol. 46, 2002, pp. 1169-1176. |
Ippoushi, “SOI Structure Avoids Increases in Chip Area and Parasitic Capacitance Enables Operational Control of Transistor Threshold Voltage”, Renesas Edge, vol. 2004.5, Jul. 2004, p. 15. |
Park, “A Regulated, Charge Pump CMOS DC/DC Converter for Low Power Application”, 1998, pp. 1-62. |
Hittite Microwave, Floating Ground SPNT MMIC Switch Driver Techniques, 2001. |
Caverly, et al., “Gallium Nitride-Based Microwave and RF Control Devices”, 2001. |
Sedra, et al., “Microelectronic Circuits”, University of Toronto, Oxford University Press, Fourth Edition, 1982, 1987, 1991, 1998, pp. 374-375. |
Bahl, “Lumped Elements for RF and Microwave Circuits”, Artech House, 2003, pp. 353-394. |
“Positive Bias GaAs Multi-Throw Switches with Integrated TTL Decoders”, Hittite Microwave, 2000. |
Drozdovsky, et al., “Large Signal Modeling of Microwave Gallium Nitride Based HFETs”, Asia Pacific Microwave Conference, 2001, pp. 248-251. |
Ayasli, “Microwave Switching with GaAs FETs”, Microwave Journal, 1982, pp. 719-723. |
Eron, “Small and Large Signal Analysis of MESETs as Switches” Microwave Journal, 1992. |
“A Voltage Regulator for GaAs FETs”, Microwave Journal, 1995. |
Slobodnik, et al., “Millimeter Wave GaAs Switch FET Modeling”, Microwave Journal, 1989. |
Caverly, “Distortion in GaAs MESFET Switch Circuits”, 1994. |
Chen, et al., “Dual-Gate GaAs FET: A Versatile Circuit Component for MMICs”, Microwave Journal, Jun. 1989, pp. 125-135. |
Bullock, “Transceiver and System Design for Digital Communication”, Noble, 2000. |
Crols, “CMOS Wireless Transceiver Design”, Kluwer Academic, 1997. |
Hickman, “Practical RF Handbook”, Newnes, 1997. |
Hagen, “Radio Frequency Electronics”, Cambridge University Press, 1996. |
Koh, et al., “Low-Voltage SOI CMOS VLSI Devices and Circuits”, Wiley Interscience, XP001090589, New York, 2001, pp. 57-60, 349-354. |
Leenaerts, “Circuits Design for RF Transceivers” Kluwer Academic, 2001. |
Johnson, “Advanced High-Frequency Radio Communication”, Artech House, 1997. |
Larson, “RF and Microwave Circuit Design for Wireless Communications”, Artech House, 1996. |
Misra, “Radio Frequency and Microwave Communication Circuits”, Wiley, 2001. |
Barker, Communications Electronics-Systems, Circuits, and Devices, 1987, Prentice-Hall. |
Carr, “Secrets of RF Circuit Design”, McGraw-Hill, 1997. |
Couch, “Digital and Analog Communication Systems”, 2001, Prentice-Hall. |
Couch, “Modern Telecommunication System”, Prentice-Hall, 1995. |
Freeman, “Radio System Design for Telecommunications”, Wiley, 1997. |
Gibson, “The Communication Handbook”, CRC Press, 1997. |
Hanzo, “Adaptive Wireless Transceivers”, Wiley, 2002. |
Itoh, “RF Technologies for Low Power Wireless Communications”, Wiley, 2001. |
Lossee, “RF Systems, Components, and Circuits Handbook”, Artech House, 1997. |
Miller, “Modern Electronic Communications”, Prentice-Hall, 1999. |
Minoli, “Telecommunications Technology Handbook”, Artech House, 2003. |
Morreale, “The CRC Handbook of Modern Telecommunication”, CRC Press, 2001. |
Sayre, “Complete Wireless Design”, McGraw-Hill, 2001. |
