Several embodiments of the present invention generally relate to noninvasive energy-based treatments to achieve cosmetic effects. For example, some embodiments generally relate to devices, systems and methods for providing multiple ultrasound treatment points or focus zones for performing various treatment and/or imaging procedures safely and effectively. Some embodiments relate to splitting an ultrasound therapy beam to two, three, four, or more focal zones for performing various treatment and/or imaging procedures with modulated and/or multiphasing. Some embodiments relate to splitting an ultrasound therapy beam to two, three, four, or more focal zones for performing various treatment and/or imaging procedures with poling techniques. Devices and methods of directing ultrasound therapy to multiple focus points in cosmetic and/or medical procedures are provided in several embodiments.
Many cosmetic procedures involve invasive procedures that may require invasive surgery. Patients not only have to endure weeks of recovery time, but also are frequently required to undergo risky anesthetic procedures for aesthetic treatments.
Although energy-based treatments have been disclosed for cosmetic and medical purposes, no procedures are known to Applicant, other that Applicant's own work, that successfully achieve an aesthetic effect using targeted and precise ultrasound to cause a visible and effective cosmetic result via a thermal pathway by splitting an ultrasound therapy beam to two, three, four, or more focal zones for performing various treatment and/or imaging procedures.
In several embodiments disclosed herein, non-invasive ultrasound is used to achieve one or more of the following effects: a face lift, a brow lift, a chin lift, an eye treatment, a wrinkle reduction, a scar reduction, a burn treatment, a tattoo removal, a vein removal, a vein reduction, a treatment on a sweat gland, a treatment of hyperhidrosis, a sun spot removal, an acne treatment, a pimple reduction. Treatment of the décolletage is provided in several embodiments. In another embodiment, the device may be used on adipose tissue (e.g., fat). In another embodiment the system, device and/or method may be applied in the genital area (e.g., vaginal rejuvenation and/or vaginal tightening, such as for tightening the supportive tissue of the vagina).
In accordance with various embodiments, a cosmetic ultrasound treatment system and/or method can non-invasively produce single or multiple cosmetic treatment zones and/or thermal coagulation points where ultrasound is focused in one or more locations in a region of treatment in tissue under a skin surface. Some systems and methods provide cosmetic treatment at different locations in tissue, such as at different depths, heights, widths, and/or positions. In one embodiment, a method and system comprise a multiple depth transducer system configured for providing ultrasound treatment to more than one region of interest, such as between at least two of a deep treatment region of interest, a superficial region of interest, and/or a subcutaneous region of interest. In one embodiment, a method and system comprise a transducer system configured for providing ultrasound treatment to more than one region of interest, such as between at least two points in various locations (e.g., at a fixed or variable depth, height, width, orientation, etc.) in a region of interest in tissue. Some embodiments can split a beam to focus at two, three, four, or more focal points (e.g., multiple focal points, multi-focal points) for cosmetic treatment zones and/or for imaging in a region of interest in tissue. Position of the focal points can be positioned axially, laterally, or otherwise within the tissue. Some embodiments can be configured for spatial control, such as by the location of a focus point, changing the distance from a transducer to a reflecting surface, and/or changing the angles of energy focused or unfocused to the region of interest, and/or configured for temporal control, such as by controlling changes in the frequency, drive amplitude and timing of the transducer. In some embodiments the position of multiple treatment zones or focal points with poling, phasic poling, biphasic poling, and/or multi-phasic poling. In some embodiments the position of multiple treatment zones or focal points with phasing, such as in one embodiment, electrical phasing. As a result, changes in the location of the treatment region, the number, shape, size and/or volume of treatment zones or lesions in a region of interest, as well as the thermal conditions, can be dynamically controlled over time.
In accordance with various embodiments, a cosmetic ultrasound treatment system and/or method can create multiple cosmetic treatment zones using one or more of phase modulation, poling, nonlinear acoustics, and/or Fourier transforms to create any spatial periodic pattern with one or multiple ultrasound portions. In one embodiment, a system simultaneously or sequentially delivers single or multiple treatment zones using poling at a ceramic level. In one embodiment, a poling pattern is function of focal depth and frequency, and the use of odd or even functions. In one embodiment, a process can be used in two or more dimensions to create any spatial periodic pattern. In one embodiment, an ultrasound beam is split axially and laterally to significantly reduce treatment time through the use of nonlinear acoustics and Fourier transforms. In one embodiment, modulation from a system and amplitude modulation from a ceramic or a transducer can be used to place multiple treatments zones in tissue, either sequentially or simultaneously.
In one embodiment, an aesthetic imaging and treatment system includes an ultrasonic probe that includes an ultrasound transducer configured to apply ultrasonic therapy to tissue at a plurality of locations at a focal depth with at least one of the group consisting of amplitude modulation poling and phase shifting. In one embodiment, the system includes a control module coupled to the ultrasonic probe for controlling the ultrasound transducer.
In various embodiments, the plurality of locations are positioned in a substantially linear sequence within a cosmetic treatment zone. In one embodiment, a first set of locations is positioned within a first cosmetic treatment zone and a second set of locations is positioned within a second cosmetic treatment zone, the first zone being different from the second zone. In one embodiment, the first cosmetic treatment zone includes a substantially linear sequence of the first set of locations and the second cosmetic treatment zone includes a substantially linear sequence of the second set of locations. In one embodiment, the ultrasound transducer is configured to apply ultrasonic therapy using amplitude modulation whereby a plurality of portions of the ultrasound transducer are configured to emit ultrasonic therapy at a plurality of amplitudes of acoustic intensity, wherein a first amplitude is different than a second amplitude. In one embodiment, the ultrasound transducer is configured to apply ultrasonic therapy phase shifting whereby a plurality of portions of the ultrasound transducer are configured to emit ultrasonic therapy at a plurality of phases of acoustic intensity, wherein a first phase is different than a second phase. In one embodiment, the ultrasound transducer is configured to apply ultrasonic therapy using amplitude modulation whereby a plurality of portions of the ultrasound transducer are configured to emit ultrasonic therapy at a plurality of amplitudes of acoustic intensity, wherein a first amplitude is different than a second amplitude, and apply ultrasonic therapy phase shifting whereby a plurality of portions of the ultrasound transducer are configured to emit ultrasonic therapy at a plurality of phases of acoustic intensity, wherein a first phase is different than a second phase. In one embodiment, the plurality of phases includes discrete phase values. In one embodiment, the ultrasound transducer includes piezoelectric material and the plurality of portions of the ultrasound transducer are configured to create a plurality of corresponding piezoelectric material variations in response to an electric field applied to the ultrasound transducer. In one embodiment, the plurality of piezoelectric material variations include at least one of expansion of the piezoelectric material and contraction of the piezoelectric material. In one embodiment, at least one portion of the ultrasonic transducer is configured to emit ultrasonic therapy at two or more amplitudes of acoustic intensity, and wherein the amplitude of ultrasonic therapy emitted by the at least one portion of the piezoelectric varies over time. In one embodiment, the system also includes a movement mechanism configured to be programmed to provide variable spacing between the plurality of individual cosmetic treatment zones. In one embodiment, a sequence of individual cosmetic treatment zones has a treatment spacing in a range from about 0.01 mm to about 25 mm. In various embodiments, the ultrasonic treatment is at least one of a face lift, a brow lift, a chin lift, an eye treatment, a wrinkle reduction, a scar reduction, a burn treatment, a tattoo removal, a skin tightening, a vein removal, a vein reduction, a treatment on a sweat gland, a treatment of hyperhidrosis, a sun spot removal, a fat treatment, a vaginal rejuvenation, and an acne treatment. In one embodiment, the ultrasonic transducer is configured to provide an acoustic power of the ultrasonic therapy in a range of between about 1 W to about 100 W and a frequency of about 1 MHz to about 10 MHz to thermally heat the tissue to cause coagulation.
In one embodiment, an aesthetic imaging and treatment system for use in cosmetic treatment includes: an ultrasonic probe and a control module. The ultrasonic probe includes a first switch operably controlling an ultrasonic imaging function for providing an ultrasonic imaging, a second switch operably controlling an ultrasonic treatment function for providing an ultrasonic treatment, and a movement mechanism configured to direct ultrasonic treatment in at least one sequence of individual thermal cosmetic treatment zones. In one embodiment, the system also includes a transducer module. In one embodiment, the transducer module is configured for both ultrasonic imaging and ultrasonic treatment. In one embodiment, the transducer module is configured for coupling to the ultrasonic probe. In one embodiment, the transducer module includes an ultrasound transducer configured to apply ultrasonic therapy to tissue at a plurality of locations at a focal depth. In one embodiment, the transducer module is configured to be operably coupled to at least one of the first switch, the second switch and the movement mechanism. In one embodiment, the control module includes a processor and a display for controlling the transducer module.
In various embodiments, the plurality of locations are positioned in a substantially linear sequence within a cosmetic treatment zone. In one embodiment, a first set of locations is positioned within a first cosmetic treatment zone and a second set of locations is positioned within a second cosmetic treatment zone, the first zone being different from the second zone. In one embodiment, the first cosmetic treatment zone includes a substantially linear sequence of the first set of locations and the second cosmetic treatment zone includes a substantially linear sequence of the second set of locations. In one embodiment, the transducer module is configured to apply ultrasonic therapy using amplitude modulation whereby a plurality of portions of the transducer module are configured to emit ultrasonic therapy at a plurality of amplitudes of acoustic intensity, wherein a first amplitude is different than a second amplitude. In one embodiment, the transducer module is configured to apply ultrasonic therapy phase shifting whereby a plurality of portions of the transducer module are configured to emit ultrasonic therapy at a plurality of phases of acoustic intensity, wherein a first phase is different than a second phase. In one embodiment, the transducer module is configured to apply ultrasonic therapy using amplitude modulation whereby a plurality of portions of the transducer module are configured to emit ultrasonic therapy at a plurality of amplitudes of acoustic intensity, wherein a first amplitude is different than a second amplitude. In one embodiment, the transducer module is configured to apply ultrasonic therapy phase shifting whereby a plurality of portions of the transducer module are configured to emit ultrasonic therapy at a plurality of phases of acoustic intensity, wherein a first phase is different than a second phase. In one embodiment, the plurality of phases includes discrete phase values. In one embodiment, the transducer module is configured to the transducer module includes piezoelectric material and the plurality of portions of the transducer module are configured to create a plurality of corresponding piezoelectric material variations in response to an electric field applied to the transducer module. In one embodiment, the plurality of piezoelectric material variations include at least one of expansion of the material and contraction of the material. In one embodiment, at least one portion of the transducer module is configured to emit ultrasonic therapy at two or more amplitudes of acoustic intensity, and wherein the amplitude of ultrasonic therapy emitted by the at least one portion of the transducer module varies over time. In one embodiment, the movement mechanism is configured to be programmed to provide variable spacing between a plurality of individual thermal cosmetic treatment zones. In one embodiment, a sequence of individual thermal cosmetic treatment zones has a treatment spacing in a range from about 0.01 mm to about 25 mm. In one embodiment, the first and second switches include user operated buttons or keys. In one embodiment, at least one of the first switch and the second switch is activated by the control module. In one embodiment, the treatment function is at least one of a face lift, a brow lift, a chin lift, an eye treatment, a wrinkle reduction, a scar reduction, a burn treatment, a tattoo removal, a skin tightening, a vein removal, a vein reduction, a treatment on a sweat gland, a treatment of hyperhidrosis, a sun spot removal, a fat treatment, a vaginal rejuvenation, and an acne treatment. In one embodiment, the transducer module is configured to provide an acoustic power of the ultrasonic therapy in a range of between about 1 W to about 100 W and a frequency of about 1 MHz to about 10 MHz to thermally heat the tissue to cause coagulation.
In one embodiment, a treatment system includes a controlling device operably controlling an ultrasonic treatment function for providing an ultrasonic treatment and a hand wand configured to direct ultrasonic treatment in a sequence of individual thermal cosmetic treatment zones. In one embodiment, the hand wand includes a transducer configured to apply ultrasonic therapy to tissue at a location at a focal depth, the location positioned within a thermal cosmetic treatment zone, wherein the transducer is further configured to apply ultrasonic therapy to tissue at a plurality of locations at the focal depth.
In one embodiment, a method of performing a cosmetic procedure includes coupling a transducer module with an ultrasonic probe, wherein the ultrasonic probe includes a first switch to control acoustic imaging, wherein the ultrasonic probe includes a second switch to control acoustic therapy for causing a plurality of individual cosmetic treatment zones, wherein the ultrasonic probe includes a movement mechanism to provide desired spacing between the individual cosmetic treatment zones. In one embodiment, the method includes contacting the transducer module with a subject's skin surface. In one embodiment, the method includes activating the first switch on the ultrasonic probe to acoustically image, with the transducer module, a region below the skin surface. In one embodiment, the method includes activating the second switch on the ultrasonic probe to acoustically treat, with the transducer module, the region below the skin surface in a desired sequence of individual cosmetic treatment zones that is controlled by the movement mechanism, wherein the transducer module includes an ultrasound transducer configured to apply ultrasonic therapy to tissue at a plurality of locations at a focal depth.
In one embodiment, a treatment system includes a controlling device operably controlling an ultrasonic treatment function for providing an ultrasonic treatment, and a hand wand configured to direct ultrasonic treatment in a sequence of individual thermal cosmetic treatment zones. In one embodiment, the hand wand includes a transducer configured to apply ultrasonic therapy to tissue at a plurality of locations at a focal depth.
In one embodiment, the use of an aesthetic imaging and treatment system is for the non-invasive cosmetic treatment of skin.
In accordance with various embodiments, an aesthetic ultrasound treatment system for creating multiple focus points with an ultrasound transducer includes an ultrasonic probe comprising an ultrasound transducer configured to apply ultrasonic therapy to tissue at a plurality of locations at a focal depth with at least one of the group consisting of amplitude modulation poling and phase shifting, and a control module coupled to the ultrasonic probe for controlling the ultrasound transducer.
In one embodiment, the ultrasound transducer comprises a single ultrasound transduction element. In one embodiment, the plurality of locations are positioned in a substantially linear sequence within a cosmetic treatment zone. In one embodiment, a first set of locations is positioned within a first cosmetic treatment zone and a second set of locations is positioned within a second cosmetic treatment zone, the first zone being different from the second zone. In one embodiment, the first cosmetic treatment zone comprises a substantially linear sequence of the first set of locations and the second cosmetic treatment zone comprises a substantially linear sequence of the second set of locations.
In one embodiment, the ultrasound transducer is configured to apply ultrasonic therapy using amplitude modulation whereby a plurality of portions of the ultrasound transducer are configured to emit ultrasonic therapy at a plurality of amplitudes of acoustic intensity, wherein a first amplitude is different than a second amplitude. In one embodiment, the ultrasound transducer is configured to apply ultrasonic therapy phase shifting whereby a plurality of portions of the ultrasound transducer are configured to emit ultrasonic therapy at a plurality of phases of acoustic intensity, wherein a first phase is different than a second phase. In one embodiment, the ultrasound transducer is configured to apply ultrasonic therapy using amplitude modulation whereby a plurality of portions of the ultrasound transducer are configured to emit ultrasonic therapy at a plurality of amplitudes of acoustic intensity, wherein a first amplitude is different than a second amplitude, and apply ultrasonic therapy phase shifting whereby a plurality of portions of the ultrasound transducer are configured to emit ultrasonic therapy at a plurality of phases of acoustic intensity, wherein a first phase is different than a second phase. In one embodiment, the plurality of phases comprises discrete phase values. In one embodiment, the ultrasound transducer comprises piezoelectric material and the plurality of portions of the ultrasound transducer are configured to create a plurality of corresponding piezoelectric material variations in response to an electric field applied to the ultrasound transducer. In one embodiment, the plurality of piezoelectric material variations comprise at least one of expansion of the piezoelectric material and contraction of the piezoelectric material. In one embodiment, at least one portion of the ultrasonic transducer is configured to emit ultrasonic therapy at two or more amplitudes of acoustic intensity, and wherein the amplitude of ultrasonic therapy emitted by the at least one portion of the piezoelectric varies over time.
