Neutrophils, eosinophils and basophils are known as granulocytes because of their content of cytoplasmic granules, or phagocytes because they may phagocytize or ingest bacteria, microorganisms and other types of foreign materials. These cells are produced from common progenitor cells in the bone marrow of a human or animal, and are known to circulate in peripheral blood and enter tissues as necessary for control of infection or to participate in any type of inflammatory reaction. The neutrophil is the most common leukocyte in human and animal peripheral blood.
In the response to any type of infection or inflammation, granulocytes are activated to migrate to the appropriate area in response to chemoattractant factors, such as, certain bacterial products, complement component, and other factors. This attraction process is termed chemotaxis. Once in an area of inflammation or infection, granulocytes and mononuclear phagocytes must establish a firm attachment to their targets. For this purpose, these cells possess a number of specific cell surface receptor glycoproteins that promote this interaction, such as complement, Fc, and fibronectin receptors.
One family of cell surface receptor glycoproteins is the leukocyte cell adhesion molecular (LEU-CAM) family (CD11/CD18). This family is comprised of cell surface proteins which have multiple subunits. The members of this family include LFA-1 (CD 11a/CD18), Mol (CD 11b/CD18), and P150,94 (CD 11c/CD18).
Activation of granulocytes (and particularly neutrophils) is involved in numerous disorders and diseases, particularly those involving inflammation. While the inflammatory response of granulocytes is vital to the eradication of invading microorganisms, substantial evidence indicates that inflammatory phagocytes cause damage to various organs and tissues when these cells are activated as part of an ongoing (chronic) process, or are triggered in an unregulated manner. The adhesion and spreading of activated granulocytes (e.g., neutrophils) to vascular endothelial cells with the subsequent release of toxic oxidative metabolites and proteases has been implicated in the organ damage observed in diseases or disorders (“granulocyte-mediated disorders”) such as adult respiratory distress syndrome (ARDS; shock lung syndrome), glomerulonephritis, and inflammatory injury occurring after reperfusion of ischemic tissue such as to the heart, bowel, and central nervous system, among others. Heart muscle or myocardium may be particularly vulnerable to the inflammatory response of activated granulocytes. For example, it has been suggested that inhibition of the activation of granulocytes prior to cardiac insult (e.g., myocardial ischemia) may result in significantly smaller damage, and reduced myocardial infarct size.
U.S. Pat. No. 4,840,793 to Todd III, et al., as well as related U.S. Pat. No. 4,935,234, U.S. Pat. No. 5,049,659 and U.S. Pat. No. 5,019,648 describe the inhibition of activated granulocytes by administering monoclonal antibodies that inhibit adhesion-dependent functions of glycoproteins such as CD11b to inhibit migration of neutrophils to an area of inflammation or infection. Other groups have used recombinant soluble adhesive receptors as anti-inflammatory compounds. Thus, the majority of treatments for granulocyte-mediated disorders or diseases have been treated by systemically applying exogenous substances that interact with granulocytes that have already undergone activation. It would be highly desirable to more directly inhibit granulocyte activation, as described herein.
Described herein are methods of inhibiting granulocyte activation and devices and systems for inhibiting granulocyte activation. The methods, devices and systems described herein may inhibit granulocyte activation by appropriate stimulation of the vagus nerve. In particular, neutrophil activation may be inhibited by appropriate vagus nerve stimulation. Cellular activation of granulocytes (including neutrophils) may be detected by the expression of cell-surface receptors such as CD11b or other cellular components that are part of a cellular immunity or inflammation response associated with granulocytes.
The methods and systems described herein may be particularly useful to prevent or treat granulocyte-mediated diseases or disorders. Examples of such disorders and diseases are provided below. In general, granulocyte-mediated diseases or disorders include any disease or disorder in which activated granulocytes cause, enhance or exacerbate a deleterious biological effect, including inflammatory disorders or diseases. This includes all neutrophil-mediated diseases or disorders. For example, diabetes, atherosclerosis, and many cancers are neutrophil-mediated diseases.
In general, a granulocyte-mediated disorder may be prevented and/or treated by stimulating the vagus nerve in an appropriate manner. For example, a method of treating and/or preventing a granulocyte-mediated disease or disorder may include the steps of identifying a subject suffering from, or at risk for, a disease or disorder mediated by granulocyte activation, and stimulating the subject's vagus nerve in an amount sufficient to achieve an inhibition in expression of a marker of granulocyte activation without desensitizing the response of the granulocytes to vagal stimulation.
Appropriate stimulation of the vagus nerve results in an inhibition of granulocyte activation (particularly sustained inhibition of neutrophil activation), without desensitizing the inhibitory pathway by overstimulating the vagus nerve. For example, appropriate stimulation may be extremely low frequency, low level stimulation. Examples of appropriate stimulation are provided below. Appropriately stimulating the vagus nerve may result in a sustained inhibition in granulocyte activation, which can be detected or measured by examining the expression of a marker of granulocyte activation, such as CD11b. In some variations, the stimulation of the subject's vagus nerve results in inhibition of expression of some markers of granulocyte activation (such as cell-surface receptors like CD11b) without substantially inhibiting the expression of other granulocyte proteins. Thus, the subject's vagus nerve may be specifically stimulated to achieve a reduction of expression of a marker of granulocyte activation without substantially reducing the expression of other markers, such as HLA-DR (Ia) and other class II antigens.
The vagus nerve may be stimulated to inhibit granulocyte activation by any appropriate mode of stimulation. In particular, the vagus nerve may be stimulated by electrical stimulation, mechanical stimulation, or electromagnetic stimulation. These methods of stimulation may be direct or indirect. Indirect stimulation of the vagus nerve may be performed through tissue (e.g., transvascularly, transcutaneously, etc.). A stimulator may be external or implanted, and may be particularly configured to provide the extremely low frequency, low level stimulation described below. In some variations, the stimulator is activated or controlled by feedback from one or more sensors configured to detect activation (e.g., activation level) of granulocytes (e.g., the level or change in level of CD11b on neutrophils).
Mechanical stimulation of the vagus nerve may involve applying pressure to the vagus nerve. For example, mechanical stimulation may be applied by pressing or squeezing the nerve, or a region of tissue including a portion of the vagus nerve. Pressure may be applied externally (e.g., to a region of the body enervated by a branch of the vagus nerve such as the pinna region of the ear), or internally (e.g., from an implant).
In some variations, the method of treating and/or preventing a granulocyte-mediated disorder may include the step of implanting a stimulator for stimulating the vagus nerve. For example, a stimulator may be a transvascular stimulator that is implanted subclavically.
Treatment and/or prevention of a granulocyte-mediated disorder may also involve the step of detecting activated granulocytes, or the activation level of granulocytes. The activation level of granulocytes may be determined by detecting the expression of markers of granulocyte activation, such as the detection (and/or quantification) of a cell-surface marker such as CD11b on neutrophils. Changes in the activation level of granulocytes (such as neutrophils) may be used to control the stimulation of the vagus nerve to inhibit granulocyte activation. Thus, this information may be used to provide feedback to control or regulate stimulation of the vagus nerve to inhibit granulocyte activation. As described in further detail below, the activation level of granulocytes may also be examined to identify or characterize a subject that is a good candidate for vagal stimulation to inhibit granulocyte activation, and therefore a good candidate to receive vagal stimulation to prevent or treat a granulocyte-mediated disease or disorder.
The methods and devices for inhibiting granulocyte activation described herein may be limited to inhibition of one class of granulocytes, such as neutrophils. In some variations, the methods and devices described herein may be selective (or substantially selective) for inhibition of one class of granulocytes over another class of granulocytes. For example, activation of neutrophils may be inhibited preferentially compared to activation of eosinophils. Furthermore, activation of granulocytes or a class of granulocytes may be assayed by any appropriate marker for granulocyte activation, including cell surface receptor glycoproteins such as CD11b. In some variations, the activation of granulocytes refers to the level of surface expression of CD11b.
A granulocyte-mediated disorder or disease may refer to any granulocyte-mediated disorder or disease, particularly inflammatory diseases or disorders in which granulocyte activity has been implicated, and where inhibition of granulocyte activation (e.g., neutrophil activation) may be beneficial. Examples of granulocyte-mediated diseases or disorders include, but are not limited to: diabetes, atherosclerosis, and other inflammatory disorders. In some variations, the granulocyte-mediated disorders are neutrophil-mediated disorders or disorders in which CD11b has been implicated (“CD11b-mediated disorders).
Also described herein are methods of treating and/or preventing a granulocyte-mediated disease or disorder in a subject that include the step of stimulating the subject's vagus nerve in an amount sufficient to inhibit the expression of CD11b on the surface of the subject's granulocyte cells without desensitizing the response of the granulocytes to vagal stimulation. In some variations, the stimulation of the subject's vagus nerve is sufficient to inhibit CD11b expression for longer than an extended period time, such as greater than 12 hours, greater than 24 hours, greater than 36 hours, etc.
As mentioned, any appropriate vagal stimulation may be used, including mechanical stimulation, electrical stimulation, and/or electromagnetic stimulation. In particular, the stimulation may be extremely low frequency, low level stimulation. For example, the vagus nerve may be stimulated mechanically by a pulse of light vibration energy (e.g., between 0.1 and 400 Hz (e.g., between 0.1 Hz and 200 Hz, between 0.1 and 100 Hz, between 0.1 and 60 Hz, between 0.1 and 30 Hz, between 0.1 and 10 Hz, between 0.1 and 1 Hz, etc.), applied for between about 30 minutes and about 30 second (e.g., between about 20 minutes and about 30 seconds, between about 10 minutes and 30 seconds, between about 5 minutes and 1 minute, etc.). A pulse of stimulation may then be followed by a quiescent (unstimulated) time period of between about 2 hours and about 72 hours. For example, the quiescent time period may be approximately 12 hours, 24 hours, 36 hours, 48 hours, etc. It may be preferably to tailor the quiescent time period to the actual level of granulocyte activation. Similarly, electrical or electromagnetic stimulation may also be performed. For example, electrical stimulation may be very light (e.g., less than100 mV, less than 10 mV, less than 1 mV, etc.) at an inter-stimulus frequency of between 0.1 Hz and 200 Hz, between 0.1 and 100 Hz, between 0.1 and 60 Hz, between 0.1 and 30 Hz, between 0.1 and 10 Hz, between 0.1 and 1 Hz, etc.), applied for between about 30 minutes and about 30 second (e.g., between about 20 minutes and about 30 seconds, between about 10 minutes and 30 seconds, between about 5 minutes and 1 minute, etc.). A pulse of stimulation may then be followed by a quiescent (unstimulated) time period of between about 2 hours and about 72 hours. Any appropriate stimulation intensity, duration, inter-stimulus frequency, and quiescent period may be used. Light intensity and low-frequency stimulation is particularly useful.
As mentioned briefly above, stimulation of the vagus nerve may also be controlled or coordinated with detection of granulocyte activation. Also described herein are methods for treating and/or preventing a granulocyte-mediated disease or disorder in a subject in which granulocyte activation is measured. These methods may include the step of detecting a granulocyte activation level and applying stimulation to the subject's vagus nerve to inhibit granulocyte activation in response to the detected granulocyte activation level. These methods may use feedback to control activation of vagus nerve to inhibit granulocyte activation. For example, in some variations the method also includes detecting a second granulocyte activation level and applying a second stimulation to the subject's vagus nerve in response to the second subject's vagus level.
The step of detecting a granulocyte activation level may involve the detection of expression of CD11b expression on granulocytes. As mentioned above, stimulation may include mechanical stimulation, electrical stimulation, and/or electromagnetic stimulation.
Also described herein are systems for treating or preventing a granulocyte-mediated disease or disorder in a subject. These systems may include a sensor to detect granulocyte activation level and a stimulator for stimulating a vagus nerve in response to the detected granulocyte activation level. For example, the sensor may be configured to determine CD11b expression on granulocyte cells. The stimulator may be configured to stimulate the vagus nerve in an amount sufficient to inhibit granulocyte activation without desensitizing the response of the granulocytes to vagal stimulation.
