It is often desirable when packing and storing materials to reduce the amount of space within the packing containers or bags. Often, the storage space can be reduced by reducing or eliminating the amount of ambient air or other gases within the container or bag. It may also be desirable to remove the ambient air or other gases from containers in order to preserve the integrity or freshness of the packed materials. Conversely, it may be desirable to inflate containers, for example bags, with ambient air or other gases.
The device of the subject invention provides a means for evacuating or injecting air into a variety of containers. The device of the subject invention can be used with containers that may not already have a means for evacuating or injecting air. Thus, a variety of containers, for example disposable plastic wear or various storage bags, can be provided with vacuum packing capabilities or inflation with various gases or ambient air.
The subject invention provides a means for controlling the amount of air or other gases (herein referred to generally as “air”) in a container. This can include evacuating air from or injecting air into a container.
The subject invention comprises a system utilizing a valve mechanism combined with a pump having a hose with a hose adaptor thereon. The hose adaptor is specially designed to work with the valve mechanism to inject air into or evacuate air from a container.
Specifically, the device utilizes a plug positioned within a housing, wherein the housing can be attached to a wall inside a container. The housing can have one or more openings that are occluded by the plug within the housing. To evacuate or inject air into the container, a hole is created in the wall of the container over, or in the vicinity of, the opening in the housing. A vacuum hose or air hose with a rigid or semi-rigid hose adaptor attached is inserted into the hole in the container and through the hole in the housing. The hose tip on the hose adaptor, upon insertion into the hole in the housing, displaces or slightly dislodges the plug from around the opening, thus allowing air to be evacuated or injected through the housing and into the container.
The subject invention provides a device controlling the amount of air within a container. This can include the evacuation or injection of ambient air or other gases (herein referred to as “air”) into or out of various types of containers.
In one embodiment, the subject invention provides a device designed to be attached to a container in order to provide an opening through which the flow of air can be controlled into and out of the container, preferably after the container has been closed or sealed. The device of the subject invention can be modified for use with almost any type of container. For example, containers of thin plastic with firm walls or lids can be utilized with the subject invention, for example, but not limited to, Ziploc™ or Glad™ brand storage containers.
The device of the subject invention is particularly useful with air-tight bag-like containers comprising relatively thin, flexible material, for example plastic, rubber, fabric, paper, etc. In a preferred embodiment, the subject invention is utilized with self-sealing storage bags, for example, but not limited to Ziploc™ or Glad™ brand self-sealing or zipper-closing bags. When sealed, these types of storage bags create an air tight chamber. When the device of the subject invention is attached within such a bag, air can be evacuated to create a vacuum or partial vacuum within the bag. Conversely, the device can also allow air to be injected into the bag.
In one embodiment, the device of the subject invention includes a plug within a hollow housing, wherein the housing has a port hole that can be connected to a vacuum source. The housing can further be used to connect the device to a container, preferably to an inside wall or the inside of a lid, and can also aid in ensuring an air tight seal around the port hole. A specially designed hose adaptor 50, for example as show in
As mentioned above, the housing 12 is essentially a chamber that contains a plug 30, for example as shown in
In a preferred embodiment, the housing comprises two parts, a base 26 and a cap 14, for example, as shown in
The base 26 and the cap 14, as exampled in
In order for air to be evacuated or injected into the container to which the device of the subject invention is attached, the housing can have one or more openings or vents 28. These vents 28 can be provided anywhere on the housing, in the cap 14 or the base 26. However, it may be preferable to provide openings in such a way that they will not be closed or otherwise interfered with by the materials within the container or by the container itself. In a preferred embodiment, one or more vents 28 are positioned at the bottom or covered end of the base 26, for example as shown in
As mentioned previously, the housing 12 contains a plug 30 that occludes the port hole 16 in the cap of the housing. The displacement of the end of the plug 30 away from the port hole 16 by insertion of the hose tip 54, allows air to be evacuated or injected into the container, through the vents 28 and into the housing 12. In order to prevent the entire plug from being displaced within the housing when the hose tip 54 is inserted, the plug 30 can be secured to the inside of the base 26. The plug 30 can be fixedly attached to the base 26 using a variety of techniques known in the art, including glues, thermal sealing, screwing, snapping into place, etc. However, it may be desirable to change, alter or otherwise adjust the plug 30 used in the device of the subject invention. As mentioned previously, depending upon the type of container the device is used with, or the materials therein, it may be necessary to use plugs 30 of different styles, shapes, or materials. Thus, in a preferred embodiment, the plug is removably attached to the base 26. In a further preferred embodiment, a plug seat 29 is positioned inside the base on the bottom or closed end, for example as shown in
The plug 30 of the device of the subject invention regulates the flow of air into and out of the housing 12 and, thus, the container to which the device is attached. In a preferred embodiment, the device of the subject invention is designed to be used multiple times. Therefore, the plug material should be durable, yet flexible with sufficient elastic memory to quickly reposition itself against the port hole 16 numerous times after repeated insertion and removal of the hose tip 54. It may also be necessary to consider the environments to which the device of the subject invention will be subjected during use. High heat applications or severe cold applications may dictate the type of material used for the plug. The plug may also comprise more than one material. For example, the bottom of the plug may be of one material, for example, but not limited to, a rigid plastic material, wood, etc., to which is attached a flexible tip end 32 made of another material, for example, but not limited to, pliable plastics, rubber, silicone, etc. In a preferred embodiment, the plug 30 comprises a rubber-like material that is microwave safe and cold tolerant.