Schaper, “Communications, Computations, Control, and Signal Processing”, Kluwer Academic, 1997. |
Shafi, “Wireless Communications in the 21st Century”, Wiley, 2002. |
Willert-Porada, “Advances in Microwave and Radio Frequency Processing”, 8th International Conference on Microwave and High-Frequency Heating, Sep. 3-7, 2001. |
Ranta, et al., Response filed in the USPTO dated Sep. 12, 2012 for related U.S. Appl. No. 12/803,064, 13 pgs. |
Dang, Hung Q., Notice of Allowance received from the USPTO dated Oct. 12, 2012 for related U.S. Appl. No. 12/735,954, 67 pgs. |
Gonzales, Brosa, Decision to grant a European patent pursuant to Articl 97(1) EPC dated Nov. 2, 2012 for related appln. No. 09715932.1, 1 pg. |
Volker, Simon, Communication pursuant to Articl 94(3) EPC received from the EPO dated Nov. 16, 2012 for related appln. No. 09174085.2, 8 pgs. |
Le, Dinh Thanh, Office Action received from the USPTO dated Nov. 20, 2012 for related U.S. Appl. No. 12/803,064, 6 pgs. |
Patel, Reema, Notice of Allowance received from the USPTO dated Dec. 3, 2012 for related U.S. Appl. No. 13/046,560, 9 pgs. |
Japanese Patent Office, Notice of Allowance received from the JPO dated Dec. 18, 2012 for related appln. No. 2010-506156, 3 pgs. |
Dang, Hung Q., Notice of Allowance received from the USPTO dated Jan. 25, 2013 for related appln. No., 42 pgs. |
Ranta, et al., Response After Final filed in the USPTO dated Jan. 22, 2013 for related U.S. Appl. No. 12/803,064, 7 pgs. |
Ranta, et al., Second Response After Final filed in the USPTO dated Feb. 20, 2013 for related U.S. Appl. No. 12/803,064, 9 pgs. |
Brosa, Anna-Maria, European Search Report received from the EPO dated Feb. 1, 2013 for related appln. No. EP12194187, 10 pgs. |
Rojas, Daniel E., Office Action received from the USPTO dated Feb. 1, 2013 for related U.S. Appl. No. 12/803,139, 7 pgs. |
Le, Dinh Thanh, Notice of Allowance received from the USPTO dated Mar. 4, 2013 for related U.S. Appl. No. 12/803,064, 6 pgs. |
Patel, Reema, Notice of Allowance received from the USPTO dated Mar. 15, 2013 for related U.S. Appl. No. 13/046,560, 10 pgs. |
Numata, et al., “A +2.4/0 V Controlled High Power GaAs SPDT Antenna Switch IC for GSM Application”, IEEE Radio Frequency Integrated Circuits Symposium, 2002, pp. 141-144. |
Huang, et al., “A 0.5-um CMOS T/R Switch for 900-MHz Wireless Applications”, IEEE Journal of Solid-State Circuits, 2001, pp. 486-492. |
Tinella, et al., “A 0.7dB Insertion Loss CMOS-SOI Antenna Switch with More than 50dB Isolation over the 2.5 to 5GHz Band”, Proceeding of the 28th European Solid-State Circuits Conference, 2002, pp. 483-486. |
Ohnakado, et al., “A 1.4dB Insertion Loss, 5GHz Transmit/Receive Switch Utilizing Novel Depletion-Layer Extended Transistors (DETs) in 0.18um CMOS Process”, Symposium on VLSI Circuits Digest of Technical Papers, 2002, pp. 162-163. |
Nakayama, et al., “A 1.9 GHz Single-Chip RF Front-End GaAs MMIC with Low-Distortion Cascade FET Mixer for Personal Handy-Phone System Terminals”, IEEE, 1998, pp. 101-104. |