Also described herein are systems to treat or prevent a granulocyte-mediated disease or disorder in a subject. The system may include a sensor to detect CD11b expression on neutrophils, and a stimulator for mechanically stimulating a vagus nerve in response to the level of CD11b expression, whereby the neutrophil activation is inhibited.
All publications and patent applications mentioned in this specification are herein incorporated by reference in their entirety as if each individual publication or patent application was specifically and individually indicated to be incorporated by reference.
A better understanding of the features and advantages of the present invention will be obtained by reference to the following drawings.
The methods, devices and systems described herein originate from the surprising observation that granulocyte activation may be inhibited by appropriate stimulation of the inflammatory reflex, which includes the vagus nerve. Thus, granulocyte-mediated disorders and diseases may be prevented, treated and/or lessened by appropriately stimulating the inflammatory reflex. This basic observation is described below, followed by a discussion and illustrations of the types of stimulation that are appropriate for inhibiting granulocyte activation. A description of some of the applications of vagal stimulation to inhibit granulocyte activation is also described, including variations of devices, systems and methods of treatment. Specific examples of inhibition of granulocyte activation are also provided. Although the examples and description refer to stimulation of the vagus nerve, it should be understood that the same effect described in the methods, devices and systems herein may be achieved by appropriate stimulation of other portions of the inflammatory reflex. The Vagus nerve is part of an inflammatory reflex, which also includes the splenic nerve, the hepatic nerve and the trigeminal nerve. The efferent arm of the inflammatory reflex may be referred to as the cholinergic anti-inflammatory pathway. For example, Tracey et. al., have previously reported that the nervous system regulates systemic inflammation through a Vagus nerve pathway. This pathway may involve the regulation of inflammatory cytokines and/or activation of granulocytes. Thus, it is believed that appropriate modulation of the Vagus nerve may help regulate inflammation.
As used herein, the term “vagus nerve” may refer to any cranial nerve X, including the main nerve, and any nerves that branch off of the main vagus nerve, as well as ganglionic or post-ganglionic neurons connected to the vagus nerve. The vagus nerve may be referred to as a cholinergic nerve, and may include both afferent and efferent nerve fibers. The term “stimulation” in reference to the vagus nerve is described in greater detail below, but may include any appropriate type of stimulation, including mechanical, electrical, electromagnetic, etc. Stimulation may be direct, e.g., via contact with a portion of the vagus nerve (e.g., by electrode) or indirect, through one or more adjacent tissues or barriers (including external stimulation from outside of the body). A patient (or subject) may include any mammal, preferably a human, but may include domestic, farm, laboratory, or wild animals.
As mentioned above, a granulocyte typically refers to a neutrophil, esinophil or basophil. In some of the variations described herein, the “granulocytes” referred to are neutrophils. In other variations, a granulocyte may refer to any of neutrophil, eosinophil, or basophil. A granulocyte may transform from an un-activated granulocyte into an activated granulocyte (e.g., an activated neutrophil). Once activated, granulocytes can migrate into tissue, and/or move to a specific body region via chemotaxis.
A granulocyte-mediated disease or disorder may include any disease or disorder in which activated granulocytes cause, enhance or exacerbate a deleterious biological effect, including inflammatory disorders or diseases. Granulocyte-mediated diseases or disorders include neutrophil-mediated diseases or disorders. Non-limiting examples of granulocyte-mediated diseases or disorders include: diabetes, atherosclerosis, many cancers, septic shock, acute respiratory distress syndrome (ARDS), bacterial meningitis, acute pancreatitis, multiple organ failure (MOF), post-ischemic reperfusion, acute cellulitis, abdominal aortic aneurysm, asthma, osteomyelitis, Crohn's disease, cystic fibrosis, emphysema, septic or bacterial pyelonephritis, rheumatoid arthritis, septic arthritis, uveitis, periodontitis, psoriasis, severe burns, skin ulceration, acute lung injury, pneumonia, trauma, severe early graft dysfunction, brochioeactasis, chronic obstructive pulmonary disease (COPD), complications with hemodialysis, hypersensitivity pneumonitis, lung fibrosis, herpes stromal keratitis, vascular restenosis, glomerulonephritis, hypersensitivity, cardiac rupture arising as a complication of myocardial infarction, multiple sclerosis, stroke and cerebral ischemia, and traumatic brain injury.
1. Basic Observation
Granulocyte activation may be inhibited by appropriate stimulation of the vagus nerve. In particular, stimulation of the vagus nerve at low intensity and low frequency may result in an inhibition of granulocyte activation following the appropriate stimulation. For example, endotoxin added to blood taken from a subject prior to stimulation of the subject's vagus nerve results in activation of granulocytes, particularly neutrophils. Endotoxin added to blood taken from a subject after external mechanical stimulation of the subject's vagus nerve (as described in Example 1, below) shows a much lower level of granulocyte activation. As described, below, the level of granulocyte activation maybe determined by the detection of CD11b on surface of granulocytes.
Furthermore, markers of granulocyte activation such as CD11b are altered by the appropriate stimulation of the vagus nerve, while other markers (such as HLA-DR) are not substantially altered by this stimulation. Although not wishing to be bound by theory, the vagal stimulation may be acting through the spleen to effect activation of granulocytes. The spleen is enervated by the vagus nerve, and typically receives approximately 20% of cardiac output per minute, including circulating granulocytes. Thus, virtually all of the circulating granulocytes pass through the spleen every five minutes. The vagus nerve may therefore signal the spleen to control activation of the granulocytes.
2. Stimulation
In general, appropriate vagus nerve stimulation that may be applied to inhibit granulocyte activation is extremely low frequency, low level stimulation. The range of appropriate stimulation parameters may depend on the particular stimulation modality (e.g., mechanical, electrical, electromagnetic, etc.) that is used, as well as the location of the stimulation (e.g., external, internal, etc.). For example, when electrically stimulating the vagus nerve to inhibit granulocyte activation, very low-intensity (e.g., less than 1V, less than 100 mV, less than 10 mV, less than 1 mV, less than 0.1 mV, less than 0.001 mV) may be used. Similarly, when mechanically stimulating the vagus nerve, a light touch or light pressure on the vagus nerve may be used. For example, the vagus nerve may be stimulated mechanically by a pulse of light vibration energy (e.g., between 0.1 and 400 Hz (e.g., between 0.1 Hz and 200 Hz, between 0.1 and 100 Hz, between 0.1 and 60 Hz, between 0.1 and 30 Hz, between 0.1 and 10 Hz, between 0.1 and 1 Hz, etc.), applied for between about 30 minutes and about 30 second (e.g., between about 20 minutes and about 30 seconds, between about 10 minutes and 30 seconds, between about 5 minutes and 1 minute, etc.). A pulse of stimulation may then be followed by a quiescent (unstimulated) time period of between about 2 hours and about 72 hours. For example, the quiescent time period may be approximately 12 hours, 24 hours, 36 hours, 48 hours, etc. It may be preferably to tailor the quiescent time period to the actual level of granulocyte activation. Similarly, electrical or electromagnetic stimulation may also be performed. For example, electrical stimulation may be very light (e.g., less than 100 mV, less than 10 mV, less than 1 mV, etc.) at an inter-stimulus frequency of between 0.1 Hz and 200 Hz, between 0.1 and 100 Hz, between 0.1 and 60 Hz, between 0.1 and 30 Hz, between 0.1 and 10 Hz, between 0.1 and 1 Hz, etc.), applied for between about 30 minutes and about 30 second (e.g., between about 20 minutes and about 30 seconds, between about 10 minutes and 30 seconds, between about 5 minutes and 1 minute, etc.). A pulse of stimulation may then be followed by a quiescent (unstimulated) time period of between about 2 hours and about 72 hours. Any appropriate stimulation intensity, duration, inter-stimulus frequency, and quiescent period may be used. Light intensity and low-frequency stimulation is particularly useful.
Implantable stimulator may be useful for appropriate stimulation of the vagus nerve to inhibit activation of granulocytes. In particular, non-contact stimulation devices may be useful. A non-contact stimulation device includes an output (e.g., an electrode or transducer) to stimulate the vagus nerve from some distance, such as outside of the nerve sheath. Since even light pressure (touch) to the vagus nerve may stimulate the vagus nerve as described herein, controlled stimulation may require the use of non-contact electrodes that do not apply pressure to the vagus nerve when the patient moves, for example.
Low-intensity or low levels of vagus stimulation may prevent desensitization of the inhibitory effect of vagus nerve stimulation. For example, traditional stimulation of the vagus nerve to drive cardiac pacing, to control seizures, to effect neuropsychological effects, and to treat gastrointestinal and eating disorders typically involves high-intensity and/or high frequency stimulation. Stimulation at these high levels is believed to overdrive the vagus nerve and may desensitize the ability of the granulocytes to respond to vagus stimulation. Desensitization or tachyphylaxis may prevent the sustained inhibition of granulocyte activation that is otherwise possible with the low level vagal stimulation described herein. For example, stimulating at an appropriate low level, may result in sustained inhibition of granulocyte activation for hours or days (e.g., 8 hours, 12, hours, 24 hours, 48 hours, etc.).
3. Applications
A stimulator may be configured to apply the low level of stimulation appropriate for inhibiting granulocyte activation. For example, an electrical stimulator may include one or more non-contact electrodes for placing near a subject's vagus nerve. In some variations, the non-contact electrode of the stimulator may be positioned near any region of the vagus nerve to inhibit granulocyte activation. For example, the electrode(s) may be transvascular electrodes that are placed subcalavicularly. In some variations, the electrodes are implanted behind a subject's ear or in other body regions. The entire stimulator may be implanted, or just the electrode(s) or transducer(s) may be implanted. For example, a mechanical stimulator may include a vibratory element (e.g., a piezoelectric transducer, a shape-memory element, etc.) that can apply pressure to the vagus nerve. The electrode or vibratory element may be connected (via wires or wirelessly) to the rest of the stimulator, which may include a power source and controller for controlling the application of the stimulus. The stimulator controller may be configured to apply the appropriate low-level of stimulation described above.
In some variations, the stimulator receives feedback from one or more sensors. In particular, sensors for determining the activation level of granulocytes may be useful to provide to help control stimulation. Thus, a method of inhibiting granulocyte activation or of treating a disease or disorder by inhibiting granulocyte activation may include a step of determining the activation level of the granulocytes.
Any appropriate sensor may be used. For example, a sensor may be specific to detecting presence or levels of one or more markers of granulocyte activation. In one example, a sensor determines the level of expression of a glycoprotein receptor on the surface of the granulocytes, such as CD11b.
A system for inhibiting activation of granulocytes may include a stimulator configured to apply the appropriate level of stimulation and a sensor configured to detect a level of granulocyte activation. For example, a system may include a sensor for sensing the level of CD11b on neutrophils in the subject's blood, and a stimulator configured to stimulate at the appropriate low-level to inhibit activation of neutrophils without desensitizing the response. In some variations, a system for inhibiting activation of granulocytes may also include a controller for receiving information from the sensor, analyze the sensed information, and provide feedback (including instructions) to the stimulator.
A sensor and stimulator may also be used to determine if a subject is responsive to stimulation of the vagus to prevent and/or treat a granulocyte-mediated disease or disorder. Individual subjects may respond differently to stimulation of their vagus nerve. The subject may be tested to determine if they are responsive to vagal stimulation to inhibit granulocyte activation, and would benefit from this treatment. Thus, we described herein methods and systems for determining if a subject is a good candidate for inhibition of granulocyte activation by vagal stimulation.