The circumferential shape of the plug 30 can be any of a variety of shapes, for example, but not limited to, circular, oval, square, triangular, or any other polygonal shape, and may also vary along the length of the plug, if necessary. But, it should be of sufficient length to reach the port hole 16 from the plug seat 29, the base of the housing, or other support structure that may be utilized and have sufficient tension on the port hole 16 to prevent any unwanted passage of air through the port hole 16, as illustrated in
The cap 14 of the subject invention is connected to the base 26, as discussed above. The cap 14 contains an opening or port hole 16 through which the vacuum or air tube 60 can be inserted. It is the end of the cap 14 with the port hole 16 that attaches to the inside wall of a container. The cap 14 of the subject invention can be attached to a container in a variety of ways known to those with skill in the art. The method of attachment should ensure an essentially air tight seal so that air cannot enter or escape from the container after the vacuum or air tube is removed from the port hole 16. For example, the cap can be thermally sealed to the container or glued to the container. In one embodiment, the cap is thermally sealed to the container during the manufacturing process. And, in still a further embodiment, during the manufacture of containers, openings can be pre-made in one or more walls or lids of the containers to allow access to the port hole 16 after attachment of the housing of the subject invention to the inside walls of said containers. In a preferred embodiment, a concentric ring of adhesive material 20 surrounds the port hole 16. The ring of adhesive material 20 can be pressed against the wall of the container to attach the housing 12 to the container and to create an air tight seal around the port hole 16. There are numerous kinds of adhesive that could be utilized with the subject invention. Furthermore, this method of attachment allows the device of the subject invention to be utilized with containers comprising a variety of materials.
In another embodiment, the port hole 16 may be surrounded by a stem 40 to which are fixedly attached teeth or pawls 42, as shown in
A person with skill in the art would readily recognize that this arrangement could be modified in a variety of ways. For example, the lock washer 40 and stem 40 could have opposite threading such that the lock washer 40 could be screwed onto the stem 40, or variations thereof. The stem 40 and lock washer 44 means could also be utilized in conjunction with an adhesive, such as the ones described above, or other insulating means or materials that would aid or ensure that an air tight seal is achieved around the port hole 16. Likewise, the lock washer 44 could be modified to have ridges or other protrusions on one or both sides or around the edges that could be pressed into the surface of the container to aid in securing an air tight seal when the lock washer is positioned over the stem 40.
In a preferred embodiment, the port hole 16 is located within the cap 14 of the device of the subject invention. The port hole 16 is designed to receive the hose tip 54 on the end of the hose adaptor 50. The port hole 16 is essentially a hole in the cap 14 that can be of various sizes or shapes, depending upon the configuration of the hose adaptor. There may also be more than one port hole, or the port hole can be divided in order to better receive a variety of hose adaptors that can be utilized with the subject invention. In one embodiment the area around the port hole 16 is slightly raised or cupped above the level of the cap end, causing a slightly concave surface within the cap around the port hole. Alternatively, the area within the cap around the port hole 16 can be manufactured with a slightly concave surface without raising the area around the port hole above the level of the cap end. This slight concavity around the port hole 16 can aid in the repositioning of the tip end 32 of the plug to occlude the port hole when it is displaced from around the port hole. As mentioned above, the port hole 16 may be surrounded by a neck or stem 40 to secure the device to a container. One with skill in the art would recognize that the port hole 16 can be modified in a variety of ways in order to properly receive a hose tip 54 or other means for evacuating or injecting air into a container.