In one embodiment, the system further includes a movement mechanism configured to be programmed to provide variable spacing between the plurality of individual cosmetic treatment zones. In one embodiment, a sequence of individual cosmetic treatment zones has a treatment spacing in a range from about 0.01 mm to about 25 mm.
In various embodiments, the ultrasonic treatment is at least one of a face lift, a brow lift, a chin lift, an eye treatment, a wrinkle reduction, a scar reduction, a burn treatment, a tattoo removal, a skin tightening, a vein removal, a vein reduction, a treatment on a sweat gland, a treatment of hyperhidrosis, a sun spot removal, a fat treatment, a vaginal rejuvenation, and an acne treatment.
In one embodiment, the ultrasonic transducer is configured to provide an acoustic power of the ultrasonic therapy in a range of between about 1 W to about 100 W and a frequency of about 1 MHz to about 10 MHz to thermally heat the tissue to cause coagulation.
In accordance with various embodiments, an aesthetic treatment system for use in cosmetic treatment for creating multiple focal points with an ultrasound transducer includes an ultrasonic probe that includes a first switch operably controlling an ultrasonic imaging function for providing an ultrasonic imaging, a second switch operably controlling an ultrasonic treatment function for providing an ultrasonic treatment, and a movement mechanism configured to direct ultrasonic treatment in at least one sequence of individual thermal cosmetic treatment zones. The system includes a transducer module configured to apply ultrasonic therapy with at least one of the group consisting of amplitude modulation poling and phase shifting, wherein the transducer module is configured for both ultrasonic imaging and ultrasonic treatment, wherein the transducer module is configured for coupling to the ultrasonic probe, wherein the transducer module comprises an ultrasound transducer configured to apply ultrasonic therapy to tissue at a plurality of locations at a focal depth, wherein the transducer module is configured to be operably coupled to at least one of the first switch, the second switch and the movement mechanism, and a control module, wherein the control module comprises a processor and a display for controlling the transducer module.
In one embodiment, the plurality of locations are positioned in a substantially linear sequence within a cosmetic treatment zone. In one embodiment, a first set of locations is positioned within a first cosmetic treatment zone and a second set of locations is positioned within a second cosmetic treatment zone, the first zone being different from the second zone. In one embodiment, the first cosmetic treatment zone comprises a substantially linear sequence of the first set of locations and the second cosmetic treatment zone comprises a substantially linear sequence of the second set of locations.
In one embodiment, the transducer module is configured to apply ultrasonic therapy using amplitude modulation whereby a plurality of portions of the transducer module are configured to emit ultrasonic therapy at a plurality of amplitudes of acoustic intensity, wherein a first amplitude is different than a second amplitude. In one embodiment, the transducer module is configured to apply ultrasonic therapy phase shifting whereby a plurality of portions of the transducer module are configured to emit ultrasonic therapy at a plurality of phases of acoustic intensity, wherein a first phase is different than a second phase. In one embodiment, the transducer module is configured to apply ultrasonic therapy using amplitude modulation whereby a plurality of portions of the transducer module are configured to emit ultrasonic therapy at a plurality of amplitudes of acoustic intensity, wherein a first amplitude is different than a second amplitude, and apply ultrasonic therapy phase shifting whereby a plurality of portions of the transducer module are configured to emit ultrasonic therapy at a plurality of phases of acoustic intensity, wherein a first phase is different than a second phase. In one embodiment, the plurality of phases comprises discrete phase values. In one embodiment, the transducer module comprises piezoelectric material and the plurality of portions of the transducer module are configured to create a plurality of corresponding piezoelectric material variations in response to an electric field applied to the transducer module. In one embodiment, the plurality of piezoelectric material variations comprise at least one of expansion of the material and contraction of the material. In one embodiment, at least one portion of the transducer module is configured to emit ultrasonic therapy at two or more amplitudes of acoustic intensity, and wherein the amplitude of ultrasonic therapy emitted by the at least one portion of the transducer module varies over time.
In one embodiment, the movement mechanism is configured to be programmed to provide variable spacing between a plurality of individual thermal cosmetic treatment zones. In one embodiment, a sequence of individual thermal cosmetic treatment zones has a treatment spacing in a range from about 0.01 mm to about 25 mm. In one embodiment, the first and second switches comprises user operated buttons or keys. In one embodiment, at least one of the first switch and the second switch is activated by the control module.
In one embodiment, the treatment function is at least one of a face lift, a brow lift, a chin lift, an eye treatment, a wrinkle reduction, a scar reduction, a burn treatment, a tattoo removal, a skin tightening, a vein removal, a vein reduction, a treatment on a sweat gland, a treatment of hyperhidrosis, a sun spot removal, a fat treatment, a vaginal rejuvenation, and an acne treatment.
In one embodiment, the transducer module is configured to provide an acoustic power of the ultrasonic therapy in a range of between about 1 W to about 100 W and a frequency of about 1 MHz to about 10 MHz to thermally heat the tissue to cause coagulation.
In accordance with various embodiments, a treatment system includes a controlling device operably controlling an ultrasonic treatment function for providing an ultrasonic treatment, and a hand wand configured to direct ultrasonic treatment in a sequence of individual thermal cosmetic treatment zones. The hand wand includes a transducer configured to apply ultrasonic therapy to tissue at a location at a focal depth, the location positioned within a thermal cosmetic treatment zone, wherein the transducer is further configured to apply ultrasonic therapy to tissue at a plurality of locations at the focal depth.
In accordance with various embodiments, a method of performing a noninvasive cosmetic procedure on the skin by creating multiple focal points with a single transducer includes coupling a transducer module with an ultrasonic probe, wherein the ultrasonic probe comprises a first switch to control acoustic imaging, wherein the ultrasonic probe comprises a second switch to control acoustic therapy for causing a plurality of individual cosmetic treatment zones, wherein the ultrasonic probe comprises a movement mechanism to provide desired spacing between the individual cosmetic treatment zones, contacting the transducer module with a subject's skin surface, activating the first switch on the ultrasonic probe to acoustically image, with the transducer module, a region below the skin surface, and activating the second switch on the ultrasonic probe to acoustically treat, with the transducer module, the region below the skin surface in a desired sequence of individual cosmetic treatment zones that is controlled by the movement mechanism, wherein the transducer module comprises a single ultrasound transducer configured to apply ultrasonic therapy to tissue at a plurality of locations at a focal depth.
In accordance with various embodiments, an aesthetic treatment system for creating multiple focal points in tissue with an ultrasound transducer includes a controlling device operably controlling an ultrasonic treatment function for providing an ultrasonic treatment, and a hand wand configured to direct ultrasonic treatment in a sequence of individual thermal cosmetic treatment zones. The hand wand includes a transducer configured to apply ultrasonic therapy to tissue at a plurality of locations at a focal depth. In accordance with various embodiments, the use of an aesthetic treatment system is for the non-invasive cosmetic treatment of skin.
In accordance with various embodiments, an aesthetic ultrasound treatment system for creating multiple focus points with an ultrasound transducer includes an ultrasonic probe comprising an ultrasound transducer configured to apply ultrasonic therapy to tissue at a plurality of locations at a focal depth with at least one of the group consisting of amplitude modulation poling and phase shifting, and a control module coupled to the ultrasonic probe for controlling the ultrasound transducer. In one embodiment, the ultrasound transducer is configured to apply ultrasonic therapy using amplitude modulation whereby a plurality of portions of the ultrasound transducer are configured to emit ultrasonic therapy at a plurality of amplitudes of acoustic intensity, wherein a first amplitude is different than a second amplitude. In one embodiment, the ultrasound transducer is configured to apply ultrasonic therapy phase shifting whereby a plurality of portions of the ultrasound transducer are configured to emit ultrasonic therapy at a plurality of phases of acoustic intensity, wherein a first phase is different than a second phase. In one embodiment, the ultrasound transducer is configured to apply ultrasonic therapy using amplitude modulation whereby a plurality of portions of the ultrasound transducer are configured to emit ultrasonic therapy at a plurality of amplitudes of acoustic intensity, wherein a first amplitude is different than a second amplitude, and apply ultrasonic therapy phase shifting whereby a plurality of portions of the ultrasound transducer are configured to emit ultrasonic therapy at a plurality of phases of acoustic intensity, wherein a first phase is different than a second phase. In one embodiment, the plurality of phases comprises discrete phase values. In one embodiment, the ultrasound transducer comprises piezoelectric material and the plurality of portions of the ultrasound transducer are configured to create a plurality of corresponding piezoelectric material variations in response to an electric field applied to the ultrasound transducer. In one embodiment, the plurality of piezoelectric material variations comprise at least one of expansion of the piezoelectric material and contraction of the piezoelectric material. In one embodiment, at least one portion of the ultrasonic transducer is configured to emit ultrasonic therapy at two or more amplitudes of acoustic intensity, and wherein the amplitude of ultrasonic therapy emitted by the at least one portion of the piezoelectric varies over time. In various embodiments, the ultrasonic treatment is at least one of a face lift, a brow lift, a chin lift, an eye treatment, a wrinkle reduction, a scar reduction, a burn treatment, a tattoo removal, a skin tightening, a vein removal, a vein reduction, a treatment on a sweat gland, a treatment of hyperhidrosis, a sun spot removal, a fat treatment, a vaginal rejuvenation, and an acne treatment.
In accordance with various embodiments, an aesthetic treatment system for use in cosmetic treatment for creating multiple focal points with an ultrasound transducer includes an ultrasonic probe that includes a first switch operably controlling an ultrasonic imaging function for providing an ultrasonic imaging, a second switch operably controlling an ultrasonic treatment function for providing an ultrasonic treatment, and a movement mechanism configured to direct ultrasonic treatment in at least one sequence of individual thermal cosmetic treatment zones. The system includes a transducer module configured to apply ultrasonic therapy with at least one of the group consisting of amplitude modulation poling and phase shifting, wherein the transducer module is configured for both ultrasonic imaging and ultrasonic treatment, wherein the transducer module is configured for coupling to the ultrasonic probe, wherein the transducer module comprises an ultrasound transducer configured to apply ultrasonic therapy to tissue at a plurality of locations at a focal depth, wherein the transducer module is configured to be operably coupled to at least one of the first switch, the second switch and the movement mechanism, and a control module, wherein the control module comprises a processor and a display for controlling the transducer module. In one embodiment, the ultrasound module comprises a single ultrasound transducer. In one embodiment, the ultrasound module comprises a single ultrasound transduction element. In one embodiment, the ultrasound module comprises a single ultrasound transducer comprising a single transduction element. In one embodiment, the plurality of locations are positioned in a substantially linear sequence within a cosmetic treatment zone. In one embodiment, a first set of locations is positioned within a first cosmetic treatment zone and a second set of locations is positioned within a second cosmetic treatment zone, the first zone being different from the second zone. In one embodiment, the first cosmetic treatment zone comprises a substantially linear sequence of the first set of locations and the second cosmetic treatment zone comprises a substantially linear sequence of the second set of locations. In one embodiment, the transducer module is configured to apply ultrasonic therapy using amplitude modulation whereby a plurality of portions of the transducer module are configured to emit ultrasonic therapy at a plurality of amplitudes of acoustic intensity, wherein a first amplitude is different than a second amplitude. In one embodiment, the transducer module is configured to apply ultrasonic therapy phase shifting whereby a plurality of portions of the transducer module are configured to emit ultrasonic therapy at a plurality of phases of acoustic intensity, wherein a first phase is different than a second phase. In one embodiment, the transducer module is configured to apply ultrasonic therapy using amplitude modulation whereby a plurality of portions of the transducer module are configured to emit ultrasonic therapy at a plurality of amplitudes of acoustic intensity, wherein a first amplitude is different than a second amplitude, and apply ultrasonic therapy phase shifting whereby a plurality of portions of the transducer module are configured to emit ultrasonic therapy at a plurality of phases of acoustic intensity, wherein a first phase is different than a second phase. In one embodiment, the plurality of phases comprises discrete phase values. In one embodiment, the transducer module comprises piezoelectric material and the plurality of portions of the transducer module are configured to create a plurality of corresponding piezoelectric material variations in response to an electric field applied to the transducer module. In one embodiment, the plurality of piezoelectric material variations comprise at least one of expansion of the material and contraction of the material. In one embodiment, at least one portion of the transducer module is configured to emit ultrasonic therapy at two or more amplitudes of acoustic intensity, and wherein the amplitude of ultrasonic therapy emitted by the at least one portion of the transducer module varies over time. In one embodiment, the movement mechanism is configured to be programmed to provide variable spacing between a plurality of individual thermal cosmetic treatment zones. In one embodiment, a sequence of individual thermal cosmetic treatment zones has a treatment spacing in a range from about 0.01 mm to about 25 mm. In one embodiment, the first and second switches comprises user operated buttons or keys. In one embodiment, at least one of the first switch and the second switch is activated by the control module. In one embodiment, the treatment function is at least one of a face lift, a brow lift, a chin lift, an eye treatment, a wrinkle reduction, a scar reduction, a burn treatment, a tattoo removal, a skin tightening, a vein removal, a vein reduction, a treatment on a sweat gland, a treatment of hyperhidrosis, a sun spot removal, a fat treatment, a vaginal rejuvenation, and an acne treatment.
In one embodiment, an aesthetic imaging and treatment system for use in cosmetic treatment includes an ultrasonic probe configured for ultrasonic imaging and ultrasonic treatment of tissue at a plurality of locations at a focal depth. In one embodiment, the probe includes a transducer module configured for coupling to the ultrasonic probe, wherein the transducer module comprises an ultrasound transducer configured to apply an ultrasonic therapy to tissue at the plurality of locations at the focal depth. In one embodiment, a first switch operably controlling an ultrasonic imaging function for providing an ultrasonic imaging. In one embodiment, a second switch operably controlling an ultrasonic treatment function for providing the ultrasonic therapy. In one embodiment, a movement mechanism is configured to direct ultrasonic treatment in at least one sequence of individual thermal cosmetic treatment zones, wherein the transducer module is configured to be operably coupled to at least one of the first switch, the second switch and the movement mechanism. In one embodiment, the control module comprises a processor and a display for controlling the transducer module. In one embodiment, the module is removable. For example, some non-limiting embodiments transducers can be configured for a tissue depth of 1.5 mm, 3 mm, 4.5 mm, 6 mm, less than 3 mm, between 1.5 mm and 3 mm, between 1.5 mm and 4.5 mm, more than more than 4.5 mm, more than 6 mm, and anywhere in the ranges of 0.1 mm-3 mm, 0.1 mm-4.5 mm, 0.1 mm-25 mm, 0.1 mm-100 mm, and any depths therein.