A system for determining the subject's responsiveness to vagal stimulation and inhibition of granulocyte activation may include stimulation analysis logic for receiving simulation sensor input and stimulation protocols. Thus, this system may include hardware, software or some combination thereof to receive and analyze the subject's granulocyte activation response. For example, a system may include a microcomputer or other processor, including memory, configured to receive and analyze sensor data and data to/from the stimulator. In some variations, the system includes an output (e.g., a monitor or telemetry) for presenting information (including the data) about the subject's response.
In one exemplary system (such as the system shown schematically in
A subject may also be screened to determine the level and/or frequency of stimulation to inhibit granulocyte activation without desensitizing the response of the granulocytes to vagal stimulation.
4. Example
Inhibition of CD11b Expression by Mechanical Stimulation of Vagus
In this example, level of granulocyte (e.g., neutrophil) activation was determined by assaying CD11b or CD16b level at differ times following stimulation. The stimulation applied was mechanical stimulation, consisting of a relatively soft vibration to the external cymba choncha of the subject's ear (right ear). Stimulation was applied for between one minute and five minutes (e.g., one minute in some tests and five minutes in other tests). The frequency of the vibration during the one minute period was between 200 Hz and 0.1 Hz (e.g., 10 Hz). Following the application of stimulation, the subject was not stimulated again. The neutrophil activation was assayed before activation, twenty minutes after activation, sixty minutes after activation and twenty-four hours after activation. Activation was assayed by immunoreactivity from sampled blood. For example, blood samples were put into Lithium heparin tubes. The vagus nerve was stimulated 15 min after baseline blood draw. The subject shown in
At various times after stimulation (e.g., 20 min, 60 min, and 24 hr), blood was collected and sampled. Blood was kept at room temperature and stained for reactivity with anti-CD11b or CD16b antibody on day 2. Staining was performed by first mixing the blood with RPMI (gently). For each time point, 450 μl of blood was aliquoted into two separate FACS tubes (A and B). RPMI media (45 μl) was added to Tube A, and LPS (45 μl, 500 ng/ml, for a final 50 ng/ml) was added to Tube B. Thus, Tube B is the endotoxin-stimulated (or challenged) sample. The tubes are then incubated at 37 C in 5% CO2 for 30 min, then placed on ice. For each sample, 100 μl of blood is aliquoted into FACS tubes containing 18 μl antibody (prepared and set on ice). Controls without antibody, and isotype controls were also performed.
After gently mixing the samples, they were incubated for 60 min at 4° C. (in the dark), and transferred to room temperature conditions where 2.5 ml RBC lysis solution was added, the cells vortexed, and let sit 5-6 min. After an addition vortexing, the cells were again allowed to sit 5-6 min (at room temp), and then centrifuged (1200 rpm for 5-7 min). Cells were then aspirated, washed with PBS (twice), and again aspirated and resuspended in 350 ul PBS, and fixed by adding fixative.
Samples were then ‘read’ using a flow cytometer (e.g., BD FacsCalibur™). Gating was on ‘neutrophils’ using FSC vs. SSC and CD16b+. Total mean fluorescence intensity (MFI) for each sample was measured, and background of isotype control was subtracted (if necessary).
The effect of VNS on total (neutrophil) CD11b expression in one subject is shown in
While the methods and devices have been described in some detail here by way of illustration and example, such illustration and example is for purposes of clarity of understanding only. It will be readily apparent to those of ordinary skill in the art in light of the teachings herein that certain changes and modifications may be made thereto without departing from the spirit and scope of the invention.
This application claims benefit to U.S. application Ser. No. 60/968,292 filed on Aug. 27, 2007, entitled, “DEVICES AND METHODS FOR INHIBITING GRANULOCYTE ACTIVATION BY NEURAL STIMULATION.”
Number | Name | Date | Kind |
---|---|---|---|
2164121 | Pescador | Jun 1939 | A |
3363623 | Atwell | Jan 1968 | A |
4073296 | McCall | Feb 1978 | A |
4098277 | Mendell | Jul 1978 | A |
4305402 | Katims | Dec 1981 | A |
4503863 | Katims | Mar 1985 | A |
4573481 | Bullara | Mar 1986 | A |
4590946 | Loeb | May 1986 | A |
4632095 | Libin | Dec 1986 | A |
4649936 | Ungar et al. | Mar 1987 | A |
4702254 | Zabara | Oct 1987 | A |
4840793 | Todd, III et al. | Jun 1989 | A |
4867164 | Zabara | Sep 1989 | A |
4929734 | Coughenour et al. | May 1990 | A |
4935234 | Todd, III et al. | Jun 1990 | A |
4979511 | Terry, Jr. | Dec 1990 | A |
4991578 | Cohen | Feb 1991 | A |
5019648 | Schlossman et al. | May 1991 | A |
5025807 | Zabara | Jun 1991 | A |
5049659 | Cantor et al. | Sep 1991 | A |
5073560 | Wu et al. | Dec 1991 | A |
5106853 | Showell et al. | Apr 1992 | A |
5111815 | Mower | May 1992 | A |
5154172 | Terry, Jr. et al. | Oct 1992 | A |
5175166 | Dunbar et al. | Dec 1992 | A |
5179950 | Stanislaw | Jan 1993 | A |
5186170 | Varrichio et al. | Feb 1993 | A |
5188104 | Wernicke et al. | Feb 1993 | A |
5203326 | Collins | Apr 1993 | A |
5205285 | Baker, Jr. | Apr 1993 | A |
5215086 | Terry, Jr. et al. | Jun 1993 | A |
5215089 | Baker, Jr. | Jun 1993 | A |
5222494 | Baker, Jr. | Jun 1993 | A |
5231988 | Wernicke et al. | Aug 1993 | A |
5235980 | Varrichio et al. | Aug 1993 | A |
5237991 | Baker et al. | Aug 1993 | A |
5251634 | Weinberg | Oct 1993 | A |
5263480 | Wernicke et al. | Nov 1993 | A |
5269303 | Wernicke et al. | Dec 1993 | A |
5299569 | Wernicke et al. | Apr 1994 | A |
5304206 | Baker, Jr. et al. | Apr 1994 | A |
5330507 | Schwartz | Jul 1994 | A |
5330515 | Rutecki et al. | Jul 1994 | A |
5335657 | Terry, Jr. et al. | Aug 1994 | A |
5344438 | Testerman et al. | Sep 1994 | A |
5351394 | Weinberg | Oct 1994 | A |
5403845 | Dunbar et al. | Apr 1995 | A |
5458625 | Kendall | Oct 1995 | A |
5472841 | Jayasena et al. | Dec 1995 | A |
5487756 | Kallesoe et al. | Jan 1996 | A |
5496938 | Gold et al. | Mar 1996 | A |
5503978 | Schneider et al. | Apr 1996 | A |
5531778 | Maschino et al. | Jul 1996 | A |
5540730 | Terry, Jr. et al. | Jul 1996 | A |
5540734 | Zabara | Jul 1996 | A |
5567588 | Gold et al. | Oct 1996 | A |
5567724 | Kelleher et al. | Oct 1996 | A |
5571150 | Wernicke et al. | Nov 1996 | A |
5580737 | Polisky et al. | Dec 1996 | A |
5582981 | Toole et al. | Dec 1996 | A |
5604231 | Smith et al. | Feb 1997 | A |
5611350 | John | Mar 1997 | A |
5618818 | Ojo et al. | Apr 1997 | A |
5629285 | Black et al. | May 1997 | A |
5637459 | Burke et al. | Jun 1997 | A |
5651378 | Matheny et al. | Jul 1997 | A |
5654151 | Allen et al. | Aug 1997 | A |
5683867 | Biesecker et al. | Nov 1997 | A |
5690681 | Geddes et al. | Nov 1997 | A |
5700282 | Zabara | Dec 1997 | A |
5705337 | Gold et al. | Jan 1998 | A |
5707400 | Terry, Jr. et al. | Jan 1998 | A |
5709853 | Lino et al. | Jan 1998 | A |
5712375 | Jensen et al. | Jan 1998 | A |
5718912 | Thomspon et al. | Feb 1998 | A |
5726017 | Lochrie et al. | Mar 1998 | A |
5726179 | Messer, Jr. et al. | Mar 1998 | A |
5727556 | Weth et al. | Mar 1998 | A |
5733255 | Dinh et al. | Mar 1998 | A |
5741802 | Kem et al. | Apr 1998 | A |
5773598 | Burke et al. | Jun 1998 | A |
5786462 | Schneider et al. | Jul 1998 | A |
5788656 | Mino | Aug 1998 | A |
5792210 | Wamubu et al. | Aug 1998 | A |
5854289 | Bianchi et al. | Dec 1998 | A |
5902814 | Gordon et al. | May 1999 | A |
5913876 | Taylor et al. | Jun 1999 | A |
5916239 | Geddes et al. | Jun 1999 | A |
5919216 | Houben et al. | Jul 1999 | A |
5928272 | Adkins et al. | Jul 1999 | A |
5964794 | Bolz et al. | Oct 1999 | A |
5977144 | Meyer et al. | Nov 1999 | A |
5994330 | El Khoury | Nov 1999 | A |
6002964 | Feler et al. | Dec 1999 | A |
6006134 | Hill et al. | Dec 1999 | A |
6017891 | Eibl et al. | Jan 2000 | A |
6028186 | Tasset et al. | Feb 2000 | A |
6051017 | Loeb et al. | Apr 2000 | A |
6083696 | Biesecker et al. | Jul 2000 | A |
6083905 | Voorberg et al. | Jul 2000 | A |
6096728 | Collins et al. | Aug 2000 | A |
6104956 | Naritoku et al. | Aug 2000 | A |
6110900 | Gold et al. | Aug 2000 | A |
6110914 | Phillips et al. | Aug 2000 | A |
6117837 | Tracey et al. | Sep 2000 | A |
6124449 | Gold et al. | Sep 2000 | A |
6127119 | Stephens et al. | Oct 2000 | A |
6140490 | Biesecker et al. | Oct 2000 | A |
6141590 | Renirie et al. | Oct 2000 | A |
6147204 | Gold et al. | Nov 2000 | A |
6159145 | Satoh | Dec 2000 | A |
6166048 | Bencherif | Dec 2000 | A |
6168778 | Janjic et al. | Jan 2001 | B1 |
6171795 | Korman et al. | Jan 2001 | B1 |
6205359 | Boveja | Mar 2001 | B1 |
6208902 | Boveja | Mar 2001 | B1 |
6210321 | Di Mino et al. | Apr 2001 | B1 |
6224862 | Turecek et al. | May 2001 | B1 |
6233488 | Hess | May 2001 | B1 |
6266564 | Hill et al. | Jul 2001 | B1 |
6269270 | Boveja | Jul 2001 | B1 |
6304775 | Iasemidis et al. | Oct 2001 | B1 |
6308104 | Taylor et al. | Oct 2001 | B1 |
6337997 | Rise | Jan 2002 | B1 |
6339725 | Naritoku et al. | Jan 2002 | B1 |
6341236 | Osorio et al. | Jan 2002 | B1 |
6356787 | Rezai et al. | Mar 2002 | B1 |