In a preferred embodiment, the port hole 16 is a single opening within the top of the cap 14. In a still further preferred embodiment, the material surrounding the port hole 16 is a soft but firm material 18 that can conform to the size and circumferential shape of the hose tip 54.
A hose adaptor 50 provides a means for connecting or inserting the vacuum or air hose 60 to the port hole 16. In one embodiment, the hose adaptor 50, for example as shown in
It can also be advantageous to ensure that the hose tip 54 and the port hole 16 are of similar diameter, such that a snug, essentially air tight seal can be achieved when the hose tip 54 is inserted into the port hole 16. The hose tip 54 may also comprise or be covered, entirely or partially, with a pliable or semi-pliable material capable of conforming to the shape of the port hole 16 to aid in obtaining a sufficient seal. In a preferred embodiment, the diameter of the hose tip 54 is smaller than the diameter of the port hole 16, but only sufficiently so to allow the hose tip 54 to be inserted into the port hole 16 without damaging the port hole, but still provide a snug, relatively air tight seal.
The hose tip 54 should be of sufficient length to displace the plug 30. If the hose tip 54 is provided with any slots or grooves 56, the hose tip should be inserted into the port hole 16 a distance sufficient to ensure that the slots or grooves 56 are within the housing. However, to prevent damage to the plug, housing or other components of the device, the hose tip 54 should not be inserted an unnecessary distance into the housing 12. Therefore, a gauge or stop device 52, for example as shown in
The hose adaptor 50 may also be modified to have various means for gripping or holding the hose adaptor 50 and/or the vacuum or air hose, both during use and for storage of the hose adapter 50. For example, various types of grooves or grips can be utilized with the hose adaptor 50. In a preferred embodiment, a rigid or semi-rigid grip 51 is fixedly attached to the hose adaptor 50 above the stop gauge 52. This grip 51 can be used for holding or gripping the hose adaptor 50 during use, and/or as a means for securing the end of the vacuum or air hose 60 when not in use.
The vacuum or air source utilized with the subject invention can be obtained or created through a variety of methods known to those with skill in the art. As mentioned above, in one embodiment, the device of the subject invention is utilized with standard storage containers or plastic, self-sealing bags generally used for storing food or other relatively small items. Thus, it may only be necessary to have or use a vacuum or air source capable of evacuating or injecting air into such standard, well-known containers. For example, a standard electric vacuum or air pump of sufficient power could be utilized with the subject invention.
It may also be possible to utilize the motor and/or electrical components in an already existing appliance normally utilized in a home, restaurant or business environment. For example, a vacuum pump, air pump, or combination thereof, can be integrally attached to or contained within an already existing countertop appliance or device. The electrical components of the appliance can be made to jointly operate and service the appliance, as well as a pump. This arrangement would also save space because a separate appliance would not be required.
In a preferred embodiment, the components within a standard electric counter-top appliance, for example, but not limited to, a can-opener, blender, mixer, microwave, coffee pot, toaster, timer, clock, etc., are utilized to operate a vacuum or air pressure pump for use with the subject invention. In a further preferred embodiment, the pump is contained within the housing of a said appliance. In a still further preferred embodiment, the motor and/or electrical components of the appliance are modified to jointly operate the existing appliance, as well as the pump to be utilized with the device of the subject invention. In still a further preferred embodiment, a switch connected to the appliance can be used to control, or toggle between, the two or more functions, including the pump, of the appliance.
Following are examples which exemplify certain embodiments of the subject invention. These examples are illustrative and should not be construed as limiting the subject invention in any manner.
An embodiment of the device of the subject invention utilizes a rigid circular, essentially hollow, housing approximately 0.5 cm high and 2 cm in diameter. The housing comprises two components, a base and a cap, wherein the base can be inserted into the cap and snap lips on the cap hold the base within the cap. The cap further comprises a circular port hole surrounded by a more pliable material than the main portion of the cap. The port hole is approximately 4-5 mm in diameter. A circular rubber-like plug is utilized within the housing. Further, a circular plug seat approximately 3-4 mm high is fixedly attached to the center of the inside floor of the base.
