Devices and methods for left atrial appendage closure

Information

  • Patent Grant
  • 11844566
  • Patent Number
    11,844,566
  • Date Filed
    Friday, October 2, 2020
    4 years ago
  • Date Issued
    Tuesday, December 19, 2023
    a year ago
Abstract
Described here are devices, systems, and methods for closing the left atrial appendage. The methods described here utilize a closure device for closing the left atrial appendage and guides or expandable elements with ablation or abrading elements to ablate or abrade the left atrial appendage. In general, these methods include positioning a balloon at least partially within the atrial appendage, positioning a closure assembly of a closure device around an exterior of the atrial appendage, inflating the balloon, partially closing the closure assembly, ablating the interior tissue of the atrial appendage with the inflated balloon, removing the balloon from the atrial appendage, and closing the atrial appendage with the closure assembly.
Description
FIELD

This invention relates generally to systems and methods for closing tissue such as the left atrial appendage.


BACKGROUND

Atrial fibrillation is a common problem that afflicts millions of patients. Atrial fibrillation often results in the formation of a thrombus, or clot, in the appendage of the left atrium. This presents a problem, inasmuch as the thrombus can dislodge and embolize to distant organs, which may result in adverse events such as a stroke. For this reason, most patients with atrial fibrillation are treated with one or more blood thinners to help prevent the formation of a thrombus. Blood thinners, however, can present health risks of their own, especially in the elderly. These risks, such as bleeding, often require a user to make significant lifestyle changes.


Several methods have been developed to address the potential problem of thrombus formation in the left atrial appendage. One such method includes stunting the left atrial appendage along the base or ostial neck where it joins the atrial chamber. In this way, blood flow into the atrial appendage is cut off, eliminating the risk of thrombus formation therein. This is typically done through open-heart surgery, which limits the availability of the procedure to those who are at a particularly high risk, or who are otherwise undergoing an open-heart procedure. In addition, open-heart surgery requires general anesthesia and has a number of well-known risks, making it less desirable.


Other methods have also been investigated. These methods include methods of stapling the base of the appendage and methods of filling the appendage with a space occupying or occluding member. Stapling is not preferred given the fragility of the appendage and its tendency to rupture, while occlusion devices may not effectively prevent all blood flow into the appendage.


Additional devices and methods for closing the left atrial appendage or other suitable tissues would therefore be desirable. In particular, devices and methods for closing the left atrial appendage using minimally invasive, intravascular, or a combination of these techniques, would be desirable in order to avoid the need for opening the chest. Of course, additional devices for use in open surgical procedures are desirable as well, especially when those devices offer additional advantages over standard devices.


BRIEF SUMMARY

Described here are devices, systems, and methods for closing an atrial appendage such as the left atrial appendage. In some instances, the methods described here may comprise positioning a balloon at least partially within an interior of the atrial appendage and positioning a closure assembly of a closure device around an exterior of the atrial appendage. The methods may further comprise inflating the balloon at least partially within the interior of the atrial appendage, and partially closing the closure assembly to pull interior tissue of the atrial appendage into contact with the inflated balloon. In some of these variations, the methods may further comprise ablating the interior tissue of the atrial appendage with the inflated balloon, removing the balloon from the atrial appendage, and closing the atrial appendage with the closure assembly.


In some variations, the method may further comprise positioning a distal end of a first guide element in the interior of the atrial appendage and positioning a distal end of a second guide element in a pericardial space externally of the atrial appendage. In some instances, the first guide element and the second guide element may each comprise a magnet, and the method may further comprise aligning the first guide element and the second guide element across tissue of the atrial appendage. In some variations, positioning the closure device may include advancing the closure device along the second guide element. The balloon may be part of the first guide element, or may be part of a balloon catheter. In instances where the balloon is part of the balloon catheter, positioning the balloon may comprise advancing the balloon catheter along the first guide element.


In some variations the balloon may comprise an electrode positioned on an exterior surface of the balloon, and ablating the interior tissue of the atrial appendage may comprise ablating the interior tissue of the atrial appendage with the electrode. In other variations, the balloon may comprise at least two electrodes and the method may further comprise monitoring a tissue parameter with at least one of the electrodes during ablation of the interior tissue. In yet other variations, ablating the interior tissue of the atrial appendage may comprise ablating the interior tissue of the atrial appendage using heated fluid contained in the balloon. In some variations the method may further comprise releasing a suture loop from the closure assembly to hold the atrial appendage closed. Additionally or alternatively, in some variations the closure assembly may comprise an electrode, and the method may further comprise ablating an exterior of the atrial appendage with the electrode. In some instances, the method may further comprise cryoablating an exterior surface of the atrial appendage with the closure assembly.


In other variations, the methods described here may comprise positioning a distal end of a first guide element in the interior of an atrial appendage such as the left atrial appendage, positioning a distal end of a second guide element in a pericardial space externally of the atrial appendage, and advancing a closure assembly of a closure device around an exterior of the atrial appendage along the second guide. In some of these variations, the method may further comprise withdrawing the first guide element from the interior of the atrial appendage and closing the atrial appendage with the closure assembly. The method may further comprise advancing a portion of the first guide member into contact with tissue around the ostium of the closed atrial appendage, and ablating the contacted tissue with the first guide member.


In some of these methods, the first guide element and the second guide element may each comprise a magnet, and the method may further comprise aligning the first guide element and the second guide element across tissue of the atrial appendage. In some variations, the first guide element may comprise a balloon. In some of these variations, positioning the distal end of the first guide element may comprise positioning the balloon at least partially inside the atrial appendage. In some variations, the method may further comprise advancing a balloon catheter along the first guide element to position a balloon at least partially inside the left atrial appendage. In some of these variations, the balloon may comprise an electrode positioned on an exterior surface of the balloon, and the method may further comprise ablating interior tissue of the atrial appendage using the electrodes. In some variations, the balloon may comprise at least two electrodes and the method may further comprise monitoring a tissue parameter with at least one of the electrodes during ablation of the interior tissue. In some instances, the method may further comprise cryoablating interior tissue of the atrial appendage using the balloon or ablating interior tissue of the atrial appendage using the balloon while the balloon contains heated fluid.


In some of these methods, the first guide element comprises an electrode positioned at the distal end of the first guide element. Additionally or alternatively, the method may further comprise advancing a wire from a distal end of the first guide element, wherein advancing a portion of the first guide member into contact with tissue around the ostium of the closed atrial appendage comprises advancing the wire into contact with the tissue around the ostium of the closed atrial appendage. In some of these variations, the wire may be a j-tip wire or a coiled wire. In some instances, the method may further comprise cryoablating the tissue around the ostium with the wire. In some variations, the closure assembly may comprise one or more electrodes, and the method may further comprise ablating an exterior of the atrial appendage with the one or more electrodes. In other variations, the method may further comprise cryoablating an exterior surface of the atrial appendage with the closure device.


In still other variations of the methods described here, the methods may comprise advancing a distal end of a first device in the interior of an atrial appendage such as the left atrial appendage, wherein the first device comprises a shaft, a balloon, and an electrode or abrading element positioned on the shaft proximally of the balloon, and positioning the balloon in the atrial appendage. The method may further comprise advancing a closure assembly of a closure device around an exterior atrial appendage, partially closing the closure assembly to place interior tissue of the atrial appendage into contact with the electrode or abrading element, and ablating or abrading the interior tissue of the atrial appendage with the electrode or abrading element. In some variations, the method may further comprise removing the first device from the atrial appendage; and closing the atrial appendage with the closure assembly. In some of these methods, the first device may comprise two or more electrodes and the method may further comprise monitoring a tissue parameter with at least one of the electrodes during ablation of the interior tissue. In some variations, the closure assembly may comprise an electrode, and the method may further comprise ablating an exterior of the atrial appendage with the electrode.


In yet other variations of the methods described here, the methods may comprise positioning a closure assembly of a closure device around an exterior of the atrial appendage, wherein the closure assembly comprises a snare, a suture loop, a retention member releasably connecting the suture loop and the snare, and an electrode on the snare between a fixed end of the snare and the retention member, closing the closure assembly to close the atrial appendage, ablating exterior tissue of the atrial appendage with the electrodes, and releasing a suture loop from the closure assembly to hold the atrial appendage closed.


Also described here are systems for closing an atrial appendage. In some variations, the systems may comprise a catheter that may be configured to be advanced endovascularly into the interior of a heart, and a closure device that may be configured to be advanced into a pericardial space. The catheter may comprise an expandable member at a distal end of the catheter and the expandable member may be configured to ablate and/or abrade tissue. In some of these systems, the expandable member may be a balloon. The closure device may comprise a lumen therethrough, a handle, and a snare loop assembly. The snare loop assembly may extend from a distal end of the elongate body and may comprise a snare, a suture loop, and a retention member that may be configured to releasably couple the snare and the suture loop. In some variations, the snare may further comprise an electrode between a fixed end of the snare and the retention member, and the electrode may be configured to ablate an exterior of the atrial appendage. In yet other variations, the snare may be configured to cryoablate an exterior of the atrial appendage.


In some variations, the system may further comprise a first guide element that may be configured to be advanced into the interior of the atrial appendage, and a second guide element that may be configured to be advanced into a pericardial space. In some instances, the second guide element may be slideably disposed within the lumen of the closure device to advance the closure device into the pericardial space. In some variations, the catheter may be part of the first guide element. In some systems, the catheter may comprise a lumen therethrough and the first guide element may be slideably disposed within the lumen of the catheter to advance the catheter into the interior of the heart.


In some systems, the expandable member may comprise at least one electrode positioned on an exterior surface of the expandable member and the expandable member may be configured to ablate interior tissue with the at least one electrode. In some instances, the expandable member may comprise a balloon and the at least one electrode may circumferentially surround the exterior surface of the balloon. In some of these systems, one electrode may circumferentially surround the exterior surface of the balloon. In other systems, the expandable member may comprise at least two electrodes and at least one electrode may be configured to monitor at least one tissue parameter during ablation of the interior tissue. In these systems, the at least one tissue parameter may comprise at least one of: temperature, ECG signals, and/or the absence of ECG signals. In some variations, the expandable member may be inflated with cryogenic fluid and may be configured to cryoablate interior tissue. In yet other variations, the catheter may further comprise a shaft on which the expandable member is mounted, the shaft may comprise at least one electrode within the expandable member, and the expandable member may be configured to ablate interior tissue with fluid heated by the at least one electrode.


In some variations of the systems described here, the system may comprise a first guide element that may be configured to be advanced into the interior of the atrial appendage, a second guide that may be configured to be advanced into a pericardial space, and a closure device that may be configured to be advanced into a pericardial space. The first guide element may comprise a shaft and an expandable member, and the shaft may comprise an ablating and/or abrading element positioned proximally of the expandable member. In some of these systems, the, expandable member may be a balloon. The closure device may comprise an elongate body that may comprise a lumen therethrough, a handle, and a snare loop assembly. The snare loop assembly may extend from a distal end of the elongate body and may comprise a snare, a suture loop, and a retention member that may be configured to releasably couple the snare and the suture loop.


In some variations, the first and second guide elements may each comprise a magnet and may be configured to align across tissue of the atrial appendage. In some instances, the second guide element may be slideably disposed within the lumen of the closure device to advance the closure device into the pericardial space. Additionally or alternatively, the ablating and/or abrading element may be an electrode and the first guide may be configured to ablate interior tissue of the atrial appendage with the electrode. In some systems, the interior tissue of the atrial appendage may be tissue around an ostium of the atrial appendage. In some variations, the ablating and/or abrading element may comprise at least two electrodes and at least one electrode may be configured to monitor at least one tissue parameter during ablation of the interior'tissue. In some of these variations, the at least one tissue parameter may comprise: temperature, ECG signals, and/or the absence of ECG signals. In some instances, the snare may further comprise an electrode between a fixed end of the snare and the retention member, and the electrode may be configured to ablate an exterior of the atrial appendage. In yet other instances, the snare may be configured to cryoablate exterior surface of the atrial appendage.


In yet other variations of the systems described here, the system may comprise a first guide element that may be configured to be advanced into the interior of the atrial appendage, a second guide element that may be configured to be advanced into a pericardial space, a closure device that may be configured to be advanced into a pericardial space, and an ablating or abrading element that may be configured to ablate or abrade interior tissue of an atrial appendage. In some instances, the ablating or abrading element may comprise a j-tip, coiled, or ball-tipped wire. In some variations, the ablating or abrading element may be configured to cryoablate interior tissue of an atrial appendage.


The first guide element may comprise a proximal end, a distal end, a lumen therethrough, and a magnet on the distal end. The second guide element may comprise a proximal end, a distal end, and a magnet on the distal that may be configured to align the second guide element with the first guide element across tissue. In some variations, the first guide element may further comprise an expandable member and in some instances, the expandable member may be a balloon. The ablating or abrading element may be configured to be slideably disposed within a lumen of the first guide element and may be advanced from a distal end thereof. The second guide element may also be configured to be slideably disposed within a lumen of the closure device to advance the closure device into the pericardial space.


The closure device may comprise an elongate body that may comprise a lumen therethrough, a handle, and a snare loop assembly. The snare loop assembly may extend from a distal end of the elongate body and may comprise a snare, a suture loop, and a retention member that may be configured to releasably couple the snare and the suture loop. In some variations, the snare may further comprise an electrode between a fixed end of the snare and the retention member, and the electrode may be configured to ablate an exterior of the atrial appendage. In yet other variations, the snare may be configured to cryoablate an exterior of the atrial appendage.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 depicts a distal end of an illustrative variation of a closure device having a snare loop assembly.



FIG. 2 shows a cross-sectional side view of the closure device of FIG. 1.



FIG. 3 is a perspective view of an illustrative closure device as described here.



FIG. 4 depicts an illustrative variation of a system for closing the left atrial appendage.



FIGS. 5A-5C depict side views of different variations of expandable member catheters suitable for use with the systems described here.



FIGS. 6A-6C depict an illustrative method of closing the left atrial appendage as discussed here.



FIGS. 7A-7D depict side views of illustrative variations of devices suitable for use with the systems described here.



FIGS. 8A and 8B depict an illustrative method of closing the left atrial appendage as described here.



FIGS. 9A and 9B depict side views of illustrative variations of guide elements suitable for use with the systems described here.



FIGS. 10A-10C depict variations of methods as described here.



FIGS. 11A-11C, 12A-12C, and 13A-13C depict cross-sectional side views of three variations of closure devices as described here.



FIGS. 14A-14F depict variations of expandable members suitable for use with the systems described here.



FIGS. 15A and 15B depict cross-sectional side views of a variation of an expandable member catheter as described here.





DETAILED DESCRIPTION

Described here are systems and methods for closing the left atrial appendage. Generally, the systems and methods are configured to ablate or abrade left atrial appendage tissue before, during, or after the left atrial appendage closure procedure. In some instances, the left atrial appendage tissue may be ablated to electrically isolate the left atrial appendage from the heart. For example, for patients suffering from atrial fibrillation, electrical isolation of the left atrial appendage may limit the ability for asynchronous heart signals generated in the left atrial appendage to reach surrounding heart tissue. Additionally or alternatively, ablation or abrasion of left atrial appendage tissue may induce an inflammatory response from the left atrial appendage tissue, which may result in healing that may result in tissue fusion or otherwise help maintain closure of the left atrial appendage.


Generally, the left atrial appendage may be closed using one or more of the systems described in U.S. patent application Ser. No. 13/490,919, filed on Jun. 7, 2012 and titled “TISSUE LIGATION DEVICES AND TENSIONING DEVICES THEREFOR,” the content of which is hereby incorporated by reference in its entirety. FIG. 4 shows an illustrative variation of a closure system (400) that may be used to close the left atrial appendage. As shown there, the system may comprise a first guide element (402), a second guide element (404), an expandable member catheter (406), depicted here as a balloon catheter, and a closure device (408). Generally, the first and second guide elements may be configured to be positioned in the body and to act as guides for the advancement of devices in the body. For example, as shown in FIG. 4, a distal portion of the first guide element (402) may be introduced into the vasculature (e.g., via a femoral access site, brachial access site, or the like) and advanced into a heart (410) of a patient. In some instances, the first guide element (402) may be advanced to position a distal end of the first guide element (402) in the left atrial appendage (412). A proximal portion of the first guide element (402) may remain outside of the body such that one or more devices may be advanced along the first guide element (402) and into the body (e.g., the first guide element (402) may be slideably disposed within a lumen of a device such that the device may travel along the first guide element (402)). The device may be advanced along the first guide element (402) to position a distal portion of the device in the left atrium (414) or the left atrial appendage (412).


Similarly, a distal portion of the second guide element (404) may be positioned externally of the heart (410). For example, the second guide element (404) may be introduced into the body through an access point (e.g., intercostal access via a sternotomy, thoracostomy, or thoracotomy, right of the xiphoid process and pointed towards the patient's left shoulder, or in the costal cartilage or xiphoid process itself) and advanced to position a distal end of the second guide element into the pericardial space (416). A proximal portion of the second guide element (404) may remain outside of the body such that one or more devices may be advanced along the second guide element (404) to position a distal portion of the device in the pericardial space (416) (e.g., the second guide element (404) may be slideably disposed within a lumen of the device such that the device may travel along the second guide element (404)).