6356788 | Boveja | Mar 2002 | B2 |
6381499 | Taylor et al. | Apr 2002 | B1 |
6405732 | Edwards et al. | Jun 2002 | B1 |
6407095 | Lochead et al. | Jun 2002 | B1 |
6428484 | Battmer et al. | Aug 2002 | B1 |
6429217 | Puskas | Aug 2002 | B1 |
6447443 | Keogh et al. | Sep 2002 | B1 |
6449507 | Hill et al. | Sep 2002 | B1 |
6473644 | Terry, Jr. et al. | Oct 2002 | B1 |
6479523 | Puskas | Nov 2002 | B1 |
6487446 | Hill et al. | Nov 2002 | B1 |
6511500 | Rahme | Jan 2003 | B1 |
6528529 | Brann et al. | Mar 2003 | B1 |
6532388 | Hill et al. | Mar 2003 | B1 |
6542774 | Hill et al. | Apr 2003 | B2 |
6556868 | Naritoku et al. | Apr 2003 | B2 |
6564102 | Boveja | May 2003 | B1 |
6587719 | Barrett et al. | Jul 2003 | B1 |
6587727 | Osorio et al. | Jul 2003 | B2 |
6600956 | Maschino et al. | Jul 2003 | B2 |
6602891 | Messer et al. | Aug 2003 | B2 |
6609025 | Barrett et al. | Aug 2003 | B2 |
6610713 | Tracey | Aug 2003 | B2 |
6611715 | Boveja | Aug 2003 | B1 |
6615081 | Boveja | Sep 2003 | B1 |
6615085 | Boveja | Sep 2003 | B1 |
6622038 | Barrett et al. | Sep 2003 | B2 |
6622041 | Terry, Jr. et al. | Sep 2003 | B2 |
6622047 | Barrett et al. | Sep 2003 | B2 |
6628987 | Hill et al. | Sep 2003 | B1 |
6633779 | Schuler et al. | Oct 2003 | B1 |
6656960 | Puskas | Dec 2003 | B2 |
6668191 | Boveja | Dec 2003 | B1 |
6671556 | Osorio et al. | Dec 2003 | B2 |
6684105 | Cohen et al. | Jan 2004 | B2 |
6690973 | Hill et al. | Feb 2004 | B2 |
6718208 | Hill et al. | Apr 2004 | B2 |
6721603 | Zabara et al. | Apr 2004 | B2 |
6735471 | Hill et al. | May 2004 | B2 |
6735475 | Whitehurst et al. | May 2004 | B1 |
6760626 | Boveja | Jul 2004 | B1 |
6778854 | Puskas | Aug 2004 | B2 |
6804558 | Haller et al. | Oct 2004 | B2 |
RE38654 | Hill et al. | Nov 2004 | E |
6826428 | Chen et al. | Nov 2004 | B1 |
6832114 | Whitehurst et al. | Dec 2004 | B1 |
6838471 | Tracey | Jan 2005 | B2 |
RE38705 | Hill et al. | Feb 2005 | E |
6879859 | Boveja | Apr 2005 | B1 |
6885888 | Rezai | Apr 2005 | B2 |
6904318 | Hill et al. | Jun 2005 | B2 |
6920357 | Osorio et al. | Jul 2005 | B2 |
6928320 | King | Aug 2005 | B2 |
6934583 | Weinberg et al. | Aug 2005 | B2 |
6937903 | Schuler et al. | Aug 2005 | B2 |
6961618 | Osorio et al. | Nov 2005 | B2 |
6978787 | Broniatowski | Dec 2005 | B1 |
7011638 | Schuler et al. | Mar 2006 | B2 |
7054686 | MacDonald | May 2006 | B2 |
7054692 | Whitehurst et al. | May 2006 | B1 |
7058447 | Hill et al. | Jun 2006 | B2 |
7062320 | Ehlinger, Jr. | Jun 2006 | B2 |
7069082 | Lindenthaler | Jun 2006 | B2 |
7072720 | Puskas | Jul 2006 | B2 |
7076307 | Boveja et al. | Jul 2006 | B2 |
7142910 | Puskas | Nov 2006 | B2 |
7142917 | Fukui | Nov 2006 | B2 |
7149574 | Yun et al. | Dec 2006 | B2 |
7155279 | Whitehurst et al. | Dec 2006 | B2 |
7155284 | Whitehurst et al. | Dec 2006 | B1 |
7167750 | Knudson et al. | Jan 2007 | B2 |
7167751 | Whitehurst et al. | Jan 2007 | B1 |
7174218 | Kuzma | Feb 2007 | B1 |
7184828 | Hill et al. | Feb 2007 | B2 |
7184829 | Hill et al. | Feb 2007 | B2 |
7191012 | Boveja et al. | Mar 2007 | B2 |
7204815 | Connor | Apr 2007 | B2 |
7209787 | DiLorenzo | Apr 2007 | B2 |
7225019 | Jahns et al. | May 2007 | B2 |
7228167 | Kara et al. | Jun 2007 | B2 |
7238715 | Tracey et al. | Jul 2007 | B2 |
7242984 | DiLorenzo | Jul 2007 | B2 |
7269457 | Shafer et al. | Sep 2007 | B2 |
7467016 | Colborn | Dec 2008 | B2 |
7544497 | Sinclair et al. | Jun 2009 | B2 |
7561918 | Armstrong et al. | Jul 2009 | B2 |
7711432 | Thimineur et al. | May 2010 | B2 |
7729760 | Patel et al. | Jun 2010 | B2 |
7751891 | Armstrong et al. | Jul 2010 | B2 |
7776326 | Milbrandt et al. | Aug 2010 | B2 |
7797058 | Mrva et al. | Sep 2010 | B2 |
7822486 | Foster et al. | Oct 2010 | B2 |
7829556 | Bemis et al. | Nov 2010 | B2 |
7869885 | Begnaud et al. | Jan 2011 | B2 |
7937145 | Dobak | May 2011 | B2 |
7962220 | Kolafa et al. | Jun 2011 | B2 |
7974701 | Armstrong | Jul 2011 | B2 |
7974707 | Inman | Jul 2011 | B2 |
7996088 | Marrosu et al. | Aug 2011 | B2 |
7996092 | Mrva et al. | Aug 2011 | B2 |
8019419 | Panescu et al. | Sep 2011 | B1 |
8103349 | Donders et al. | Jan 2012 | B2 |
8165668 | Dacey, Jr. et al. | Apr 2012 | B2 |
8180446 | Dacey, Jr. et al. | May 2012 | B2 |
8195287 | Dacey, Jr. et al. | Jun 2012 | B2 |
8214056 | Hoffer et al. | Jul 2012 | B2 |
20010002441 | Boveja | May 2001 | A1 |
20020026141 | Houben et al. | Feb 2002 | A1 |
20020040035 | Myers et al. | Apr 2002 | A1 |
20020077675 | Greenstein | Jun 2002 | A1 |
20020086871 | O'Neill et al. | Jul 2002 | A1 |
20020095139 | Keogh et al. | Jul 2002 | A1 |
20020099417 | Naritoku et al. | Jul 2002 | A1 |
20020138075 | Edwards et al. | Sep 2002 | A1 |
20020138109 | Keogh et al. | Sep 2002 | A1 |
20020198570 | Puskas | Dec 2002 | A1 |
20030018367 | DiLorenzo | Jan 2003 | A1 |
20030045909 | Gross et al. | Mar 2003 | A1 |
20030088301 | King | May 2003 | A1 |
20030191404 | Klein | Oct 2003 | A1 |
20030194752 | Anderson et al. | Oct 2003 | A1 |
20030212440 | Boveja | Nov 2003 | A1 |
20030229380 | Adams et al. | Dec 2003 | A1 |
20030236557 | Whitehurst et al. | Dec 2003 | A1 |
20030236558 | Whitehurst et al. | Dec 2003 | A1 |
20040015202 | Chandler et al. | Jan 2004 | A1 |
20040015205 | Whitehurst et al. | Jan 2004 | A1 |
20040024422 | Hill et al. | Feb 2004 | A1 |
20040024428 | Barrett et al. | Feb 2004 | A1 |
20040024439 | Riso | Feb 2004 | A1 |
20040030362 | Hill et al. | Feb 2004 | A1 |
20040039427 | Barrett et al. | Feb 2004 | A1 |
20040048795 | Ivanova et al. | Mar 2004 | A1 |
20040049121 | Yaron | Mar 2004 | A1 |
20040059383 | Puskas | Mar 2004 | A1 |
20040111139 | McCreery et al. | Jun 2004 | A1 |
20040138517 | Osorio et al. | Jul 2004 | A1 |
20040138518 | Rise et al. | Jul 2004 | A1 |
20040138536 | Frei et al. | Jul 2004 | A1 |
20040146949 | Tan et al. | Jul 2004 | A1 |
20040153127 | Gordon et al. | Aug 2004 | A1 |
20040158119 | Osorio et al. | Aug 2004 | A1 |
20040162584 | Hill et al. | Aug 2004 | A1 |
20040172074 | Yoshihito | Sep 2004 | A1 |
20040172085 | Knudson et al. | Sep 2004 | A1 |
20040172086 | Knudson et al. | Sep 2004 | A1 |
20040172088 | Knudson et al. | Sep 2004 | A1 |
20040172094 | Cohen et al. | Sep 2004 | A1 |
20040176812 | Knudson et al. | Sep 2004 | A1 |
20040193231 | David et al. | Sep 2004 | A1 |
20040199209 | Hill et al. | Oct 2004 | A1 |
20040199210 | Shelchuk | Oct 2004 | A1 |
20040204355 | Tracey et al. | Oct 2004 | A1 |
20040236381 | Dinsmoor et al. | Nov 2004 | A1 |
20040236382 | Dinsmoor et al. | Nov 2004 | A1 |
20040243182 | Cohen et al. | Dec 2004 | A1 |
20040254612 | Ezra et al. | Dec 2004 | A1 |
20040267152 | Pineda | Dec 2004 | A1 |
20050021092 | Yun et al. | Jan 2005 | A1 |
20050021101 | Chen et al. | Jan 2005 | A1 |
20050027328 | Greenstein | Feb 2005 | A1 |
20050043774 | Devlin et al. | Feb 2005 | A1 |
20050049655 | Boveja et al. | Mar 2005 | A1 |
20050065553 | Ben Ezra et al. | Mar 2005 | A1 |
20050065573 | Rezai | Mar 2005 | A1 |
20050065575 | Dobak | Mar 2005 | A1 |
20050070970 | Knudson et al. | Mar 2005 | A1 |
20050070974 | Knudson et al. | Mar 2005 | A1 |
20050075701 | Shafer | Apr 2005 | A1 |
20050075702 | Shafer | Apr 2005 | A1 |
20050095246 | Shafer | May 2005 | A1 |
20050096707 | Hill et al. | May 2005 | A1 |
20050125044 | Tracey et al. | Jun 2005 | A1 |
20050131467 | Boveja | Jun 2005 | A1 |
20050131486 | Boveja et al. | Jun 2005 | A1 |
20050131487 | Boveja | Jun 2005 | A1 |
20050131493 | Boveja et al. | Jun 2005 | A1 |
20050137644 | Boveja et al. | Jun 2005 | A1 |
20050137645 | Voipio et al. | Jun 2005 | A1 |
20050143781 | Carbunaru et al. | Jun 2005 | A1 |
20050143787 | Boveja et al. | Jun 2005 | A1 |
20050149126 | Libbus | Jul 2005 | A1 |
20050149129 | Libbus et al. | Jul 2005 | A1 |
20050149131 | Libbus et al. | Jul 2005 | A1 |
20050153885 | Yun et al. | Jul 2005 | A1 |
20050154425 | Boveja et al. | Jul 2005 | A1 |
20050154426 | Boveja et al. | Jul 2005 | A1 |
20050165458 | Boveja et al. | Jul 2005 | A1 |
20050177200 | George et al. | Aug 2005 | A1 |
20050182288 | Zabara | Aug 2005 | A1 |
20050182467 | Hunter et al. | Aug 2005 | A1 |
20050187584 | Denker et al. | Aug 2005 | A1 |
20050187586 | David et al. | Aug 2005 | A1 |
20050187590 | Boveja et al. | Aug 2005 | A1 |
20050192644 | Boveja et al. | Sep 2005 | A1 |
20050197600 | Schuler et al. | Sep 2005 | A1 |
20050197675 | David et al. | Sep 2005 | A1 |
20050197678 | Boveja et al. | Sep 2005 | A1 |
20050203501 | Aldrich et al. | Sep 2005 | A1 |
20050209654 | Boveja et al. | Sep 2005 | A1 |
20050216064 | Heruth et al. | Sep 2005 | A1 |
20050216070 | Boveja et al. | Sep 2005 | A1 |
20050216071 | Devlin et al. | Sep 2005 | A1 |
20050240229 | Whitehurst et al. | Oct 2005 | A1 |
20050240231 | Aldrich et al. | Oct 2005 | A1 |
20050240241 | Yun et al. | Oct 2005 | A1 |
20050251220 | Barrett et al. | Nov 2005 | A1 |
20050251222 | Barrett et al. | Nov 2005 | A1 |
20050267542 | David et al. | Dec 2005 | A1 |
20050267547 | Knudson et al. | Dec 2005 | A1 |
20050282906 | Tracey et al. | Dec 2005 | A1 |
20050283198 | Haubrich et al. | Dec 2005 | A1 |
20060009815 | Boveja et al. | Jan 2006 | A1 |
20060015151 | Aldrich | Jan 2006 | A1 |
20060025828 | Armstrong et al. | Feb 2006 | A1 |
20060036293 | Whitehurst et al. | Feb 2006 | A1 |
20060052657 | Zabara | Mar 2006 | A9 |
20060052831 | Fukui | Mar 2006 | A1 |
20060052836 | Kim et al. | Mar 2006 | A1 |
20060058851 | Cigaina | Mar 2006 | A1 |
