The disclosure relates to devices and methods for stabilization of the bony elements of the skeleton. The method and the devices permit adjustment and maintenance of the spatial relationship(s) between neighboring bones. Depending on the specifics of the design, the motion between skeletal segments may be increased, reduced, returned to the normal physiology state or modulated in any desired manner.
Spinal disease is a major health problem in the industrialized world and the surgical treatment of spinal pathology is an evolving discipline. Alteration in the anatomical alignment and physiologic motion that normally exists between adjacent spinal vertebrae can cause significant pain, weakness, deformity and disability. The traditional surgical treatment of abnormal vertebral motion has been the complete immobilization and bony fusion of the involved spinal segments. An extensive array of surgical techniques and implantable devices has been formulated to accomplish this goal.
The growing experience with spinal fusion has shed light on the long-term consequences of vertebral immobilization. It is now accepted that fusion of a specific spinal level will increase the load on, and the rate of degeneration of, the spinal segments immediately above and below the fused level. As the number of spinal fusion operations have increased, so have the number of patients who require extension of their fusion to the adjacent, degenerating levels. The second procedure necessitates re-dissection through the prior, scarred operative field and carries significantly greater risk than the initial procedure while providing a reduced probability of pain relief. Further, extension of the fusion will increase the load on the motion segments that now lie at either end of the fusion construct and will accelerate the rate of degeneration at those levels. Thus, spinal fusion begets additional fusion surgery.
In view of the proceeding, there is a growing recognition that segmental spinal fusion and complete immobilization is an inadequate solution to abnormal spinal motion and vertebral mal-alignment. Correction of the abnormal movement and preservation of spinal mobility is a more intuitive and rational treatment option. It is appropriate to employ motion correction in the initial treatment plan and reserve complete immobilization and fusion for those patients with advanced motion abnormalities that can not be corrected.
Currently, a variety of spinal motion patterns are considered indications of advanced spinal instability. Patients with these motions patterns who develop pain are considered ineligible for treatment strategies that preserve spinal mobility. In particular, aberrant motion at levels of vertebral mal-alignment is considered an indication of disease that can not be corrected with current motion preservation methods. That is, surgeons believe that current motion correction techniques have a limited capacity to support the diseased spinal segments and those spinal segments with vertebral mal-aligned are too unstable to be effectively treated by these techniques. Fusion and complete segmental immobilization remains the main surgical option for the surgical treatment of these patients.
The current limitations of motion preservation techniques needlessly relegate a large number of patients to fusion surgery and the numerous disadvantages of complete spinal immobilization. A method for the treatment of segments with aberrant motion and/or spinal mal-alignment without fusion is clearly needed. It would correct the abnormal motion and preserve mobility in a significant number of patients who must currently undergo spinal fusion.
Spinal segments with abnormal motion and/or spinal mal-alignment can be successfully treated with devices that preserve mobility. Within a given spinal segment, the stable vertebral level is identified. Within the lower lumbar spine, that level is most commonly at the sacrum. A bone fastener is rigidly affixed to the stable spinal segment and an interconnecting member is rigidly affixed to the bone fastener so as to form a cantilever construct. Vertebral bodies that exhibit aberrant spinal motion and/or mal-alignment relative to the stable segment are then attached to the interconnecting member using non-rigid bone fastener(s). The motion profile of the dynamic fastener can be varied and may be selected to provide the desired vertebral motion characteristics.
The interconnecting member may be rigid or it may be alternatively made rigid parallel to the direction of greatest instability and non-rigid in the other planes. The latter embodiments provide additional degrees of freedom and motion characteristics.
In one aspect, there is disclosed a method of vertebral stabilization, comprising: rigidly affixing a first bone fastener to a first vertebral body and to an interconnecting member such that the interconnecting member is rigidly cantilevered from the first vertebral body; and affixing a second vertebral body to the interconnecting member such that the second vertebral body is attached to the interconnecting member in a manner that permits at least some movement between the second vertebral body and the first vertebral body.
In another aspect, there is disclosed a method of vertebral stabilization, comprising: rigidly affixing a first vertebral body to at least a portion of an interconnecting member such that the first vertebral body and the portion of the interconnecting member collectively form a rigid base; and affixing a second vertebral body to the rigid base in a manner that permits relative movement between the second vertebral body and the first vertebral body.
In another aspect, there is disclosed a method of vertebral stabilization, comprising: rigidly attaching an interconnecting member to a first vertebral body such that the interconnecting member is rigidly cantilevered relative to the first vertebral body; and attaching a second vertebral body to the interconnecting member such that the second vertebral body can move relative to the first vertebral body.
Other features and advantages will be apparent from the following description of various devices and methods, which illustrate, by way of example, the principles of these embodiments.
Disclosed are devices and methods for providing segmental stabilization of bone segments while still preserving at least some relative motion between the segments. In an embodiment, one or more bone fasteners are rigidly attached to a bone segment at a stable level. An interconnecting member is then rigidly attached to the bone fastener(s) such that the interconnecting member extends outwardly from the fastener(s) and forms a cantilever construct. The bone fastener(s) and cantilevered interconnecting member provide a rigid, stable base to which adjacent bone segments can be movably attached. The adjacent bone segments are attached to the interconnecting member using a dynamic bone fastener(s) that is attached to the adjacent segment. The dynamic bone fastener permits at least some movement and, in this way, the adjacent segments can be dynamically attached to the stable vertebral segment.