In various embodiments, the plurality of locations are positioned in a substantially linear sequence within a cosmetic treatment zone. In one embodiment, a first set of locations is positioned within a first cosmetic treatment zone and a second set of locations is positioned within a second cosmetic treatment zone, the first zone being different from the second zone. In one embodiment, the first cosmetic treatment zone comprises a substantially linear sequence of the first set of locations and the second cosmetic treatment zone comprises a substantially linear sequence of the second set of locations. In one embodiment, the transducer module is configured to apply ultrasonic therapy using amplitude modulation whereby the transducer module comprises a plurality of portions that are configured to emit ultrasonic therapy at a plurality of amplitudes of acoustic intensity, wherein a first amplitude is different than a second amplitude. In one embodiment, the transducer module is configured to apply ultrasonic therapy phase shifting whereby the transducer module comprises a plurality of portions that are configured to emit ultrasonic therapy at a plurality of phases of acoustic intensity, wherein a first phase is different than a second phase.
In one embodiment, a movement mechanism is a motion mechanism. In various embodiments, a movement mechanism is configured to move a transducer within a module or a probe. In one embodiment, a transducer is held by a transducer holder. In one embodiment, the transducer holder includes a sleeve which is moved along motion constraining bearings, such as linear bearings, namely, a bar (or shaft) to ensure a repeatable linear movement of the transducer. In one embodiment, sleeve is a spline bushing which prevents rotation about a spline shaft, but any guide to maintain the path of motion is appropriate.
In one embodiment, the transducer holder is driven by a motion mechanism, which may be located in a hand wand or in a module, or in a probe. In one embodiment, a motion mechanism 400 includes any one or more of a scotch yoke, a movement member, and a magnetic coupling. In one embodiment, the magnetic coupling helps move the transducer. One benefit of a motion mechanism is that it provides for a more efficient, accurate and precise use of an ultrasound transducer, for imaging and/or therapy purposes. One advantage this type of motion mechanism has over conventional fixed arrays of multiple transducers fixed in space in a housing is that the fixed arrays are a fixed distance apart.
By placing transducer on a track (e.g., such as a linear track) under controller control, embodiments of the system and device provide for adaptability and flexibility in addition to efficiency, accuracy and precision. Real time and near real time adjustments can be made to imaging and treatment positioning along the controlled motion by the motion mechanism. In addition to the ability to select nearly any resolution based on the incremental adjustments made possible by the motion mechanism, adjustments can be made if imaging detects abnormalities or conditions meriting a change in treatment spacing and targeting. In one embodiment, one or more sensors may be included in the module. In one embodiment, one or more sensors may be included in the module to ensure that a mechanical coupling between the movement member and the transducer holder is indeed coupled. In one embodiment, an encoder may be positioned on top of the transducer holder and a sensor may be located in a portion of the module, or vice versa (swapped).
In various embodiments the sensor is a magnetic sensor, such as a giant magnetoresistive effect (GMR) or Hall Effect sensor, and the encoder a magnet, collection of magnets, or multi-pole magnetic strip. The sensor may be positioned as a transducer module home position. In one embodiment, the sensor is a contact pressure sensor. In one embodiment, the sensor is a contact pressure sensor on a surface of the device to sense the position of the device or the transducer on the patient. In various embodiments, the sensor can be used to map the position of the device or a component in the device in one, two, or threes dimensions. In one embodiment the sensor is configured to sense the position, angle, tilt, orientation, placement, elevation, or other relationship between the device (or a component therein) and the patient. In one embodiment, the sensor comprises an optical sensor. In one embodiment, the sensor comprises a roller ball sensor. In one embodiment, the sensor is configured to map a position in one, two and/or three dimensions to compute a distance between areas or lines of treatment on the skin or tissue on a patient.
Motion mechanism can be any motion mechanism that may be found to be useful for movement of the transducer. Other embodiments of motion mechanisms useful herein can include worm gears and the like. In various embodiments, the motion mechanism is located in a module 200. In various embodiments, the motion mechanism can provide for linear, rotational, multi-dimensional motion or actuation, and the motion can include any collection of points and/or orientations in space. Various embodiments for motion can be used in accordance with several embodiments, including but not limited to rectilinear, circular, elliptical, arc-like, spiral, a collection of one or more points in space, or any other 1-D, 2-D, or 3-D positional and attitudinal motional embodiments. The speed of the motion mechanism may be fixed or may be adjustably controlled by a user. One embodiment, a speed of the motion mechanism for an image sequence may be different than that for a treatment sequence. In one embodiment, the speed of the motion mechanism is controllable by a controller.
In various embodiments, the transducer module is configured to apply ultrasonic therapy using amplitude modulation whereby the transducer module comprises a plurality of portions that are configured to emit ultrasonic therapy at a plurality of amplitudes of acoustic intensity, wherein a first amplitude is different than a second amplitude, and apply ultrasonic therapy phase shifting whereby the transducer module comprises a plurality of portions that are configured to emit ultrasonic therapy at a plurality of phases of acoustic intensity, wherein a first phase is different than a second phase.
In one embodiment, the plurality of phases comprises discrete phase values. In one embodiment, the transducer module comprises piezoelectric material and the plurality of portions of the transducer module are configured to create a plurality of corresponding piezoelectric material variations in response to an electric field applied to the transducer module. In one embodiment, the plurality of piezoelectric material variations comprise at least one of expansion of the material and contraction of the material. In one embodiment, the transducer module comprises at least one portion that is configured to emit ultrasonic therapy at two or more amplitudes of acoustic intensity, and wherein the amplitude of ultrasonic therapy emitted by the at least one portion of the transducer module varies over time.
In one embodiment, the movement mechanism is configured to be programmed to provide variable spacing between a plurality of individual thermal cosmetic treatment zones. In one embodiment, a sequence of individual thermal cosmetic treatment zones has a treatment spacing in a range from about 0.01 mm to about 25 mm (e.g., 1 mm, 1.5 mm, 2 mm, 1-5 mm). In one embodiment, the first and second switches comprise user operated buttons or keys. In one embodiment, at least one of the first switch and the second switch is activated by the control module.
In various embodiments, the treatment function is at least one of a face lift, a brow lift, a chin lift, an eye treatment, a wrinkle reduction, a scar reduction, a burn treatment, a tattoo removal, a skin tightening, a vein removal, a vein reduction, a treatment on a sweat gland, a treatment of hyperhidrosis, a sun spot removal, a fat treatment, a vaginal rejuvenation, and an acne treatment. In one embodiment, the transducer module is configured to provide an acoustic power of the ultrasonic therapy in a range of between about 1 W to about 100 W (e.g., 5-40 W, 10-50 W, 25-35 W) and a frequency of about 1 MHz to about 10 MHz to thermally heat the tissue to cause coagulation. In one embodiment, the acoustic power can be from a range of 1 W to about 100 W in a frequency range from about 1 MHz to about 12 MHz (e.g., 4 MHz, 7 MHz, 10 MHz, 4-10 MHz), or from about 10 W to about 50 W at a frequency range from about 3 MHz to about 8 MHz. In one embodiment, the acoustic power and frequencies are about 40 W at about 4.3 MHz and about 30 W at about 7.5 MHz. An acoustic energy produced by this acoustic power can be between about 0.01 joule (“J”) to about 10 J or about 2 J to about 5 J. In one embodiment, the acoustic energy is in a range less than about 3 J.
In various embodiments, a multi-focus ultrasound treatment system includes a controlling device operably controlling an ultrasonic treatment function for providing an ultrasonic treatment and a hand wand configured to direct ultrasonic treatment in a sequence of individual thermal cosmetic treatment zones. The hand wand includes a transducer configured to apply ultrasonic therapy to tissue at a location at a focal depth, the location positioned within a thermal cosmetic treatment zone, wherein the transducer is further configured to apply ultrasonic therapy to tissue simultaneously at a plurality of locations at the focal depth.
In various embodiments, an aesthetic imaging and multi-focus treatment system includes an ultrasonic probe comprising an ultrasound transducer configured to apply ultrasonic therapy to tissue at a plurality of locations at a focal depth with at least one of the group consisting of amplitude modulation poling and phase shifting, and a control module coupled to the ultrasonic probe for controlling the ultrasound transducer. In one embodiment, the plurality of locations are positioned in a substantially linear sequence within a cosmetic treatment zone. In one embodiment, a first set of locations is positioned within a first cosmetic treatment zone and a second set of locations is positioned within a second cosmetic treatment zone, the first zone being different from the second zone. In one embodiment, the first cosmetic treatment zone comprises a substantially linear sequence of the first set of locations and the second cosmetic treatment zone comprises a substantially linear sequence of the second set of locations. In one embodiment, the ultrasound transducer is configured to apply ultrasonic therapy using amplitude modulation whereby the ultrasound transducer comprises a plurality of portions that are configured to emit ultrasonic therapy at a plurality of amplitudes of acoustic intensity, wherein a first amplitude is different than a second amplitude. In one embodiment, the ultrasound transducer is configured to apply ultrasonic therapy phase shifting whereby the ultrasound transducer comprises a plurality of portions that are configured to emit ultrasonic therapy at a plurality of phases of acoustic intensity, wherein a first phase is different than a second phase. In one embodiment, the ultrasound transducer is configured to apply ultrasonic therapy using amplitude modulation whereby the ultrasound transducer comprises a plurality of portions that are configured to emit ultrasonic therapy at a plurality of amplitudes of acoustic intensity, wherein a first amplitude is different than a second amplitude, and apply ultrasonic therapy phase shifting whereby the ultrasound transducer comprises a plurality of portions that are configured to emit ultrasonic therapy at a plurality of phases of acoustic intensity, wherein a first phase is different than a second phase. In one embodiment, the plurality of phases comprises discrete phase values.
In one embodiment, the ultrasound transducer comprises piezoelectric material and the plurality of portions of the ultrasound transducer are configured to create a plurality of corresponding piezoelectric material variations in response to an electric field applied to the ultrasound transducer. In one embodiment, the plurality of piezoelectric material variations comprise at least one of expansion of the piezoelectric material and contraction of the piezoelectric material. In one embodiment, the ultrasonic transducer comprises at least one portion that is configured to emit ultrasonic therapy at two or more amplitudes of acoustic intensity, and wherein the amplitude of ultrasonic therapy emitted by the at least one portion of the piezoelectric varies over time. In one embodiment, the system also includes a movement mechanism configured to be programmed to provide variable spacing between the plurality of individual cosmetic treatment zones. In one embodiment, a sequence of individual cosmetic treatment zones has a treatment spacing in a range from about 0.01 mm to about 25 mm. In one embodiment, the ultrasonic treatment is at least one of a face lift, a brow lift, a chin lift, an eye treatment, a wrinkle reduction, a scar reduction, a burn treatment, a tattoo removal, a skin tightening, a vein removal, a vein reduction, a treatment on a sweat gland, a treatment of hyperhidrosis, a sun spot removal, a fat treatment, a vaginal rejuvenation, and an acne treatment. In one embodiment, the ultrasonic transducer is configured to provide an acoustic power of the ultrasonic therapy in a range of between about 1 W to about 100 W and a frequency of about 1 MHz to about 10 MHz to thermally heat the tissue to cause coagulation.
In various embodiments, a treatment system includes a controlling device operably controlling an ultrasonic treatment function for providing an ultrasonic treatment, and a hand wand configured to direct ultrasonic treatment in a sequence of individual thermal cosmetic treatment zones. In one embodiment, the hand wand includes a transducer configured to simultaneously apply ultrasonic therapy to tissue at a plurality of locations at a focal depth.
In various embodiments, a system of performing a cosmetic procedure that is not performed by a doctor, includes an ultrasonic probe comprising a transducer module. In one embodiment, the transducer module comprises an ultrasound transducer configured to apply ultrasonic therapy to tissue at a plurality of locations at a focal depth with at least one of the group consisting of amplitude modulation poling and phase shifting. In one embodiment, the ultrasonic probe comprises a first switch to control acoustic imaging, the ultrasonic probe comprises a second switch to control acoustic therapy for causing a plurality of individual cosmetic treatment zones, and the ultrasonic probe comprises a movement mechanism to provide desired spacing between the individual cosmetic treatment zones.
In various embodiments, aesthetic imaging and treatment system for use in cosmetic treatment, includes an ultrasonic probe. In one embodiment, a transducer module includes an ultrasound transducer configured to apply ultrasonic therapy through an aperture in an acoustically transparent member to form a thermal coagulation point (TCP) at a focal depth in tissue. In one embodiment, a first switch operably controls an ultrasonic imaging function for providing an ultrasonic imaging, a second switch operably controls an ultrasonic treatment function for providing an ultrasonic treatment, and a movement mechanism is configured to direct ultrasonic treatment in at least one sequence of individual thermal cosmetic treatment zones. In various embodiments, the transducer module is configured for both ultrasonic imaging and ultrasonic treatment, the transducer module is configured for coupling to the ultrasonic probe, the transducer module is configured to be operably coupled to at least one of the first switch, the second switch and the movement mechanism. In one embodiment, a control module comprises a processor and a display for controlling the transducer module.
In one embodiment, the plurality of locations are positioned in a substantially linear sequence within a cosmetic treatment zone. In one embodiment, a first set of locations is positioned within a first cosmetic treatment zone and a second set of locations is positioned within a second cosmetic treatment zone, the first zone being different from the second zone. In one embodiment, the first cosmetic treatment zone comprises a substantially linear sequence of the first set of locations and the second cosmetic treatment zone comprises a substantially linear sequence of the second set of locations. In one embodiment, the movement mechanism is configured to provide fixed spacing between a plurality of individual thermal cosmetic treatment zones. In one embodiment, a sequence of individual thermal cosmetic treatment zones has a treatment spacing in a range from about 0.01 mm to about 25 mm. In one embodiment, the first and second switches comprises user operated buttons or keys. In one embodiment, the treatment function is at least one of a face lift, a brow lift, a chin lift, an eye treatment, a wrinkle reduction, a scar reduction, a burn treatment, a tattoo removal, a skin tightening, a vein removal, a vein reduction, a treatment on a sweat gland, a treatment of hyperhidrosis, a sun spot removal, a fat treatment, a vaginal rejuvenation, and an acne treatment. In one embodiment, the transducer module is configured to provide an acoustic power of the ultrasonic therapy in a range of between about 1 W to about 100 W and a frequency of about 1 MHz to about 10 MHz to thermally heat the tissue to cause coagulation.
In various embodiments, a cosmetic treatment system includes a controlling device operably controlling an ultrasonic treatment function for providing an ultrasonic treatment to different depths below a skin surface, and a hand wand configured to direct ultrasonic treatment at two or more focal depths below the skin surface, the hand wand configured to connect at least two interchangeable transducer modules configured to apply the ultrasonic treatment to said two or more focal depths below the skin surface, wherein each of the transducer modules is configured to create one or more sequences of thermal coagulation points (TCPs).
In one embodiment, the system also includes an imaging transducer configured to provide images of at least one depth below the skin surface. In one embodiment, the system also includes a movement mechanism to place the sequence of individual discrete lesions in a linear sequence. In one embodiment, the transducer modules comprise at least one transducer module that is configured to provide ultrasound therapy in a range of between about 1 W to about 100 W and a frequency of about 1 MHz to about 10 MHz. In one embodiment, the transducer modules comprises one transducer module that is configured to provide therapy at a depth of 3 mm. In one embodiment, the transducer modules comprise one transducer module that is configured to provide therapy at a depth of 4.5 mm.
In one embodiment, the at least two interchangeable transducer modules comprise a first interchangeable transducer module that is configured to treat at a first focal depth below the skin surface with a first therapeutic transduction element, wherein the at least two interchangeable transducer modules comprise a second interchangeable transducer module that is configured to treat at a second focal depth below the skin surface with a second therapeutic transduction element, wherein the hand wand is configured to connect to one of the first interchangeable transducer module and the second interchangeable transducer module at a time, wherein the system further comprises a display to show a first image of the first focal depth below the skin surface and a second image of the second focal depth below the skin surface.