20060064137 | Stone | Mar 2006 | A1 |
20060064139 | Chung et al. | Mar 2006 | A1 |
20060074450 | Boveja et al. | Apr 2006 | A1 |
20060074473 | Gertner | Apr 2006 | A1 |
20060079936 | Boveja et al. | Apr 2006 | A1 |
20060085046 | Rezai et al. | Apr 2006 | A1 |
20060095081 | Zhou et al. | May 2006 | A1 |
20060095090 | De Ridder | May 2006 | A1 |
20060100668 | Ben-David et al. | May 2006 | A1 |
20060111644 | Guttag et al. | May 2006 | A1 |
20060111754 | Rezai et al. | May 2006 | A1 |
20060111755 | Stone et al. | May 2006 | A1 |
20060116739 | Betser et al. | Jun 2006 | A1 |
20060122675 | Libbus et al. | Jun 2006 | A1 |
20060129200 | Kurokawa | Jun 2006 | A1 |
20060129202 | Armstrong | Jun 2006 | A1 |
20060135998 | Libbus et al. | Jun 2006 | A1 |
20060142802 | Armstrong | Jun 2006 | A1 |
20060142822 | Tulgar | Jun 2006 | A1 |
20060149337 | John | Jul 2006 | A1 |
20060161216 | John et al. | Jul 2006 | A1 |
20060161217 | Jaax et al. | Jul 2006 | A1 |
20060167497 | Armstrong et al. | Jul 2006 | A1 |
20060167498 | DiLorenzo | Jul 2006 | A1 |
20060167501 | Ben-David et al. | Jul 2006 | A1 |
20060173493 | Armstrong et al. | Aug 2006 | A1 |
20060173508 | Stone et al. | Aug 2006 | A1 |
20060178691 | Binmoeller | Aug 2006 | A1 |
20060178703 | Huston et al. | Aug 2006 | A1 |
20060178706 | Lisogurski et al. | Aug 2006 | A1 |
20060190044 | Libbus et al. | Aug 2006 | A1 |
20060200208 | Terry, Jr. et al. | Sep 2006 | A1 |
20060200219 | Thrope et al. | Sep 2006 | A1 |
20060206155 | Ben-David et al. | Sep 2006 | A1 |
20060206158 | Wu et al. | Sep 2006 | A1 |
20060229677 | Moffitt et al. | Oct 2006 | A1 |
20060229681 | Fischell | Oct 2006 | A1 |
20060241699 | Libbus et al. | Oct 2006 | A1 |
20060247719 | Maschino et al. | Nov 2006 | A1 |
20060247721 | Maschino et al. | Nov 2006 | A1 |
20060247722 | Maschino et al. | Nov 2006 | A1 |
20060259077 | Pardo et al. | Nov 2006 | A1 |
20060259084 | Zhang et al. | Nov 2006 | A1 |
20060259085 | Zhang et al. | Nov 2006 | A1 |
20060259107 | Caparso et al. | Nov 2006 | A1 |
20060271115 | Ben-Ezra et al. | Nov 2006 | A1 |
20060282121 | Payne et al. | Dec 2006 | A1 |
20060282131 | Caparso et al. | Dec 2006 | A1 |
20060282145 | Caparso et al. | Dec 2006 | A1 |
20060287678 | Shafer | Dec 2006 | A1 |
20060287679 | Stone | Dec 2006 | A1 |
20060293720 | DiLorenzo | Dec 2006 | A1 |
20060293721 | Tarver et al. | Dec 2006 | A1 |
20060293723 | Whitehurst et al. | Dec 2006 | A1 |
20070016262 | Gross et al. | Jan 2007 | A1 |
20070016263 | Armstrong et al. | Jan 2007 | A1 |
20070021785 | Inman et al. | Jan 2007 | A1 |
20070021786 | Parnis et al. | Jan 2007 | A1 |
20070021814 | Inman et al. | Jan 2007 | A1 |
20070025608 | Armstrong | Feb 2007 | A1 |
20070027482 | Parnis et al. | Feb 2007 | A1 |
20070027483 | Maschino et al. | Feb 2007 | A1 |
20070027484 | Guzman et al. | Feb 2007 | A1 |
20070027486 | Armstrong | Feb 2007 | A1 |
20070027492 | Maschino et al. | Feb 2007 | A1 |
20070027496 | Parnis et al. | Feb 2007 | A1 |
20070027497 | Parnis | Feb 2007 | A1 |
20070027498 | Maschino et al. | Feb 2007 | A1 |
20070027499 | Maschino et al. | Feb 2007 | A1 |
20070027500 | Maschino et al. | Feb 2007 | A1 |
20070027504 | Barrett et al. | Feb 2007 | A1 |
20070055324 | Thompson et al. | Mar 2007 | A1 |
20070067004 | Boveja et al. | Mar 2007 | A1 |
20070083242 | Mazgalev et al. | Apr 2007 | A1 |
20070093434 | Rossetti et al. | Apr 2007 | A1 |
20070093870 | Maschino | Apr 2007 | A1 |
20070093875 | Chavan et al. | Apr 2007 | A1 |
20070100263 | Merfeld | May 2007 | A1 |
20070100377 | Armstrong et al. | May 2007 | A1 |
20070100378 | Maschino | May 2007 | A1 |
20070100380 | Fukui | May 2007 | A1 |
20070100392 | Maschino et al. | May 2007 | A1 |
20070106339 | Errico et al. | May 2007 | A1 |
20070118177 | Libbus et al. | May 2007 | A1 |
20070118178 | Fukui | May 2007 | A1 |
20070129780 | Whitehurst et al. | Jun 2007 | A1 |
20070135846 | Knudson et al. | Jun 2007 | A1 |
20070135856 | Knudson et al. | Jun 2007 | A1 |
20070135857 | Knudson et al. | Jun 2007 | A1 |
20070135858 | Knudson et al. | Jun 2007 | A1 |
20070142870 | Knudson et al. | Jun 2007 | A1 |
20070142871 | Libbus et al. | Jun 2007 | A1 |
20070142874 | John | Jun 2007 | A1 |
20070150006 | Libbus et al. | Jun 2007 | A1 |
20070150011 | Meyer et al. | Jun 2007 | A1 |
20070150021 | Chen et al. | Jun 2007 | A1 |
20070150027 | Rogers | Jun 2007 | A1 |
20070156180 | Jaax et al. | Jul 2007 | A1 |
20070239243 | Moffitt et al. | Oct 2007 | A1 |
20070250145 | Kraus et al. | Oct 2007 | A1 |
20070255320 | Inman et al. | Nov 2007 | A1 |
20070255333 | Giftakis | Nov 2007 | A1 |
20080021517 | Dietrich | Jan 2008 | A1 |
20080021520 | Dietrich | Jan 2008 | A1 |
20080046055 | Durand et al. | Feb 2008 | A1 |
20080058871 | Libbus et al. | Mar 2008 | A1 |
20080103407 | Bolea et al. | May 2008 | A1 |
20080140138 | Ivanova et al. | Jun 2008 | A1 |
20080183246 | Patel et al. | Jul 2008 | A1 |
20080234790 | Bayer et al. | Sep 2008 | A1 |
20080249439 | Tracey et al. | Oct 2008 | A1 |
20080281365 | Tweden et al. | Nov 2008 | A1 |
20090012590 | Inman et al. | Jan 2009 | A1 |
20090048194 | Aerssens et al. | Feb 2009 | A1 |
20090105782 | Mickle et al. | Apr 2009 | A1 |
20090123521 | Weber et al. | May 2009 | A1 |
20090125079 | Armstrong et al. | May 2009 | A1 |
20090177112 | Gharib et al. | Jul 2009 | A1 |
20090187231 | Errico et al. | Jul 2009 | A1 |
20090254143 | Tweden et al. | Oct 2009 | A1 |
20090276019 | Perez et al. | Nov 2009 | A1 |
20090281593 | Errico et al. | Nov 2009 | A9 |
20100003656 | Kilgard et al. | Jan 2010 | A1 |
20100010603 | Ben-David et al. | Jan 2010 | A1 |
20100042186 | Ben-David et al. | Feb 2010 | A1 |
20100063563 | Craig | Mar 2010 | A1 |
20100125304 | Faltys | May 2010 | A1 |
20100215632 | Boss et al. | Aug 2010 | A1 |
20100241183 | DiLorenzo | Sep 2010 | A1 |
20100249859 | DiLorenzo | Sep 2010 | A1 |
20100280569 | Bobillier et al. | Nov 2010 | A1 |
20110004266 | Sharma | Jan 2011 | A1 |
20110066208 | Pasricha et al. | Mar 2011 | A1 |
20110106208 | Faltys et al. | May 2011 | A1 |
20120065706 | Vallapureddy et al. | Mar 2012 | A1 |
Number | Date | Country |
---|---|---|
2628045 | Jan 1977 | DE |
3736664 | May 1989 | DE |
20316509 | Apr 2004 | DE |
0 438 510 | Aug 1996 | EP |
0 726 791 | Jun 2000 | EP |
1 001 827 | Jan 2004 | EP |
2 073 896 | Oct 2011 | EP |
04133 | Jan 1910 | GB |
WO9301862 | Feb 1993 | WO |
WO9730998 | Aug 1997 | WO |
WO9820868 | May 1998 | WO |
WO0027381 | May 2000 | WO |
WO0047104 | Aug 2000 | WO |
WO0100273 | Jan 2001 | WO |
WO0108617 | Feb 2001 | WO |
WO0189526 | Nov 2001 | WO |
WO0244176 | Jun 2002 | WO |
WO02057275 | Jul 2002 | WO |
WO03072135 | Sep 2003 | WO |
WO04000413 | Dec 2003 | WO |
WO2004064918 | Aug 2004 | WO |
WO2006073484 | Jul 2006 | WO |
WO 2007133718 | Nov 2007 | WO |
Entry |
---|
US 6,184,239, 02/2001, Puskas (withdrawn) |
Abraham, Coagulation abnormalities in acute lung injury and sepsis, Am. J. Respir. Cell Mol. Biol., vol. 22, pp. 401-404, 2000. |
Aekerlund et al., Anti-inflammatory effects of a new tumour necrosis factor-alpha (TNF-Alpha) inhibitor (CNI-1493) in collagen-induced arthritis (CIA) in rats, Clinical & Experimental Immunology, vol. 115, No. 1, pp. 32-41, Jan. 1, 1999. |
Antonica, A., et al., Vagal control of lymphocyte release from rat thymus, J. Auton. Nerv. Syst., vol. 48, pp. 187-197, 1994. |
Asakura et al., Non-surgical therapy for ulcerative colitis, Nippon Geka Gakkai Zasshi, vol. 98, No. 4, pp. 431-437, Apr. 1997 (abstract only). |
Bernik et al., Vagus nerve stimulation attenuates endotoxic shock and cardiac TNF production, 87th Clinical Congress of the American College of Surgeons, New Orleans, LA, Oct. 9, 2001. |
Bernik et al., Vagus nerve stimulation attenuates LPS-induced cardiac TNF production and myocardial depression IN shock, New York Surgical Society, New York, NY, Apr. 11, 2001. |
Bernik, et al., Pharmacological stimulation of the cholinergic anti-inflammatory pathway, The Journal of Experimental Medicine, vol. 195, No. 6, pp. 781-788, Mar. 18, 2002. |
Bhattacharya, S.K. et al., Central muscarinic receptor subtypes and carrageenin-induced paw oedema in rats, Res. Esp. Med. vol. 191, pp. 65-76, 1991. |
Bianchi et al., Suppression of proinflammatory cytokines in monocytes by a tetravalent guanylhydrazone, Journal of Experimental Medicine, vol. 183, pp. 927-936, Mar. 1996. |
Blum, A. et al., Role of cytokines in heart failure, Am. Heart J., vol. 135, pp. 181-186, 1998. |
Boldyreff, Gastric and intestinal mucus, its properties and physiological importance, Acta Medica Scandinavica (journal), vol. 89, pp. 1-14, 1936. |
Borovikova et al., Efferent vagus nerve activity attenuates cytokine-mediated inflammation, Society for Neuroscience Abstracts, vol. 26, No. 102, 2000 (abstract only). |
Borovikova et al., Intracerebroventricular CNI-1493 prevents LPS-induced hypotension and peak serum TNF at a four-log lower dose than systemic treatment, 21st Annual Conference on Shock, San Antonio, TX, Jun. 14-17, 1998, Abstract No. 86. |
Borovikova et al., Role of the efferent vagus nerve signaling in the regulation of the innate immune response to LPS, (supplemental to SHOCK, vol. 13, 2000, Molecular, cellular, and systemic pathobiological aspects and therapeutic approaches, abstracts, 5th World Congress on Trauma, Shock inflammation and sepsis-pathophysiology, immune consequences and therapy, Feb. 29, 2000-Mar. 4, 2000, Munich, DE), Abstract No. 166. |