In some variations, the first guide element (402) and the second guide element (404) may be configured to align themselves across tissue of the heart. For example, in some variations, the first guide element (402) and the second guide element (404) may each comprise a magnet (418) at or near a distal end of the guide element. When the first guide element (402) and the second guide element (404) are positioned on opposite sides of heart tissue, the magnet (418) of the first guide element (402) may be attracted to the magnet (418) of the second guide element (404) (and vice versa), which may align the first and second guide elements. In some instances, as shown in FIG. 4, a distal end of the first guide element (402) may be positioned in the left atrial appendage (412), and a distal end of the second guide element (404) may be aligned with the first guide element (402) across tissue of the left atrial appendage (412) (e.g., via magnets). While shown in FIG. 4 as being aligned via magnets (418), the first guide element (402) and second guide element (404) may be manually aligned (e.g., via manipulation of the first and second guide elements under visualization such as fluoroscopy). It should also be appreciated that first and/or second guide elements may be any member suitable for advancement through the vasculature or the pericardial space, such as, for example, a catheter, wire, hollow wire, or the like.


The expandable member catheter (406) is generally configured to be advanced for endovascularly into the heart (410). For example, in some variations, the expandable member catheter (406) may be configured to be advanced along the first guide element (402) (e.g., in an over-the-wire configuration, a rapid-exchange configuration, or the like) to position a distal portion of the expandable member catheter (406) in the heart (410) (e.g., in the left atrium (414), the left atrial appendage (412) or the like). The expandable member catheter (406) may compose an expandable member, for example, an inflatable balloon (420) or other expandable structure. The balloon (420) or expandable member may be positioned at least partially inside of the left atrial appendage (412), and may be expanded. When expanded, the balloon (420) or expandable member may press against or otherwise support a portion of the left atrial appendage (412). Additionally or alternatively, the balloon (420) or expandable member may be filled or coated with a contrast material, which may assist in visualization of the left atrial appendage (412) during the closure procedure. When the expandable member catheter (406) is positioned along a portion of the first guide element (402), the expandable member catheter (406) may be advanced over the first guide element (402) after the first guide element (402) has been positioned, or may be positioned simultaneously with the first guide element (402). In other variations, the system (400) may not comprise an expandable member catheter (406) separate from first guide element (402). In some of these variations, the first guide element (402) may comprise an inflatable balloon (420) or an expandable member, which may be expanded (e.g., in the left atrial appendage (412) as discussed above). In other variations, the system (400) may not include an expandable member positioned in the left atrial appendage (412).


The closure device (408) is generally configured to close the left atrial appendage. The closure device (408) may be advanced along the second guide element (404) to position a distal portion of the closure device (408) in the pericardial space (416). Advancement of the closure device (408) into the pericardial space (416) may also position a closure assembly (422) (such as a snare loop assembly, as will be discussed in more detail below) around an external portion of the left atrial appendage (412). The closure assembly (422) may be actuated to close the closure assembly (422) around the left atrial appendage (412), which may at least partially close the left atrial appendage (412). In some instances, the closure assembly (422) may be at least partially reopened to allow the left atrial appendage (412) to at least partially reopen and/or to remove the closure assembly (422). In some variations, the closure assembly (422) may be configured to release a suture loop or other deployable loop which may hold the left atrial appendage (412) in a closed configuration.



FIG. 3 depicts one illustrative variation of a closure device (300) as described here. As shown there, the closure device (300) may comprise a snare loop assembly (302), an elongate body (304), and a handle (306). Generally, a portion of the snare loop assembly (302) extends from a distal portion of the elongate body (304) to form a continuous loop (308), which may allow the snare loop assembly (302) and the elongate body (304) to encircle tissue placed in the loop (308). The handle (306) may be used to control and actuate the snare loop assembly (302) through the elongate body (304) in order to increase or decrease the size of the loop (308) (e.g., increase or decrease the loop's circumference or diameter). For example, the handle (306) may advance a portion of the snare loop assembly (302) out of the elongate body (304) to increase the size of the loop (308), or may withdraw a portion of the snare loop assembly (302) into the elongate body (304) to decrease the size of the loop (308). Accordingly, the size of the loop (308) may be increased to allow the snare loop assembly (302) to be placed around tissue. Once around tissue, the size of the loop (308) may be decreased to ligate/close tissue (e.g., such as the left atrial appendage, as discussed above with respect to FIG. 4). The size of the loop (308) may then be increased to allow the tissue to be at least partially unclosed and/or to disengage the snare loop assembly (302) from tissue.


The snare loop assemblies of the closure devices described here generally comprise a snare and a suture loop releasably coupled thereto. For example, FIG. 1 shows a distal portion of an illustrative variation of a closure device (100) comprising a snare loop assembly (101) and an elongate body (108) having a tip (110). As shown there, the snare loop assembly (101) may comprise a snare (102), a suture loop (104), and a retention member (106), and may be disposed relative to the elongate body (108) such that at least a portion of the snare loop assembly (101) extends from the elongate body (108) (e.g., out of tip (110)). The snare loop assembly (101) is shown in FIG. 1 in an open configuration, and the portion of snare loop assembly (101) extending out of elongate body (104) may form a loop (109) having an aperture (112) therethrough, such as discussed above. The loop (109) and corresponding aperture (112) may be defined by one or more components of the snare loop assembly (101) (e.g., the snare), and may be suitable for encircling tissue such as the left atrial appendage.


Generally, the snare (102) may be actuated (e.g., by a portion of a handle or other control portion of the closure device) to control the size of the loop (109) of the snare loop assembly (101). For example, FIG. 2 shows a cross-sectional side view of the closure device (100). As shown there, the elongate body (108) may comprise a first lumen (114) and a second lumen (116). One end (118) of the snare (102) may be fixedly attached to the elongate body (108) (e.g., attached to the tip (110)), while a second end (not shown) of the snare may pass through the first lumen (114), where it may be operatively attached to a snare control (not shown). The snare control may be configured to advance or retract the snare (102) relative to the elongate body (108), which may control the amount of the snare (102) (and with it, the snare loop assembly (101)) extending from the elongate body (108). This in turn may control the size (e.g., circumference or diameter) of the loop (109) of the snare loop assembly (101).


As mentioned above, a suture loop (104) may be releasably connected to the snare (102). For example, as shown in FIGS. 1 and 2, the suture loop (104) may be releasably coupled to the snare (102) via a retention member (106). The retention member (106) may be any suitable structure, such as a dual-lumen tube or one or more of the retention members described in U.S. patent application Ser. No. 13/490,919, which was previously incorporated by reference in its entirety. The suture loop (104) may be initially configured to have a diameter larger than that of the snare loop assembly (101) when the snare loop assembly (101) is opened (excess suture of the suture loop (104) may be housed in the elongate body (108), such as described in U.S. patent application Ser. No. 13/490,919, which was previously incorporated by reference in its entirety).


The suture loop (104) may be tightened to reduce the diameter of the suture loop (104). When the diameter of the suture loop (104) is reduced past the diameter of the loop (109) of the snare loop assembly (101), the suture loop (104) may disengage and be released from the snare loop assembly (101). For example, tightening the suture loop (104) may cause the suture loop (104) to pull or tear through one or more walls, slits, prongs, arms or the like of the retention member (106) to break the connection between the suture loop (104) and the retention member (106).


Generally, the suture loop (104) may comprise a loop portion (120), a suture knot (122) and a tail (124). As shown in FIG. 2, the suture knot (122) may be temporarily held at least partially within the tip (110) of the elongate body (108). The suture of the loop portion (120) may be pulled through the suture knot (122) to reduce the diameter of the loop portion (120). The suture tail may extend through the elongate body (108) through the second lumen (116) of the elongate body (108)), and may be operatively attached to a suture control (not shown). The suture control may be used to pull the suture tail (124), which in turn may reduce the diameter of the loop portion (120) of the suture loop. When the snare (102) is advanced or withdrawn relative to the first lumen (114) of the elongate body (108), a portion of the suture loop (104) and the retention member (106) may also be advanced out of or withdrawn into the first lumen (114) of the elongate body (108). The suture knot (120) is preferably a one-way knot (e.g., a slip-knot), which allows the suture loop to maintain its diameter as the suture loop (104) is tightened. Additionally or alternatively, the suture loop (104) may comprise one or more unidirectional locking structures (such as those described in U.S. patent application Ser. No. 13/490,919, which was previously incorporated by reference in its entirety) which may help prevent the loop portion (120) from increasing in diameter (e.g., in response to expansive forces provided by the ligated tissue) of the suture loop (104) after it is tightened.


To close a tissue (such as the left atrial appendage) with the closure device (100), the closure device (100) may be advanced to the target tissue. Generally, the closure devices described here may be suitable for use using minimally invasive access to the left atrial appendage (e.g., through a small incision above, beneath or through the rib cage, through an incision in the costal cartilage or the xiphoid, through a port, through the vasculature, etc.), as discussed above. The moveable end of the snare (102) may be advanced relative to the elongate body (108) to increase the diameter of the loop (109) of the snare loop assembly (101) to “open” the snare loop assembly. With the snare loop assembly in an open configuration, the loop (109) may be placed around the target tissue to encircle the tissue. The moveable end of the snare (102) may he withdrawn relative to the elongate body (108) to decrease the diameter of the loop (109), which may close the snare loop assembly (101) around the tissue. With the tissue held in a closed configuration by the snare (102) and the snare loop assembly (101), the suture loop (104) may be tightened (i.e., the diameter of the loop portion (120) may be reduced by pulling the tail (124) relative to the suture knot (122)) to release the suture loop (104) from the snare loop assembly (101). Once released, the suture loop (104) may hold the tissue in a ligated configuration, and the remaining portions of the closure device (100) may be removed. In some instances, the suture loop (104) may be further tightened to reduce the diameter of the suture loop (104), as will be discussed in more detail below.


As mentioned above, one or more portions of the closure systems described here may be configured to ablate or abrade left atrial appendage tissue during the closure procedures described generally above. Generally, left atrial appendage tissue may be ablated or abraded from an endocardial approach (i.e., from an interior of the heart), an epicardial approach (i.e., from an exterior of the heart), or a combination of endocardial and epicardial approaches. For the purposes of this application, “interior tissue” of the left atrial appendage or heart will refer to internal tissue surfaces of the left atrial appendage or heart, respectively, which are accessible from the interior of the, heart and/or left atrial appendage. Conversely, “exterior tissue” of the left atrial appendage or heart will refer to external tissue surfaces of the left atrial appendage or heart, respectively, which are accessible from an exterior of the heart and/or left atrial appendage.


When the closure systems described here comprise an inflatable balloon or other expandable member (e.g., as part of an expandable member catheter or a first guide element), the expandable member may be configured to ablate or abrade tissue. FIGS. 5A-5C depict different variations of expandable member catheters in the form of balloon catheters configured to provide ablation energy to tissue. It should be appreciated that each of these variations may be incorporated into a guide element having an inflatable or expandable member. FIG. 5A shows a side view of a first variation of a balloon catheter (500) having an inflatable balloon (502) (although it should be appreciated that the balloon catheter (500) may comprise any suitable inflatable or expandable member). As shown there, the balloon (502) may comprise a plurality of abrading (e.g., a roughened surface, one or more barbs, spikes, hooks, or the like) or ablating (e.g., electrodes) elements (504) positioned around an exterior surface of the balloon (502). In variations used for ablation, the expansion of the balloon (502) may press one or more of the electrodes (504) against tissue, and energy may be delivered to tissue via one or more of the electrodes (504) to ablate tissue. The energy may be delivered from any suitable energy source, including but not limited to, a transducer to deliver high-intensity focused ultrasound to the tissue to locally heat and ablate it, a laser, an RF generator, etc. In some variations, one or more of the electrodes (504) may be configured to monitor one or more tissue parameters (e.g., temperature, ECG signals, the presence or absence of ECG signals) during ablation. The electrodes (504) may be electrically connected to a proximal portion of the balloon catheter (500) via one or more leads (not shown) incorporated into or on a shaft (506) of the balloon catheter (500).


In some variations, one or more of the electrodes of a balloon may be configured to circumferentially surround the balloon. For example, FIG. 5B shows another variation of a balloon catheter (510) having a balloon (512) or other expandable member. As shown there, the balloon catheter (510) may comprise at least one electrode (514) connected to the balloon (512). As shown there, the electrode (514) may be configured to circumferentially surround the balloon (512). In these variations, the electrode (514) may be flexible or otherwise configured to match the shape of the balloon (512) during inflation and deflation of the balloon (512). When the balloon (512) is expanded, the balloon (512) may press the electrode (514) into contact with tissue, and energy may be supplied to the tissue via the electrode (514) to ablate tissue. The circumferential nature of the electrode (514) may allow the electrode (514) to ablate a ring of tissue (e.g., when positioned inside of the left atrial appendage). While shown in FIG. 5B as having a single electrode (514), it should be appreciated that the balloon catheter (510) may comprise a plurality of electrodes attached to the balloon (512), such as described above. The electrodes (514) may be electrically connected to a proximal portion of the balloon catheter (510) via one or more leads (not shown) incorporate into or on a shaft (516) of the balloon catheter (510).


In other variations, the balloon catheter may be configured to thermally ablate tissue. For example, FIG. 5C shows another variation of a balloon catheter (520) having a balloon (522). As shown there, the balloon (522) may be mounted to a shaft (524), and the balloon catheter (520) may include one or more electrodes (526) mounted on the shaft (524) within the balloon (522). In these variations, fluid (e.g., saline, a saline/contrast fluid mixture) may be introduced into the balloon (522) (e.g., through an inflation port (not shown) on the shaft inside the balloon (522)) to inflate the balloon (522). RF energy may be supplied to the one or more electrodes (526), which may heat the one or more electrodes (526) and the fluid in the balloon (522). In some variations, the shaft inside of the balloon (522) may comprise one or more resistive heating elements connected to an electrical source, which may heat the fluid inside of the balloon. As the fluid in the balloon is heated, tissue in contact with the balloon may he heated to ablate the tissue. In other variations, the balloon catheter may be configured to introduce a cooled fluid into the balloon (522), which may cryoablate tissue in contact with the balloon (522). In yet other variations, the balloon catheter may be configured to introduce or apply therapeutic compounds (e.g., to promote healing) to the tissue. For example, in some instances the balloon (522) may comprise one or more porous materials such that the balloon catheter may also be used for drug delivery.


In some variations, the expandable member may comprise a loop or a metal form similar to a stent or an interior vena cava filter. For example, FIGS. 14A-14F depict embodiments of expandable members for ablating or abrading the interior tissue of the LAA. FIGS. 14A and 14B illustrate an expandable member catheter comprising an expandable member (1414) in the form of an actuatable electrode or abrading loop (1402) that may be advanced from a distal end of an elongate body (1406). The loop (1402) may be actuated (e.g., by an actuator (not pictured) on a handle or other control portion of the catheter) to control the size of loop (1402) (e.g., diameter and/or circumference) and the location of ablation or abrading. As can be seen in FIGS. 14A and 14B, the elongate body (1406) may comprise a lumen (1408) through which the distal end (1410) of the loop (1402) travels to connect to the actuator. The proximal end (1404) of the loop (1402) may be fixed to the elongate body (1406). The actuator may be configured to advance or retract the distal end (1410) of the loop (1402) relative to the elongate body (1406) to control the amount of the loop (1402) extending from the elongate body (1406) and thus the size (e.g., circumference and/or diameter) of the loop (1402).


The loop (1402) may comprise a conductive material such that the loop (1402) functions as an electrode to ablate tissue when connected to an energy source and energized. The loop (1402) may comprise a protective coating or sleeve which may help prevent inadvertent ablation when the loop (1402) is energized but not yet properly placed. In some embodiments, the loop (1402) may comprise ablating or abrading elements (1412), as depicted in FIG. 14B. In some variations, the ablating or abrading elements (1412) may comprise electrodes (e.g., RF electrodes). Additionally or alternatively, the ablating or abrading elements (1412) may comprise a roughened surface, one or more barbs, spikes, hooks, or the like. In variations in which the loop (1402) itself may be energized, the loop (1402) may also comprise abrading elements (1412). In other variations, the loop (1402) may comprise a lumen therethrough and may be connected at its distal end to a fluid source. The cryogenic fluid may flow through the loop's (1402) lumen such that the loop (1402) may be used to cryoablate the interior tissue of the LAA. In some embodiments, the loop may further comprise apertures such that the loop (1402) may deliver or dispense a therapeutic compound or an adhesive to the internal surface of the LAA, which may assist with tissue healing and/or LAA closure.



FIGS. 14D-14F depict additional embodiments of expandable members (1414) that may be utilized with the expandable member catheter. FIG. 14C depicts an expandable member comprising a plurality of arms (1416) extending distally from a central hub (1418). In some embodiments, the arms (1416) may extend outward such that their distal tips form a circle, oval, hexagon, octagon, or any other desired shape. As depicted there, each arm (1416) comprises an ablating or abrading element (1420) at its distal tip, but the arms may comprise ablating or abrading elements (1420) at any location along their lengths. Moreover, every arm (1416) need not comprise an ablating or abrading element (1420), and any number of ablating or abrading elements may be utilized. In some variations, the arms (1420) may be made of a conductive material and connected to an energy source such that the arms themselves may ablate tissue. In other variations, the expandable member (1414) may be made of a rigid polymer and may comprise abrading or ablating elements strategically placed on the expandable member (1414) based on the user's desired ablation locations. FIG. 14D depicts another variation of an expandable member (1414) comprising two arms (1416) supporting a circular ablating or abrading element (1420). The arms (1416) comprise protective coverings (1422) (e.g., a sleeve, polymer coating, etc.) which may protect the tissue when the arms (1416) also comprise abrading or ablating elements, or may otherwise damage tissue undesirably. FIGS. 14E and 14F depict variations of the expandable members (1414) comprising wire form or stent-like configurations and which comprise rounded bodies (1424) (e.g., comprising circular, oval, etc. cross-sections) in their expanded configurations. These expandable members (1414) may comprise any number of abrading or ablating elements, and/or may themselves be ablating or abrading elements (e.g., the wires that form the bodies (1424) may ablate or abrade tissue).