In one embodiment, the hand wand is configured to connect to one of the at least two interchangeable transducer modules at a time, the at least two interchangeable transducer modules comprise a first module that is configured to treat at a first focal depth below the skin surface with a single first ultrasound therapy element, and a second module that is configured to treat at a second focal depth below the skin surface with a single second ultrasound therapy element. In one embodiment, the creation of the one or more sequences of thermal coagulation points (TCPs) comprises the creation of multiple linear sequences of thermal coagulation points (TCPs).
In one embodiment, an imaging transducer is configured to provide images of at least one depth below the skin surface, wherein the individual thermal cosmetic treatment zones are individual discrete lesions, and further comprising a movement mechanism to place the sequence of individual discrete lesions in a linear sequence, wherein the transducer modules comprise at least one transducer module that is configured to provide ultrasound therapy in a range of between about 1 W to about 100 W and a frequency of about 1 MHz to about 10 MHz, wherein the transducer modules comprise one transducer module that is configured to provide therapy at a depth of 3 mm or 4.5 mm, and wherein the treatment function is at least one of a face lift, a brow lift, a chin lift, an eye treatment, a wrinkle reduction, a scar reduction, a burn treatment, a tattoo removal, a skin tightening, a vein removal, a vein reduction, a treatment on a sweat gland, a treatment of hyperhidrosis, a sun spot removal, a fat treatment, a vaginal rejuvenation, and an acne treatment.
In several of the embodiments described herein, the procedure is entirely cosmetic and not a medical act. For example, in one embodiment, the methods described herein need not be performed by a doctor, but at a spa or other aesthetic institute. In some embodiments, a system can be used for the non-invasive cosmetic treatment of skin.
The methods summarized above and set forth in further detail below describe certain actions taken by a practitioner; however, it should be understood that they can also include the instruction of those actions by another party. Thus, actions such as “coupling a transducer module with an ultrasonic probe” include “instructing the coupling of a transducer module with an ultrasonic probe.”
Further, areas of applicability will become apparent from the description provided herein. It should be understood that the description and specific examples are intended for purposes of illustration only and are not intended to limit the scope of the embodiments disclosed herein.
The drawings described herein are for illustration purposes only and are not intended to limit the scope of the present disclosure in any way. Embodiments of the present invention will become more fully understood from the detailed description and the accompanying drawings wherein:
The following description sets forth examples of embodiments, and is not intended to limit the present invention or its teachings, applications, or uses thereof. It should be understood that throughout the drawings, corresponding reference numerals indicate like or corresponding parts and features. The description of specific examples indicated in various embodiments of the present invention are intended for purposes of illustration only and are not intended to limit the scope of the invention disclosed herein. Moreover, recitation of multiple embodiments having stated features is not intended to exclude other embodiments having additional features or other embodiments incorporating different combinations of the stated features. Further, features in one embodiment (such as in one figure) may be combined with descriptions (and figures) of other embodiments.
In various embodiments, systems and methods for ultrasound treatment of tissue are configured to provide cosmetic treatment. In various embodiments, tissue below or even at a skin surface such as epidermis, dermis, fascia, muscle, fat, and superficial muscular aponeurotic system (“SMAS”), are treated non-invasively with ultrasound energy. The ultrasound energy can be focused at one or more treatment points, can be unfocused and/or defocused, and can be applied to a region of interest containing at least one of epidermis, dermis, hypodermis, fascia, muscle, fat and SMAS to achieve a cosmetic and/or therapeutic effect. In various embodiments, systems and/or methods provide non-invasive dermatological treatment to tissue through thermal treatment, coagulation, ablation, and/or tightening. In several embodiments disclosed herein, non-invasive ultrasound is used to achieve one or more of the following effects: a face lift, a brow lift, a chin lift, an eye treatment, a wrinkle reduction, a scar reduction, a burn treatment, a tattoo removal, a vein removal, a vein reduction, a treatment on a sweat gland, a treatment of hyperhidrosis, sun spot removal, an acne treatment, and a pimple removal. In one embodiment, fat reduction is achieved. In one embodiment, décolletage is treated. In some embodiments, two, three or more beneficial effects are achieved during the same treatment session, and may be achieved simultaneously. In another embodiment, the device may be used on adipose tissue (e.g., fat). In another embodiment the system, device and/or method may be applied in the genital area (e.g., a vagina for vaginal rejuvenation and/or vaginal tightening, such as for tightening the supportive tissue of the vagina).
Various embodiments of the present invention relate to devices or methods of controlling the delivery of energy to tissue. In various embodiments, various forms of energy can include acoustic, ultrasound, light, laser, radio-frequency (RF), microwave, electromagnetic, radiation, thermal, cryogenic, electron beam, photon-based, magnetic, magnetic resonance, and/or other energy forms. Various embodiments of the present invention relate to devices or methods of splitting an ultrasonic energy beam into multiple beams. In various embodiments, devices or methods can be used to alter the delivery of ultrasound acoustic energy in any procedures such as, but not limited to, therapeutic ultrasound, diagnostic ultrasound, non-destructive testing (NDT) using ultrasound, ultrasonic welding, any application that involves coupling mechanical waves to an object, and other procedures. Generally, with therapeutic ultrasound, a tissue effect is achieved by concentrating the acoustic energy using focusing techniques from the aperture. In some instances, high intensity focused ultrasound (HIFU) is used for therapeutic purposes in this manner. In one embodiment, a tissue effect created by application of therapeutic ultrasound at a particular depth to can be referred to as creation of a thermal coagulation point (TCP). It is through creation of TCPs at particular positions that thermal and/or mechanical ablation of tissue can occur non-invasively or remotely.
In one embodiment, TCPs can be created in a linear or substantially linear zone or sequence, with each individual TCP separated from neighboring TCPs by a treatment spacing. In one embodiment, multiple sequences of TCPs can be created in a treatment region. For example, TCPs can be formed along a first linear sequence and a second linear sequence separated by a treatment distance from the first linear sequence. Although treatment with therapeutic ultrasound can be administered through creation of individual TCPs in a sequence and sequences of individual TCPs, it may be desirable to reduce treatment time and corresponding risk of pain and/or discomfort experienced by a patient. Therapy time can be reduced by forming multiple TCPs simultaneously, nearly simultaneously, or sequentially. In some embodiments, a treatment time can be reduced 10%, 20%, 25%, 30%, 35%, 40%, 4%, 50%, 55%, 60%, 65%, 70%, 75%, 80% or more by creating multiple TCPs.
Various embodiments of the present invention address potential challenges posed by administration of ultrasound therapy. In various embodiments, time for effecting the formation of TCPs for a desired cosmetic and/or therapeutic treatment for a desired clinical approach at a target tissue is reduced. In various embodiments, target tissue is, but is not limited to, any of skin, eyelids, eye lash, eye brow, caruncula lacrimalis, crow's feet, wrinkles, eye, nose, mouth, tongue, teeth, gums, ears, brain, heart, lungs, ribs, abdomen, stomach, liver, kidneys, uterus, breast, vagina, prostrate, testicles, glands, thyroid glands, internal organs, hair, muscle, bone, ligaments, cartilage, fat, fat labuli, adipose tissue, subcutaneous tissue, implanted tissue, an implanted organ, lymphoid, a tumor, a cyst, an abscess, or a portion of a nerve, or any combination thereof.
In some embodiments, amplitude modulation and/or discrete phasing techniques can be applied to an aperture configured to emit ultrasonic energy. This can cause splitting of an ultrasonic beam emitted by the aperture into multiple beams, which may simultaneously, substantially simultaneously, or sequentially deliver ultrasonic energy to multiple locations or focal points. In some embodiments, amplitude modulation can be combined with techniques configured to change modulation states of an aperture in order to reduce intensity of ultrasonic energy delivered to tissues located before and/or after focal points. In various embodiments, therapy time can be reduced by 1-24%, 1-26%, 1-39%, 1-50%, or more than 50%.
Various embodiments of ultrasound treatment and imaging devices are described in U.S. application Ser. No. 12/996,616, which published as U.S. Publication No. 2011-0112405 A1 on May 12, 2011, which is a U.S. National Phase under 35 U.S.C. § 371 of International Application No. PCT/US2009/046475, filed on Jun. 5, 2009 and published in English on Dec. 10, 2009, which claims the benefit of priority from U.S. Provisional No. 61/059,477 filed Jun. 6, 2008, each of which is incorporated in its entirety by reference, herein.
System Overview
With reference to the illustration in
In various embodiments, the controller 300 can be configured for operation with the hand wand 100 and the module 200, as well as the overall ultrasound system 20 functionality. In various embodiments, multiple controllers 300, 300′, 300″, etc. can be configured for operation with multiple hand wands 100, 100′, 100″, etc. and or multiple modules 200, 200′, 200″, etc. The controller 300 can include an interactive graphical display 310, which can include a touchscreen monitor and Graphic User Interface (GUI) that allows the user to interact with the ultrasound system 20. As is illustrated, the graphical display 315 includes a touchscreen interface 315. In various embodiments, the display 310 sets and displays the operating conditions, including equipment activation status, treatment parameters, system messages and prompts, and ultrasound images. In various embodiments, the controller 300 can be configured to include, for example, a microprocessor with software and input/output devices, systems and devices for controlling electronic and/or mechanical scanning and/or multiplexing of transducers and/or multiplexing of transducer modules, a system for power delivery, systems for monitoring, systems for sensing the spatial position of the probe and/or transducers and/or multiplexing of transducer modules, and/or systems for handling user input and recording treatment results, among others. In various embodiments, the controller 300 can include a system processor and various analog and/or digital control logic, such as one or more of microcontrollers, microprocessors, field-programmable gate arrays, computer boards, and associated components, including firmware and control software, which may be capable of interfacing with user controls and interfacing circuits as well as input/output circuits and systems for communications, displays, interfacing, storage, documentation, and other useful functions. System software running on the system process may be configured to control all initialization, timing, level setting, monitoring, safety monitoring, and all other ultrasound system functions for accomplishing user-defined treatment objectives. Further, the controller 300 can include various input/output modules, such as switches, buttons, etc., that may also be suitably configured to control operation of the ultrasound system 20.
As is illustrated in
In one embodiment, the hand wand 100 includes one or more finger activated controllers or switches, such as 150 and 160. In one embodiment, the hand wand 100 can include a removable module 200. In other embodiments, the module 200 may be non-removable. The module 200 can be mechanically coupled to the hand wand 100 using a latch or coupler 140. An interface guide 235 can be used for assisting the coupling of the module 200 to the hand wand 100. The module 200 can include one or more ultrasound transducers. In some embodiments, an ultrasound transducer includes one or more ultrasound elements. The module 200 can include one or more ultrasound elements. The hand wand 100 can include imaging-only modules, treatment-only modules, imaging-and-treatment modules, and the like. In one embodiment, the control module 300 can be coupled to the hand wand 100 via the interface 130, and the graphic user interface 310 can be configured for controlling the module 200. In one embodiment, the control module 300 can provide power to the hand wand 100. In one embodiment, the hand wand 100 can include a power source. In one embodiment, the switch 150 can be configured for controlling a tissue imaging function and the switch 160 can be configured for controlling a tissue treatment function
In one embodiment, the module 200 can be coupled to the hand wand 100. The module 200 can emit and receive energy, such as ultrasonic energy. The module 200 can be electronically coupled to the hand wand 100 and such coupling may include an interface which is in communication with the controller 300. In one embodiment, the interface guide 235 can be configured to provide electronic communication between the module 200 and the hand wand 100. The module 200 can comprise various probe and/or transducer configurations. For example, the module 200 can be configured for a combined dual-mode imaging/therapy transducer, coupled or co-housed imaging/therapy transducers, separate therapy and imaging probes, and the like. In one embodiment, when the module 200 is inserted into or connected to the hand wand 100, the controller 300 automatically detects it and updates the interactive graphical display 310.
In various embodiments, tissue below or even at a skin surface such as epidermis, dermis, hypodermis, fascia, and superficial muscular aponeurotic system (“SMAS”), and/or muscle are treated non-invasively with ultrasound energy. Tissue may also include blood vessels and/or nerves. The ultrasound energy can be focused, unfocused or defocused and applied to a region of interest containing at least one of epidermis, dermis, hypodermis, fascia, and SMAS to achieve a therapeutic effect.
With reference to the illustration in
With reference to the illustration in
Coupling components can comprise various substances, materials, and/or devices to facilitate coupling of the transducer 280 or module 200 to a region of interest. For example, coupling components can comprise an acoustic coupling system configured for acoustic coupling of ultrasound energy and signals. Acoustic coupling system with possible connections such as manifolds may be utilized to couple sound into the region of interest, provide liquid- or fluid-filled lens focusing. The coupling system may facilitate such coupling through use of one or more coupling media, including air, gases, water, liquids, fluids, gels, solids, non-gels, and/or any combination thereof, or any other medium that allows for signals to be transmitted between the transducer 280 and a region of interest. In one embodiment one or more coupling media is provided inside a transducer. In one embodiment a fluid-filled module 200 contains one or more coupling media inside a housing. In one embodiment a fluid-filled module 200 contains one or more coupling media inside a sealed housing, which is separable from a dry portion of an ultrasonic device. In various embodiments, a coupling medium is used to transmit ultrasound energy between one or more devices and tissue with a transmission efficiency of 100%, 99% or more, 98% or more, 95% or more, 90% or more, 80% or more, 75% or more, 60% or more, 50% or more, 40% or more, 30% or more, 25% or more, 20% or more, 10% or more, and/or 5% or more.
In various embodiments, the transducer 280 can image and treat a region of interest at any suitable tissue depths 279. In one embodiment, the transducer module 280 can provide an acoustic power in a range of about 1 W or less, between about 1 W to about 100 W, and more than about 100 W. In one embodiment, the transducer module 280 can provide an acoustic power at a frequency of about 1 MHz or less, between about 1 MHz to about 10 MHz, and more than about 10 MHz. In one embodiment, the module 200 has a focal depth 278 for a treatment at a tissue depth 279 of about 4.5 mm below the skin surface 501. Some non-limiting embodiments of transducers 280 or modules 200 can be configured for delivering ultrasonic energy at a tissue depth of 3 mm, 4.5 mm, 6 mm, less than 3 mm, between 3 mm and 4.5 mm, between 4.5 mm and 6 mm, more than more than 4.5 mm, more than 6 mm, etc., and anywhere in the ranges of 0-3 mm, 0-4.5 mm, 0-6 mm, 0-25 mm, 0-100 mm, etc. and any depths therein. In one embodiment, the ultrasound system 20 is provided with two or more transducer modules 280. For example, a first transducer module can apply treatment at a first tissue depth (e.g., about 4.5 mm) and a second transducer module can apply treatment at a second tissue depth (e.g., of about 3 mm), and a third transducer module can apply treatment at a third tissue depth (e.g., of about 1.5-2 mm). In one embodiment, at least some or all transducer modules can be configured to apply treatment at substantially same depths.
In various embodiments, changing the number of focus point locations (e.g., such as with a tissue depth 279) for an ultrasonic procedure can be advantageous because it permits treatment of a patient at varied tissue depths even if the focal depth 278 of a transducer 270 is fixed. This can provide synergistic results and maximizing the clinical results of a single treatment session. For example, treatment at multiple depths under a single surface region permits a larger overall volume of tissue treatment, which results in enhanced collagen formation and tightening. Additionally, treatment at different depths affects different types of tissue, thereby producing different clinical effects that together provide an enhanced overall cosmetic result. For example, superficial treatment may reduce the visibility of wrinkles and deeper treatment may induce formation of more collagen growth. Likewise, treatment at various locations at the same or different depths can improve a treatment.