Borovikova et al., Role of the vagus nerve in the anti-inflammatory effects of CNI-1493, the FASEB journal, vol. 14, No. 4, 2000 (Experimental Biology 2000, San Diego, CA, Apr. 15-18, 2000, Abstract No. 97.9). |
Borovikova et al., Vagotomy blocks the protective effects of I.C.V. CNI-1493 against LPS-induced shock, (Supplemental to SHOCK, vol. 11, 1999, Molecular, cellular, and systemic pathobioloigal aspects and therapeutic approaches, abstacts and program, Fourth International Shock Congress and 22nd Annual Conference on Shock, Philadelphia, PA, Jun. 12-16, 1999), Abstract No. 277. |
Borovikova, L. V., et al., Role of vagus nerve signaling in CNI-1493-mediated suppression of acute inflammation, Autonomic Neuroscience, vol. 85, No. 1-3, pp. 141-147, Dec. 20, 2000. |
Borovikova, L. V., et al., Vagus nerve stimulation attenuates the systemic inflammatory response to endotoxin, Nature, vol. 405, No. 6785: pp. 458-462, May 25, 2000. |
Bumgardner, G. L. et al., Transplantation and cytokines, Seminars in Liver Disease, vol. 19, No. 2, pp. 189-204, 1999. |
Carteron, N. L., Cytokines in rheumatoid arthritis: trials and tribulations, Mol. Med. Today, vol. 6, pp. 315-323, 2000. |
Corcoran, et al., The effects of vagus nerve stimulation on pro- and anti-inflammatory cytokines in humans: a preliminary report, NeuroImmunoModulation, vol. 12, pp. 307-309, 2005. |
Dibbs, Z., et al., Cytokines in heart failure: pathogenetic mechanisms and potential treatment, Proc. Assoc. Am. Physicians, vol. 111, No. 5, pp. 423-428, 1999. |
Dinarello, C. A., The interleukin-1 family: 10 years of discovery, FASEB J., vol. 8, No. 15, pp. 1314-1325, 1994. |
Doshi et al., Evolving role of tissue factor and its pathway inhibitor, Crit. Care Med., vol. 30, suppl. 5, pp. S241-S250, 2002. |
Esmon, The protein C pathway, Crit. Care Med., vol. 28, suppl. 9, pp. S44-S48, 2000. |
Fleshner, M., et al., Thermogenic and corticosterone responses to intravenous cytokines (IL-1? and TNF-?) are attenuated by subdiaphragmatic vagotomy, J. Neuroimmunol., vol. 86, pp. 134-141, 1998. |
Fox, et al., Use of muscarinic agonists in the treatment of Sjorgren' syndrome, Clin. Immunol., vol. 101, No. 3; pp. 249-263, 2001. |
Gattorno, M., et al., Tumor necrosis factor induced adhesion molecule serum concentrations in henoch-schoenlein purpura and pediatric systemic lupus erythematosus, J. Rheumatol., vol. 27, No. 9, pp. 2251-2255, 2000. |
Ghia, et al., The vagus nerve: a tonic inhibitory influence associated with inflammatory bowel disease in a murine model, Gastroenterology, vol. 131, pp. 1122-1130, 2006. |
Giebelen, et al., Stimulation of ?7 cholinergic receptors inhibits lipopolysaccharide-induced neutrophil recruitment by a tumor necrosis factor ?-independent mechanism, SHOCK, vol. 27, No. 4, pp. 443-447, 2007. |
Gracie, J. A., et al., A proinflammatory role for IL-18 in rheumatoid arthritis, J. Clin. Invest., vol. 104, No. 10, pp. 1393-1401, 1999. |
Granert et al., Suppression of macrophage activation with CNI-1493 increases survival in infant rats with systemic haemophilus influenzae infection, Infection and Immunity, vol. 68, No. 9, pp. 5329-5334, Sep. 2000. |
Hirano, T., Cytokine suppresive agent improves survival rate in rats with acute pancreatitis of closed duodenal loop, J. Surg. Res., vol. 81, No. 2, pp. 224-229, 1999. |
Holladay et al., Neuronal nicotinic acetylcholine receptors as targets for drug discovery, Journal of Medicinal Chemistry, 40, pp. 4169-4194, 1997. |
Hommes, D. W. et al., Anti- and Pro-inflammatory cytokines in the pathogenesis of tissue damage in Crohn's disease, Current Opinion in Clinical Nutrition and Metabolic Care, vol. 3., pp. 191-195, 2000. |
Hsu, H. Y., et al., Cytokine release of peripheral blood monoculear cells in children with chronic hepatitis B virus infection, J. Pediatr. Gastroenterol., vol. 29, No. 5, pp. 540-545, 1999. |
Hu, et al., The effect of norepinephrine on endotoxin-mediated macrophage activation, J. Neuroimmunol., vol. 31, pp. 35-42, 1991. |
Jander, S. et al., Interleukin-18 is induced in acute inflammatory demyelinating polymeuropathy, J. Neuroimmunol., vol. 114, pp. 253-258, 2001. |
Kanai, T. et al., Interleukin-18 and Crohn's disease, Digestion, vol. 63, suppl. 1, pp. 37-42, 2001. |
Katagiri, M., et al., Increased cytokine production by gastric mucosa in patients with Helicobacter pylori infection, J. Clin, Gastroenterol., vol. 25, Suppl. 1, pp. S211-S214, 1997. |
Kimball, et al., Levamisole causes differential cytokine expression by elicited mouse peritoneal macrophases, Journal of Leukocyte Biology, vo. 52, No. 3, pp. 349-356, 1992 (abstract only). |
Kimmings, A. N., et al., Systemic inflammatory response in acute cholangitis and after subsequent treatment, Eur. J. Surg., vol. 166, pp. 700-705, 2000. |
Kirchner et al.; Left vagus nerve stimulation suppresses experimentally induced pain; Neurology; vol. 55; pp. 1167-1171; 2000. |
Kumins, N. H., et al., Partial hepatectomy reduces the endotoxin-induced peak circulating level of tumor necrosis factor in rats, SHOCK, vol. 5, No. 5, pp. 385-388, 1996. |
Lee, H. G., et al., Peritoneal lavage fluids stimulate NIH3T3 fibroblast proliferation and contain increased tumour necrosis factor and IL6 in experimental silica-induced rat peritonitis, Clin. Exp. Immunol., vol. 100, pp. 139-144, 1995. |
Lipton, J. M. et al.; Anti-inflammatory actions of the neuroimmunomodulator ?-MSH, Immunol. Today, vol. 18, pp. 140-145, 1997. |
Martiney et al., Prevention and treatment of experimental autoimmune encephalomyelitis by CNI-1493, a macrophage-deactivating agent, Journal of Immunology, vol. 160, No. 11, pp. 5588-5595, Jun. 1, 1998. |
McGuinness, P. H., et al., Increases in intrahepatic CD68 positive cells, MAC387 positive cells, and proinflammatory cytokines (particulary interleukin 18) in chronic hepatitis C infection, Gut, vol. 46, pp. 260-269, 2000. |
Minnich et al.; Anti-cytokine and anti-inflammatory therapies for the treatment of severe sepsis: progress and pitfalls; Proceedings of the Nutrition Society; vol. 63; pp. 437-441; 2004. |
Molina et al., CNI-1493 attenuates hemodynamic and pro-inflammatory responses to LPS, Shock, vol. 10, No. 5, pp. 329-334, Nov. 1998. |
Nathan, C. F., Secretory products of macrophages, J. Clin. Invest., vol. 79, pp. 319-326, 1987. |
Navalkar et al.; Irbesartan, an angiotensin type 1 receptor inhibitor, regulates markers of inflammation in patients with premature atherosclerosis; Journal of the American College of Cardiology; vol. 37; No. 2; pp. 440-444; 2001. |
Palmblad et al., Dynamics of early synovial cytokine expression in rodent collagen-induced arthritis: a thereapeutic study unding a macrophage-deactivation compound, American Journal of Pathology, vol. 158, No. 2, pp. 491-500, Feb. 2, 2001. |
Prystowsky, J. B. et al., Interleukin-1 mediates guinea pig gallbladder inflammation in vivo, J. Surg. Res., vol. 71, No. 2, pp. 123-126, 1997. |
Pulkki, K. J., Cytokines and cardiomyocyte death, Ann. Med., vol. 29, pp. 339-343, 1997. |
Rayner, S. A. et al., Local bioactive tumour necrosis factor (TNF) in corneal allotransplantation, Clin. Exp. Immunol., vol. 122, pp. 109-116, 2000. |
Romanovsky, A. A., et al.,The vagus nerve in the thermoregulatory response to systemic inflammation, Am. J. Physiol., vol. 273, No. 1 (part 2), pp. R407-R413, 1997. |
Scheinman, R. I., et al., Role of transcriptional activation of I?B? in mediation of immunosuppression by glucocorticoids, Science, vol. 270, pp. 283-286, 1995. |
Stalcup et al., Endothelial cell functions in the hemodynamic responses to stress, Annals of the New York Academy of Sciences, vol. 401, pp. 117-131, 1982. |
Sugano et al., Nicotine inhibits the production of inflammatory mediators in U937 cells through modulation of nuclear factor-kappaβ activation, Biochemical and Biophysical Research Communications, vol. 252, No. 1, pp. 25-28, Nov. 9, 1998. |
Tracey et al., Mind over immunity, Faseb Journal, vol. 15, No. 9, pp. 1575-1576, Jul. 2001. |
Tracey, K. J. et al., Shock and tissue injury induced by recombinant human cachectin, Science, vol. 234, pp. 470-474, 1986. |
Tracey, K.J., The inflammatory reflex, Nature, vol. 420, pp. 853-859, 2002. |
Vanhoutte, et al., Muscarinic and beta-adrenergic prejunctional modulation of adrenergic neurotransmission in the blood vessel wall, Gen Pharmac., vol. 14, pp. 35-37, 1983. |
vanWesterloo, et al., The cholinergic anti-inflammatory pathway regulates the host response during septic peritonitis, The Journal of Infectious Diseases, vol. 191, pp. 2138-2148, Jun. 15, 2005. |
Ventureyra, Transcutaneous vagus nerve stimulation for partial onset seizure therapy, Child's Nery Syst, vol. 16, pp. 101-102, 2000. |
Villa et al., Protection against lethal polymicrobial sepsis by CNI-1493, an inhibitor of pro-inflammatory cytokine synthesis, Journal of Endotoxin Research, vol. 4, No. 3, pp. 197-204, 1997. |
Von Känal, et al., Effects of non-specific ?-adrenergic stimulation and blockade on blood coagulation in hypertension, J. Appl. Physiol., vol. 94, pp. 1455-1459, 2003. |
Waserman, S. et al., TNF-? dysregulation in asthma: relationship to ongoing corticosteroid therapy, Can. Respir. J., vol. 7, No. 3, pp. 229-237, 2000. |
Watanabe, H. et al., The significance of tumor necrosis factor (TNF) levels for rejection of joint allograft, J. Reconstr. Microsurg., vol. 13, No. 3, pp. 193-197, 1997. |