The expandable members may comprise a first retracted position and a second expanded position and may be constructed of a resilient material (e.g., a shape-memory material like nitinol) such that the expandable members may be advanced to the LAA in the retracted position (for example, as shown in FIG. 15A) and may be subsequently advanced into the expanded position (e.g., as shown in FIG. 15B) once proper placement is achieved. In the variation shown in FIGS. 15A and 15B, the expandable member (1514) is slideably disposed within the lumen (1508) of the catheter's elongate body (1506). The hub (1518) is connected to a second elongate body (1502) such that a user may advance the expandable member (1514) distally relative to the catheter's elongate body (1506) to move the expandable member from its retracted position (in which it is constrained) to its expanded position (in which it is no longer constrained). In some variations, the expandable member (1514) may comprise a hub (1518) at the proximal and distal ends of its arms or body. In these embodiments, the expandable member catheter may be configured such that the hub at the distal end of the expandable member catheter may be fixed and the hub at the proximal end may slide distally such that the hubs at the proximal and distal ends of the expandable member move toward each other to move the expandable element from its retracted position to its expanded position. In some variations, the expandable member (1514) may be coupled to the expandable member catheter but not disposed within its lumen.


In some embodiments, the systems described here may comprise two expandable member catheters. For example, the system may comprise a first expandable member catheter comprising a balloon (i.e., a balloon catheter) and a second expandable member catheter comprising any of the expandable members (1414) previously described (e.g., those depicted in FIGS. 14A-14F.) In these systems, a user may advance the balloon catheter into the LAA for use with the closure device, as described in detail below, and may remove the balloon catheter once the snare loop assembly has been deployed. The second expandable member catheter may then be advanced to the interior of the LAA specifically for the purpose of abrading or ablating tissue.


Any of the balloons described above may be used to ablate an interior tissue of the left atrial appendage. FIGS. 6A-6C depict an illustrative method by which a balloon may be used to ablate interior tissue of the left atrial appendage. As shown in FIG. 6A, a first guide element (600) and a second guide element (602) may be advanced and positioned such that a distal end of the first guide element (600) is positioned in the left atrial appendage (604) and a distal end of the second guide element (602) is positioned outside the left atrial appendage (604) in the pericardial space (606). The first guide element (600) and second guide element (602) may be aligned (e.g., using one or more magnets (not shown), such as described in more detail above with respect to FIG. 4). In some variations, a balloon catheter (608) may be advanced to position a balloon (610) in the left atrial appendage (604). In some of these variations, the balloon catheter (608) may be advanced along the first guide (600) after the first guide element (600) has been positioned in the left atrial appendage (604). In other variations, the balloon catheter (608) may be advanced simultarpeously with the first guide element (600). In still other variations, the system may not comprise a balloon catheter (608), but instead the balloon (610) may be part of the first guide element (600), such that advancement of the first guide element (600) into the left atrial appendage (604) positions the balloon (610) in the left atrial appendage (604). The balloon (610) may then be inflated inside of the left atrial appendage (604).


Additionally, a closure device (612) may be advanced along the second guide element (602) to position a closure assembly (614) (such as a snare loop assemblies as discussed above with respect to FIGS. 1-3) around the left atrial appendage. With the balloon (610) positioned in the left atrial appendage (604) and the closure assembly (614) positioned around the left atrial appendage (604), the closure assembly (614) may be at least partially dosed to close the left atrial appendage (604) around the balloon (610). In some variations, prior to closing the closure assembly (614), the balloon (610) and the closure assembly (614) may be positioned such that the balloon (610) is positioned inside of the closure assembly (614).


In other variations, the balloon (610) and closure assembly (614) may be initially positioned such that the closure assembly (614) is advanced past the balloon (610) and is positioned around a portion of the balloon catheter (608) (or the first guide element (600) in variations where the balloon (610) is part of the first guide element (600)) proximal of the balloon (610), such as shown in FIG. 6A. In these variations, the closure assembly (614) may be partially closed around the left atrial appendage (604) with the balloon (610) inflated to partially grab the left atrial appendage (604). With the closure assembly (614) engaging the left atrial appendage, the balloon (610) may be deflated and retracted (by retracting the balloon catheter (608), or the first guide element (600) in variations where the balloon (610) is part of the first guide element (600)) to position the balloon (610) inside of the closure assembly (614). The balloon (610) may be re-inflated to press the balloon (610) in contact with the interior tissue of the left atrial appendage (604), such as shown in FIG. 6B. In some of these variations, the closure assembly (614) may also be further closed to further pull tissue of the left atrial appendage (604).


With the left atrial appendage (604) closed around the balloon (610), the balloon (610) may be used to ablate or abrade the interior tissue that is captured by the closure assembly (614). This ablation or abrading may be done in any suitable manner. In variations where the balloon (610) comprises one or more electrodes (such as the electrodes (504) of the balloon (502) described above with respect to FIG. 5A or the electrode (514) of the balloon (512) described above with respect to FIG. 5B), the left atrial appendage (604) may be closed around the balloon (610) to press the interior tissue of the left atrial appendage in contact with some or all of the electrodes. RF energy may be supplied to the electrodes (514) to ablate the interior tissue. In variations where the balloon (610) includes one or more electrodes positioned within the balloon (such as the balloon (522) described above with respect to FIG. 5C), the electrodes may be used to heat a fluid in the balloon (610) such that the heat is transferred from the balloon to the interior tissue of the left atrial appendage (604) that is in contact with the balloon (610) to ablate tissue. In variations in which a cooled fluid is introduced into the balloon, the balloon may be used to cryoablate the interior tissue of the left atrial appendage (604) that is in contact with the balloon (610). In variations in which the balloon comprises abrading elements, the abrading elements may be used to physically damage or abrade tissue when moved against the tissue. In variations in which the balloon comprises porous materials, the balloon may be used to locally deliver therapeutic compounds to the surrounding tissue.


Following tissue ablation, the balloon (610) may be deflated and removed from the left atrial appendage (e.g., the first guide element (600) may be removed from the left atrial appendage, as well as the balloon catheter (608) in variations where the balloon (610) is part of the balloon catheter (608)). The closure assembly (614) may then be further closed to fully close the left atrial appendage (604), such as shown in FIG. 6C. In some variations, a suture loop or similar device may be deployed from the closure assembly (614) to maintain the left atrial appendage (604) in a closed configuration.


In other variations, one or more portions of the shaft of a balloon catheter or guide element may be used to ablate or abrade tissue. FIG. 7A shows one such variation of a balloon catheter (700) as described here. As shown there, the balloon catheter (700) may comprise a shaft (702), a balloon (704), and one or more electrodes or abrading elements (706) positioned on the shaft (702) proximally of the balloon (704). While shown in FIG. 7A as having a plurality of electrodes or abrading elements (706), in some variations the balloon catheter (700) may only comprise a single electrode or abrading element (706). In some variations, a balloon catheter may comprise at least one electrode and at least one abrading element positioned on a shaft of the balloon catheter proximal to the balloon. In some variations, elements (706) may comprise magnets, electromagnets, or magnetic material which may help with proper placement of the closure device, and more specifically, the snare loop assembly of the closure device, in embodiments in which the closure device comprises magnetic material. Elements (706) may be any combination of ablating, abrading, and magnetic elements. As discussed above, the ablating or abrading elements need not necessarily be incorporated on the balloon catheter and could instead be on a separate device that is advanced into the LAA after the balloon catheter is removed, but before the suture loop is deployed.


As mentioned above, the balloon catheter may comprise one or more abrading elements positioned on the shaft of the balloon catheter. For example, FIG. 7B shows one such variation of a balloon catheter (710), where the balloon catheter (710) may comprise a shaft (712), a balloon (714), and an abrading element (716) positioned on the shaft (712) proximal to the balloon (714). The abrading element (716) is generally configured such that it may physically damage or abrade tissue when moved against the tissue, as will be discussed in more detail below. For example, the abrading element (716) may include a roughened surface, one or more barbs, spikes, hooks, or the like.


In variations where a guide element comprises a balloon (e.g., in place of having a separate balloon catheter), the guide element may comprise one or more electrodes and/or abrading elements positioned on the guide element proximally of the balloon. For example, FIG. 7C shows a variation of guide element (720) having a balloon (722) and one or more electrodes (724) positioned on the guide element (720) proximally of the balloon (722). FIG. 7D shows another variation of a guide element (730) having a balloon (732) and one or more abrading elements (734) positioned on the guide element (730) proximally of the balloon (732). In these variations, the guide element may comprise any number and combination of electrodes and or ablation elements, such as described above.


When a balloon catheter or guide element comprises a balloon and one or more electrodes and/or abrading elements proximally to the balloon, the electrodes and/or abrading elements may ablate and/or abrade, respectively, interior tissue of the left atrial appendage. For example, FIGS. 8A and 8B depict such an illustrative closure method. As shown in FIG. 8A, a balloon (800) may be advanced into the left atrial appendage (802). In some variations, the balloon (800) may be part of a balloon catheter (804) (such as the balloon catheter (700) described above with respect to FIG. 7A or the balloon catheter (710) described above with respect to FIG. 7B), and the balloon catheter (804) may be advanced along a first guide element (806), such as described above. In other variations, the balloon (800) may be part of the first guide element (such as the guide element (720) shown in FIG. 7C or the guide element (730) shown in FIG. 7D), such that advancement of the first guide element (806) into the left atrial appendage (802) also positions the balloon (800) in the left atrial appendage.


A closure device (808) may be advanced externally of the heart to position a closure assembly (810) of the closure device (808) around external tissue of the left atrial appendage (802). The closure device (808) may be advanced in any suitable manner, such as, for example, along a second guide element (812) that is positioned in the pericardial space, such as discussed in more detail above (the first and second guide elements may include magnets that may align the first and second guide elements across tissue of the left atrial appendage). Generally, the closure device (808) may be advanced to position the closure assembly past the balloon (800) (e.g., such that the closure device (808) is positioned around a portion of the balloon catheter (804) and/or first guide element (806) proximal to the balloon (800)), such as shown in FIG. 8A. As mentioned above, the balloon catheter (804) (or first guide element (806) in variations where the balloon (800) is part of the first guide element (806)) may comprise one or more elements (814), which may include one or more electrodes and/or abrading elements, such as discussed above.


With the closure device (808) and balloon (800) positioned as shown in FIG. 8A, the closure assembly (810) may be closed to place the left atrial appendage into contact with one or more of the elements (814). In variations where the one or more elements (814) comprise an electrode, the electrode may be activated to ablate the interior left atrial appendage tissue in contact with the electrodes. In variations where the one or more elements (814) comprise an abrading element, the abrading element may be moved relative to the interior left atrial appendage tissue to abrade that issue. In some variations, this may comprise rotating and/or longitudinally translating the balloon catheter (804) (or the first guide element (806) in variations where the abrading element is part of the first guide element (806)) to move the abrading element relative to the tissue to abrade the interior tissue of the left atrial appendage. In other variations, the abrading element may be moveable relative to the balloon catheter (804) and/or the first guide element (806), and may be actuated to move the abrading element relative to tissue to abrade the tissue.


Once the tissue has been abraded and/or ablated, the balloon (800), the balloon catheter (804) (in variations where the balloon (800) is part of the balloon catheter (804), and the first guide element (806) may be removed, and the closure assembly (810) may be further closed to close the left atrial appendage (802), as shown in FIG. 8B.


In some variations, the distal end of a guide element may be configured to ablate interior tissue of the left atrial appendage. For example, FIG. 9A shows a variation of a guide element (900) as described here. As Shown in FIG. 9A, the guide element may comprise a magnet (902) positioned at a distal end of the guide element (900). Also shown there is an electrode (904) positioned at a distal end of the guide element (900). The electrode may be used to ablate interior tissue of the left atrial appendage, as will be described in more detail below. In some embodiments, the guide element may be configured to deliver or dispense fluid to surrounding tissue.


In other variations, a wire or other member may be advanced from a distal end of the guide element, and may be configured to act as an electrode to ablate tissue. For example, FIG. 9B shows another variation of a guide element (910) as described here. As shown there, the guide element (910) may comprise a magnet (912) at a distal end of the guide element (910), and may comprise a lumen (914) extending through the guide element (910). The guide element (910) may further comprise a wire (916) which may be advanced through the lumen (914) to extend from a distal end of the guide element (910). A proximal end of the wire (916) may be connected to an energy source (not shown) such that the wire (916) may act as an electrode to ablate tissue. In some variations, a proximal end of the wire (916) may be connected to a source of cryogenic fluid such that the wire (916) may be used to cryoablate tissue. In some embodiments, the wire (916) may comprise a lumen such that it may be used to dispense fluid to the surrounding tissue. The fluid may be delivered through the lumen and either out of the distal tip of the wire (916) or through side apertures along the wire's distal end. The proximal end of the wire (916) may be connected to a source of fluid, for example, a therapeutic compound or an adhesive, and the wire (916) may be used to deliver and dispense the fluid to locally affect (e.g., promote healing or closure) the surrounding tissue. The wire (916) may be any suitable wire. For example, the wire (916) may be a straight-tip or j-tip wire, may be a coiled wire, or may be configured to make another 3-dimensional shape. In some of these variations, the wire may be a ball-tipped wire.


When a guide element has an electrode or electrode wire at its distal end (such as the guide elements (900) and (910) described above with respect to FIGS. 9A and 9B, respectively), the guide element may be used to ablate interior tissue of the left atrial appendage. For example, FIGS. 10A, 10C shows two such variations of a method of closing a left atrial appendage. As shown in FIG. 10A, a first guide element (1000) may be positioned inside the left atrial appendage (1002) and a second guide element (1004) may be positioned externally of the left atrial appendage (1002) in the pericardial space (1006). In some variations, the first guide element (1000) and the second guide element (1004) may be aligned using magnets on each of the guide elements, such as discussed in more detail above. A closure device (1008) may be advanced over the second guide element (1004) to position a closure assembly (1010) around exterior tissue of the left atrial appendage (1002). In some variations, a balloon (1018) may be positioned in the left atrial appendage (1002) (either as part of a balloon catheter (1012) or the first guide element (1000)), such as discussed in more detail below.


With the closure assembly (1010) of the closure device (1008) encircling the left atrial appendage (1002), the first guide element (1000) (and the balloon catheter (1012) in variations where a balloon catheter (1012) is at least partially advanced into the left atrial appendage (1002)) may be removed from the interior of the left atrial appendage (1002) and the closure assembly (1010) may be closed to close the left atrial appendage. After the left atrial appendage (1002) is closed, the first guide element (1000) may be re-advanced to ablate, join or bond, or deliver drugs to the closed left atrial appendage tissue.


For example, in variations where the first guide element (1000) comprises an electrode (1014) at a distal end of the first guide element (1000), the first guide element (1000) may be re-advanced to place the electrode (1014) into contact with the interior tissue of the left atrial appendage (1002), as shown in FIG. 10B. Generally, this may place the electrode (1014) into contact with tissue around the ostium of the left atrial appendage (1000). The electrode (1014) may deliver RF energy to the tissue of the left atrial appendage (1002) to ablate the tissue. In some variations, the first guide element (1000) may be used with cryogenic fluid to cryoablate tissue. In some embodiments, the closure device (1008) may comprise a magnetic tip (e.g., tip (110) depicted in FIG. 1) or a magnet on its distal end to assist in guiding the distal end of the first guide element (1000) into contact with the interior tissue of the left atrial appendage (1002) in embodiments in which the first guide element (1000) comprises a magnet, as described above.


In variations where the first guide element (1000) is configured to advance a wire (1016) out of a distal end of the first guide element (1000), the wire (1016) may be advanced from a distal end of the first guide element (1000) to expose a portion of the wire (1016), and the wire (1016) may be positioned in contact with the tissue around the ostium of the left atrial appendage (1002), such as shown in FIG. 10C. In some instances this may comprise advancing the first guide element (1000) and the wire (1016) together. With the wire (1016) in contact with left atrial appendage tissue, the wire (1016) may be activated as an electrode to ablate the tissue, may be used with cryogenic fluid to cryoablate the tissue, or may be configured to locally deliver fluid, as described above.


It should be appreciated that the methods described above with respect to FIGS. 10A-10C may be used with any of the methods described above with respect to FIGS. 6A-6C and 8A-8B. In these variations, interior tissue of the left atrial appendage may be ablated or abraded, and may be closed to press the ablated/abraded tissue into contact with itself (which may assist in electrical isolation and/or invoking a healing response). The closed ostium of the left atrial appendage may then be ablated or abraded to further promote electrical isolation of the left atrial appendage and/or a healing response.


In addition to or as an alternative to ablating or abrading the interior tissue of the left atrial appendage, the closure devices described here may be configured to ablate exterior tissue of the left atrial appendage. FIGS. 11A-11C show cross-sectional side views of a distal portion of one such variation of a closure device (1100). As shown there, the closure device (1100) may comprise an elongate body (1102) and a snare loop assembly (1104), which may define a loop (1106) encircling an aperture (1108). The snare loop assembly (1104) may comprise a snare (1110), a suture loop (1112), and retention member (1114), such as discussed in more detail above. The suture loop (1112) may include a tail portion (1116), a suture knot (1118), and a loop portion (1120), such that one end of the snare (1110) extends through a first lumen (1124) in the elongate body (1102) and the tail portion (1116) of the suture loop (1112) extends through a second lumen (1122) in the elongate body. A second end (1126) of the snare (1110) may be fixed relative to the elongate body (1102). As discussed in more detail above, movement of the snare (1110) into and out of the first lumen (1124) may increase and decrease the size of the loop (1106) defined by the snare loop assembly (1104).