Although treatment of a subject at different locations in one session may be advantageous in some embodiments, sequential treatment over time may be beneficial in other embodiments. For example, a subject may be treated under the same surface region at one depth in time one, a second depth in time two, etc. In various embodiments, the time can be on the order of nanoseconds, microseconds, milliseconds, seconds, minutes, hours, days, weeks, months, or other time periods. The new collagen produced by the first treatment may be more sensitive to subsequent treatments, which may be desired for some indications. Alternatively, multiple depth treatment under the same surface region in a single session may be advantageous because treatment at one depth may synergistically enhance or supplement treatment at another depth (due to, for example, enhanced blood flow, stimulation of growth factors, hormonal stimulation, etc.). In several embodiments, different transducer modules provide treatment at different depths. In one embodiment, a single transducer module can be adjusted or controlled for varied depths. Safety features to minimize the risk that an incorrect depth will be selected can be used in conjunction with the single module system.
In several embodiments, a method of treating the lower face and neck area (e.g., the submental area) is provided. In several embodiments, a method of treating (e.g., softening) mentolabial folds is provided. In other embodiments, a method of treating the eye region is provided. Upper lid laxity improvement and periorbital lines and texture improvement will be achieved by several embodiments by treating at variable depths. By treating at varied locations in a single treatment session, optimal clinical effects (e.g., softening, tightening) can be achieved. In several embodiments, the treatment methods described herein are non-invasive cosmetic procedures. In some embodiments, the methods can be used in conjunction with invasive procedures, such as surgical facelifts or liposuction, where skin tightening is desired. In various embodiments, the methods can be applied to any part of the body.
In one embodiment, a transducer module permits a treatment sequence at a fixed depth at or below the skin surface. In one embodiment, a transducer module permits a treatment sequence at a fixed depth below the dermal layer. In several embodiments, the transducer module comprises a movement mechanism configured to direct ultrasonic treatment in a sequence of individual thermal lesions (hereinafter “thermal coagulation points” or “TCPs”) at a fixed focal depth. In one embodiment, the linear sequence of individual TCPs has a treatment spacing in a range from about 0.01 mm to about 25 mm. For example, the spacing can be 1.1 mm or less, 1.5 mm or more, between about 1.1 mm and about 1.5 mm, etc. In one embodiment, the individual TCPs are discrete. In one embodiment, the individual TCPs are overlapping. In one embodiment, the movement mechanism is configured to be programmed to provide variable spacing between the individual TCPs. In several embodiments, a transducer module comprises a movement mechanism configured to direct ultrasonic treatment in a sequence so that TCPs are formed in linear or substantially linear sequences separated by a treatment distance. For example, a transducer module can be configured to form TCPs along a first linear sequence and a second linear sequence separated by a treatment distance from the first linear sequence. In one embodiment, treatment distance between adjacent linear sequences of individual TCPs is in a range from about 0.01 mm to about 25 mm. For example, the treatment distance can be 2 mm or less, 3 mm or more, between about 2 mm and about 3 mm, etc. In several embodiments, a transducer module can comprise one or more movement mechanisms configured to direct ultrasonic treatment in a sequence so that TCPs are formed in linear or substantially linear sequences of individual thermal lesions separated by a treatment distance from other linear sequences. In one embodiment, the treatment distance separating linear or substantially linear TCPs sequences is the same or substantially the same. In one embodiment, the treatment distance separating linear or substantially linear TCPs sequences is different or substantially different for various adjacent pairs of linear TCPs sequences.
In one embodiment, first and second removable transducer modules are provided. In one embodiment, each of the first and second transducer modules are configured for both ultrasonic imaging and ultrasonic treatment. In one embodiment, a transducer module is configured for treatment only. In one embodiment, an imaging transducer may be attached to a handle of a probe or a hand wand. The first and second transducer modules are configured for interchangeable coupling to a hand wand. The first transducer module is configured to apply ultrasonic therapy to a first layer of tissue, while the second transducer module is configured to apply ultrasonic therapy to a second layer of tissue. The second layer of tissue is at a different depth than the first layer of tissue.
As illustrated in
In one embodiment, an ultrasound system 20 generates ultrasound energy which is directed to and focused below the surface 501. This controlled and focused ultrasound energy 50 creates the thermal coagulation point or zone (TCP) 550. In one embodiment, the ultrasound energy 50 creates a void in subcutaneous tissue 510. In various embodiments, the emitted energy 50 targets the tissue below the surface 501 which cuts, ablates, coagulates, micro-ablates, manipulates, and/or causes a lesion 550 in the tissue portion 10 below the surface 501 at a specified focal depth 278. In one embodiment, during the treatment sequence, the transducer 280 moves in a direction denoted by the arrow marked 290 at specified intervals 295 to create a series of treatment zones 254 each of which receives an emitted energy 50 to create one or more TCPs 550.
In various embodiments, transducer modules can comprise one or more transduction elements. The transduction elements can comprise a piezoelectrically active material, such as lead zirconante titanate (PZT), or any other piezoelectrically active material, such as a piezoelectric ceramic, crystal, plastic, and/or composite materials, as well as lithium niobate, lead titanate, barium titanate, and/or lead metaniobate. In various embodiments, in addition to, or instead of, a piezoelectrically active material, transducer modules can comprise any other materials configured for generating radiation and/or acoustical energy. In various embodiments, transducer modules can be configured to operate at different frequencies and treatment depths. Transducer properties can be defined by an outer diameter (“OD”) and focal length (FL). In one embodiment, a transducer can be configured to have OD=19 mm and FL=15 mm. In other embodiments, other suitable values of OD and FL can be used, such as OD of less than about 19 mm, greater than about 19 mm, etc. and FL of less than about 15 mm, greater than about 15 mm, etc. Transducer modules can be configured to apply ultrasonic energy at different target tissue depths. As described above, in several embodiments, transducer modules comprise movement mechanisms configured to direct ultrasonic treatment in a linear or substantial liner sequence of individual TCPs with a treatment spacing between individual TCPs. For example, treatment spacing can be about 1.1 mm, 1.5 mm, etc. In several embodiments, transducer modules can further comprise movement mechanisms configured to direct ultrasonic treatment in a sequence so that TCPs are formed in linear or substantially linear sequences separated by a treatment spacing. For example, a transducer module can be configured to form TCPs along a first linear sequence and a second linear sequence separated by treatment spacing between about 2 mm and 3 mm from the first linear sequence. In one embodiment, a user can manually move the transducer modules across the surface of a treatment area so that adjacent linear sequences of TCPs are created. In one embodiment, a movement mechanism can automatically move the transducer modules across the surface of a treatment area so that adjacent linear sequences of TCPs are created.
In various embodiments, treatment advantageously can be delivered at a faster rate and with improved accuracy. This in turn can reduce treatment time and decrease pain experienced by a subject. Further, efficiency can be increased if variance is reduced in a treatment spacing between linear or substantially linear sequences of TCPs. In one embodiment, a system uses a transducer configured to produce a single focus treatment point. In one embodiment, the transducer can be mechanically moved along a line to create a linear sequence of TCPs. For example, Table 1 provides an estimate of time for creating a linear sequence of TCPs and an estimate of time for moving between linear sequences of TCPs according to one embodiment. It can be seen that time for creating a linear sequence of TCPs and time for moving between linear sequences of TCPs are nearly equivalent.
In various embodiments, therapeutic treatment advantageously can be delivered at a faster rate and with improved accuracy by using a transducer configured to deliver multiple focus points, or TCPs. This in turn can reduce treatment time and decrease pain experienced by a subject. In several embodiments, treatment time is reduced if time for creating a linear sequence of TCPs and time for moving between linear sequences of TCPs are reduced by emitting TCPs at multiple locations from a single transducer.
Therapy Delivery Using Amplitude Modulation
Aperture Spatial Frequency Analysis and Fourier Transform
In various embodiments, spatial frequency analysis techniques based on Fourier analysis and Fourier optics can be used to increase efficiency of therapeutic treatment. When a system that has an impulse response h(t) is excited by a stimulus x(t), the relationship between the input x(t) and output y(t) is related by the convolution function as follows:
y(t)=x(t)*h(t)=∫−∞∞x(τ)h(t−τ)dτ (1)
In various embodiments, Fourier transform can be applied to compute the convolution of equation (1). Continuous one-dimensional Fourier transform can be defined as:
Y(f)=F(y(t)=∫−∞∞y(t)e−j2πftdt (2)
Here f is frequency, t is time. It can be shown that convolution in the time domain is equivalent to multiplication in the frequency domain:
F(x(t)*h(t))=X(f)H(f)=Y(f) (3)
In various embodiments, the Fraunhofer approximation can be used for deriving a relationship between a transducer opening or aperture and a resulting ultrasonic beam response. Derivation of the Fraunhofer approximation is described in Joseph Goodman, Introduction to Fourier Optics (3d ed. 2004), which is incorporated in its entirety by reference, herein. According to the Fraunhofer approximation, a far-field complex amplitude pattern produced by a complex aperture is equal to a two-dimensional Fourier transform of the aperture amplitude and phase. In several embodiments, this relationship in optics can be extended to ultrasound since linear wave equations can be used to represent both light propagation and sound propagation. In the case of optics and/or ultrasound, the two-dimensional Fourier transform can determine a sound wave pressure amplitude distribution at the focus of a transducer.
In various embodiments, a Huygens-Fresnel integral determines an amplitude in the pressure field U(P0) from an aperture by integrating the effect (both amplitude and phase) from each resonator or transducer on a surface Σ. It is expressed as:
where k is a wave number expressed as 2π/λ, r01 is a distance from an aperture to the screen in a field, n is a directional vector from the aperture, U(P1) is the pressure field in the aperture, and U(P0) is the pressure field in the screen.
In various embodiments, following assumption are used to lead to an approximation that the amplitude in the pressure field U(P0) is a two-dimensional Fourier transform of U(P1). First, at small angles, the cosine function of the angle between n and r01 is 1. This leads to the following simplifications:
where z represents depth. Second, Fresnel approximation of the distance r01 can be expressed, using a binomial expansion, as:
Third, it can be assumed that the observation plane is much greater than the dimensions of the aperture as follows:
If these assumptions are applied to equations (4a) and (4b), then the amplitude in the field can be expressed as:
Equation (5) includes a quadratic phase term on the outside of the integral which does not affect the overall magnitude. Comparing equation (5) to equation (2) reveals a similarity in the arguments inside the integral. In particular, instead of a one dimensional function y(t) evaluated at frequencies f, a two dimensional function U(x1,y1) is evaluated at spatial frequencies given as:
Because the integral of equation (5) is the two-dimensional Fourier transform, equation (5) can be rewritten as:
In various embodiments, the amplitude and phase functions in the aperture U(x1,y1) are separable into two functions, namely a function of x1 and a function of y1 respectively.
U(x1,y1)=g(x1)h(y1) (7)
Applying equation (7) to equation (6) leads to further simplification:
Equation (8) demonstrates that a response of the aperture in the field for a separable two-dimensional function is the multiplication of two one-dimensional Fourier transforms in x1 and y1 directions. It can be further shown that equations (6) and (8) hold for a focused system with the exception that spatial frequency arguments change as is expressed in equations (9a) and (9b). For a focused system, the variable z which represents depth can be replaced with zf which represents a focal distance.
In various embodiments, Fourier optics and Fourier transform identities (some of which are listed in Table 2, below) can be used for ultrasound transducers in order to determine the intensity distribution corresponding to a transducer design. For example, Fourier transform of a rectangle rect(ax) is a sinc function. As another example, Fourier transform of a two dimensional circle of uniform amplitude is a first order Bessel function which can be represented as J1.
In several embodiments, an ultrasound transducer can have a rectangular aperture of suitable dimensions and focal length. In several embodiments, an ultrasound transducer can have a circular aperture with suitable dimensions and focal length. In one embodiment, a transducer can have a circular aperture with an outer radius of approximately 9.5 mm, an inner diameter of approximately 2 mm, and focal length of approximately 15 mm. The aperture of a circular transducer may be described as:
For example, a can be approximately 9.5 mm and b can be approximately 2 mm. Applying Fourier transform to equation (10a) can provide an estimate of the sound wave pressure distribution at the focus.
where ξx and ξy are same as fx and fy of equations (9a) and (9b). Equation (11) demonstrates that the sound wave pressure distribution of a transducer with a circular aperture is a first order Bessel function. In one embodiment, a substantial majority of the energy is concentrated at the focus (e.g., 15 mm away from the aperture). The width of a main ultrasonic beam and the distribution of energy away from the main beam can be expressed as a function of the operating frequency as is expressed in equations (9a) and (9b).
In various embodiments, two identical or nearly identical beams could be created at the focus if the aperture was modulated (e.g., multiplied) by a correct function. In one embodiment, a cosine function can be applied to a circular aperture as follows:
An energy distribution or beam response at the focus of the modulated aperture of equation (12) is the convolution of the Fourier transform of the two functions of the aperture:
Equation (13) can be simplified into the summation of two separate functions applying the Fourier Transform identity for a Dirac delta function (e.g., identity 2 in Table 2):
Equation (14) shows that two beams appearing at the focus are spatially shifted by
n-modulated beam. In several embodiments, one or more other modulation functions, such as sine function, can be used to achieve a desired beam response. In several embodiments, aperture can be modulated such that more than two foci are created. For example, three, four, five, etc. foci can be created. In several embodiments, aperture can be modulated such that foci are created sequentially or substantially sequentially rather than simultaneously.
In several embodiments, therapy transducer modules comprise movement mechanisms configured to direct ultrasonic treatment in a linear or substantial liner sequence of individual TCPs with a treatment spacing between individual TCPs. For example, treatment spacing can be about 1.1 mm, 1.5 mm, etc. In several embodiments, transducer modules can further comprise movement mechanisms configured to direct ultrasonic treatment in a sequence so that TCPs are formed in linear or substantially linear sequences separated by a treatment spacing. For example, a transducer module can be configured to form TCPs along a first linear sequence and a second linear sequence separated by treatment spacing between about 2 mm and 3 mm from the first linear sequence. According to equation (14), a simultaneous or substantially simultaneous split in the ultrasonic beam may be achieved at the focus (or before the focus) if the aperture is modulated by a cosine and/or sine function of a desired spatial frequency. In one embodiment, two simultaneous or nearly simultaneous focused beams separated by about 1.1 mm treatment spacing can be created in a linear or substantially linear sequence. At 7 MHz frequency of ultrasound, the wavelength λ of ultrasound wave in water is approximately 0.220 mm. Accordingly, spatial frequencies ξx and ξy at the focus are represented as:
In order to place two foci separated by about 1.1 mm, then the spatial frequency for modulating the aperture is calculated as follows. Using identities 3 and 4 in Table 2, the Fourier transformation of a sine or cosine function is a Dirac delta function with the argument:
In one embodiment, equation (16a) can solved for kx when argument is 0:
Further, xo can be replaced by half of the separation distance (e.g., 1.1 mm):
In several embodiments, a transducer with circular aperture emitting ultrasonic energy at various operating frequencies can be modulated by a sine and/or cosine functions at spatial frequencies listed in Table 3. Modulated aperture of the transducer can produce a simultaneously or substantially simultaneously split beam with two foci having different separation distances, as is indicated in Table 3. In one embodiment, the transducer can have OD of about 19 mm and a focal length of about 15 mm.