Watkins, L.R. et al., Implications of immune-to-brain communication for sickness and pain, Proc. Natl. Acad. Sci. U.S.A., vol. 96, pp. 7710-7713, 1999. |
Woiciechowsky, C. et al., Sympathetic activation triggers systemic interleukin-10 release in immunodepression induced by brain injury, Nature Med., vol. 4, No. 7, pp. 808-813, 1998. |
Yeh, S.S. et al., Geriatric cachexia: the role of cytokines, Am. J. Clin. Nutr., vol. 70, pp. 183-197, 1999. |
Zhang et al., Tumor necrosis factor, The Cytokine Handbook, 3rd ed., Ed. Thompson, Academic Press, pp. 517-548, 1998. |
Tracey et al.; U.S. Appl. No. 12/109,334 entitled “Inhibition of inflammatory cytokine production by cholinergic agonists and vagus nerve stimulation,” filed Apr. 24, 2008. |
Ilton et al., “Differential exprossion of neutrophil adhesion molecules during coronary artery surgery with cardiopulmonary bypass” Journal of Thoracic and Cardiovascular Surgery, Mosby-Year Book, inc., St. Louis, Mo, US, pp. 930-937, Nov. 1, 1999. |
Shapiro et al.; Prospective, randomised trial of two doses of rFVIIa (NovoSeven) in haemophilia patients with inhibitors undergoing surgery; Thromb Haemost; vol. 80; pp. 773-778; 1998. |
Martindale: The extrapharcopoeia; 28th Ed. London; The pharmaceutical press; pp. 446-485; 1982. |
Shi et al.; Effects of efferent vagus nerve excitation on inflammatory response in heart tissue in rats with endotoxemia; vol. 15, No. 1; pp. 26-28; 2003 (Eng. Abstract). |
Huston et al.; U.S. Appl. No. 12/259,208 entitled “Treating inflammatory disorders by stimulation of the cholinergic anti-inflammatory pathway,” filed Oct. 27, 2008. |
Huston et al.; Splenectomy inactivates the cholinergic antiinflammatory pathway during lethal endotoxemia and polymicrobial sepsis; J. Exp. Med. 2006; vol. 203; pp. 1623-1628; 2006. |
Saghizadeh et al.; The expression of TNF? by human muscle; J. Clin. Invest.; vol. 97; No. 4; pp. 1111-1116; 1996. |
Tracey et al.; U.S. Appl. No. 12/415,671 entitled “Methods and systems for reducing inflammation by neuromodulation of T-cell activity,” filed Mar. 31, 2009. |
Faltys et al.; U.S. Appl. No. 12/434,462 entitled “Vagus nerve stimulation electrodes and methods of use,” filed May 1, 2009. |
Benthem et al.; Parasympathetic inhibition of sympathetic neural activity to the pancreas; Am.J.Physiol Endocrinol.Metab; 280; pp. E378-E381; 2001. |
Bernik et al., Vagus nerve stimulation attenuates cardiac TNF production in endotoxic shock, (supplemental to SHOCK, vol. 15, 2001, Injury, inflammation and sepsis: laboratory and clinical approaches, SHOCK, Abstracts, 24th Annual Conference on Shock, Marco Island, FL, Jun. 9-12, 2001), Abstract No. 81. |
Besedovsky, H., et al., Immunoregulatory feedback between interleukin-1 and glucocorticoid hormones, Science, vol. 233, pp. 652-654, 1986. |
Blackwell, T. S. et al., Sepsis and cytokines: current status, Br. J. Anaesth., vol. 77, pp. 110-117, 1996. |
Borovikova et al., Acetylcholine inhibition of immune response to bacterial endotoxin in human macrophages, Abstracts, Society for Neuroscience, 29th Annual Meeting, Miami Beach, FL, Oct. 23-28, 1999, Abstract No. 624.6. |
Bulloch et al.; Characterization of choline O-acetyltransferase (ChAT) in the BALB/C mouse spleen; Int.J.Neurosci.; 76; pp. 141-149; 1994. |
Burke et al., Bent pseudoknots and novel RNA inhibitors of type 1 human immunodeficiency virus (HIV-1) reverse transcriptase, J. Mol. Biol., vol. 264; pp. 650-666, 1996. |
Cano et al.; Characterization of the central nervous system innervation of the rat spleen using viral transneuronal tracing; J.Comp Neurol.; 439; pp. 1-18; 2001. |
Das, Critical advances in spticemia and septic shock, Critical Care, vol. 4, pp. 290-296, Sep. 7, 2000. |
Del Signore et al; Nicotinic acetylcholine receptor subtypes in the rat sympathetic ganglion: pharmacological characterization, subcellular distribution and effect of pre- and postganglionic nerve crush; J.Neuropathol.Exp.Neurol.; 63(2); pp. 138-150; Feb. 2004. |
Ellington et al., In vitro selection of RNA molecules that bind specific ligands, Nature, vol. 346, pp. 818-822, Aug. 30, 1990. |
Fox, D. A., Cytokine blockade as a new strategy to treat rheumatoid arthritis, Arch. Intern. Med., vol. 160, pp. 437-444, Feb. 28, 2000. |
Fujii et al.; Simvastatin regulates non-neuronal cholinergic activity in T lymphocytes via CD11a-mediated pathways; J. Neuroimmunol.; 179(1-2); pp. 101-107; Oct. 2006. |
Gaykema, R. P., et al., Subdiaphragmatic vagotomy suppresses endotoxin-induced activation of hypothalamic corticotropin-releasing hormone neurons and ACTH secretion, Endocrinology, vol. 136, No. 10, pp. 4717-4720, 1995. |
Ghelardini et al., S-(−)-ET 126: A potent and selective M1 antagonist in vitro and in vivo, Life Sciences, vol. 58, No. 12, pp. 991-1000, 1996. |
Goyal et al., Nature of the vagal inhibitory innervation to the lower esophageal sphincter, Journal of Clinical Investigation, vol. 55, pp. 1119-1126, May 1975. |
Green et al., Feedback technique for deep relaxation, Psycophysiology, vol. 6, No. 3, pp. 371-377, Nov. 1969. |
Gregory et al., Neutrophil-kupffer-cell interaction in host defenses to systemic infections, Immunology Today, vol. 19, No. 11, pp. 507-510, Nov. 1998. |
Guslandi, M., Nicotine treatment for ulcerative colitis, Br. J. Clin. Pharmacol., vol. 48, pp. 481-484, 1999. |
Harrison's Principles of Internal Medicine, vol. 13, pp. 511-515 and 1433-1435, 1994. |
Hirao et al., The limits of specificity: an experimental analysis with RNA aptamers to MS2 coat protein variants, Mol. Divers., vol. 4, pp. 75-89, 1999. |
Hsu, et al., Analysis of efficiency of magnetic stimulation, IEEE Trans. Biomed. Eng., vol. 50(11), pp. 1276-1285, Nov. 2003. |
Jaeger et al., The structure of HIV-1 reverse transcriptase complexed with an RNA pseudoknot inhibitor, The EMBO Journal, 17(15), pp. 4535-4542, 1998. |
Joshi et al., Potent inhibition of human immunodeficiency virus type 1 replection by template analog reverse transcriptase , J. Virol., 76(13), pp. 6545-6557, Jul. 2002. |
Kawashima, et al., Extraneuronal cholinergic system in lymphocytes, Pharmacology & Therapeutics, vol. 86, pp. 29-48, 2000. |
Kees et al; Via beta-adrenoceptors, stimulation of extrasplenic sympathetic nerve fibers inhibits lipopolysaccharide-induced TNF secretion in perfused rat spleen; J.Neuroimmunol.; 145; pp. 77-85; 2003. |
Kensch et al., HIV-1 reverse transcriptase-pseudoknot RNA aptamer interaction has a binding affinity in the low picomolar range coupled with high specificity, J. Biol. Chem., 275(24), pp. 18271-18278, Jun. 16, 2000. |
Kokkula, R. et al., Successful treatment of collagen-induced arthritis in mice and rats by targeting extracellular high mobility group box chromosomal protein 1 activity, Arthritis Rheum., 48(7), pp. 2052-2058, Jul. 2003. |
LeNovere, N. et al., Molecular evolution of the nicotinic acetylcholine receptor: an example of multigene family in excitable cells, J. Mol. Evol., 40, pp. 155-172, 1995. |
Leonard, S. et al., Neuronal nicotinic receptors: from structure to function, Nicotine & Tobacco Res. 3:203-223 (2001). |
Lips et al.; Coexpression and spatial association of nicotinic acetylcholine receptor subunits alpha7 and alpha10 in rat sympathetic neurons; J.Mol.Neurosci.; 30; pp. 15-16; 2006. |
Madretsma, G. S., et al., Nicotine inhibits the in vitro production of interleukin 2 and tumour necrosis factor-alpha by human monocuclear cells, Immunopharmacology, vol. 35, No. 1, pp. 47-51, 1996. |
Nagashima et al., Thrombin-activatable fibrinolysis inhibitor (TAFI) deficiency is compatible with murine life, J. Clin. Invest., 109, pp. 101-110, 2002. |
Noguchi et al., Increases in Gastric acidity in response to electroacupuncture stimulation of hindlimb of anesthetized rats, Jpn. J. Physiol., 46(1), pp. 53-58, 1996. |
Norton, Can ultrasound be used to stimulate nerve tissue, BioMedical Engineering, 2(1), pp. 6, 2003. |
Rinner et al.; Rat lymphocytes produce and secrete acetylcholine in dependence of differentiation and activation; J.Neuroimmunol.; 81; pp. 31-37; 1998. |
Saindon et al.; Effect of cervical vagotomy on sympathetic nerve responses to peripheral interleukin-1beta; Auton.Neuroscience Basic and Clinical; 87; pp. 243-248; 2001. |
Saito, Involvement of muscarinic M1 receptor in the central pathway of the serotonin-induced bezold-jarisch reflex in rats, J. Autonomic Nervous System, vol. 49, pp. 61-68, 1994. |
Sandborn, W. J., et al., Transdermal nicotine for mildly to moderately active ulcerative colitis, Ann. Intern. Med, vol. 126, No. 5, pp. 364-371, 1997. |
Sato, E., et al., Acetylcholine stimulates alveolar macrophages to release inflammatory cell chemotactic activity, Am. J. Physiol., vol. 274, pp. L970-L979, 1998. |
Sato, K.Z., et al., Diversity of mRNA expression for muscarinic acetylcholine receptor subtypes and neuronal nicotinic acetylcholine receptor subunits in human mononuclear leukosytes and leukemic cell lines, Neuroscience Letters, vol. 266, pp. 17-20, 1999. |
Schneider et al., High-affinity ssDNA inhibitors of the review transcriptase of type 1 human immunodeficiency virus, Biochemistry, 34(29), pp. 9599-9610, 1995. |
Shafer, Genotypic testing for human immunodeficiency virus type 1 drug resistance, Clinical Microbiology Reviews, vol. 15, pp. 247-277, 2002. |