Also shown in FIGS. 11A-11C is an electrode (1128). The electrode (1128) may be positioned around a portion of the snare loop assembly (1006). In the variation shown in FIGS. 11A-11C, the electrode (1128) may be positioned on the snare (1110) between the fixed end (1126) of the snare (1110) and the retention member (1114), but not around the suture loop (1112). In some variations, a portion of the snare (1110) may act as an electrode (1128). Specifically, the snare (1110) may be formed from an electrically conductive material which may convey current from a proximal portion of the snare to the electrode (1128). The snare (1110) may be at least partially covered with an insulating material (such as PTFE), such that the insulating material insulates portions of the snare (1110) to prevent inadvertent ablation by the snare. The electrode (1128) may not include the insulating material to expose the conductive material of the snare (1110), which may thereby act as an electrode. It should be appreciated that the snare may also be used with cryogenic fluid (e.g., within a lumen of the snare) such that the snare may cryoablate the tissue. The snare may also comprise porous materials or apertures such that the snare may be used to dispense therapeutic compounds, adhesive, or any other desired material to the tissue. Moreover, in some variations, the electrode (1128) may comprise magnetic material or may be an electromagnet. In these variations, when the snare (1110) is closed around the external surface of the left atrial appendage, the magnetic material of electrode (1128) may externally encircle the left atrial appendage which may assist in guiding a tool (e.g., an ablation or abrading device) within the left atrial appendage or the left atrium to the closure site.


While shown in FIGS. 11A-11C as having a single electrode (1128), the closure device 1100) may comprise any suitable number of electrodes (e.g., one, two, three, or four or more electrodes). For example, FIGS. 12A-12C show another variation of a closure device (1200) having a plurality of electrodes (1202). The closure device (1200) may comprise a snare loop assembly (1104) and an elongate body (1102) as discussed above with respect to FIGS. 11A-11C (identical components are labeled as shown in FIGS. 11A-11C). As shown in FIGS. 12A-12C, the closure device may include a plurality of electrodes (1202) positioned on the snare (1110) between the fixed end (1126) of the snare (1110) and the retention member (1114). While shown in FIGS. 12A-12C as having five electrodes (1202), the snare (1110) may include any suitable number of electrodes as discussed above. In variations where the snare (1110) includes multiple electrodes (1202), some electrodes may be used to ablate tissue, while other electrodes may be used to monitor one or more aspects of tissue (e.g., one or more electrical signals, temperature, or the like).


Additionally, as described above with respect to electrode (1128), electrodes (1202) may comprise magnetic material or electromagnets. Moreover, in some variations, one or more of the elements (1202) may be replaced by magnets. In variations in which the elements (1202) comprise both electrodes and magnets, the electrodes and magnets may be arranged along the snare in any suitable configuration, for example, alternating every other element, in pairs, in groups, etc. The magnets may assist a user in locating the desired area inside of the heart as the magnets on the snare may help align a tool inside of the heart with the closure location. Additionally, in embodiments in which the elements (1202) comprise both magnets and electrodes, a user may ablate an external surface of the left atrial appendage with the electrodes and utilize the magnets to align an internal tool (ablating, abrading, or other tissue affecting device) with the external electrodes to ablate or otherwise affect the tissue at substantially the same location.


The closure devices (1100) and (1200) shown in FIGS. 11A-11C and 12A-12C respectively, may be used to ablate tissue of the left atrial appendage. For example, the snare loop assembly (1104) may be placed in an open configuration, as shown in FIGS. 11A and 12A, and may be advanced into the pericardial space to position the left atrial appendage (not shown) in the aperture (1108) of the snare loop assembly. The snare loop assembly (1104) may be closed around the left atrial appendage to close the left atrial appendage, as shown in FIGS. 11B and 12B. This may position the electrode (1128) (in the instance of the closure device (1100)) or one or more of the electrodes (1202) (in the instance of the closure device (1200)) in contact with exterior tissue of the left atrial appendage. In some instances, the exterior tissue of the left atrial appendage may be ablated at this point.


In some variations, the suture loop (1112) may be tightened to release the suture loop from the retention member (1114) and the snare loop assembly (1104), such as shown in FIGS. 11C and 12C. In some variations, the exterior tissue of the left atrial appendage may be ablated using the electrode (1128) or one or more of the electrodes (1202) after the suture loop (1112) has been released from the snare loop assembly (1104). This may be done in addition to or instead of ablation prior to the release of the suture loop (1112). In some variations, the snare loop assembly (1104) may be reclosed around the left atrial appendage prior to ablation to tighten the snare loop assembly (1104) against tissue. In some variations, the snare loop assembly (1104) may be re-opened, repositioned, and reclosed around the left atrial appendage prior to ablation.


The closure device (1300) depicted in FIGS. 13A-13C may be used to abrade tissue of the left atrial appendage. As shown there, the closure device (1300) comprises a snare loop assembly (1304) similar to that described with respect to FIGS. 11A-11C and 12A-12C above, except that the snare loop assembly (1304) comprises a plurality of abrading elements (1302) instead of, or in addition to, a plurality of electrodes. The abrading elements (1302) may be disposed on an abrading member (1316) (e.g., tubing) that is slideably disposed on the snare. The abrading member (1316) may be coupled to an actuator (not depicted) on the handle or control element of the closure device (1300) through control wires (1318). A user may actuate the abrading member (1316) by alternatingly pulling the control wires (1318) such that the abrading member (1316) slides along the snare (1310). The abrading elements (1302) fixed to the abrading member (1316) are thus moved in a reciprocating motion and may be used to abrade tissue. It should be appreciated that the abrading elements (1302) may also comprise one or more electrodes to ablate tissue.

Claims
  • 1. A closure device for closing an atrial appendage comprising: an elongate body comprising a lumen therethrough;a snare loop assembly comprising a snare, a suture loop, and a retention member releasably coupling the snare and the suture loop, wherein the snare comprises an electrode positioned circumferentially around the snare such that the snare is concentrically within the electrode; anda handle configured to actuate the snare loop assembly.
  • 2. The closure device of claim 1, wherein the snare comprises a plurality of electrodes positioned between the fixed end of the snare and the retention member.
  • 3. The closure device of claim 2, wherein at least one electrode of the plurality of electrodes is configured to monitor a tissue parameter.
  • 4. The closure device of claim 2, wherein a first electrode of the plurality of electrodes is configured to ablate atrial appendage tissue and wherein a second electrode of the plurality of electrodes is configured to monitor at least one tissue parameter during ablation of the tissue.
  • 5. The closure device of claim 4, wherein the at least one tissue parameter comprises electrical signals and/or temperature.
  • 6. The closure device of claim 1, wherein the electrode is formed from a portion of the snare that is electrically conductive.
  • 7. The closure device of claim 6, wherein the snare is at least partially covered with an insulating material to prevent inadvertent ablation.
  • 8. The closure device of claim 1, wherein the snare further comprises a magnet.
  • 9. The closure device of claim 1, wherein the electrode comprises a magnetic material or is an electromagnet.
  • 10. The closure device of claim 1, wherein the electrode is configured to assist in guiding a tool.
  • 11. A system for closing an atrial appendage comprising: a closure device comprising an elongate body comprising a lumen therethrough, a snare loop assembly comprising a snare, a suture loop, and a retention member releasably coupling the snare and the suture loop, and a handle configured to actuate the snare loop assembly, wherein the snare comprises an electrode positioned circumferentially around the snare such that the snare is concentrically within the electrode;a first guide configured to be advanced into an interior of the atrial appendage, wherein the first guide comprises an ablating and/or abrading element, and wherein the ablating and/or abrading element is configured to ablate and/or abrade the interior of the atrial appendage; anda second guide configured to be advanced into a pericardial space.
  • 12. The system of claim 11, wherein the first guide comprises a shaft and an expandable member, and wherein the shaft comprises the ablating and/or abrading element positioned proximally of the expandable member.
  • 13. The system of claim 11, wherein the first guide comprises an expandable member, and wherein the expandable member comprises the ablating and/or abrading element.
  • 14. The system of claim 11, further comprising at least two electrodes, wherein at least one electrode is configured to monitor at least one tissue parameter during ablation of the interior tissue.
  • 15. The system of claim 14, wherein the at least one tissue parameter comprises temperature, ECG signals, and/or the absence of ECG signals.
  • 16. The system of claim 14, wherein a first electrode of the at least two electrodes is configured to ablate atrial appendage tissue and wherein a second electrode of the at least two electrodes is configured to monitor at least one tissue parameter during ablation of the tissue.
  • 17. The system of claim 11, further comprising an electrode positioned at a distal end of the first guide.
  • 18. The system of claim 11, wherein the second guide is slideably disposed within the lumen of the elongate body to advance the closure device into the pericardial space.
  • 19. A system for closing an atrial appendage comprising: a closure device comprising an elongate body comprising a lumen therethrough, a snare loop assembly comprising a snare, a suture loop, and a retention member releasably coupling the snare and the suture loop, and a handle configured to actuate the snare loop assembly, wherein the snare comprises an electrode positioned circumferentially around the snare such that the snare is concentrically within the electrode;a first guide configured to be advanced into an interior of the atrial appendage and comprising a lumen therethrough;a second guide configured to be advanced into a pericardia space and slideably disposed within the lumen of the closure device; andan ablating or abrading element configured to be slideably disposed within the lumen of the first guide and advanced from a distal end thereof, wherein the ablating or abrading element is configured to ablate or abrade interior tissue of the atrial appendage.
  • 20. The system of claim 19, wherein at least one electrode is formed from a portion of the snare that is electrically conductive, wherein the snare is at least partially covered with an insulating material to prevent inadvertent ablation.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application is a continuation application of U.S. patent application Ser. No. 16/289,365, filed on Feb. 28, 2019, now U.S. Pat. No. 10,799,288, issued on Oct. 13, 2020, which is a continuation application of U.S. patent application Ser. No. 14/530,575, filed on Oct. 31, 2014, now U.S. Pat. No. 10,258,408, issued Apr. 16, 2019, which claims priority to U.S. Provisional Patent Application Ser. No. 61/898,382, filed on Oct. 31, 2013, each of which is incorporated by reference herein in its entirety.