The devices and methods are described herein in the context of bone segments comprised of the sacrum and the two lowermost lumbar vertebrae. Within the lumbar spine, these vertebral segments are the ones most commonly affected by degenerative disease and most often afflicted with abnormal alignment and pathologic motion. It should be appreciated that the devices and methods described herein are not limited to use within the lumbar spine and that they are equally suited for use with other skeletal segments.
With reference still to
It should be appreciated that the embodiment of the rigid bone screw shown in
With reference to
As shown in
The space 3005 within the inner housing member 420 preferably contains a material or structure that resists movement of the head 425 of the bone screw 405 relative to the inner aspect of the inner housing members 420. Belleville washer(s), compression springs and the like can be placed within space 3005 to resist screw head movement and keep the upper surface of the screw head and upper surface of space 3005 in a parallel configuration. Alternatively, the material or structure within the space 3005 can be, for example, an elastic material(s), fluids, spring device(s), magnets or any other appropriate materials/devices that will resist movement of the head of bone screw relative to the inner aspect of the inner housing members. Clearly, the motion profile of the whole screw assembly will depend on the resistance characteristics of the material/device placed within space 3005. In this way, the motion of the dynamic fastener can be varied by changing the material in space 3005 and the fastener may be selected to provide the desired vertebral motion characteristics.
When the screw head is moved out of a predetermined neutral position within the inner housing members, the material/device in space 3005 will apply a force to the head of screw and resist any movement away from the neutral position. The assembly will return the screw and the attached bone to the neutral position once the deflecting force has dissipated. Further, since movement in the pre-locked configuration of the screw assembly occurs between the outer aspect of the inner housing 420 and receiver 115, the surgeon can freely adjust the orientation of the receiver 115 relative to the bone screw 405 before locking the assembly without influencing the assembly's neutral position or pre-loading the bone/screw interface.
It should be appreciated that the embodiment of the dynamic bone screw shown in
The interconnecting member may be of any applicable configuration and/or design. Commonly, the interconnecting member is rod-based, plate-based, loop-based or a combination of these elements. With reference to
Another embodiment of a dynamic feature is shown in
In another embodiment, a loop or slotted plate connector is used in the cantilever framework in place of the rod.
The preceding disclosure described devices and methods through which alignment may be corrected and motion may be preserved even in those degenerated segments that currently require fusion and complete immobilization. In the foregoing method, a rigid screw and rod are used as a rigid cantilever framework onto which other vertebral segments may be attached using dynamic bone screw assemblies. Depending on the anchor site, the dynamic connectors may be attached on one side of the rigid cantilever framework or on both sides of it. In the cervical spine, for example, stability can be provided to a large segment of the neck by placement of a rigid bone screw in an intermediate level (usually C5) and then rigidly connecting it to a rod. This forms a cantilever framework onto which dynamic anchors can be attached. The dynamic screws are attached to an upper level (usually (C2) and a lower level (usually C7 or T1) and, collectively, the construct provides effective stabilization the neck while preserving motion.
Any of the screw assemblies, inter-connectors and/or their components can be made of any biologically adaptable or compatible materials. Materials considered acceptable for biological implantation are well known and include, but are not limited to, stainless steel, titanium, tantalum, combination metallic alloys, various plastics, resins, ceramics, biologically absorbable materials and the like. Any components may be also coated/made with osteo-conductive (such as deminerized bone matrix, hydroxyapatite, and the like) and/or osteo-inductive (such as Transforming Growth Factor “TGF-B,” Platelet-Derived Growth Factor “PDGF,” Bone-Morphogenic Protein “BMP,” and the like) bio-active materials that promote bone formation. Further, the outer surface of the bone screw assemblies may be made with a porous ingrowth surface (such as titanium wire mesh, plasma-sprayed titanium, tantalum, porous CoCr, and the like), provided with a bioactive coating, made using tantalum, and/or helical rosette carbon nanotubes (or other carbon nanotube-based coating) in order to promote bone in-growth or establish a mineralized connection between the bone and the implant, and reduce the likelihood of implant loosening. Lastly, the screw assemblies, inter-connectors and/or any component can also be entirely or partially made of a shape memory material or other deformable material.
Although embodiments of various methods and devices are described herein in detail with reference to certain versions, it should be appreciated that other versions, embodiments, methods of use, and combinations thereof are also possible. Therefore the spirit and scope of the appended claims should not be limited to the description of the embodiments contained herein.
This application claims priority of co-pending U.S. Provisional Patent Application Ser. No. 60/751,772, filed Dec. 19, 2005. Priority of the aforementioned filing date is hereby claimed and the disclosure of the Provisional Patent Application is hereby incorporated by reference in its entirety.
Number | Date | Country | |
---|---|---|---|
60751772 | Dec 2005 | US |