Sher, M. E., et al., The influence of cigarette smoking on cytokine levels in patients with inflammatory bowel disease, Inflamm. Bowel Dis., vol. 5, No. 2, pp. 73-78, 1999. |
Snyder et al., Correction of hemophilia B in canine and murine models using recombinant adeno-associated viral vectors; Nature Medicine, 5(1), pp. 64-70, Jan. 1999. |
Steinlein, New functions for nicotine acetylcholine receptors?, Behavioural Brain Res., vol. 95, pp. 31-35, 1998. |
Sternberg, E. M., Perspectives series: cytokines and the brain ‘neural-immune interactions in health and disease,’ J. Clin. Invest., vol. 100, No. 22, pp. 2641-2647, Dec. 1997. |
Sykes, et al., An investigation into the effect and mechanisms of action of nicotine in inflammatory bowel disease, Inflamm. Res., vol. 49, pp. 311-319, 2000. |
Toyabe, et al., Identification of nicotinic acetylcholine receptors on lymphocytes in the periphery as well as thymus in mice, Immunology, vol. 92, pp. 201-205, 1997. |
Tracey, K. J. et al., Anti-cachectin/TNF monoclonal antibodies prevent septic shock during lethal bacteraemia; Nature, 330: pp. 662-664, 1987. |
Tsutsui, H., et al., Pathophysiolocical roles of interleukin-18 in inflammatory liver disease; Immunol. Rev., 174:192-209, 2000. |
Tuerk et al., RNA pseudoknots that inhibit human immunodeficiency virus type 1 reverse transcriptase; Proc. Natl. Acad. Sci. USA, 89, pp. 6988-6992, Aug. 1992. |
Tuerk et al., Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase; Science, 249(4968), pp. 505-510, Aug. 3, 1990. |
Van Dijk, A. P., et al., Transdermal nictotine inhibits interleukin 2 synthesis by mononuclear cells derived from healthy volunteers, Eur. J. Clin. Invest, vol. 28, pp. 664-671, 1998. |
Walland et al., Compensation of muscarinic brochial effects of talsaclidine by concomitant sympathetic activation in guinea pigs; European Journal of Pharmacology, vol. 330, pp. 213-219, 1997. |
Wang et al; Nicotinic acetylcholine receptor alpha7 subunit is an essential regulator of inflammation; Nature; 421; 384-388; Jan. 23, 2003. |
Wang, H., et al., HMG-1 as a late mediator of endotoxin lethality in mice, Science, vol. 285, pp. 248-251, Jul. 9, 1999. |
Wathey, J.C. et al., Numerical reconstruction of the quantal event at nicotinic synapses; Biophys. J., vol. 27: pp. 145-164, Jul. 1979. |
Watkins, L.R. et al., Blockade of interleukin-1 induced hyperthermia by subdiaphragmatic vagotomy: evidence for vagal mediation of immune-brain communication, Neurosci. Lett., vol. 183, pp. 27-31, 1995. |
Webster's Dictionary, definition of “intrathecal”, online version accessed Apr. 21, 2009. |
Whaley, K. et al., C2 synthesis by human monocytes is modulated by a nicotinic cholingergic receptor, Nature, vol. 293, pp. 580-582, Oct. 15, 1981. |
Faltys et al.; U.S. Appl. No. 12/797,452 entitled “Nerve cuff with pocket for leadness stimulator,” filed Jun. 9, 2010. |
Hatton et al.; Vagal nerve stimulation: overview and implications for anesthesiologists; Int'l Anesthesia Research Society; vol. 103; No. 5; pp. 1241-1249; Nov. 2006. |
Hoffer et al.; Implantable electrical and mechanical interfaces with nerve and muscle; Annals of Biomedical Engineering; vol. 8; pp. 351-360; 1980. |
Krarup et al; Conduction studies in peripheral cat nerve using implanted electrodes: I. methods and findings in controls; Muscle & Nerve; vol. 11; pp. 922-932; Sep. 1988. |
Loeb et al.; Cuff electrodes for chronic stimulation and recording of peripheral nerve activity; Journal of Neuroscience Methods; vol. 64; pp. 95-103; 1996. |
Strojnik et al.; Treatment of drop foot using and implantable peroneal underknee stimulator; Scand. J. Rehab. Med.; vol. 19; pp. 37R43; 1987. |
Beliavskaia et al.,“On the effects of prolonged stimulation of the peripheral segment of the vagus nerve on blood clotting time under different bodily conditions,” Fiziologicheskii Zhurnal SSSR Imeni I.M. Sechenova., vol. 52(11); p. 1315-1321, Nov. 1966. |
Kalishevskaya et al.; Neural regulation of the fluid state of the blood; Usp. Fiziol. Nauk;,vol. 13; No. 2; pp. 93-122; 1982. |
Kuznik, et al., “Role of the heart and vessels in regulating blood coagulation and fibrinolysis,” Kagdiologiia, vol. 13(4): pp. 145-154, 1973. |
Kuznik, “Role of the vascular wall in the process of hemostatis,” Usp Sovrem Biol., vol. 75(1): pp. 61-85, 1973. |
Pateyuk, et al.,“Treatment of Botkin's disease with heparin,” Klin. Med., vol. 51(3): pp. 113-117, 1973. |
Sokratov, et al. “The role of choline and adrenegic structures in regulation of renal excretion of hemocoagulating compounds into the urine,” Sechenov Physiological Journal of the USSR, vol. 63(12): pp. 1728-1732, 1977. |
Cicala et al., “Linkage between inflammation and coagulation: An update on the molecular basis of the crosstalk,” Life Sciences, vol. 62(20); pp. 1817-1824, 1998. |
Kalishevskaya et al. “The character of vagotomy-and atropin-induced hypercoagulation,” Fizio. Zh SSSR Im I M Sechenova, 65(3): pp. 398-404, 1979. |
Khatun, S., et al., “Induction of hypercoagulability condition by chronic localized cold stress in rabbits,” Thromb. and Haemost., 81: pp. 449-455, 1999. |
Kudrjashov, et al. “Reflex nature of the physiological anticoagulating system,” Nature, vol. 196(4855): pp. 647-649; 1962. |
Kuznik, et al., “Secretion of blood coagulation factors into saliva under conditions of hypo-and hypercoagulation,” Voprosy Meditsinskoi Khimii, vol. 19(1): pp. 54-57; 1973. |
Kuznik, et al., “Heart as an efferent regulator of the process of blood coagulation and fibrinolysis,” Kardiologiia, vol. 13(3): pp. 10-17, 1973. |
Kuznik, et al., “Blood Coagulation in stimulation of the vagus nerve in cats,” Biull. Eskp. Biol. Med., vol. 78(7): pp. 7-9, 1974. |
Kuznik, et al., “The role of the vascular wall in the mechanism of control of blood coagulation and fibrinolysis on stimulation of the vagus nerve,” Cor Vasa, vol. 17(2): pp. 151-158, 1975. |
Kuznik, et al., “The dynamics of procoagulatible and fibrinolytic activities during electrical stimulation of peripheral nerves,” Fizio. Zh SSSR Im I M Sechenova, 3: pp. 414-420, 1979. |
Lang, et al., “Neurogienic control of cerebral blood flow,” Experimental Neurology, 43: pp. 143-161, 1974. |
Mishchenko, “The role of specific adreno-and choline-receptors of the vascular wall in the regulation of blood coagulation in the stimulation of the vagus nerve,” Biull. Eskp. Biol. Med., vol. 78(8): pp. 19-22, 1974. |
Mishchenko, et al., “Coagulation of the blood and fibrinolysos in dogs during vagal stimulation,” Fizio. Zh SSSR Im I M Sechenova, vol. 61(1): pp. 101-107, 1975. |
Von Känal, et al., Effects of sympathetic activation by adrenergic infusions on hemostasis in vivo, Eur. J. Haematol., vol. 65: pp. 357-369, 2000. |
Cohen, “The immunopathogenesis of sepsis,” vol. 420(19): pp. 885-891, 2002. |
Weiner, et al., “Inflammation and therapeutic vaccination in CNS diseases,” vol. 420(19): pp. 879-884, 2002. |
Benoist, et al., “Mast cells in autoimmune disease” vol. 420(19): pp. 875-878, 2002. |
Zitnik et al.; U.S. Appl. No. 12/874,171 entitled “Prescription pad for treatment of inflammatory disorders,” filed Sep. 1, 2010. |
Faltys et al.; U.S. Appl. No. 12/978,250 entitled “Neural stimulation devices and systems for treatment of chronic inflammation,” filed Dec. 23, 2010. |
Ben-Noun et al.; Neck circumference as a simple screening measure for identifying overweight and obese patients; Obesity Research; vol. 9; No. 8; pp. 470-477; Aug. 8, 2001. |
Bushby et al; Centiles for adult head circumference; Archives of Disease in Childhood; vol. 67; pp. 1286-1287; 1992. |
Hansson, E.; Could chronic pain and spread of pain sensation be induced and maintained by glial activation?. Acta Physiologica, vol. 187: pp. 321R327, 2006. |
Payne, J. B. et al., Nicotine effects on PGE2 and IL-1 beta release by LPS-treated human monocytes, J. Perio. Res., vol. 31, No. 2, pp. 99-104, 1996. |
Pullan, R. D., et al., Transdermal nicotine for active ulceratiive colitis, N. Engl. J. Med., vol. 330, No. 12, pp. 811-815, 1994. |
Pulvirenti et al; Drug dependence as a disorder of neural plasticity:focus on dopamine and glutamate; Rev Neurosci.; vol. 12; No. 2; pp. 141-158; 2001. |
Suter et al.; Do glial cells control pain?; Neuron Glia Biol.; vol. 3; No. 3; pp. 255-268; Aug. 2007. |
Takeuchi et al., A comparision between chinese blended medicine “Shoseiryuto” tranilast and ketotifen on the anit-allergic action in the guinea pigs, Allergy, vol. 34, No. 6, pp. 387-393, 1985 (eng. abstract). |
Levine, Jacob A.; U.S. Appl. No. 13/338,185 entitled “Modulation of sirtuins by vagus nerve stimulation” filed Dec. 27, 2011. |
Tracey, K. J. et al., Physiology and immunology of the cholinergic antiinflammatory pathway; J Clin Invest.; vol. 117: No. 2; pp. 289-296; Feb. 2007. |
Van Der Horst et al.; Stressing the role of FoxO proteins in lifespan and disease; Nat Rev Mol Cell Biol.; vol. 8; No. 6; pp. 440-450; Jun. 2007. |
Levine et al.; U.S. Appl. No. 13/467,928 entitled “Single-Pulse Activation of the Cholinergic Anti-Inflammatory Pathway to Treat Chronic Inflammation,” filed May 9, 2012. |
Nadol et al., “Surgery of the Ear and Temporal Bone,” Lippinkott Williams & Wilkins, 2nd Ed., 2005, (Publication date: Sep. 21, 2004), p. 580. |
Number | Date | Country | |
---|---|---|---|
20090062874 A1 | Mar 2009 | US |
Number | Date | Country | |
---|---|---|---|
60968292 | Aug 2007 | US |