US Referenced Citations (488)
Number Name Date Kind
3496932 Prisk et al. Feb 1970 A
3677597 Stipek Jul 1972 A
3802074 Hoppe Apr 1974 A
3841685 Kolodziej Oct 1974 A
3999555 Person Dec 1976 A
4018229 Komiya Apr 1977 A
4030509 Heilman et al. Jun 1977 A
4078305 Akiyama Mar 1978 A
4181123 Crosby Jan 1980 A
4249536 Vega Feb 1981 A
4257278 Papadofrangakis et al. Mar 1981 A
4319562 Crosby Mar 1982 A
4428375 Ellman Jan 1984 A
4596530 McGlinn Jun 1986 A
4662377 Heilman et al. May 1987 A
4765341 Mower et al. Aug 1988 A
4817608 Shapland et al. Apr 1989 A
4901405 Grover et al. Feb 1990 A
4944753 Burgess et al. Jul 1990 A
4991578 Cohen Feb 1991 A
4991603 Cohen et al. Feb 1991 A
4998975 Cohen et al. Mar 1991 A
5033477 Chin et al. Jul 1991 A
5108406 Lee Apr 1992 A
5163942 Rydell Nov 1992 A
5163946 Li Nov 1992 A
5176691 Pierce Jan 1993 A
5181123 Swank Jan 1993 A
5181919 Bergman et al. Jan 1993 A
5226535 Roshdy et al. Jul 1993 A
5226908 Yoon Jul 1993 A
5242459 Buelna Sep 1993 A
5243977 Trabucco et al. Sep 1993 A
5269326 Verrier Dec 1993 A
5279539 Bohan et al. Jan 1994 A
5281238 Chin et al. Jan 1994 A
5300078 Buelna Apr 1994 A
5306234 Johnson Apr 1994 A
5318578 Hasson Jun 1994 A
5336229 Noda Aug 1994 A
5336231 Adair Aug 1994 A
5336252 Cohen Aug 1994 A
5385156 Oliva Jan 1995 A
5387219 Rappe Feb 1995 A
5398944 Holster Mar 1995 A
5403331 Chesterfield et al. Apr 1995 A
5405351 Kinet et al. Apr 1995 A
5417684 Jackson et al. May 1995 A
5423821 Pasque Jun 1995 A
5423830 Schneebaum et al. Jun 1995 A
5433457 Wright Jul 1995 A
5433730 Alt Jul 1995 A
5443481 Lee Aug 1995 A
5449361 Preissman Sep 1995 A
5449637 Kadry Sep 1995 A
5458597 Edwards et al. Oct 1995 A
5465731 Bell et al. Nov 1995 A
5494240 Waugh Feb 1996 A
5498228 Royalty et al. Mar 1996 A
5522819 Graves et al. Jun 1996 A
5540711 Kieturakis et al. Jul 1996 A
5545178 Kensey et al. Aug 1996 A
5571161 Starksen Nov 1996 A
5591177 Lehrer Jan 1997 A
5609597 Lehrer Mar 1997 A
5624430 Eton et al. Apr 1997 A
5624453 Ahmed Apr 1997 A
5634895 Igo et al. Jun 1997 A
5636780 Green et al. Jun 1997 A
5676162 Larson, Jr. et al. Oct 1997 A
5676651 Larson, Jr. et al. Oct 1997 A
5678547 Faupel et al. Oct 1997 A
5681278 Igo et al. Oct 1997 A
5682906 Sterman et al. Nov 1997 A
5683348 Diener Nov 1997 A
5683364 Zadini et al. Nov 1997 A
5683445 Swoyer Nov 1997 A
5693059 Yoon Dec 1997 A
5693091 Larson, Jr. et al. Dec 1997 A
5699748 Linskey, Jr. et al. Dec 1997 A
5702430 Larson, Jr. et al. Dec 1997 A
5707336 Rubin Jan 1998 A
5716367 Koike et al. Feb 1998 A
5716392 Bourgeois et al. Feb 1998 A
5727569 Benetti et al. Mar 1998 A
5728151 Garrison et al. Mar 1998 A
5735877 Pagedas Apr 1998 A
5741281 Martin Apr 1998 A
5752526 Cosgrove May 1998 A
5766151 Valley et al. Jun 1998 A
5766216 Gangal et al. Jun 1998 A
5766217 Christy Jun 1998 A
5769863 Garrison Jun 1998 A
5779727 Orejola Jul 1998 A
5788715 Watson, Jr. et al. Aug 1998 A
5792151 Heck et al. Aug 1998 A
5797870 March et al. Aug 1998 A
5797929 Andreas et al. Aug 1998 A
5797946 Chin Aug 1998 A
5799661 Boyd et al. Sep 1998 A
5810845 Yoon Sep 1998 A
5814052 Nakao et al. Sep 1998 A
5823946 Chin Oct 1998 A
5827216 Igo et al. Oct 1998 A
5840059 March et al. Nov 1998 A
5855586 Habara et al. Jan 1999 A
5865791 Whayne et al. Feb 1999 A
5871531 Struble Feb 1999 A
5873876 Christy Feb 1999 A
5879375 Larson, Jr. et al. Mar 1999 A
5882299 Rastegar et al. Mar 1999 A
5893869 Barnhart et al. Apr 1999 A
5895298 Faupel et al. Apr 1999 A
5895404 Ruiz Apr 1999 A
5897586 Molina Apr 1999 A
5900433 Igo et al. May 1999 A
5906579 Vander Salm et al. May 1999 A
5906620 Nakao et al. May 1999 A
5908429 Yoon Jun 1999 A
5908435 Samuels Jun 1999 A
5910124 Rubin Jun 1999 A
5910129 Koblish et al. Jun 1999 A
5921994 Andreas et al. Jul 1999 A
5924424 Stevens et al. Jul 1999 A
RE36269 Wright Aug 1999 E
5941819 Chin Aug 1999 A
5957936 Yoon et al. Sep 1999 A
5961440 Schweich, Jr. et al. Oct 1999 A
5964699 Rullo et al. Oct 1999 A
5968010 Waxman et al. Oct 1999 A
5972013 Schmidt Oct 1999 A
5984866 Rullo et al. Nov 1999 A
5984917 Fleischman et al. Nov 1999 A
5991668 Leinders et al. Nov 1999 A
5997525 March et al. Dec 1999 A
6006122 Smits Dec 1999 A
6010531 Donlon et al. Jan 2000 A
6015382 Zwart et al. Jan 2000 A
6027499 Johnston et al. Feb 2000 A
6045570 Epstein et al. Apr 2000 A
6048329 Thompson et al. Apr 2000 A
6059750 Fogarty et al. May 2000 A
6067942 Fernandez May 2000 A
6071281 Burnside et al. Jun 2000 A
6081738 Hinohara et al. Jun 2000 A
6083153 Rullo et al. Jul 2000 A
6090042 Rullo et al. Jul 2000 A
6095968 Snyders Aug 2000 A
6110170 Taylor et al. Aug 2000 A
6120431 Magovern et al. Sep 2000 A
6132438 Fleischman et al. Oct 2000 A
6148230 KenKnight Nov 2000 A
6149595 Seitz et al. Nov 2000 A
6152144 Lesh et al. Nov 2000 A
6152920 Thompson et al. Nov 2000 A
6152936 Christy et al. Nov 2000 A
6155968 Wilk Dec 2000 A
6157852 Selmon et al. Dec 2000 A
6161543 Cox et al. Dec 2000 A
6162195 Igo et al. Dec 2000 A
6167889 Benetti Jan 2001 B1
6199556 Benetti et al. Mar 2001 B1
6200303 Verrior et al. Mar 2001 B1
6206004 Schmidt et al. Mar 2001 B1
6224584 March et al. May 2001 B1
6231518 Grabek et al. May 2001 B1
6237605 Vaska et al. May 2001 B1
6241667 Vetter et al. Jun 2001 B1
6258021 Wilk Jul 2001 B1
6266550 Selmon et al. Jul 2001 B1
6280415 Johnson Aug 2001 B1
6283127 Sterman et al. Sep 2001 B1
6290674 Roue et al. Sep 2001 B1
6293906 Vanden Hoek et al. Sep 2001 B1
6296630 Altman et al. Oct 2001 B1
6311692 Vaska et al. Nov 2001 B1
6311693 Sterman et al. Nov 2001 B1
6314962 Vaska et al. Nov 2001 B1
6314963 Vaska et al. Nov 2001 B1
6319201 Wilk Nov 2001 B1
6333347 Hunter et al. Dec 2001 B1
6346074 Roth Feb 2002 B1
6379366 Fleischman et al. Apr 2002 B1
6423051 Kaplan et al. Jul 2002 B1
6474340 Vaska et al. Nov 2002 B1
6485407 Alferness et al. Nov 2002 B2
6488689 Kaplan et al. Dec 2002 B1
6494211 Boyd et al. Dec 2002 B1
6551303 Van Tassel et al. Apr 2003 B1
6561969 Frazier et al. May 2003 B2
6592552 Schmidt Jul 2003 B1
6610055 Swanson et al. Aug 2003 B1
6610072 Christy et al. Aug 2003 B1
6613062 Leckrone et al. Sep 2003 B1
6632229 Yamanouchi Oct 2003 B1
6652555 VanTassel et al. Nov 2003 B1
6656175 Francischelli et al. Dec 2003 B2
6666861 Grabek Dec 2003 B1
6692491 Phan Feb 2004 B1
6733509 Nobles et al. May 2004 B2
6736774 Benetti et al. May 2004 B2
6755338 Hahnen et al. Jun 2004 B2
6786898 Guenst Sep 2004 B2
6789509 Motsinger Sep 2004 B1
6830174 Hillstead et al. Dec 2004 B2
6830576 Fleischman et al. Dec 2004 B2
6840246 Downing Jan 2005 B2
6985776 Kane et al. Jan 2006 B2
7011671 Welch Mar 2006 B2
7041111 Chu May 2006 B2
7056294 Khairkhahan et al. Jun 2006 B2
7063682 Whayne et al. Jun 2006 B1
7063693 Guenst Jun 2006 B2
7175619 Koblish et al. Feb 2007 B2
7186214 Ness Mar 2007 B2
7207988 Leckrone et al. Apr 2007 B2
7226440 Gelfand et al. Jun 2007 B2
7226458 Kaplan et al. Jun 2007 B2
7264587 Chin Sep 2007 B2
7294115 Wilk Nov 2007 B1
7297144 Fleischman et al. Nov 2007 B2
7309328 Kaplan et al. Dec 2007 B2
7318829 Kaplan et al. Jan 2008 B2
7326221 Sakamoto et al. Feb 2008 B2
7331979 Khosravi et al. Feb 2008 B2
7473260 Opolski et al. Jan 2009 B2
7597705 Forsberg et al. Oct 2009 B2
7608091 Goldfarb et al. Oct 2009 B2
7610104 Kaplan et al. Oct 2009 B2
7618425 Yamamoto et al. Nov 2009 B2
7681579 Schwartz Mar 2010 B2
7722641 van der Burg et al. May 2010 B2
7736347 Kaplan et al. Jun 2010 B2
7828810 Liddicoat et al. Nov 2010 B2
7846168 Liddicoat et al. Dec 2010 B2
7905900 Palermo et al. Mar 2011 B2
7918865 Liddicoat et al. Apr 2011 B2
8070693 Ayala et al. Dec 2011 B2
8105342 Onuki et al. Jan 2012 B2
8157818 Gartner et al. Apr 2012 B2
8287561 Nunez et al. Oct 2012 B2
8469983 Fung et al. Jun 2013 B2
8500768 Cohen Aug 2013 B2
8636767 McClain Jan 2014 B2
8715302 Ibrahim et al. May 2014 B2
8721663 Kaplan et al. May 2014 B2
8771297 Miller et al. Jul 2014 B2
8795297 Liddicoat et al. Aug 2014 B2
8795310 Fung et al. Aug 2014 B2
8814778 Kiser et al. Aug 2014 B2
8932276 Morriss et al. Jan 2015 B1
8961543 Friedman et al. Feb 2015 B2
8974473 Kaplan et al. Mar 2015 B2
8986278 Fung et al. Mar 2015 B2
8986325 Miller et al. Mar 2015 B2
8996133 Kaplan et al. Mar 2015 B2
9089324 McCaw et al. Jul 2015 B2
9186174 Krishnan et al. Nov 2015 B2
9198664 Fung et al. Dec 2015 B2
9198683 Friedman et al. Dec 2015 B2
9271819 Liddicoat et al. Mar 2016 B2
9339295 Fung et al. May 2016 B2
9408608 Clark, III et al. Aug 2016 B2
9486281 Fung et al. Nov 2016 B2
9498206 Fung et al. Nov 2016 B2
9498223 Miller et al. Nov 2016 B2
9522006 Liddicoat et al. Dec 2016 B2
9724105 Kaplan et al. Aug 2017 B2
9877780 Longoria Jan 2018 B2
9936956 Fung et al. Apr 2018 B2
9956036 Whayne et al. May 2018 B2
10130369 Fung et al. Nov 2018 B2
10136909 Ibrahim et al. Nov 2018 B2
10251650 Clark et al. Apr 2019 B2
10258408 Fung et al. Apr 2019 B2
10292710 Clark et al. May 2019 B2
10327780 Liddicoat et al. Jun 2019 B2
10405919 Fung et al. Sep 2019 B2
10799288 Fung et al. Oct 2020 B2
10806460 Liddicoat et al. Oct 2020 B2
10959734 Fung et al. Mar 2021 B2
10959752 Fung et al. Mar 2021 B2
20010003795 Suresh et al. Jun 2001 A1
20010007070 Stewart et al. Jul 2001 A1
20010025132 Alferness et al. Sep 2001 A1
20020002329 Avitall Jan 2002 A1
20020017306 Cox et al. Feb 2002 A1
20020022860 Borillo et al. Feb 2002 A1
20020032440 Hooven et al. Mar 2002 A1
20020045895 Sliwa, Jr. et al. Apr 2002 A1
20020049457 Kaplan et al. Apr 2002 A1
20020058925 Kaplan et al. May 2002 A1
20020062136 Hillstead et al. May 2002 A1
20020068970 Cox et al. Jun 2002 A1
20020099390 Kaplan et al. Jul 2002 A1
20020103492 Kaplan et al. Aug 2002 A1
20020107531 Schreck et al. Aug 2002 A1
20020111636 Fleischman et al. Aug 2002 A1
20020111637 Kaplan et al. Aug 2002 A1
20020123771 Ideker et al. Sep 2002 A1
20020128639 Pless et al. Sep 2002 A1
20020143326 Foley Oct 2002 A1
20020147456 Diduch et al. Oct 2002 A1
20030014049 Koblish et al. Jan 2003 A1
20030024537 Cox et al. Feb 2003 A1
20030045900 Hahnen et al. Mar 2003 A1
20030069577 Vaska et al. Apr 2003 A1
20030078465 Pai et al. Apr 2003 A1
20030083542 Alferness et al. May 2003 A1
20030083674 Gibbens, III May 2003 A1
20030109863 Francischelli et al. Jun 2003 A1
20030120264 Lattouf Jun 2003 A1
20030120337 Van Tassel et al. Jun 2003 A1
20030158464 Bertolero Aug 2003 A1
20030181942 Sutton et al. Sep 2003 A1
20030187460 Chin et al. Oct 2003 A1
20030220667 Van der Burg et al. Nov 2003 A1
20030236535 Onuki et al. Dec 2003 A1
20040024414 Downing Feb 2004 A1
20040030335 Zenati et al. Feb 2004 A1
20040034347 Hall et al. Feb 2004 A1
20040044361 Frazier et al. Mar 2004 A1
20040049210 VanTassel et al. Mar 2004 A1
20040059280 Makower et al. Mar 2004 A1
20040059352 Burbank et al. Mar 2004 A1
20040064138 Grabek Apr 2004 A1
20040068267 Harvie et al. Apr 2004 A1
20040078069 Francischelli et al. Apr 2004 A1
20040102804 Chin May 2004 A1
20040106918 Cox et al. Jun 2004 A1
20040111101 Chin Jun 2004 A1
20040116943 Brandt et al. Jun 2004 A1
20040122467 Van Tassel et al. Jun 2004 A1
20040148020 Vidlund et al. Jul 2004 A1
20040158127 Okada Aug 2004 A1
20040162579 Foerster Aug 2004 A1
20040225212 Okerlund et al. Nov 2004 A1
20040225300 Goldfarb et al. Nov 2004 A1
20040243176 Hahnen et al. Dec 2004 A1
20040260273 Wan Dec 2004 A1
20050033274 Pless et al. Feb 2005 A1
20050033280 Francischelli et al. Feb 2005 A1
20050033287 Sra Feb 2005 A1
20050033321 Fleischman et al. Feb 2005 A1
20050043743 Dennis Feb 2005 A1
20050043745 Alferness et al. Feb 2005 A1
20050080454 Drews et al. Apr 2005 A1
20050085843 Opolski et al. Apr 2005 A1
20050101984 Chanduszko et al. May 2005 A1
20050107824 Hillstead et al. May 2005 A1
20050113861 Corcoran et al. May 2005 A1
20050149068 Williams et al. Jul 2005 A1
20050149069 Bertolero et al. Jul 2005 A1
20050154376 Riviere et al. Jul 2005 A1
20050165466 Morris et al. Jul 2005 A1
20050187545 Hooven et al. Aug 2005 A1
20050228422 Machold et al. Oct 2005 A1
20050256532 Nayak et al. Nov 2005 A1
20060004323 Chang et al. Jan 2006 A1
20060004388 Whayne et al. Jan 2006 A1
20060009715 Khairkhahan et al. Jan 2006 A1
20060009756 Francischelli et al. Jan 2006 A1
20060020162 Whayne et al. Jan 2006 A1
20060020271 Stewart et al. Jan 2006 A1
20060020336 Liddicoat Jan 2006 A1
20060034930 Khosravi et al. Feb 2006 A1
20060095066 Chang et al. May 2006 A1
20060100545 Ayala et al. May 2006 A1
20060106278 Machold et al. May 2006 A1
20060200120 DiCarlo et al. Sep 2006 A1
20060200169 Sniffin Sep 2006 A1
20060212045 Schilling et al. Sep 2006 A1
20060247672 Vidlund et al. Nov 2006 A1
20060253128 Sekine et al. Nov 2006 A1
20060253129 Liddicoat et al. Nov 2006 A1
20070010829 Nobles et al. Jan 2007 A1
20070016228 Salas Jan 2007 A1
20070027456 Gartner et al. Feb 2007 A1
20070038229 de la Torre Feb 2007 A1
20070043344 McAuley Feb 2007 A1
20070060951 Shannon Mar 2007 A1
20070083082 Kiser et al. Apr 2007 A1
20070083194 Kunis et al. Apr 2007 A1
20070083225 Kiser et al. Apr 2007 A1
20070083230 Javois Apr 2007 A1
20070083232 Lee Apr 2007 A1
20070088369 Shaw et al. Apr 2007 A1
20070100405 Thompson et al. May 2007 A1
20070135822 Onuki et al. Jun 2007 A1
20070149988 Michler et al. Jun 2007 A1
20070156217 Kaplan et al. Jul 2007 A1
20070156220 Kaplan et al. Jul 2007 A1
20070179345 Santilli Aug 2007 A1
20070219546 Mody et al. Sep 2007 A1
20070249991 Whayne et al. Oct 2007 A1
20070260278 Wheeler et al. Nov 2007 A1
20070270637 Takemoto et al. Nov 2007 A1
20070270891 McGuckin, Jr. Nov 2007 A1
20070299496 Podmore et al. Dec 2007 A1
20080009843 de la Torre Jan 2008 A1
20080015406 Dlugos et al. Jan 2008 A1
20080015571 Rubinsky et al. Jan 2008 A1
20080033241 Peh et al. Feb 2008 A1
20080033457 Francischelli et al. Feb 2008 A1
20080039879 Chin et al. Feb 2008 A1
20080058635 Halperin et al. Mar 2008 A1
20080097489 Goldfarb et al. Apr 2008 A1
20080154260 Hoof Jun 2008 A1
20080177381 Navia et al. Jul 2008 A1
20080214889 Saadat et al. Sep 2008 A1
20080228265 Spence et al. Sep 2008 A1
20080243183 Miller et al. Oct 2008 A1
20080245371 Gruber Oct 2008 A1
20080269782 Stefanchik et al. Oct 2008 A1
20080294174 Bardsley et al. Nov 2008 A1
20080294175 Bardsley et al. Nov 2008 A1
20080312664 Bardsley et al. Dec 2008 A1
20090043317 Cavanaugh et al. Feb 2009 A1
20090088728 Dollar et al. Apr 2009 A1
20090088778 Miyamoto et al. Apr 2009 A1
20090093809 Anderson et al. Apr 2009 A1
20090124847 Doty et al. May 2009 A1
20090182326 Zenati et al. Jul 2009 A1
20090196696 Otsuka et al. Aug 2009 A1
20090287203 Mazzone et al. Nov 2009 A1
20100069925 Friedman et al. Mar 2010 A1
20100094314 Hernlund Apr 2010 A1
20100174296 Vakharia et al. Jul 2010 A1
20100191253 Oostman et al. Jul 2010 A1
20100286718 Kassab et al. Nov 2010 A1
20100331820 Giuseppe et al. Dec 2010 A1
20110034804 Hubregtse et al. Feb 2011 A1
20110060350 Powers et al. Mar 2011 A1
20110082495 Ruiz Apr 2011 A1
20110087270 Penner et al. Apr 2011 A1
20110092997 Kang Apr 2011 A1
20110106107 Binmoeller et al. May 2011 A1
20110112537 Bernstein et al. May 2011 A1
20110282250 Fung et al. Nov 2011 A1
20110295060 Zenati et al. Dec 2011 A1
20120022558 Friedman et al. Jan 2012 A1
20120029512 Willard et al. Feb 2012 A1