McGrath, et al., “A 1.9-GHz GaAs Chip Set for the Personal Handyphone System”, IEEE Transaction on Microwave Theory and Techniques, 1995, pp. 1733-1744. |
Nakayama, et al., “A 1.9GHz Single-Chip RF Front End GaAs MMIC for Personal Communications”, Microwave and Millimeter-Wave Monolithic Circuits Symposium, 1996, pp. 69-72. |
Nakayama, et al., “A 1.9GHz Single-Chip RF Front End GaAs MMIC with Low-Distortion Cascode FET Mixer for Personal Handy-Phone System Terminals”, Radio Frequency Integrated Circuits Symposium, 1998, pp. 205-208. |
Gu, et al., “A 2.3V PHEMT Power SP3T Antenna Switch IC for GSM Handsets”, IEEE GaAs Digest, 2003, pp. 48-51. |
Darabi, et al., “A 2.4GHz CMOS Transceiver for Bluetooth”, IEEE, 2001, pp. 89-92. |
Huang, et al., “A 2.4-GHz Single-Pole Double Throw T/R Switch with 0.8-dB Insertion Loss Implemented in a CMOS Process”, Silicon Microwave Integrated Circuits and Systems Research, 2001, pp. 1-4. |
Huang, et al., “A 2.4-GHz Single-Pole Double Throw T/R Switch with 0.8-dB Insertion Loss Implemented in a CMOS Process (slides)”, Silicon Microwave Integrated Circuits and Systems Research, 2001, pp. 1-16. |
Yamamoto, et al., “A 2.4GHz Band 1.8V Operation Single Chip SI-CMOS T/R MMIC Front End with a Low Insertion Loss Switch”, IEEE Journal of Solid-State Circuits, vol. 36, No. 8, Aug. 2001, pp. 1186-1197. |
Kawakyu, et al., “A 2-V Operation Resonant Type T/R Switch with Low Distortion Characteristics for 1.9GHz PHS”, IEICE Trans Electron, vol. E81-C, No. 6, Jun. 1998, pp. 862-867. |
Huang, et al., “A 900-MHz T/R Switch with a 0.8-dB Insertion Loss Implemented in a 0.5-um CMOS Process”, IEEE Custom Integrated Circuits Conference, 2000, pp. 341-344. |
Workman, et al., “A Comparative Analysis of the Dynamic Behavior of BTG/SOI MOSFET's and Circuite with Distributed Body Resistance”, IEEE Transactions and Electron Devices, vol. 45, No. 10, Oct. 1998, pp. 2138-2145. |
Valeri, et al., “A Composite High Voltage Device Using Low Voltage SOI MOSFET's”, IEEE, 1990, pp. 169-170. |
Miyatsuji, et al., “A GaAs High Power RF Single Pole Double Throw Switch IC for Digital Mobile Communication System”, IEEE International Solid-State Circuits Conference, 1994, pp. 34-35. |
Miyatsuji, et al., “A GaAs High Power RF Single Pole Dual Throw Switch IC for Digital Mobile Communication System”, IEEE Journal of Solid-State Circuits, 1995, pp. 979-983. |
Puechberty, et al., “A GaAs Power Chip Set for 3V Cellular Communications”, 1994. |
Yamamoto, et al., “A GaAs RF Transceiver IC for 1.9GHz Digital Mobile Communication Systems”, ISSCC96, 1996, pp. 340-341, 469. |
Choumei, et al., “A High Efficiency, 2V Single Supply Voltage Operation RF Front End MMIC for 1.9GHz Personal Handy Phone Systems”, IEEE, 1998, pp. 73-76. |
Schindler, et al., “A High Power 2-18 GHz T/R Switch”, IEEE Microwave and Millimeter-Wave Monolithic Circuits Symposium, 1990, pp. 119-122. |
Gu, et al., “A High Power DPDT MMIC Switch for Broadband Wireless Applications”, IEEE MTT-S Digest, 2003, pp. 173-176. |
Tinella, et al., “A High Performance CMOS-SOI Antenna Switch for the 2.5-5-GHz Band”, IEEE Journal of Solid-State Circuits, 2003, pp. 1279-1283. |