The device can be provided with a selection of plug styles. After selection of the appropriate plug, the plug is seated within the plug seat, prior to insertion of the base into the cap, to prevent sliding or other movement of the plug within the housing. When the housing is assembled with the plug positioned in the plug seat, the plug extends from the plug seat to the circular port hole, so that the plug can fully occlude the port hole with sufficient tension around the port hole to prevent unwanted intrusion or escape of air. In this embodiment, the plug should be approximately 1.5 cm in diameter at the base and taper towards the port hole to a diameter of approximately 9 to 10 mm. in diameter.
In order for air to be moved into or out of the housing, one or more openings or vents are provided at the bottom end of the base around the perimeter of the plug seat. The vents allow air into or out of the housing. The base of the device is slightly convex so that the vents are not positioned on a flat surface. This can help prevent materials within the container from blocking or interfering with the vents.
The assembled device of the subject invention, is attached to the inside wall of a storage container or storage bag. A concentric strip of sticky adhesive around the perimeter of the port hole, protected by a peelable paper seal, is utilized to stick the housing to the inside flattened wall of a storage container or storage bag. Either before or after installation of the device, a hole can then be created in the bag above or in the vicinity of the port hole so that the hose tip can be inserted through the hole in the bag and into the port hole. If desired, the hole in the bag can be made by using the hose tip and simply pushing it through the wall of the container and into the port hole, or another device can be utilized that will not damage any other part of the bag, the port hole or the device of the subject invention.
A standard vacuum or air pump can be utilized to evacuate or inject air into the container. However, the subject invention utilizes a specialized vacuum hose adaptor to connect the pump hose to the device of the subject invention. The hose adaptor connects to one end of the pliable vacuum hose, preferably by a tubular projection that is forced into the end of the vacuum hose causing the hose to expand around the tube to form a seal. The opposite end of the hose adaptor has a hose tip. The hose tip is inserted into the port hole to displace the plug from around the port hole. When the vacuum or air pump is turned on, air travels between the vents and the hose tip through the housing.
A further embodiment of the subject invention utilizes a housing, as described in Example 1. However, the port hole in this embodiment is surrounded by a stem approximately 3 to 4 mm high from the top of the cap. A hole can be created in the bag or other container prior to installation. The device of the subject invention is positioned inside the container so that the stem around the port hole can be inserted through the hole made in the container, such that the stem protrudes to the outside of the container. The stem is designed to accept a lock washer, wherein the lock washer is pushed over the stem and secured around the stem. Thus, when assembled, the wall of the bag or container is sandwiched between the top of the cap inside the container and the lock washer on the outside of the container. The stem has pawls or one-way teeth that allow the lock washer to be pushed over the stem and prevent the lock washer from being removed from the stem. Further, the pawls or one-way teeth hold the lock washer against the wall of the container securely, so as to form an air tight seal around the hole through which the stem is protruding from the container.
In this embodiment, the hose tip would need to be longer in order to extend through the stem and displace the plug around the port hole located inside the base of the stem.
It should be understood that the examples and embodiments described herein are for illustrative purposes only and that various modifications or changes in light thereof will be suggested to persons skilled in the art and are to be included within the spirit and purview of this application.
Number | Name | Date | Kind |
---|---|---|---|
2677388 | Neff | May 1954 | A |
RE32354 | Savage | Feb 1987 | E |
5228271 | Wallace | Jul 1993 | A |
5240112 | Newburger | Aug 1993 | A |
5332095 | Wu | Jul 1994 | A |
5413230 | Folter et al. | May 1995 | A |
5450963 | Carson | Sep 1995 | A |
5606988 | Pawlowski, Jr. | Mar 1997 | A |
5996800 | Pratt | Dec 1999 | A |
6039182 | Light | Mar 2000 | A |
6059457 | Sprehe et al. | May 2000 | A |
6070397 | Bachhuber | Jun 2000 | A |
6604634 | Su | Aug 2003 | B2 |
6634384 | Skeens et al. | Oct 2003 | B2 |
6637939 | Huffer | Oct 2003 | B2 |
6712334 | Motonaka et al. | Mar 2004 | B2 |
6964519 | ErkenBrack | Nov 2005 | B2 |
7093612 | Greene et al. | Aug 2006 | B2 |
20030020040 | Anderson | Jan 2003 | A1 |
20030111121 | Skeens et al. | Jun 2003 | A1 |
20040114837 | Koyangi | Jun 2004 | A1 |
Number | Date | Country | |
---|---|---|---|
20070056249 A1 | Mar 2007 | US |