20120143177 Avitall et al. Jun 2012 A1
20120158022 Kaplan et al. Jun 2012 A1
20120209300 Torrie Aug 2012 A1
20120330351 Friedman et al. Dec 2012 A1
20130144311 Fung Jun 2013 A1
20130218156 Kassab et al. Aug 2013 A1
20130296880 Kelley et al. Nov 2013 A1
20140018831 Kassab et al. Jan 2014 A1
20140171733 Sternik Jun 2014 A1
20140222138 Machold et al. Aug 2014 A1
20140276911 Smith et al. Sep 2014 A1
20140316385 Longoria et al. Oct 2014 A1
20140330074 Morriss et al. Nov 2014 A1
20140336572 Heisel et al. Nov 2014 A1
20140336676 Pong et al. Nov 2014 A1
20140364901 Kiser et al. Dec 2014 A1
20140364907 White et al. Dec 2014 A1
20140371741 Longoria et al. Dec 2014 A1
20150018853 Friedman et al. Jan 2015 A1
20150025312 de Canniere Jan 2015 A1
20150173765 Friedman et al. Jan 2015 A1
20150157328 Miller et al. Jun 2015 A1
20150182225 Morejohn et al. Jul 2015 A1
20150190135 Ibrahim et al. Jul 2015 A1
20150223813 Willisamson et al. Aug 2015 A1
20150250482 Slaughter et al. Sep 2015 A1
20150374380 Miller et al. Dec 2015 A1
20160008001 Winkler et al. Jan 2016 A1
20160008061 Fung Jan 2016 A1
20160066974 Coulombe Mar 2016 A1
20160106421 Eliachar et al. Apr 2016 A1
20160120549 Fung et al. May 2016 A1
20160278781 Fung et al. Sep 2016 A1
20160310144 Kimura et al. Oct 2016 A1
20160310145 Clark et al. Oct 2016 A1
20160317155 Kimura et al. Nov 2016 A1
20160346028 Rogers et al. Dec 2016 A1
20170209141 Fung et al. Jul 2017 A1
20170290592 Miller et al. Oct 2017 A1
20170325819 Kaplan et al. Nov 2017 A1
20180008342 Ibrahim et al. Jan 2018 A1
20180085130 Fung et al. Mar 2018 A1
20180310941 Fung et al. Nov 2018 A1
20190274690 Clark et al. Sep 2019 A1
20190290285 Liddicoat et al. Sep 2019 A1
20190298376 Clark et al. Oct 2019 A1
Foreign Referenced Citations (84)
Number Date Country
2796267 Oct 2011 CA
2624615 Jul 2004 CN
101242785 Aug 2008 CN
101262823 Dec 2011 CN
0 598 219 May 1994 EP
0 598 219 May 1994 EP
0 598 219 May 1994 EP
0 625 336 Nov 1994 EP
0 705 566 Apr 1996 EP
1 010 397 Jun 2000 EP
1 506 142 Apr 1978 GB
H-6-319742 Nov 1994 JP
7-296645 Nov 1995 JP
7-299073 Nov 1995 JP
11-507262 Jun 1999 JP
2001-120560 May 2001 JP
2002-512071 Apr 2002 JP
2002-540834 Dec 2002 JP
2002-540901 Dec 2002 JP
2003-225241 Aug 2003 JP
2004-000601 Jan 2004 JP
2005-110860 Apr 2005 JP
2005-296645 Oct 2005 JP
2005-531360 Oct 2005 JP
2007-504886 Mar 2007 JP
2007-534355 Nov 2007 JP
2008-534085 Aug 2008 JP
2010-523171 Jul 2010 JP
2012-522596 Sep 2012 JP
WO-9401045 Jan 1994 WO
WO-9404079 Mar 1994 WO
WO-9408514 Apr 1994 WO
WO-9604854 Feb 1996 WO
WO-9640356 Dec 1996 WO
WO-9711644 Apr 1997 WO
WO-9743957 Nov 1997 WO
WO-9953845 Oct 1999 WO
WO-0059383 Oct 2000 WO
WO-0061202 Oct 2000 WO
WO-03028558 Apr 2003 WO
WO-03028558 Apr 2003 WO
WO-2004002327 Jan 2004 WO
WO-2004066828 Aug 2004 WO
WO-2004066828 Aug 2004 WO
WO-2005034767 Apr 2005 WO
WO-2005034802 Apr 2005 WO
WO-2005034802 Apr 2005 WO
WO-2006096805 Sep 2006 WO
WO-2006110734 Oct 2006 WO
WO-2006110734 Oct 2006 WO
WO-2006115689 Nov 2006 WO
WO-2007001936 Jan 2007 WO
WO-2007001936 Jan 2007 WO
WO-2007037516 Apr 2007 WO
WO-2007037516 Apr 2007 WO
WO-2007056502 May 2007 WO
WO-2008017080 Feb 2008 WO
WO-2008017080 Feb 2008 WO
WO-2008036408 Mar 2008 WO
WO-2008036408 Mar 2008 WO
WO-2008091612 Jul 2008 WO
WO-2008091612 Jul 2008 WO
WO-2008121278 Oct 2008 WO
WO-2008121278 Oct 2008 WO
WO-2008150346 Dec 2008 WO
WO-2009039191 Mar 2009 WO
WO-2009039191 Mar 2009 WO
WO-2009045265 Apr 2009 WO
WO-2009094237 Jul 2009 WO
WO-2010006061 Jan 2010 WO
WO-2010006061 Jan 2010 WO
WO-2010007600 Jan 2010 WO
WO-2010048141 Apr 2010 WO
WO-2010048141 Apr 2010 WO
WO-2010115030 Oct 2010 WO
WO-2011041488 Apr 2011 WO
WO-2011041488 Apr 2011 WO
WO-2011129893 Oct 2011 WO
WO-2011129894 Oct 2011 WO
WO-2011129894 Oct 2011 WO
WO-2012170652 Dec 2012 WO
WO-2014164028 Oct 2014 WO
WO-2015066549 May 2015 WO
WO-2015066549 May 2015 WO
Non-Patent Literature Citations (275)
Entry
afibfacts.com (Date Unknown). “Cox-Maze III: The Gold Standard Treatment for Atrial Fibrillation: Developing a Surgical Option for Atrial Fibrillation,” located at <http://www.afibfacts.com/Treatment_Options_for_Atrial_Fibrillation/Cox-Maze_III%_3a_The_Gold_Standard_Treatment_for_Atrial_Fibrillation >, last visited on Apr. 20, 2007, 4 pages.
Al-Saady, N.M. et al. (1999). “Left Atrial Appendage: Structure, Function, and Role in Thromboembolism,” Heart 82:547-554.
Albers, G.W. (Jul. 11, 1994). “Atrial Fibrillation and Stroke: Three New Studies, Three Remaining Questions,” Arch Intern Med 154:1443-1448.
Alonso, M. et al. (Mar. 4, 2003). “Complications With Femoral Access in Cardiac Catheterization. Impact of Previous Systematic Femoral Angiography and Hemostasis With VasoSeal-Es® Collagen Plug,” Rev. Esp. Cardiol. 56(6):569-577.
Aronow, W.S. et al. (Apr. 2009). “Atrial Fibrillation: The New Epidemic of the Age-ing World,” Journal of Atrial Fibrillation 1(6):337-361.
Babaliaros, V.C. et al. (Jun. 3, 2008). “Emerging Applications for Transseptal Left Heart Catheterization: Old Techniques for New Procedures,” Journal of the American College of Cardiology 51(22):2116-2122.
Bath, P.M.W. et al. (2005). “Current Status of Stroke Prevention in Patients with Atrial Fibrillation,” European Heart Journal Supplements 7(Supplement C):C12-C18.
Benjamin, B.A. et al. (1994). “Effect of Bilateral Atrial Appendectomy on Postprandial Sodium Excretion in Conscious Monkeys,” Society for Experimental Biology and Medicine 206: 1 page.
Beygui, F. et al. (2005, e-pub. Oct. 21, 2005). “Multimodality Imaging of Percutaneous Closure of the Left Atrial Appendage,” Clinical Vignette, 1 page.
Bisleri, G. et al. (Jun. 3, 2005). “Innovative Monolateral Approach for Closed-Chest Atrial Fibrillation Surgery,” The Annals of Thoracic Surgery 80:e22-e25.
Björk, V.O. et al. (Aug. 1961). “Sequelae of Left Ventricular Puncture with Angiocardiography,” Circulation 24:204-212.
Blackshear, J.L. et al. (Feb. 1996). “Appendage Obliteration to Reduce Stroke in Cardiac Surgical Patients With Atrial Fibrillation,” Ann. Thorac. Surg. 61(2), 13 pages.
Blackshear, J.L. et al. (Oct. 1, 2003). “Thorascopic Extracardiac Obliteration of the Left Atrial Appendage for Stroke Risk Reduction in Atrial Fibrillation,” J. Am. Coll. Cardiol. 42(7):1249-1252.
Bonanomi, G. et al. (Jan. 1, 2003). “Left Atrial Appendectomy and Maze,” Journal of the American College of Cardiology 41(1):169-171.
Bonow, R.O. et al. (1998). “Guidelines for the Management of Patients With Valvular Heart Disease: Executive Summary: A Report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (Committee on Management of Patients With Valvular Heart Disease),” Circulation 98:1949-1984.
Botham, R.J. et al. (May 1959). “Pericardial Tamponade Following Percutaneous Left Ventricular Puncture,” Circulation 19:741-744.
Brock, R. et al. (1956). “Percutaneous Left Ventricular Puncture in the Assessment of Aortic Stenosis,” Thorax 11:163-171.
Burke, R.P. et al. (1992). “Improved Surgical Approach to Left Atrial Appendage Aneurysm,” Journal of Cardiac Surgery 7(2):104-107.
Canaccord Adams. (Aug. 11, 2008). “A-Fib: Near A Tipping Point,” 167 pages.
Chung, M.K. (Jul. 2003). “Current Clinical Issues in Atrial Fibrillation,” Cleveland Clinic Journal of Medicine 70(Supp. 3):S6-S11.
Coffin, L.H. (Jun. 1985). “Use of the Surgical Stapler to Obliterate the Left Atrial Appendage,” Surgery, Gynecology & Obstetric 160:565-566.
Connolly, S.J. (Sep. 7, 1999). “Preventing Stroke in Atrial Fibrillation: Why Are So Many Eligible Patients Not Receiving Anticoagulant Therapy?” Canadian Medical Association 161(5):533-534.
Costa, R. et al. (2006). “Bi-Atrial Subxiphoid Epicardial Pacemaker in Superior Vena Cava Syndrome,” Arq. Bras. Cardiol. 87:e45-e47.
Cox, J.L. et al. (Apr. 1991). “The Surgical Treatment of Atrial Fibrillation: IV. Surgical Technique,” J. Thorac. Cardiovasc. Surg. 101(4):584-592.
Cox, J.L. et al. (Aug. 1995). “Modification of the Maze Procedure for Atrial Flutter and Atrial Fibrillation I. Rationale and Surgical Results,” J. Thorac. Cardiovasc. Surg. 110(2):473-484.
Cox, J.L. et al. (Aug. 1995). “Modification of the Maze Procedure for Atrial Flutter and Atrial Fibrillation II. Surgical Technique of the Maze III Procedure,” J. Thorac. Cardiovasc. Surg. 110(2):485-495.
Cox, J.L. et al. (Nov. 1999). “Impact of the Maze Procedure on the Stroke Rate in Patients with Atrial Fibrillation,” J. Thorac. Cardiovasc. Surg. 118:833-840.
Cox, J.L. et al. (2004). “The Role of Surgical Intervention in the Management of Atrial Fibrillation,” Texas Heart Institute Journal 31(3):257-265.
Crystal, E. et al. (Jan. 2003). “Left Atrial Appendage Occlusion Study (LAAOS): A Randomized Clinical Trial of Left Atrial Appendage Occlusion During Routine Coronary Artery Bypass Graft Surgery for Long-term Stroke Prevention,” Am Heart J 145(1):174-178.
D'Avila, A. et al. (Apr. 2003). “Pericardial Anatomy for the Interventional Electrophysiologist,” Journal of Cardiovascular Electrophysiology 14(4):422-430.
D'Avila, A. et al. (Nov. 2007). “Experimental Efficacy of Pericardial Instillation of Anti-inflammatory Agents During Percutaneous Epicardial Catheter Ablation to Prevent Postprocedure Pericarditis,” Journal of Cardiovascular Electrophysiology 18(11):1178-1183.
Demaria, A.N. et al. (Dec. 17, 2003). “Highlights of the Year JACC 2003,” Journal of the American College of Cardiology 42(12):2156-2166.
Deneu, S. et al. (Jul. 11, 1999). “Catheter Entrapment by Atrial Suture During Minimally Invasive Port-access Cardiac Surgery,” Canadian Journal of Anesthesia 46(10):983-986.
Deponti, R. et al. (Mar. 7, 2006). “Trans-Septal Catheterization in the Electrophysiology Laboratory: Data From a Multicenter Survey Spanning 12 Years,” Journal of the American College of Cardiology 47(5):1037-1042.
Donal, E. et al. (Sep. 2005). “The Left Atrial Appendage, a Small, Blind-Ended Structure: A Review of Its Echocardiographic Evaluation and Its Clinical Role,” Chest 128(3):1853-1862.
Donnino, R. et al. (2007). “Left Atrial Appendage Thrombus Outside of a ‘Successful’ Ligation,” European Journal of Echocardiography pp. 1-2.
Dullum, M.K.C. et al. (1999). “Xyphoid MIDCAB: Report of the Technique and Experience with a Less Invasive MIDCAB Procedure,” Heart Surgery Forum 2(1):77-81.
Extended European Search Report dated Mar. 20, 2017, for EP Application No. 14 856 823.1, filed on Oct. 31, 2014, 8 pages.
Extended European Search Report dated Jul. 10, 2015, for European Patent Application No. 15153029.2, filed on Mar. 25, 2008, 6 pages.
Extended European Search Report dated Jun. 9, 2015, for EP Application No. 12 797 543.1, filed on Jun. 7, 2012, 6 pages.
Extended European Search Report dated Oct. 14, 2016, for EP Application No. 14 779 388.9 filed on Mar. 3, 2014, 7 pages.
Extended European Search Report dated Feb. 10, 2017, for EP Application No. 10 759 425.1, filed on Apr. 1, 2010, 7 pages.
Extended European Search Report dated Oct. 30, 2017, for EP Application No. 11 769 217.8, filed on Apr. 13, 2011, 12 pages.
Feinberg, W.M. et al. (Mar. 13, 1995). “Prevalence, Age Distribution, and Gender of Patients With Atrial Fibrillation,” Arch Intern Med 155:469-473.
Fieguth, H.G. et al. (1997). “Inhibition of Atrial Fibrillation by Pulmonary Vein Isolation and Auricular Resection—Experimental Study in A Sheep Model,” European Journal of Cardio-Thoracic Surgery 11:714-721.
Final Office Action dated Jun. 22, 2009, for U.S. Appl. No. 10/963,371, filed Oct. 11, 2004, 11 pages.
Final Office Action dated Apr. 14, 2010, for U.S. Appl. No. 11/600,671, filed Nov. 15, 2006, 7 pages.
Final Office Action dated Jul. 21, 2010, for U.S. Appl. No. 11/400,714, filed Apr. 7, 2006, 10 pages.
Final Office Action dated Apr. 26, 2011, for U.S. Appl. No. 12/037,802, filed Feb. 26, 2008, 9 pages.
Final Office Action dated Sep. 20, 2011, for U.S. Appl. No. 12/212,511, filed Sep. 17, 2008, 8 pages.
Final Office Action dated Oct. 28, 2011, for U.S. Appl. No. 12/055,213, filed Mar. 25, 2008, 15 pages.
Final Office Action dated May 4, 2012, for U.S. Appl. No. 12/363,359, filed Jan. 30, 2009, 10 pages.
Final Office Action dated May 16, 2012, for U.S. Appl. No. 12/363,381, filed Jan. 30, 2009, 8 pages.
Final Office Action dated Jul. 11, 2012, for U.S. Appl. No. 13/033,532, filed Feb. 23, 2011, 8 pages.
Final Office Action dated Jul. 24, 2012, for U.S. Appl. No. 12/212,511, filed Sep. 17, 2008, 6 pages.
Final Office Action dated Oct. 18, 2012, for U.S. Appl. No. 12/124,023, filed May 20, 2008, 15 pages.
Final Office Action dated Nov. 8, 2013, for U.S. Appl. No. 12/037,802, filed Feb. 26, 2008, 15 pages.
Final Office Action dated Jan. 13, 2014, for U.S. Appl. No. 12/752,873, filed Apr. 1, 2010, 10 pages.
Final Office Action dated Oct. 22, 2013 for U.S. Appl. No. 13/086,390, filed Apr. 13, 2011, 6 pages.
Final Office Action dated Aug. 12, 2014, for U.S. Appl. No. 13/033,532, filed Feb. 23, 2011, 6 pages.
Final Office Action dated Apr. 1, 2016, for U.S. Appl. No. 13/033,532, filed Feb. 23, 2011, 8 pages.
Final Office Action dated Nov. 14, 2014, for U.S. Appl. No. 12/363,359, filed Jan. 30, 2009, 10 pages.
Final Office Action dated Mar. 17, 2016, for U.S. Appl. No. 12/363,359, filed Jan. 30, 2009, 10 pages.
Final Office Action dated Nov. 18, 2015, for U.S. Appl. No. 13/490,919, filed Jun. 7, 2012, 10 pages.
Final Office Action dated Sep. 12, 2018, for U.S. Appl. No. 14/530,575, filed Oct. 31, 2014, 9 pages.
Final Office Action dated Aug. 11, 2014, for U.S. Appl. No. 13/086,389, filed Apr. 13, 2011, 16 pages.
Final Office Action dated Oct. 22, 2018, for U.S. Appl. No. 14/799,419, filed Jul. 14, 2015, 19 pages.
Fisher, D.C. et al. (Dec. 1998). “Large Gradient Across a Partially Ligated Left Atrial Appendage,” Journal of the American Society of Echocardiography 11(12):1163-1165.
Friberg, L. et al. (2006). “Stroke Prophylaxis in Atrial Fibrillation: Who Gets it and Who Does Not?” European Heart Journal 27:1954-1964.
Friedman, P.A. et al. (Aug. 2009). “Percutaneous Epicardial Left Atrial Appendage Closure: Preliminary Results of an Electrogram Guided Approach,” Journal of Cardiovascular Electrophysiology 20(8):908-915.
Fuster, V. et al. (Oct. 2001). “ACC/AHA/ESC Guidelines for the Management of Patients with Atrial Fibrillation,” European Heart Journal 22(20):1852-1923.
Garcia-Fernandez, M.A. et al. (Oct. 1, 2003). “Role of Left Atrial Appendage Obliteration in Stroke Reduction in Patients With Mitral Valve Prosthesis,” Journal of the American College of Cardiology 42(7):1253-1258.
Gardiner, G.A. Jr. et al. (Apr. 1986). “Complications of Transluminal Angioplasty,” Radiology 159(1):201-208.
Gersak, Borut, et al. “European experience of the convergent atrial fibrillation procedure: multicenter outcomes in consecutive patients”, J Thorac Cardiovasc Surg. Apr. 2014;147(4):1411-6. doi:10.1016/j.jtcvs.2013.06.057. Epub Aug. 26, 2013, 6 pages.
Gillinov, A.M. (Feb. 2007). “Advances in Surgical Treatment of Atrial Fibrillation,” Stroke 38(part 2):618-623.
Gilman, R.A. et al. (Apr. 1963). “Direct Left Ventricular Puncture,” California Medicine 98(4):200-203.