As is shown in Table 3, in several embodiments, a spatial frequency of an aperture modulation function increases as the ultrasonic operating frequency increases for a given foci separation distance. In addition, the spatial frequency increases as the desired foci separation distance increases.
In one embodiment, higher spatial frequency can result in amplitude transitions in the aperture occurring more rapidly. Due to transducer processing limitations, rapid amplitude variations in the aperture can make the aperture less efficient as there may be a variance in an amount of sound pressure produced by different parts of the aperture. In one embodiment, using spatial frequencies to simultaneously or nearly simultaneously split the beam can reduce the overall focal gain of each beam. As is shown in equation (14), a field pressure at the focus of each beam is reduced by a factor of two in comparison with an unmodulated beam. In one embodiment, the sound pressure or ultrasound intensity from the aperture can be increased to obtain similar or substantially similar intensities at the focal plane. However, in one embodiment, increasing the pressure at the aperture may not be limited by system and/or transducer processing limitations. In one embodiment, an increase in the pressure at the aperture can increase the overall intensity in the near field, which may increase the possibility of excessively heating treatment area tissue(s) that is located before focus. In one embodiment, the possibility of additional heating of the pre-focal tissue(s) may be limited or eliminated by using a lower ultrasound treatment frequency.
In one embodiment, applying aperture modulation function as is shown in equation (12) results in two simultaneous or substantially simultaneous ultrasound beams at the focus. In various embodiments, ultrasound beam can be split multiple times, such as three, four, five, etc. times, such that multiple simultaneous or nearly simultaneous beams are created. In one embodiment, four equally spaced beams along one dimension can be generated by modulating or multiplying the aperture by two separate spatial frequencies:
As is shown in equation (17b), unmodulated beam at the focus can be created at four different locations along the x-axis. In one embodiment, a constant or DC term, C1, may be added to the amplitude modulation function to maintain placement of energy at the original focal location:
In one embodiment, aperture modulation of equations (17) and (18), whereby the beam can be placed at multiple locations simultaneously or nearly simultaneously, may be have limited applicability due to system, material, and/or tissue limitations. In one embodiment, due to the possibility of heating treatment area tissue(s) located before focus, the frequency of ultrasound therapy may be adjusted, such as lowered, in order to limit and/or eliminate such possibility. In one embodiment, nonlinear techniques can be applied at the focus in order to limit and/or eliminate the possibility of heating of the pre-focal tissue(s). In one embodiment, the sound pressure or ultrasound intensity from the aperture can be increased to obtain similar or substantially similar intensities at the focal plane.
In various embodiments, as is shown in equation (7), if the amplitude and phase functions at the aperture are separable, the two-dimensional Fourier transform of a sound pressure function U(x1, y1) can be expressed as a product of one-dimensional dimensional Fourier transform of two functions in x and y, which is shown in equation (8). In various embodiments, it may be advantageous to create multiple TCPs in a linear or substantially linear sequence as well as to create multiple linear sequences simultaneously or nearly simultaneously. As is shown in Table 1, in one embodiment, if two TCPs are created simultaneously or substantially simultaneously in a linear sequence, but linear sequences are created sequentially, overall treatment time may be reduced by about 24%. In one embodiment, if four TCPs are created simultaneously or substantially simultaneously in a linear sequence, but linear sequences are created sequentially, overall treatment time may be reduced by about 39%. In one embodiment, if two TCPs are created simultaneously or substantially simultaneously along with two linear sequences, overall treatment time may be reduced by about 50%.
Multiple Beam Splitting in Two Dimensions
In several embodiments, four TCPs can be created, such as two each in two linear or substantially linear sequences, using the following aperture amplitude modulation function:
The Fourier transform of this function is:
As is shown in equations (19a) and (19b), the beam can be modulated into two linear sequences, with each sequence having two foci. In one embodiment, the linear sequences may be orthogonal. In one embodiment, the linear sequences may not be orthogonal. Because the Fourier transform is multiplied by ¼ in equation (19b), the amplitude of the beam or the intensity is further reduced as compared with beam split in into two foci (e.g., as is shown in equation (14)). In one embodiment, due to the possibility of heating treatment area tissue(s) that is located before focus, the frequency of ultrasound therapy may be adjusted, such as lowered, in order to limit and/or eliminate possibility of excessive heating of tissue(s) located before the focus. In several embodiments, modulation can be applied so that linear or substantially linear sequences of TCPs are created sequentially or substantially sequentially.
In various embodiments, as is shown in equations (12) through (14), cosine and/or sine amplitude modulation across a transducer with having a circular aperture creates two separate beams shifted by a spatial frequency of the cosine and/or sine modulation function. In various embodiments, modulation function can be spatially or phase shifted as follows:
In one embodiment, the amplitude caused by the shift is the same as that in equation (14). In one embodiment, although spatial shift (e.g., by angle θ) does not change the overall amplitude at the focus, the phase is modified. In several embodiments, modification of the phase may be advantageous for reducing a peak intensity before the focus. In several embodiments, an aperture can be designed so that near field or pre-focal heating of the tissue(s) is substantially minimized while intensity at the focus or focal gain is substantially maximized.
Therapy Delivery Using Phase Shifting
In various embodiments, the beam may be split axially. It may be advantageous to analyze such axial split through an analysis of time delays and application of discrete phasing. In several embodiments, splitting the beam axially in x and/or y direction can be combined with planar or two-dimensional amplitude modulation of the aperture (e.g., such as that shown in equations (19a) and (19b)), which may result in splitting the beam in two or three dimensions. In several embodiments, beam can be shifted by using phase tilting at the aperture, which can be substantially equivalent to spatial shifting. In several embodiments, phase tilting can be performed using the following Fourier transform pair:
In one embodiment, this function describes an aperture which is only phase modulated since the magnitude of the exponential term is one. In one embodiment, each spatial location has an element that is under a different phase which can be expressed as the ratio of the imaginary (sine) and real (cosine) parts as follows:
Equation (22) expresses the phase differences spatially.
In various embodiments, time delays associated with the propagation of ultrasound waves can be used to describe the phase shift or tilt for focusing the beam. In one embodiment, a transducer aperture can be a focused circular bowl having the following geometry:
r2+(z−zf)2=zf2 (23a)
r2=x2+y2 (23b)
Equations (23a) and (23b) describe a circular bowl that is centered at the bowl apex with a focal length zf. In one embodiment, the focus can be moved from (0, 0, zf) to a spatial point P0 which is located at (x0, y0, z0). The distance to this new spatial point P0 from any point on the bowl can be expressed as:
d=√{square root over ((x1−x0)2+(y1−y0)2+(z1−z0)2)} (24)
where (x1, y1, z1) are points on the bowl aperture that is defined by equations (23a) and (23b). In one embodiment, in order to determine the actual time to the target P0, then the speed of sound c (343.2 m/s) can be divided into a propagation distance d as follows:
In one embodiment, in order to obtain a desired constructive interference associated with propagation of delayed ultrasound waves at the focus, equation (25) can be used to calculate the relative time delay to another part of the aperture. In one embodiment, this can be accomplished by subtracting equation (25) by the minimum time delay. The remaining time is the extra time for ultrasound waves emitted by other parts of the aperture to arrive at the new spatial point P0.
In several embodiments, a focus point of (0, 0, 15 mm) can be moved to a different focus point P0. Relative time delays to new focus points P0 relative to the center or apex of the aperture bowl (as expressed in radial distance) can be calculated using equation (25) and are illustrated in
In various embodiments, ultrasound wave of a suitable frequency can be directed to a target area. In one embodiment, a transducer comprising piezoelectrically active material can be electrically excited by a continuous wave signal of a suitable operational frequency to achieve a suitable therapy frequency. In various embodiments of transducers, the operational frequency can be about 4 MHz, about 7 MHz, about 10 MHz, less than about 4 MHz (e.g., between about 20 KHz and about 4 MHz), between about 4 MHz and about 7 MHz, greater than about 10 MHz, etc. In one embodiment, the continuous wave signal can be on or active for a period of between about 20 msec to 30 msec. This in turn can imply that the aperture is excited by between about 80,000 cycles to about 300,000 cycles of the excitation signal. In one embodiment, other suitable periods of the excitation signal being active can be used, such as for example, less than about 20 msec, greater than about 30 msec, and the like. In one embodiment, a short duration of the excitation signal being active can make it unnecessary to obtain constructive interference at the focus. This can be a result of time delays for propagation of an ultrasonic wave from different points of the aperture to a focus point Po being greater than the duration of the excitation signal being active. In one embodiment, it may be sufficient to modify phases corresponding to aperture locations based on the operational frequency without controlling the time delays for obtaining constructive interference. In one embodiment, phases corresponding to aperture locations may be modified and, additionally, time delays for obtaining constructive interference at a new focus point may be controlled.
Therapy Delivery Using Discrete Phase Shifting
In one embodiment, delay and/or phase quantization can affect the precision that is used to represent time and/or phase delays. In other words, the discrete delay and/or discrete phase can be used. In one embodiment, a precision of time and/or phase delays can be limited by system parameters, such as a system clock and/or number of bits available for representing the delay. In one embodiment, other system parameters can instead or further limit the precision. In one embodiment, phase delays are equally spaced around the unit circle (360°). In one embodiment, phase delays can aperiodic or unequally spaced around the unit circle. Table 4 shows phase quantization levels according to several embodiments. Additional numbers of levels (greater than 8) can be used in several embodiments. As is shown in Table 4 two phases (N=2), 0° and 180°, can represent a minimum level of phase control for changing the focus point of an ultrasound beam according to one embodiment.
In one embodiment with reference to curve 1022c of
In various embodiments, continuous or discrete amplitude modulation at an aperture and/or continuous or discrete phase delays to focus an ultrasound beam can be used. In one embodiment, it may be advantageous to provide a mechanical focal point rather than using aperture amplitude modulation and/or phase control in a flat aperture because the focal gain associated with mechanical focus may be preferable. In one embodiment, complexity of aperture or system design may be reduced if a mechanical focus can be created and modulation and/or phase delay techniques can be applied to the mechanical focus. One advantage can be a reduction in a number of discrete phase transitions for focusing the beam at a new focal point. Another advantage can be that a distance between different discrete phase levels can be increased when the aperture is already mechanical focused, which may result in using fewer quantization levels, such as two, three, four, etc.
In various embodiments, fabrication methods, including piezoelectric material poling and/or discrete system phasing, can be used to manufacture transducers configured to split or focus an ultrasound beam in two and/or three dimensions from a mechanical focus. The following lists several non-limiting examples of transducer designs. In various embodiments, other transducer designs can be manufactured using the disclosed methods.
Multi-Focal Energy Delivery Using Transducer Poling
In several embodiments, a transducer can comprise piezoelectric material. Piezoceramic material can be poled at elevated temperatures and high electric fields to create a net dipole moment in the material. A net dipole moment can allow the piezoceramic material to have a piezoelectric effect that causes either material contraction or expansion when an electric field is placed across a whole or part of the material in the direction of the dipole moment. In one embodiment, parts of a transducer, such as a transduction element, can be treated to have different poling moment features. In one embodiment, a single transduction element can be treated to have one, two, or more poling features. In one embodiment, a single transduction element can be treated to have one pole. In another embodiment, parts of an element can be treated with one pole, and non-treated parts of the element can have a second pole. In one embodiment, a poling treatment can be painted on a transduction element.
In several embodiments, piezoelectric material poling can be used to implement aperture amplitude modulation. In one embodiment, two level modulation can be equivalent to two level phase quantization. As is shown in equations (12)-(14), an ultrasonic beam emitted by a transducer aperture can be modulated to appear at two (or more) locations in a focal plane shifted by a distance that is related to the spatial frequency of a modulation function (e.g., cosine and/or sine function). In one embodiment, poling direction may be used to modify the amplitude modulation at the aperture, and to approximate cosine and/or sine amplitude modulation. As is shown in
In one embodiment, in order to quantify the energy distribution at the focus, then the square wave can be represented in terms of a function that has a related Fourier transform pair. The Fourier series expansion for a square wave of period c is:
In one embodiment, a circular aperture with amplitude modulation described in equation (25) can be described as:
The Fourier transform of this function is:
Equation (26b) may be simplified as follows:
In one embodiment, sound wave pressure in the focal plane includes repeating patterns of the main beam at multiple spatial locations separated by a distance of 2c between each beam. The repeating patterns can be decreasing in the amplitude.
With reference to
In one embodiment, the split of the beam may occur in both x (azimuth) and y (elevation) dimensions. In one embodiment, x and y axis splits may be treated independently when performing the Fourier transform. In one embodiment, an aperture can be designed for splitting the beam in the x dimension by about 1.0 mm and in the y dimension by about 0.5 mm. The corresponding aperture modulation function can be represented as:
The spatial frequency for alternating amplitude modulation can be calculated as described above in connection with equations 26(a)-(c), with the exception that the calculation is performed for two dimensions.
In one embodiment, as is illustrated in
In one embodiment, an axial split of the beam or split along one dimension is achieved such that the beam remains axis symmetric. In one embodiment, splitting the beam axially using only two phases from poling can be more difficult than obtaining a lateral split. This can be due to the difficulty of obtaining intensity balance between the two or more peaks. In one embodiment, two phases may produce two simultaneous intensity peaks with one shallower than the other. The deeper intensity peak can be of lower intensity than the shallow peak due to additional diffraction and attenuation in tissue. In one embodiment, more than two phases may be used to achieve an axial split.
In several embodiments, splitting an ultrasonic beam simultaneously, nearly simultaneously, or sequentially into two or more foci points can be achieved through an application of discrete system phasing.
In several embodiments, more than two discrete phase shifters can be used (e.g., as is shown in Table 4). The increase in the number of phases may result in an improved approximation of the phase delays for steering and/or focus the beam. In one embodiment, four discrete phase shifters can be used.
In one embodiment, an advantage of providing more discrete phase shifters can be illustrated by considering a flat disc or ring transducer and a measured intensity at the focus as compared to a measured intensity at the focus of a substantially perfectly focused circular bowl transducer.
In one embodiment, a difference in intensity between a desired focus point and an ideal focus point can be changed by using a focused bowl. In one embodiment, a circular bowl transducer with OD=19 mm and FL=15 mm can be used initially. Subsequently, in one embodiment, discrete phasing techniques can be used to move the focus to depth of about 12 mm or 18 mm.
Therapy Delivery Using Amplitude Modulation and Discrete Phase Shifting
In several embodiments, amplitude modulation (e.g., realized via material poling) can be used in addition to discrete phasing. In one embodiment, splitting of an ultrasound beam may cause an increase in transducer power that may be difficult to obtain due to, for example, system or transducer material limitations. It may be desirable to phase shift or tilt the ultrasound beam from one focal position to another focal position. In one embodiment, split of the ultrasound beam may be difficult to achieve due to a possibility of excessive heating of tissue before focus. In one embodiment, linear sequences of TCPs may be created sequentially or substantially sequentially without moving a transducer, which can result in reduction of therapy time. In one embodiment, the transducer can be moved to further distribute treatment points. In one embodiment, a transducer can be a circular bowl transducer excited by 7 MHz excitation signal and having OD of about 19 mm, ID of about 4 mm, and FL of about 15 mm. Linear TCP sequences can be spaced about 1.0 mm apart. It may be desirable to split the ultrasound beam so two linear TCP sequences are created simultaneously or substantially simultaneously about 1.0 mm apart from each other. However, in one embodiment, as compared to intensity of a beam that is not split, each of the split beams can have intensity that is approximately 2.4 times lower. Due to a potential for excessive heating of tissue located before focus, power delivered to the transducer may not be increased by about 2.4 times to compensate for the reduction in intensity. In one embodiment, quadrature phasing may be used to create linear TCP sequences one at a time. Quadrature phasing can be accomplished by combining material poling with discrete system phasing. In one embodiment, using quadrature phasing may relate to an increase in power of approximately 1.2 times when quadrature phasing is applied to a focused bowl transducer. In one embodiment, such slight increase in power may be desirable.