Gu, et al., “A High Performance GaAs SP3T Switch for Digital Cellular Systems”, IEEE MTT-S Digest, 2001, pp. 241-244. |
Numata, et al., “A High Power Handling GSM Switch IC with New Adaptive Control Voltage Generator Circuit Scheme”, IEEE Radio Frequency Integrated Circuits Symposium, 2003, pp. 233-236. |
Madihian, et al., “A High Speed Resonance Type FET Transceiver Switch for Millimeter Wave Band Wireless Networks”, 26th EuMC, 1996, pp. 941-944. |
Tokumitsu, et al., “A Low Voltage High Power T/R Switch MMIC Using LC Resonators”, IEEE Transactions on Microwave Theory and Techniques, 1995, pp. 997-1003. |
Colinge, et al., “A Low Voltage Low Power Microwave SOI MOSFET”, IEEE International SOI Conference, 1996, pp. 128-129. |
Johnson, et al., “A Model for Leakage Control by MOS Transistor Stacking”, ECE Technical Papers, 1997, pp. 1-28. |
Matsumoto, et al., “A Novel High Frequency Quasi-SOI Power MOSFET for Multi-Gigahertz Application”, IEEE, 1998, pp. 945-948. |
Giugni, “A Novel Multi-Port Microwave/Millimeter-Wave Switching Circuit”, Microwave Conference, 2000. |
Caverly, “A Project Oriented Undergraduate CMOS Analog Microelectronic System Design Course”, IEEE, 1997, pp. 87-88. |
Harjani, et al., “A Prototype Framework for Knowledge Based Analog Circuit Synthesis”, IEEE Design Automation Conference, 1987, pp. 42-49. |
DeRossi, et al., “A Routing Switch Based on a Silicon-on-Insulator Mode Mixer”, IEEE Photonics Technology Letters, 1999, pp. 194-196. |
Kanda, et al., “A Si RF Switch MMIC for the Cellular Frequency Band Using SOI-CMOS Technology”, The Institute of Electronics, Information and Communication Engineers, 2000, pp. 79-83. |
Caverly, et al., “A Silicon CMOS Monolithic RF and Microwave Switching Element”, 27th European Microwave Conference, 1997, pp. 1046-1051. |
Valeri, et al., “A Silicon-on-Insulator Circuit for High Temperature, High-Voltage Applications”, IEEE, 1991, pp. 60-61. |
Le, Dinh Thanh, Notice of Allowance received from USPTO on Jul. 18, 2013 for related U.S. Appl. No. 12/803,064, 12 pgs. |
Burgener, et al. Amendment filed in the USPTO dated Aug. 19, 2013 for related U.S. Appl. No. 12/980,161, 20 pgs. |
Peregrine Semiconductor Corporation, Response filed in EPO dated Sep. 11, 2013 for related appln. No. 1219418.6, 16 pgs. |
Dang, Hung, Notice of Allowance received from USPTO dated Sep. 13, 2013 for related U.S. Appl. No. 12/735,954, 16 pgs. |
Ranta, et al. Response filed in USPTO dated Sep. 17, 2013 for related U.S. Appl. No. 12/803,139, 14 pgs. |
Peregrine Semiconductor Corporation, Response and English translation filed in the JPO dated Sep. 4, 2013 for related appln. No. 2010-548750, 11 pgs. |
Rojas, Daniel E., Notice of Allowance received from the USPTO dated Oct. 22, 2013 for related U.S. Appl. No. 12/803,139, * pgs. |
Number | Date | Country | |
---|---|---|---|
20110001544 A1 | Jan 2011 | US |
Number | Date | Country | |
---|---|---|---|
61067634 | Feb 2008 | US |
Number | Date | Country | |
---|---|---|---|
Parent | PCT/US2009/001358 | Mar 2009 | US |
Child | 12803133 | US |