Goodwin, W.E. et al. (Nov. 1950). “Translumbar Aortic Puncture and Retrograde Catheterization of the Aorta In Aortography and Renal Arteriography,” Annals of Surgery 132(5):944-958.
Gottlieb, L.K. et al. (Sep. 12, 1994). “Anticoagulation in Atrial Fibrillation,” Arch Intern Med. 154:1945-1953.
Graffigna, A. et al. (1993). “Surgical Treatment of Wolff-Parkinson-White Syndrome: Epicardial Approach Without the Use of Cardiopulmonary Bypass,” J. Card. Surg. 8:108-116.
Haissaguerre, M. et al. (Nov. 2005). “Catheter Ablation of Long-Lasting Persistent Atrial Fibrillation: Clinical Outcome and Mechanisms of Subsequent Arrhythmias,” Journal of Cardiovascular Electrophysiology 16(11):1138-1147.
Halperin, J.L. et al. (Aug. 1988). “Atrial Fibrillation and Stroke: New Ideas, Persisting Dilemmas,” Journal of the American Heart Association 19(8):937-941.
Halperin, J.L. et al. (Oct. 1, 2003). “Obliteration of the Left Atrial Appendage for Prevention of Thromboembolism,” Journal of the American College of Cardiology 42(7):1259-1261.
Hammill, S.C. (May 2006). “Epicardial Ablation: Reducing the Risks,” J. Cardiovasc. Electrophysiol. 17:550-552.
Hara, H. et al. (Jan. 2008). “Percutaneous Left Atrial Appendage Obliteration,” JACC: Cardiovascular Imagin 1(1):92-93.
Hart, R.G. et al. (Nov. 2, 1999). “Atrial Fibrillation and Thromboembolism: A Decade of Progress in Stroke Prevention,” Annals of Internal Medicine 131(9):688-695.
Hart, R.G. et al. (Mar. 2001). “Atrial Fibrillation and Stroke: Concepts and Controversies,” Stroke 32:803-808.
Hart, R.G. (Sep. 11, 2003). “Atrial Fibrillation and Stroke Prevention,” The New England Journal of Medicine 349(11):1015-1016.
Healey, J.S. et al. (Oct. 2003). “Surgical Closure of the Left Atrial Appendage for the Prevention of Stroke: A Randomized Pilot Trial of Safety and Efficacy (The Left Atrial Appendage Occlusion Study—LAAOS),” presented at The Canadian Cardiovascular Congress 2003, Toronto, Canada, Abstract No. 666, 2 pages.
Healey, J.S. et al. (Aug. 2005). “Left Atrial Appendage Occlusion Study (LAAOS): Results of a Randomized Controlled Pilot Study of Left Atrial Appendage Occlusion During Coronary Bypass Surgery in Patients At Risk for Stroke,” American Heart Journal 150(2):288-293.
Hein, R. et al. (2005). “Patent Foramen Ovale and Left Atrial Appendage: New Devices and Methods for Closure,” Pediatric Cardiology 26(3):234-240.
Heist, E.K. et al. (Nov. 2006). “Analysis of the Left Atrial Appendage by Magnetic Resonance Angiography in Patients with Atrial Fibrillation,” Heart Rhythm 3(11):1313-1318.
Ho, I. et al. (Apr. 24, 2007). “Percutaneous Epicardial Mapping Ablation of a Posteroseptal Accessory Pathway,” Circulation 115:e418-e421.
Ho, S.Y. et al. (Nov. 1999). “Anatomy of the Left Atrium: Implications for Radiofrequency Ablation of Atrial Fibrillation,” Journal of Cardiovascular Electrophysiology 10(11):1525-1533.
Hoit, B.D. et al. (Jan. 1993). “Altered Left Atrial Compliance After Atrial Appendectomy. Influence on Left Atrial and Ventricular Filling,” Circulation Research 72(1):167-175.
International Search Report dated Jul. 13, 2011, for PCT Patent Application No. PCT/US2011/000676, filed on Apr. 13, 2011, 2 pages.
International Search Report dated Mar. 26, 2015, for PCT Patent Application No. PCT/US2014/063570, filed on Oct. 31, 2014, 4 pages.
International Search Report dated May 19, 2008, for PCT Application No. PCT/US06/013459, filed on Apr. 7, 2006, 1 page.
International Search Report dated Feb. 27, 2007, for PCT Application No. PCT/US2008/003938, filed on Mar. 25, 2008, 5 pages.
International Search Report dated Jul. 30, 2010, for PCT Application No. PCT/US2008/076703, filed on Sep. 17, 2008, 2 pages.
International Search Report dated Jun. 1, 2010, for PCT Application No. PCT/US2010/029668, filed on Apr. 1, 2010, 2 pages.
International Search Report dated Sep. 14, 2012, for PCT Patent Application No. PCT/US2012/41285, filed on Jun. 7, 2012, 2 pages.
International Search Report dated Aug. 8, 2014, for PCT Application No. PCT/US2014/020030, filed on Mar. 3, 2014, 4 pages.
Inoue, Y. et al. (Jul.-Aug. 1997). “Video Assisted Thoracoscopic and Cardioscopic Radiofrequency Maze Ablation,” Asaio Journal 43(4):334-337, Abstract Only.
Jaïs, P. et al. (2003). “Radiofrequency Ablation for Atrial Fibrillation,” European Society of Cardiology 5(Supplement H):H34-H39.
Johnson, W.D. et al. (2000). “The Left Atrial Appendage: Our Most Lethal Human Attachment! Surgical Implications,” Euro. J. Cardiothoracic. Surg. 17:718-722.
Jongbloed, M.R.M. et al. (2005). “Clinical Applications of Intracardiac Echocardiography in Interventional Procedures,” Heart 91:981-990.
Kamohara, K. et al. (Aug. 2006). “Evaluation of a Novel Device for Left Atrial Appendage Exclusion: The Second-generation Atrial Exclusion Device,” The Journal of Thoracic and Cardiovascular Surgery 132(2):340-346.
Kanderian, A.S. et al. (2008). “Success of Surgical Left Atrial Appendage Closure: Assessment by Transesophageal Echocardiography,” Journal of the American College of Cardiology 52(11):924-929.
Kato, H. et al. (Aug. 1, 1996). “Evaluation of Left Atrial Appendage Stasis in Patients With Atrial Fibrillation Using Transesophageal Echocardiography With an Intravenous Albumin-Contrast Agent,” The American Journal of Cardiology 78:365-369.
Katz, E.S. et al. (Aug. 2000). “Surgical Left Atrial Appendage Ligation is Frequently Incomplete: A Transesophageal Echocardiographic Study,” Journal of the American College of Cardiology 36(2):468-471.
Kenner, H.M. et al. (Dec. 1966). “Intrapericardial, Intrapleural, and Intracardiac Pressures During Acute Heart Failure in Dogs Studied without Thoracotomy,” Circulation Research 19:1071-1079.
Kerut, E.K. et al. (Jul. 2008). “Anatomy of the Left Atrial Appendage,” Echocardiography 25(6):669-673.
Khargi, K. et al. (2005). “Surgical Treatment of Atrial Fibrillation: A Systematic Review,” European Journal of Cardiothoracic Surgery 27:258-265.
Kim, K.B. et al. (Jan. 1998). “Effect of the Cox Maze Procedure on the Secretion of Atrial Natriuretic Peptide,” J. Thorac. Cardiovasc. Surg. 115(1):139-146; discussion 146-147.
Kistler, P.M. et al. (May 2007). “The Left Atrial Appendage: Not Just an Innocent Bystander,” J. Cardiovasc Electrophysiol 18(5):465-466.
Klein, H. et al. (Apr. 1990). “The Implantable Automatic Cardioverter-Defibrillator,” Herz 15(2):111-125, Abstract Only.
Kolb, C. et al. (Feb. 2004). “Incidence of Antitachycardia Therapy Suspension Due to Magnet Reversion in Implantable Cardioverter Defibrillators,” Pace 27:221-223.
Krikorian, J.G. et al. (Nov. 1978). “Pericardiocentesis,” Am. J. Med. 65(5):808-814.
Krum, D. et al. (2004). “Visualization of Remnants of the left Atrial Appendage Following Epicardial Surgical Removal,” Heart Rhythm 1:249.
Lacomis, J.M. et al. (Oct. 2003). “Multi-Detector Row CT of the Left Atrium and Pulmonary Veins before Radio-frequency Catheter Ablation for Atrial Fibrillation,” Radio Graphics 23:S35-S48.
Lacomis, J.M. et al. (2007, e-pub. Oct. 17, 2007). “Dynamic Multidimensional Imaging of the Human Left Atrial Appendage,” Europace 9:1134-1140.
Lee, R. et al. (1999). “The Closed Heart Maze: A Nonbypass Surgical Technique,” The Annals of Thoracic Surgery 67:1696-1702.
Levinson, M.L. et al. (1998). “Minimally Invasive Atrial Septal Defect Closure Using the Subxyphoid Approach,” Heart Surg. Forum 1(1):49-53, Abstract Only.
Lewis, D.R. et al. (1999). “Vascular Surgical Intervention for Complications of Cardiovascular Radiology: 13 Years' Experience in a Single Centre,” Ann. R. Coll. Surg. Engl. 81:23-26.
Li, H. (2007). “Magnet Decoration, Beautiful But Potentially Dangerous For Patients with Implantable Pacemakers or Defibrillators,” Heart Rhythm 4(1):5-6.
Lindsay, B.D. (1996). “Obliteration of the Left Atrial Appendage: A Concept Worth Testing,” The Annals of Thoracic Surgery 61:515-516.
Lip, G.Y.H. et al. (Jun. 2001). “Thromboprophylaxis for Atrial Flutter,” European Heart Journal 22(12):984-987.
Lustgarten, D.L. et al. (May/Jun. 1999). “Cryothermal Ablation: Mechanism of Tissue Injury and Current Experience in the Treatment of Tachyarrhythmias,” Progress in Cardiovascular Diseases 41(6):481-498.
Macris, M. et al. (Jan. 1999). “Minimally Invasive Access of the Normal Pericardium: Initial Clinical Experience with a Novel Device,” Clin. Cardiol. 22(Suppl. I):I-36-I-39.
Maisch, B. et al. (Jan. 1999). “Intrapreicardial Treatment of Inflammatory and Neoplastic Pericarditis Guided by Pericardioscopy and Epicardial Biopsy—Results from a Pilot Study,” Clin. Cardiol. 22(Supp. I):I-17-I-22.
Mannam, A.P. et al. (Apr. 1, 2002). “Safety of Subxyphoid Pericardial Access Using a Blunt-Tip Needle,” The American Journal of Cardiology 89:891-893.
Mattox, K.L. et al. (May 1997). “Newer Diagnostic Measure and Emergency Management,” Ches Surg Clin N Am. 7(2):213-226, Abstract Only.
Mccarthy, P.M. et al. (2008). “Epicardial Atrial Fibrillation Ablation,” Chapter 23 in Contemporary Cardiology: Atrial Fibrillation, From Bench to Bedside, Natale, A. et al. eds.,. Humana Press,: Totowa, NJ, pp. 323-332.
Mccaughan, J.J. Jr., et al. (Nov. 1957). “Aortography Utilizing Percutaneous Left Ventricular Puncture,” located at <http://www.archsurg.com>, last visited on Apr. 7, 2009, 73:746-751.
Mcclelland, R.R. (1978). “Congenital Aneurysmal Dilatation of the Left Auricle Demonstrated by Sequential Cardiac Blood-Pool Scintiscanning,” J. Nucl. Med. 19(5):507-509.
Melo, J. et al. (Apr. 21, 2008). “Surgery for Atrial Fibrillation in Patients with Mitral Valve Disease: Results at Five Years from the International Registry of Atrial Fibrillation Surgery,” The Journal of Thoracic and Cardiovascular Surgery 135(4):863-869.
Miller, P.S.J. et al. (Feb. 2005). “Are Cost Benefits of Anticoagulation for Stroke Prevention in Atrial Fibrillation Underestimated?” Stroke 36:360-366.
Miyasaka, Y. et al. (Jul. 11, 2006). “Secular Trends in Incidence of Atrial Fibrillation in Olmsted County, Minnesota, 1980 to 2000, and Implications on the Projections for Future Prevalence,” Circulation 114:119-125.
Morris, J.J. Jr. (1979). “Transvenous versus Transthoracic Cardiac Pacing,” Chapter 16 in Cardiac Pacing: A Concise Guide to Clinical Practice, pp. 239-245.
Mráz, T. et al. (Apr. 2007). “Role of Echocardiography in Percutaneous Occlusion of the left Atrial Appendage,” Echocardiography 24(4):401-404.
Naclerio, E.A. et al. (1979). “Surgical Techniques for Permanent Ventricular Pacing,” Chapter 10 in Cardiac Pacing: A Concise Guide to Clinical Practice, pp. 145-168.
Nakai, T. et al. (May 7, 2002). “Percutaneous Left Atrial Appendage Occlusion (PLAATO) for Preventing Cardioembolism: First Experience in Canine Model,” Circulation 105:2217-2222.
Nakajima, H. et al. (2004). “Consequence of Atrial Fibrillation and the Risk of Embolism After Percutaneous Mitral Commissurotomy: The Necessity of the Maze Procedure,” The Annals of Thoracic Surgery 78:800-806.
Non-Final Office Action dated Feb. 5, 2014 for U.S. Appl. No. 13/086,389, filed Apr. 13, 2011, 16 pages.
Non-Final Office Action dated Mar. 13, 2008 for U.S. Appl. No. 10/963,371, filed Oct. 11, 2004, 14 pages.
Non-Final Office Action dated Aug. 6, 2008 for U.S. Appl. No. 10/963,371, filed Oct. 11, 2004, 14 pages.
Non-Final Office Action dated Jun. 26, 2009, for U.S. Appl. No. 11/600,671, filed Nov. 15, 2006, 9 pages.
Non-Final Office Action dated Dec. 30, 2009, for U.S. Appl. No. 11/400,714, filed Apr. 7, 2006, 8 pages.
Non-Final Office Action dated Jul. 22, 2010, for U.S. Appl. No. 12/037,802, filed Feb. 26, 2008, 10 pages.
Non-Final Office Action dated Nov. 15, 2010, for U.S. Appl. No. 12/055,213, filed Mar. 25, 2008, 18 pages.
Non-Final Office Action dated Feb. 17, 2011, for U.S. Appl. No. 12/212,511, filed Sep. 17, 2008, 14 pages.
Non-Final Office Action dated Apr. 28, 2011, for U.S. Appl. No. 12/055,213, filed Mar. 25, 2008, 20 pages.
Non-Final Office Action dated Oct. 27, 2011, for U.S. Appl. No. 12/363,359, filed Jan. 30, 2009, 11 pages.
Non-Final Office Action dated Nov. 9, 2011, for U.S. Appl. No. 12/363,381, filed Jan. 30, 2009, 10 pages.
Non-Final Office Action dated Dec. 22, 2011, for U.S. Appl. No. 13/033,532, filed Feb. 23, 2011, 8 pages.
Non-Final Office Action dated Mar. 7, 2012, for U.S. Appl. No. 12/124,023, filed May 20, 2008, 13 pages.
Non-Final Office Action dated Apr. 2, 2012, for U.S. Appl. No. 12/212,511, filed Sep. 17, 2008, 5 pages.
Non-Final Office Action dated Sep. 18, 2013, for U.S. Appl. No. 12/055,213, filed Mar. 25, 2008, 15 pages.
Non-Final Office Action dated May 31, 2013, for U.S. Appl. No. 12/124,023, filed May 20, 2008, 14 pages.
Non-Final Office Action dated Apr. 2, 2014, for U.S. Appl. No. 13/033,532, filed Feb. 23, 2011, 8 pages.
Non-Final Office Action dated Jun. 17, 2014, for U.S. Appl. No. 12/363,359, filed Jan. 30, 2009, 7 pages.
Non-Final Office Action dated May 3, 2013 for U.S. Appl. No. 13/086,390, filed Apr. 13, 2011, 10 pages.
Non-Final Office Action dated Jan. 15, 2015, for U.S. Appl. No. 13/086,389, filed Apr. 13, 2011, 16 pages.
Non-Final Office Action dated Jan. 16, 2013, for U.S. Appl. No. 12/037,802, filed Feb. 26, 2008, 10 pages.
Non-Final Office Action dated May 4, 2015, for U.S. Appl. No. 12/124,023, filed May 20, 2008, 8 pages.
Non-Final Office Action dated Oct. 28, 2015, for U.S. Appl. No. 13/033,532, filed Feb. 23, 2011, 9 pages.
Non-Final Office Action dated Sep. 10, 2015, for U.S. Appl. No. 12/363,359, filed Jan. 30, 2009, 13 pages.
Non-Final Office Action dated Mar. 29, 2013, for U.S. Appl. No. 12/752,873, filed Apr. 1, 2010, 16 pages.
Non-Final Office Action dated Dec. 2, 2016, for U.S. Appl. No. 14/625,540, filed Feb. 18, 2015, 20 pages.
Non-Final Office Action dated Dec. 2, 2015, for U.S. Appl. No. 14/309,835, filed Jun. 19, 2014, 8 pages.
Non-Final Office Action dated Nov. 10, 2014, for U.S. Appl. No. 12/752,873, filed Apr. 1, 2010, 10 pages.
Non-Final Office Action dated Mar. 31, 2015, for U.S. Appl. No. 13/490,919, filed Jun. 7, 2012, 14 pages.
Non-Final Office Action dated Aug. 9, 2017, for U.S. Appl. No. 14/530,575, filed Oct. 31, 2014, 8 pages.
Non-Final Office Action dated Jan. 23, 2018, for U.S. Appl. No. 14/530,575, filed Oct. 31, 2014, 8 pages.
Non-Final Office Action dated Feb. 22, 2018, for U.S. Appl. No. 14/799,419, filed Jul. 14, 2015, 17 pages.
Notice of Allowance dated Mar. 20, 2014 for U.S. Appl. No. 13/086,390, filed Apr. 13, 2011, 8 pages.
Notice of Allowance dated Sep. 17, 2010, for U.S. Appl. No. 10/963,371, filed Oct. 11, 2004, 7 pages.
Notice of Allowance dated Sep. 17, 2010, for U.S. Appl. No. 11/600,671, filed Nov. 15, 2006, 7 pages.
Notice of Allowance dated Nov. 24, 2010, for U.S. Appl. No. 11/400,714, filed Apr. 7, 2006, 8 pages.
Notice of Allowance dated Feb. 22, 2013, for U.S. Appl. No. 12/212,511, filed Sep. 17, 2008, 8 pages.
Notice of Allowance dated Mar. 18, 2013, for U.S. Appl. No. 12/212,511, filed Sep. 17, 2008, 6 pages.
Notice of Allowance dated Mar. 4, 2014, for U.S. Appl. No. 12/055,213, filed Mar. 25, 2008, 9 pages.