In one embodiment, creating two intensity peaks 1430 and 1432 may be undesirable due to limitations of the system (e.g., power supply) and/or transducer materials. For example, more power may need to be supplied to the transducer to create two TCPs simultaneously or nearly simultaneously.
Therapy Delivery Using Amplitude Modulation with Walking
In one embodiment, modulating or splitting an ultrasound beam axially and/or laterally, for example so that multiple linear sequences of TCPs are created simultaneously, substantially simultaneously, or sequentially may necessitate supply of additional power to a transducer in order to achieve substantially same intensity at focal point(s) as an unmodulated beam. In one embodiment, such increase in power can cause a possibility of excessive heating in tissue proximal (pre-focal) and/or distal (post-focal) to the focus. For example, for a given transducer configuration, splitting an ultrasound beam from a focal position of about (0, 0, 15 mm) to focal positions of about (−0.55 mm, 0, 15 mm) and (0.55 mm, 0, 15 mm) may necessitate increasing the supply of power by about 2.2 times in order to produce substantially same intensity at the two focal positions as the intensity in the unmodulated focal position. In one embodiment, such an increase in power may be undesirable. In various embodiments, amplitude modulation can be combined with walking aperture techniques in order to reduce the possibility of excessive heating of tissues in pre-focal and post-focal regions. For example, the maximum intensity measured in the pre-focal and post focal regions may be reduced.
In several embodiments, number of transducer strips and/or portions in a pitch distance can be less than or greater than eight. The number of portions selected can depend on an amount of heating reduction desired for tissues located before and/or after the focus. In several embodiments, number of amplitude modulation levels can be greater than four, such as six, eight, ten, etc.
There are several advantages to use of embodiments of the systems and methods disclosed herein. In one embodiment, amplitude modulation, particularly with walking, and/or phase shifting techniques can reduce a possibility of excessive pre-focal and post-focal heating. In one embodiment, amplitude modulation, particularly with walking, and/or phase shifting techniques can allow splitting an ultrasound beam into two or more beams. In one embodiment, amplitude modulation, particularly with walking, and/or phase shifting techniques can approximate two or more ultrasound sources by placing ultrasonic energy at two or more foci locations. In one embodiment, amplitude modulation, particularly with walking, and/or phase shifting techniques can reduce pain or discomfort experienced by a patient during ultrasound therapy by redistributing acoustic energy away from a focal point. In one embodiment, amplitude modulation, particularly with walking, and/or phase shifting techniques can reduce therapy time due to the production of multiple TCPs.
Imaging Systems
In one embodiment, a receive ultrasound beamformer can be used as part of an ultrasound imaging system. In one embodiment, an ultrasound imaging system uses a transmit and a receive event to create one line of an ultrasound image. The transmit typically focuses at one location and then the receive processing of the imaging system focuses on the same location. In this case, the response of the imaging system is described as:
h(t)=(Tx)*Rx(t) (29)
where h(t) is the spatial response of both the transmit and receive apertures, Tx(t) is the response of the transmit aperture, and Rx(t) is the response of the receive aperture.
In one embodiment, an ultrasound imaging systems uses dynamic receive focusing. In this case, although the transmit ultrasound beam focused on one spatial location, the receive system could ‘dynamically’ change the focus along the beam axis so each spatial location in depth was focused. This system response is represented as:
h(t−δ)=Tx(t)*Rx(t−δ) (30)
The δ represents the time delay between received signals which suggests how the focusing can change for the receive aperture as the signals come from deeper depths.
In one embodiment, a technique to split a transmit therapy beam into multiple foci through aperture amplitude manipulation can include receiving beam(s) as well. In one embodiment, a system can include two transmit foci (or more), and it is possible to focus on either spatial aperture using a receive aperture such as a linear array where delays may be used to steer and focus the received beam along different axes. This method allows the system to obtain two receive beams with just one transmit. This reduces the required time to visually observe the two beam axes from the receive aperture. This system is described as:
h1(t−δ)=Tx(t)*Rx1(t−δ) (31a)
h2(t−δ)=Tx(t)*Rx2(t−δ) (31b)
For example, suppose the system produces two foci, one at a distance 1.0 mm away from the center axis of the therapy transducer and another −1.0 mm away from the center axis of the therapy transducer each at a depth of 15 mm. The ultrasound receiver would be able to create two receive lines, one constantly focused on the 1.0 mm peak and one constantly focused on the −1.0 mm peak. In one embodiment, a receiver can create two receive lines, one constantly focused on the 1.0 mm peak and one constantly focused on the −1.0 mm peak simultaneously.
In one embodiment, a method 2100 comprises the steps of:
transmitting multiple foci with a therapy aperture
gathering a signal from each portion of a receive aperture array
creating multiple receive vectors based on the multiple foci, and
utilizing the receive vectors to speed up an algorithm for imaging.
In some embodiments, the transmission of multiple foci can be simultaneous or sequential. In some embodiments, the receive vectors can be simultaneously or sequentially utilized.
Some embodiments and the examples described herein are examples and not intended to be limiting in describing the full scope of compositions and methods of these invention. Equivalent changes, modifications and variations of some embodiments, materials, compositions and methods can be made within the scope of the present invention, with substantially similar results.
While the invention is susceptible to various modifications, and alternative forms, specific examples thereof have been shown in the drawings and are herein described in detail. It should be understood, however, that the invention is not to be limited to the particular forms or methods disclosed, but to the contrary, the invention is to cover all modifications, equivalents, and alternatives falling within the spirit and scope of the various embodiments described and the appended claims. Any methods disclosed herein need not be performed in the order recited. The methods disclosed herein include certain actions taken by a practitioner; however, they can also include any third-party instruction of those actions, either expressly or by implication. For example, actions such as “coupling a transducer module with an ultrasonic probe” include “instructing the coupling of a transducer module with an ultrasonic probe.” The ranges disclosed herein also encompass any and all overlap, sub-ranges, and combinations thereof. Language such as “up to,” “at least,” “greater than,” “less than,” “between,” and the like includes the number recited. Numbers preceded by a term such as “about” or “approximately” include the recited numbers. For example, “about 25 mm” includes “25 mm.”
This application claims the benefit of priority from U.S. Provisional Application No. 61/774,785 filed Mar. 8, 2013, which is incorporated in its entirety by reference, herein. Any and all priority claims identified in the Application Data Sheet, or any correction thereto, are hereby incorporated by reference under 37 CFR 1.57.
Number | Name | Date | Kind |
---|---|---|---|
2427348 | Bond et al. | Sep 1947 | A |
2792829 | Calosi | Feb 1952 | A |
3913386 | Saglio | Oct 1975 | A |
3965455 | Hurwitz | Jun 1976 | A |
3992925 | Perilhou | Nov 1976 | A |
4039312 | Patru | Aug 1977 | A |
4059098 | Murdock | Nov 1977 | A |
4101795 | Fukumoto | Jul 1978 | A |
4151834 | Sato et al. | May 1979 | A |
4166967 | Benes et al. | Sep 1979 | A |
4211948 | Smith et al. | Jul 1980 | A |
4211949 | Brisken et al. | Jul 1980 | A |
4213344 | Rose | Jul 1980 | A |
4276491 | Daniel | Jun 1981 | A |
4315514 | Drewes et al. | Feb 1982 | A |
4325381 | Glenn | Apr 1982 | A |
4343301 | Indech | Aug 1982 | A |
4372296 | Fahim | Feb 1983 | A |
4379145 | Masuho et al. | Apr 1983 | A |
4381007 | Doss | Apr 1983 | A |
4381787 | Hottinger | May 1983 | A |
4397314 | Vaguine | Aug 1983 | A |
4409839 | Taenzer | Oct 1983 | A |
4431008 | Wanner et al. | Feb 1984 | A |
4441486 | Pounds | Apr 1984 | A |
4452084 | Taenzer | Jun 1984 | A |
4460841 | Smith | Jul 1984 | A |
4484569 | Driller | Nov 1984 | A |
4507582 | Glenn | Mar 1985 | A |
4513749 | Kino | Apr 1985 | A |
4513750 | Heyman et al. | Apr 1985 | A |
4527550 | Ruggera et al. | Jul 1985 | A |
4528979 | Marchenko | Jul 1985 | A |
4534221 | Fife et al. | Aug 1985 | A |
4566459 | Umemura et al. | Jan 1986 | A |
4567895 | Putzke | Feb 1986 | A |
4586512 | Do-Huu | May 1986 | A |
4601296 | Yerushalmi | Jul 1986 | A |
4620546 | Aida et al. | Nov 1986 | A |
4637256 | Sugiyama et al. | Jan 1987 | A |
4646756 | Watmough | Mar 1987 | A |
4663358 | Hyon | May 1987 | A |
4668516 | Duraffourd et al. | May 1987 | A |
4672591 | Breimesser et al. | Jun 1987 | A |
4680499 | Umemura et al. | Jul 1987 | A |
4697588 | Reichenberger | Oct 1987 | A |
4754760 | Fukukita et al. | Jul 1988 | A |
4757820 | Itoh | Jul 1988 | A |
4771205 | Mequio | Sep 1988 | A |
4801459 | Liburdy | Jan 1989 | A |
4803625 | Fu et al. | Feb 1989 | A |
4807633 | Fry | Feb 1989 | A |
4817615 | Fukukita et al. | Apr 1989 | A |
4858613 | Fry | Aug 1989 | A |
4860732 | Hasegawa et al. | Aug 1989 | A |
4865041 | Hassler | Sep 1989 | A |
4865042 | Umemura | Sep 1989 | A |
4867169 | Machida | Sep 1989 | A |
4874562 | Hyon | Oct 1989 | A |
4875487 | Seppi | Oct 1989 | A |
4881212 | Takeuchi | Nov 1989 | A |
4891043 | Zeimer et al. | Jan 1990 | A |
4893624 | Lele | Jan 1990 | A |
4896673 | Rose | Jan 1990 | A |
4900540 | Ryan et al. | Feb 1990 | A |
4901729 | Saitoh | Feb 1990 | A |
4917096 | Englehart | Apr 1990 | A |
4973096 | Jaworski | Apr 1990 | A |
4932414 | Coleman et al. | Jun 1990 | A |
4938216 | Lele | Jul 1990 | A |
4938217 | Lele | Jul 1990 | A |
4947046 | Kawabata et al. | Aug 1990 | A |
4951653 | Fry | Aug 1990 | A |
4955365 | Fry | Sep 1990 | A |
4958626 | Nambu | Sep 1990 | A |
4976709 | Sand | Dec 1990 | A |
4979501 | Valchanov | Dec 1990 | A |
4992989 | Watanabe et al. | Feb 1991 | A |
5012797 | Liang | May 1991 | A |
5018508 | Fry et al. | May 1991 | A |
5030874 | Saito et al. | Jul 1991 | A |
5036855 | Fry | Aug 1991 | A |
5040537 | Katakura | Aug 1991 | A |
5054310 | Flynn | Oct 1991 | A |
5054470 | Fry | Oct 1991 | A |
5054491 | Saito et al. | Oct 1991 | A |
5070879 | Herres | Dec 1991 | A |
5088495 | Miyagawa | Feb 1992 | A |
5115814 | Griffith | May 1992 | A |
5117832 | Sanghvi | Jun 1992 | A |
5123418 | Saurel | Jun 1992 | A |
5142511 | Kanai et al. | Aug 1992 | A |
5143063 | Fellner | Sep 1992 | A |
5143074 | Dory | Sep 1992 | A |
5149319 | Unger | Sep 1992 | A |
5150711 | Dory | Sep 1992 | A |
5150714 | Green | Sep 1992 | A |
5152294 | Mochizuki et al. | Oct 1992 | A |
5156144 | Iwasaki | Oct 1992 | A |
5158536 | Sekins | Oct 1992 | A |
5159931 | Pini | Nov 1992 | A |
5163421 | Bernstein | Nov 1992 | A |
5163436 | Saitoh et al. | Nov 1992 | A |
5178135 | Uchiyama et al. | Jan 1993 | A |
5190518 | Takasu | Mar 1993 | A |
5190766 | Ishihara | Mar 1993 | A |
5191880 | McLeod | Mar 1993 | A |
5205287 | Erbel et al. | Apr 1993 | A |
5209720 | Unger | May 1993 | A |
5212671 | Fujii et al. | May 1993 | A |
5215680 | D'Arrigo | Jun 1993 | A |
5224467 | Oku | Jul 1993 | A |
5230334 | Klopotek | Jul 1993 | A |