Notice of Allowance dated Apr. 1, 2014, for U.S. Appl. No. 12/363,381, filed Jan. 30, 2009, 9 pages.
Notice of Allowance dated Apr. 3, 2014, for U.S. Appl. No. 12/037,802, filed Feb. 26, 2008, 8 pages.
Notice of Allowance dated Jul. 11, 2016, for U.S. Appl. No. 14/309,835, filed Jun. 19, 2014, 5 pages.
Notice of Allowance dated Jan. 18, 2019, for U.S. Appl. No. 14/799,419, filed Jul. 14, 2015, 8 pages.
Notice of Allowance dated Apr. 26, 2019, for U.S. Appl. No. 14/799,419, filed Jul. 14, 2015, 9 pages.
Notice of Allowance dated Jun. 5, 2020, for U.S. Appl. No. 16/289,365, filed Feb. 28, 2019. 7 pages.
Odell, J.A. et al. (1996). “Thorascopic Obliteration of the Left Atrial Appendage: Potential for Stroke Reduction?” Ann. Thorac. Surg. 61:565-569.
O'Donnell, M. et al. (2005). “Emerging Therapies for Stroke Prevention in Atrial Fibrillation,” European Heart Journal 7(Supplement C):C19-C27.
Omran, H. et al. (1997). “Left Atrial Appendage Function in Patients with Atrial Flutter,” Heart 78:250-254.
Onalan, O. et al. (2005). “Nonpharmacologic Stroke Prevention in Atrial Fibrillation,” Expert Rev. Cardiovasc. Ther. 3(4):619-633.
Onalan, O. et al. (2007). “Left Atrial Appendage Exclusion for Stroke Prevention in Patients With Nonrheumatic Atrial Fibrillation,” Stroke 38(part 2):624-630.
Ostermayer, S. et al. (2003). “Percutaneous Closure of the Left Atrial Appendage,” Journal of Interventional Cardiology 16(6):553-556.
Ota, T. et al. (2006). “Epicardial Atrial Ablation Using a Novel Articulated Robotic Medical Probe Via a Percutaneous Subxiphoid Approach,” National Institute of Health 1(6):335-340.
Ota, T. et al. (Oct. 2007). “Impact of Beating Heart left Atrial Ablation on Left-sided Heart Mechanics,” The Journal of Thoracic and Cardiovascular Surgery 134(4):982-988.
Pennec, P-Y. et al. (2003). “Assessment of Different Procedures for Surgical Left Atrial Appendage Exclusion,” The Annals of Thoracic Surgery 76:2167-2168.
Perk, G. et al. (Aug. 2009). “Use of Real Time Three-Dimensional Transesophageal Echocardiography in Intracardiac Catheter Based Interventions,” J. Am Soc Echocardiogr 22(8):865-882.
Pollick C. (Feb. 2000). “Left Atrial Appendage Myopathy,” Chest 117(2):297-308.
Poulsen, T.S. et al. (Feb. 15, 2005). “Is Aspirin Resistance or Female Gender Associated With a High Incidence of Myonecrosis After Nonurgent Percutaneous Coronary Intervention?” J. Am. Coll. Cardiol. 45(4):635-636.
Reznik, G. et al. (Oct. 1992). “Percutaneous Endoscopic Implantation of Automatic Implantable Cardioverter/Defibrillator (AICD): An Animal Study of a New Nonthoracotomy Technique,” J. Laparoendosc. Surg. 2(5):255-261, Abstract Only.
Robicsek, F. (1987). “Closed-Chest Decannulation of Transthoracically Inserted Aortic Balloon Catheter without Grafting,” Journal of Cardiac Surgery 2(2):327-329.
Ross, J. Jr. et al. (Jun. 3, 2008). “Transseptal Left Heart Catheterization: A 50-Year Odyssey,” Journal of the American College of Cardiology 51(22):2107-2115.
Rubin, D.N. et al. (Oct. 1, 1996). “Evaluation of Left Atrial Appendage Anatomy and Function in Recent-Onset Atrial Fibrillation by Transesophageal Echocardiography,” Am J Cardiol 78:774-778.
Ruchat, P. et al. (2002). “Off-pump Epicardial Compartmentalization for Ablation of Atrial Fibrillation,” Interactive Cardio Vascular and Thoracic Surgery 1:55-57.
Salzberg, S.P. et al. (2008). “Surgical Left Atrial Appendage Occlusion: Evaluation of a Novel Device with Magnetic Resonance Imaging,” European Journal of Cardiothoracic Surgery 34:766-770.
Sapp, J. et al. (Dec. 2001). “Electrophysiology and Anatomic Characterization of an Epicardial Accessory Pathway,” Journal of Cardiovascular Electrophysiology 12(12):1411-1414.
Scharf, C. et al. (2005). “Catheter Ablation for Atrial Fibrillation: Pathophysiology, Techniques, Results and Current Indications,” Continuous Medical Education 8:53-61.
Scherr, D. et al. (Apr. 2009). “Incidence and Predictors of left Atrial Thrombus Prior to Catheter Ablation of Atrial Fibrillation,” Journal of Cardiovascular Electrophysiology 20(4):379-384.
Schmidt, H. et al. (Sep. 2001). “Prevalence of Left Atrial Chamber and Appendage Thrombi in Patients With Atrial Flutter and Its Clinical Significance,” Journal of the American College of Cardiology 38(3):778-784.
Schneider, B. et al. (2005, e-pub. Aug. 22, 2005). “Surgical Closure of the Left Atrial Appendage—A Beneficial Procedure?” Cardiology 104:127-132.
Schweikert, R.A. et al. (Sep. 16, 2003). “Percutaneous Pericardial Instrumentation for Endo-Epicardial Mapping of Previously Failed Ablation,” Circulation 108:1329-1335.
Schweikert, R.A. et al. (2005). “Epicardial Access: Present and Future Applications for Interventional Electrophysiologists,” Chapter 25 in New Arrhythmia Technolgies, Wang, P.J. ed., Blackwell Publishing, pp. 242-256.
Seferovic, P. et al. (Jan. 1999). “Initial Clinical Experience with the PerDUCER® Device: Promising New Tool in the Diagnosis and Treatment of Pericardial Disease,” Clin. Cardiol. 22(Supp I):I-30-I-35.
Sengupta, P.P. et al. (2005). “Transoesophageal Echocardiography,” Heart 91:541-547.
Sharada, K. et al. (2005). “Non-Surgical Transpericardial Catheter Ablation of Post-Infarction Ventricular Tachycardia,” Indian Heart J 57:58-61.
Sievert, H. et al. (Apr. 23, 2002). “Percutaneous Left Atrial Appendage Transcatheter Occlusion to Prevent Stroke in High-Risk Patients With Atrial Fibrillation,” Circulation 105:1887-1889.
Singer, D.E. et al. (Sep. 2004). “Antithrombotic Therapy in Atrial Fibrillation: The Seventh ACCP Conference on Antithrombotic and Thrombolytic Therapy,” Chest 126(3):429S-456S.
Smith, P.W. et al. (Nov. 1956). “Diagnosis of Mitral Regurgitation by Cardioangiography,” Circulation 14:847-853.
Soejima, K. et al. (2004). “Subxiphoid Surgical Approach for Epicardial Catheter-Based Mapping and Ablation in Patients With Prior Cardiac Surgery or Difficult Pericardial Access,” Circulation 110:1197-1201.
Sosa, E. et al. (1996). “A New Technique to Perform Epicardial Mapping in the EP Laboratory,” J. Cardiovasc. Electrophysiol. 7(6):531-536.
Sosa, E. et al. (Mar. 1998). “Endocardial and Epicardial Ablation Guided by Nonsurgical Transthoracic Epicardial Mapping to Treat Recurrent Ventricular Tachycardia,” J. Cardiovasc. Elecytophysiol. 9(3):229-239.
Sosa, E. et al. (Dec. 14, 1999). “Different Ways of Approaching the Normal Pericardial Space,” Circulation 100(24):e115-e116.
Sosa, E. et al. (Jul. 15, 2002). “Gaining Access to the Pericardial Space,” The American Journal of Cardiology 90:203-204.
Sosa, E. et al. (Apr. 2005). “Epicardial Mapping and Ablation Techniques to Control Centricular Tachycardia,” Journal of Cardiovasc. Electrphsiol. 16(4):449-452.
Sparks, P.B. et al. (2001). “Is Atrial Flutter a Risk Factor for Stroke?” Journal of the American College of Cardiology 38(3):785-788.
Spodick, D.H. (Nov. 1970). “Medical History of the Pericardium,” The American Journal of Cardiology 26:447-454.
Stewart, J.M. et al. (Apr. 1992). “Bilateral Atrial Appendectomy Abolishes Increased Plasma Atrial Natriuretic Peptide Release and Blunts Sodium and Water Excretion During Volume Loading in Conscious Dogs,” Circulation Research 70(4):724-732.
Stewart, S. (1974). “Placement of the Sutureless Epicardial Pacemaker Lead by the Subxiphoid Approach,” Ann. Of Thoracic Surg. 18(3):308-313.
Stoddard, M.F. et al. (1995). “Left Atrial Appendage Thrombus is not Uncommon in Patients with Acute Atrial Fibrillation and a Recent Embolic Event: A Transesophageal Echocardiographic Study,” J. Am. Coll. Cardiol. 25:452-459, Abstract Only.
Stokes, K. (Jun. 1990). “Implantable Pacing Lead Technology,” IEEE Engineering in Medicine and Biology pp. 43-49.
Stöllberger, C. et al. (2000). “Is the Left Atrial Appendage Our Most Lethal Attachment?” European Journal of Cardio-Thoracic Surgery 18:625-626.
Stöllberger, C. et al. (Dec. 2003). “Elimination of the Left Atrial Appendage To Prevent Stroke or Embolism ?: Anatomic, Physiologic, and Pathophysiologic Considerations,” 124(6):2356-2362.
Stöllberger, C. et al. (2006). “Stroke Prevention by Means of Epicardial Occlusion of the Left Atrial Appendage,” Journal of Thoracic and Cardiovascular Surgery 132(1):207-208.
Stöllberger, C. et al. (2007). “Arguments Against Left Atrial Appendage Occlusion for Stroke Prevention,” Stroke 38:e77.
Stöllberger, C. et al. (2007). “Leave the Left Atrial Appendage Untouched for Stroke Prevention!” Journal of Thoracic and Cardiovascular Surgery 134(2):549-550.
Su, P. et al. (Sep. 2008, e-pub. May 8, 2007). “Occluding the Left Atrial Appendage: Anatomical Considerations,” Heart 94(9):1166-1170.
Subramanian, V.A. (Jun. 1997). “Less Invasive Arterial CABG on a Beating Heart,” Ann. Thorac. Surg. 63(6 Suppl.):S68-S71.
Subramanian, V.A. et al. (Dec. 1997). “Minimally Invasive Direct Coronary Artery Bypass Grafting: Two-Year Clinical Experience,” Ann. Thorac. Surg. 64(6):1648-1653, Abstract Only.
Suehiro, S. et al. (1996). “Echocardiography-Guided Pericardiocentesis With a Needle Attached to a Probe,” Ann. Thoracic Surg. 61:741-742.
Sun, F. et al. (Feb. 2006). “Subxiphoid Access to Normal Pericardium with Micropuncture Set: Technical Feasibility Study in Pigs,” Radiology 238(2):719-724.
Supplementary Search Report dated Mar. 14, 2011, for EP Application No. 04 794 730.4, filed on Oct. 11, 2004, 4 pages.
Szili-Torok, T. et al. (2001). “Transseptal Left heart Catheterisation Guided by Intracardiac Echocardiography,” Heart 86:e11-e15.
Tabata, T. et al. (Feb. 1, 1998). “Role of Left Atrial Appendage in left Atrial Reservoir Function as Evaluated by Left Atrial Appendage Clamping During Cardiac Surgery,” The American Journal of Cardiology 81:327-332.
Tomar, M. et al. (Jul.-Aug. 2006). “Transcatheter Closure of Fossa Ovalis Atrial Septal Defect: A Single Institutional Experience,” Indian Heart Journal 58(4):325-329.
Troughton, R.W. et al. (Feb. 28, 2004). “Pericarditis,” The Lancet 363:717-727.
Ulicny K.S. et al. (Jun. 1992). “Conjoined Subrectus Pocket for Permanent Pacemaker Placement in the Neonate,” Ann Thorac Surg. 53(6):1130-1131, Abstract Only.
Valderrabano, M. et al. (Sep. 2004). “Percutaneous Epicardial Mapping During Ablation of Difficult Accessory Pathways as an Alternative to Cardiac Surgery,” Heart Rhythm 1(3):311-316.
Von Korn, H. et al. (2006). “Simultaneous Combined Interventional Percutaneous Left Atrial Auricle and Atrial Septal Defect Closure,” Heart 92:1462.
Wang, T.J. et al. (Aug. 27, 2003). “A Risk Score for Predicting Stroke or Death in Individuals With New-Onset Atrial Fibrillation in the Community,” American Medical Association 290(8):1049-1056.
Watkins, L. et al. (Nov. 1982). “Implantation of the Automatic Defibrillator: The Subxiphoid Approach,” Ann. of Thoracic Surg. 34(5):515-520.
W.L. Gore & Associates (Aug. 11, 2006). “Gore Helex™ Septal Occluder,” located at <http://www.fda.gov/cdrh/pdf5/p050006a.pdf>, last visited on Jun. 14, 2007, 3 pages.
Wolber, T. et al. (Jan. 2007). “Potential Interference of Small Neodymium Magnets with Cardiac pacemakers and Implantable Cardioverter-defibrillators,” Heart Rhythm 4(1):1-4.
Wolf, P.A. et al. (Oct. 1978). “Epidemiologic Assessment of Chronic Atrial Fibrillation and Risk of Stroke: The Fiamingham Study,” Neurology 28:973-977.
Wolf, P.A. et al. (Aug. 1991). “Atrial Fibrillation as an Independent Risk Factor For Stroke: The Framingham Study,” Stroke 22(8):983-988.
Wolf, P.A. et al. (Feb. 9, 1998). “Impact of Atrial Fibrillation on Mortality, Stroke, and Medical Costs,” Arch Intern Med 158:229-234.
Wong, J.W.W. et al. (2006). “Impact of Maze and Concomitant Mitral Valve Surgery on Clinical Outcomes,” The Annals of Thoracic Surgery 82:1938-1947.
Wongcharoen, W. et al. (Sep. 2006). “Morphologic Characteristics of the Left Atrial Appendage, Roof, and Septum: Implications for the Ablation of Atrial Fibrillation,” Journal of Cardiovascular Electrophysiology 17(9):951-956.
Wood, M.A. (Jan. 2006). “Percutaneous Pericardial Instrumentation in the Electrophysiology Laboratory: A Case of Need,” Heart Rhythm 3(1):11-12.
Written Opinion of the International Searching Authority dated Jul. 13, 2011, for PCT Patent Application No. PCT/US2011/000676, filed on Apr. 13, 2011, 6 pages.
Written Opinion of the International Searching Authority dated Mar. 26, 2015, for PCT Patent Application No. PCT/US2014/063570, filed on Oct. 31, 2014, 6 pages.
Written Opinion dated May 19, 2008, for PCT Application No. PCT/US06/013459, filed on Apr. 7, 2006, 6 pages.
Written Opinion of the International Searching Authority dated Feb. 27, 2007, for PCT Application No. PCT/US2008/003938, filed on Mar. 25, 2008, 10 pages.
Written Opinion of the International Searching Authority dated Jul. 30, 2010, for PCT Application No. PCT/US2008/076703, filed on Sep. 17, 2008, 8 pages.
Written Opinion of the International Searching Authority dated Jun. 1, 2010, for PCT Application No. PCT/US2010/029668, filed on Apr. 1, 2010, 8 pages.
Written Opinion of the International Search Authority dated Oct. 3, 2011, for PCT Application No. PCT/US2011/00677, filed on Apr. 13, 2011, 6 pages.
Written Opinion from the International Searching Authority dated Sep. 14, 2012, for PCT Patent Application No. PCT/US2012/41285, filed on Jun. 7, 2012; 6 pages.
Written Opinion of the International Searching Authority dated Aug. 8, 2014, for PCT Application No. PCT/US2014/020030, filed on Mar. 3, 2014, 6 pages.
Wudel, J.H. et al. (Apr. 3, 2008). “Video-Assisted Epicardial Ablation and left Atrial Appendage Exclusion for Atrial Fibrillation: Extended Follow-Up,” The Annals of Thoracic Surgery 85:34-38.
Wyse, D.G. et al. (Dec. 5, 2002). “Of ‘Left Atrial Appendage Amputation, Ligation, or Occlusion In Patients with Atrial Fibrillation’,” N Engl J Med 347(23):1825-1833, Abstract Only.
Yamada, Y. et al. (Aug. 2006). “Video-Assisted Thoracoscopy to Treat Atrial Tachycardia Arising from Left Atrial Appendage,” Journal of Cardiovascular Electrophysiology 17(8):895-898.
Zapolanski, A. et al. (May 2008). “Safe and Complete Exclusion of the left Atrial Appendage, A Simple Epicardial Approach,” Innovations 3(3):161-163.
Zenati, M.A. et al. (Sep. 2003). “Left Heart Pacing Lead Implantation Using Subxiphoid Videopericardioscopy,” Journal of Cardiovascular Electrophysiology 14(9):949-953.
Zenati, M.A. et al. (2004). “Mechanical Function of the Left Atrial Appendage Following Epicardial Bipolar Radiofrequency Ablation,” Cardiothoracic Techniques and Technologies X, Abstract 121A, p. 176.
Zenati, M.A. et al. (2005). “Modification of the Left Atrial Appendage,” Chapter 12 in Innovative Management of Atrial Fibrillation, Schwartzman, David ed., Blackwell Science Ltd., 5 pages.
Related Publications (1)
Number Date Country
20210205010 A1 Jul 2021 US
Provisional Applications (1)
Number Date Country
61898382 Oct 2013 US
Continuations (2)
Number Date Country
Parent 16289365 Feb 2019 US
Child 17062406 US
Parent 14530575 Oct 2014 US
Child 16289365 US