5230338 | Allen et al. | Jul 1993 | A |
5247924 | Suzuki et al. | Sep 1993 | A |
5255681 | Ishimura et al. | Oct 1993 | A |
5257970 | Dougherty | Nov 1993 | A |
5265614 | Hayakawa | Nov 1993 | A |
5267985 | Shimada | Dec 1993 | A |
5269297 | Weng | Dec 1993 | A |
5282797 | Chess | Feb 1994 | A |
5295484 | Marcus | Mar 1994 | A |
5295486 | Wollschlager et al. | Mar 1994 | A |
5304169 | Sand | Apr 1994 | A |
5305756 | Entrekin et al. | Apr 1994 | A |
5321520 | Inga et al. | Jun 1994 | A |
5323779 | Hardy et al. | Jun 1994 | A |
5327895 | Hashimoto et al. | Jul 1994 | A |
5329202 | Garlick et al. | Jul 1994 | A |
5348016 | Unger et al. | Sep 1994 | A |
5358466 | Aida et al. | Oct 1994 | A |
5360268 | Hayashi | Nov 1994 | A |
5370121 | Reichenberger | Dec 1994 | A |
5370122 | Kunig et al. | Dec 1994 | A |
5371483 | Bhardwaj | Dec 1994 | A |
5375602 | Lancee et al. | Dec 1994 | A |
5379773 | Hornsby | Jan 1995 | A |
5380280 | Peterson | Jan 1995 | A |
5380519 | Schneider et al. | Jan 1995 | A |
5383917 | Desai et al. | Jan 1995 | A |
5391140 | Schaetzle et al. | Feb 1995 | A |
5391197 | Burdette et al. | Feb 1995 | A |
5392259 | Bolorforosh | Feb 1995 | A |
5396143 | Seyed-Bolorforosh et al. | Mar 1995 | A |
5398689 | Connor et al. | Mar 1995 | A |
5406503 | Williams | Apr 1995 | A |
5413550 | Castel | May 1995 | A |
5417216 | Tanaka | May 1995 | A |
5419327 | Rohwedder | May 1995 | A |
5423220 | Finsterwald et al. | Jun 1995 | A |
5435311 | Umemura | Jul 1995 | A |
5438998 | Hanafy | Aug 1995 | A |
5443068 | Cline et al. | Aug 1995 | A |
5445611 | Eppstein et al. | Aug 1995 | A |
5458596 | Lax | Oct 1995 | A |
5460179 | Okunuki et al. | Oct 1995 | A |
5460595 | Hall et al. | Oct 1995 | A |
5469854 | Unger et al. | Nov 1995 | A |
5471488 | Fujio | Dec 1995 | A |
5472405 | Buchholtz et al. | Dec 1995 | A |
5487388 | Rello et al. | Jan 1996 | A |
5492126 | Hennige | Feb 1996 | A |
5496256 | Bock | Mar 1996 | A |
5501655 | Rolt | Mar 1996 | A |
5503152 | Oakley et al. | Apr 1996 | A |
5503320 | Webster et al. | Apr 1996 | A |
5507790 | Weiss | Apr 1996 | A |
5511296 | Dias et al. | Apr 1996 | A |
5520188 | Hennige | May 1996 | A |
5522869 | Burdette | Jun 1996 | A |
5523058 | Umemura et al. | Jun 1996 | A |
5524620 | Rosenchein | Jun 1996 | A |
5524624 | Tepper | Jun 1996 | A |
5524625 | Okazaki | Jun 1996 | A |
5526624 | Berg | Jun 1996 | A |
5526812 | Dumoulin et al. | Jun 1996 | A |
5526814 | Cline et al. | Jun 1996 | A |
5526815 | Granz | Jun 1996 | A |
5529070 | Augustine et al. | Jun 1996 | A |
5540235 | Wilson | Jul 1996 | A |
5558092 | Unger | Sep 1996 | A |
5560362 | Sliwa et al. | Oct 1996 | A |
5573497 | Chapelon | Nov 1996 | A |
5575291 | Hayakawa | Nov 1996 | A |
5575807 | Faller | Nov 1996 | A |
5577502 | Darrow et al. | Nov 1996 | A |
5577507 | Snyder et al. | Nov 1996 | A |
5577991 | Akui et al. | Nov 1996 | A |
5580575 | Unger et al. | Dec 1996 | A |
5643179 | Fujimoto | Jan 1997 | A |
5601526 | Chapelon | Feb 1997 | A |
5603323 | Pflugrath et al. | Feb 1997 | A |
5605154 | Ries et al. | Feb 1997 | A |
5609562 | Kaali | Mar 1997 | A |
5615091 | Palatnik | Mar 1997 | A |
5618275 | Bock | Apr 1997 | A |
5620479 | Diederich | Apr 1997 | A |
5622175 | Sudol et al. | Apr 1997 | A |
5617858 | Taverna et al. | May 1997 | A |
5638819 | Manwaring et al. | Jun 1997 | A |
5644085 | Lorraine et al. | Jul 1997 | A |
5647373 | Paltieli | Jul 1997 | A |
5655535 | FrIemel et al. | Aug 1997 | A |
5655538 | Lorraine | Aug 1997 | A |
5657760 | Ying | Aug 1997 | A |
5658328 | Johnson | Aug 1997 | A |
5660836 | Knowlton | Aug 1997 | A |
5662116 | Kondo | Sep 1997 | A |
5665053 | Jacobs | Sep 1997 | A |
5665141 | Vago | Sep 1997 | A |
5671746 | Dreschel et al. | Sep 1997 | A |
5673699 | Trahey et al. | Oct 1997 | A |
5676692 | Sanghvi | Oct 1997 | A |
5685820 | Riek et al. | Nov 1997 | A |
5690608 | Watanabe | Nov 1997 | A |
5694936 | Fujimoto | Dec 1997 | A |
5697897 | Buchholtz | Dec 1997 | A |
5701900 | Shehada et al. | Dec 1997 | A |
5704361 | Seward et al. | Jan 1998 | A |
5706252 | Le Verrier et al. | Jan 1998 | A |
5706564 | Rhyne | Jan 1998 | A |
5715823 | Wood et al. | Feb 1998 | A |
5720287 | Chapelon et al. | Feb 1998 | A |
5722411 | Suzuki | Mar 1998 | A |
5727554 | Kalend et al. | Mar 1998 | A |
5735280 | Sherman et al. | Apr 1998 | A |
5743863 | Chapelon | Apr 1998 | A |
5746005 | Steinberg | May 1998 | A |
5746762 | Bass | May 1998 | A |
5748767 | Raab | May 1998 | A |
5749364 | Sliwa et al. | May 1998 | A |
5755228 | Wilson et al. | May 1998 | A |
5755753 | Knowlton | May 1998 | A |
5762066 | Law | Jun 1998 | A |
5763886 | Schulte | Jun 1998 | A |
5769790 | Watkins | Jun 1998 | A |
5779644 | Eberle et al. | Jul 1998 | A |
5792058 | Lee | Aug 1998 | A |
5795297 | Daigle | Aug 1998 | A |
5795311 | Wess | Aug 1998 | A |
5714599 | Mitragotri et al. | Sep 1998 | A |
5810009 | Mine et al. | Sep 1998 | A |
5810888 | Fenn | Sep 1998 | A |
5814599 | Mitragotri et al. | Sep 1998 | A |
5817013 | Ginn et al. | Oct 1998 | A |
5817021 | Reichenberger | Oct 1998 | A |
5820564 | Slayton | Oct 1998 | A |
5823962 | Schaetzle | Oct 1998 | A |
5827204 | Grandia et al. | Oct 1998 | A |
5839751 | Bonin | Nov 1998 | A |
5840032 | Hatfield et al. | Nov 1998 | A |
5844140 | Seale | Dec 1998 | A |
5853367 | Chalek et al. | Dec 1998 | A |
5857970 | Purdy | Jan 1999 | A |
5869751 | Bonin | Feb 1999 | A |
5871524 | Knowlton | Feb 1999 | A |
5873902 | Sanghvi | Feb 1999 | A |
5876341 | Wang et al. | Mar 1999 | A |
5879303 | Averkiou et al. | Mar 1999 | A |
5882557 | Hayakawa | Mar 1999 | A |
5891034 | Bucholz | Apr 1999 | A |
5895356 | Andrus et al. | Apr 1999 | A |
5899861 | Friemel et al. | May 1999 | A |
5904659 | Duarte | May 1999 | A |
5919219 | Knowlton | Jul 1999 | A |
5923099 | Bilir | Jul 1999 | A |
5924989 | Polz | Jul 1999 | A |
5928169 | Schatzle et al. | Jul 1999 | A |
5931805 | Brisken | Aug 1999 | A |
5938606 | Bonnefous | Aug 1999 | A |
5938612 | Kline-Schoder | Aug 1999 | A |
5948011 | Knowlton | Sep 1999 | A |
5957844 | Dekel | Sep 1999 | A |
5957882 | Nita et al. | Sep 1999 | A |
5957941 | Ream | Sep 1999 | A |
5964707 | Fenster et al. | Oct 1999 | A |
5967980 | Ferre et al. | Oct 1999 | A |
5968034 | Fullmer | Oct 1999 | A |
5971949 | Levin | Oct 1999 | A |
5977538 | Unger et al. | Nov 1999 | A |
5984881 | Ishibashi et al. | Nov 1999 | A |
5984882 | Rosenchein | Nov 1999 | A |
5990598 | Sudol et al. | Nov 1999 | A |
5997471 | Gumb et al. | Dec 1999 | A |
5997497 | Nita et al. | Dec 1999 | A |
5999843 | Anbar | Dec 1999 | A |
6004262 | Putz et al. | Dec 1999 | A |
6007499 | Martin et al. | Dec 1999 | A |
6013032 | Savord | Jan 2000 | A |
6014473 | Hossack et al. | Jan 2000 | A |
6016255 | Bolan et al. | Jan 2000 | A |
6019724 | Gronningsaeter et al. | Feb 2000 | A |
6022308 | Williams | Feb 2000 | A |
6022317 | Cruanas et al. | Feb 2000 | A |
6022327 | Chang | Feb 2000 | A |
6030374 | McDaniel | Feb 2000 | A |
6036646 | Barthe | Mar 2000 | A |
6039048 | Silberg | Mar 2000 | A |
6039689 | Lizzi | Mar 2000 | A |
6042556 | Beach | Mar 2000 | A |
6049159 | Barthe | Apr 2000 | A |
6050943 | Slayton | Apr 2000 | A |
6059727 | Fowlkes | May 2000 | A |
6071239 | Cribbs | Jun 2000 | A |
6080108 | Dunham | Jun 2000 | A |
6083148 | Williams | Jul 2000 | A |
6086535 | Ishibashi | Jul 2000 | A |
6086580 | Mordon et al. | Jul 2000 | A |
6090054 | Tagishi | Jul 2000 | A |
6093148 | Fujimoto | Jul 2000 | A |
6093883 | Sanghvi | Jul 2000 | A |
6101407 | Groezinger | Aug 2000 | A |
6106469 | Suzuki et al. | Aug 2000 | A |
6113558 | Rosenchein | Sep 2000 | A |
6113559 | Klopotek | Sep 2000 | A |
6120452 | Barthe | Sep 2000 | A |
6123081 | Durette | Sep 2000 | A |
6126619 | Peterson et al. | Oct 2000 | A |
6135971 | Hutchinson | Oct 2000 | A |
6139499 | Wilk | Oct 2000 | A |
6159150 | Yale et al. | Dec 2000 | A |
6171244 | Finger et al. | Jan 2001 | B1 |
6176840 | Nishimura | Jan 2001 | B1 |
6183426 | Akisada | Feb 2001 | B1 |
6183502 | Takeuchi | Feb 2001 | B1 |
6183773 | Anderson | Feb 2001 | B1 |
6190323 | Dias | Feb 2001 | B1 |
6190336 | Duarte | Feb 2001 | B1 |
6193658 | Wendelken | Feb 2001 | B1 |
6198956 | Dunne | Mar 2001 | B1 |
6210327 | Brackett et al. | Apr 2001 | B1 |
6213948 | Barthe | Apr 2001 | B1 |
6216029 | Paltieli | Apr 2001 | B1 |
6233476 | Strommer et al. | May 2001 | B1 |
6234990 | Rowe et al. | May 2001 | B1 |
6241753 | Knowlton | Jun 2001 | B1 |
6246898 | Vesely et al. | Jun 2001 | B1 |
6251074 | Averkiou et al. | Jun 2001 | B1 |
6251088 | Kaufman et al. | Jun 2001 | B1 |
6268405 | Yao | Jul 2001 | B1 |
6273864 | Duarte | Aug 2001 | B1 |
6280402 | Ishibashi et al. | Aug 2001 | B1 |
6287257 | Matichuk | Sep 2001 | B1 |
6287304 | Eggers et al. | Sep 2001 | B1 |
6296619 | Brisken | Oct 2001 | B1 |
6301989 | Brown et al. | Oct 2001 | B1 |
6307302 | Toda | Oct 2001 | B1 |
6309355 | Cain et al. | Oct 2001 | B1 |
6311090 | Knowlton | Oct 2001 | B1 |
6315741 | Martin | Nov 2001 | B1 |
6322509 | Pan et al. | Nov 2001 | B1 |
6322532 | D'Sa | Nov 2001 | B1 |
6325540 | Lounsberry et al. | Dec 2001 | B1 |
6325758 | Carol et al. | Dec 2001 | B1 |
6325769 | Klopotek | Dec 2001 | B1 |
6325798 | Edwards et al. | Dec 2001 | B1 |
6338716 | Hossack et al. | Jan 2002 | B1 |
6350276 | Knowlton | Feb 2002 | B1 |
6356780 | Licato et al. | Mar 2002 | B1 |
6361531 | Hissong | Mar 2002 | B1 |
6370411 | Osadchy et al. | Apr 2002 | B1 |
6375672 | Aksan | Apr 2002 | B1 |
6377854 | Knowlton | Apr 2002 | B1 |
6377855 | Knowlton | Apr 2002 | B1 |
6381497 | Knowlton | Apr 2002 | B1 |
6381498 | Knowlton | Apr 2002 | B1 |
6387380 | Knowlton | May 2002 | B1 |
6390982 | Bova et al. | May 2002 | B1 |
6405090 | Knowlton | Jun 2002 | B1 |
6409720 | Hissong | Jun 2002 | B1 |
6413216 | Cain et al. | Jul 2002 | B1 |
6413253 | Koop | Jul 2002 | B1 |
6413254 | Hissong | Jul 2002 | B1 |
6419648 | Vitek | Jul 2002 | B1 |
6423007 | Lizzi et al. | Jul 2002 | B2 |
6425865 | Salcudean | Jul 2002 | B1 |
6425867 | Vaezy | Jul 2002 | B1 |
6425912 | Knowlton | Jul 2002 | B1 |
6428477 | Mason | Aug 2002 | B1 |
6428532 | Doukas | Aug 2002 | B1 |
6430446 | Knowlton | Aug 2002 | B1 |
6432057 | Mazess et al. | Aug 2002 | B1 |
6432067 | Martin | Aug 2002 | B1 |
6432101 | Weber | Aug 2002 | B1 |
6436061 | Costantino | Aug 2002 | B1 |
6438424 | Knowlton | Aug 2002 | B1 |
6440071 | Slayton | Aug 2002 | B1 |
6440121 | Weber | Aug 2002 | B1 |
6443914 | Costantino | Sep 2002 | B1 |
6447443 | Keogh et al. | Sep 2002 | B1 |
6451013 | Bays et al. | Sep 2002 | B1 |
6453202 | Knowlton | Sep 2002 | B1 |
6461304 | Tanaka et al. | Oct 2002 | B1 |
6461378 | Knowlton | Oct 2002 | B1 |
6470216 | Knowlton | Oct 2002 | B1 |
6488626 | Lizzi | Dec 2002 | B1 |
6491657 | Rowe | Dec 2002 | B2 |
6500121 | Slayton | Dec 2002 | B1 |
6500141 | Irion | Dec 2002 | B1 |
6506171 | Vitek | Jan 2003 | B1 |
6508774 | Acker | Jan 2003 | B1 |
6511427 | Sliwa, Jr. et al. | Jan 2003 | B1 |
6511428 | Azuma | Jan 2003 | B1 |
6514244 | Pope | Feb 2003 | B2 |
6517484 | Wilk | Feb 2003 | B1 |
6524250 | Weber | Feb 2003 | B1 |
6666835 | Martin | Mar 2003 | B2 |
6540679 | Slayton | Apr 2003 | B2 |
6540685 | Rhoads et al. | Apr 2003 | B1 |
6540700 | Fujimoto et al. | Apr 2003 | B1 |
6547788 | Maguire et al. | Apr 2003 | B1 |
6554771 | Buil et al. | Apr 2003 | B1 |
6569099 | Babaev | May 2003 | B1 |
6569108 | Sarvazyan et al. | May 2003 | B2 |
6572552 | Fukukita | Jun 2003 | B2 |
6575956 | Brisken et al. | Jun 2003 | B1 |
6595934 | Hissong | Jul 2003 | B1 |
6599256 | Acker | Jul 2003 | B1 |
6605043 | Dreschel | Aug 2003 | B1 |
6605080 | Altshuler et al. | Aug 2003 | B1 |
6607498 | Eshel | Aug 2003 | B2 |
6618620 | Freundlich et al. | Sep 2003 | B1 |
6623430 | Slayton | Sep 2003 | B1 |
6626854 | Friedman | Sep 2003 | B2 |
6626855 | Weng | Sep 2003 | B1 |
6638226 | He et al. | Oct 2003 | B2 |
6645145 | Dreschel et al. | Nov 2003 | B1 |
6645150 | Angelsen et al. | Nov 2003 | B2 |
6645162 | Friedman | Nov 2003 | B2 |
6662054 | Kreindel | Dec 2003 | B2 |
6663627 | Francischelli | Dec 2003 | B2 |
6665806 | Shimizu | Dec 2003 | B1 |
6669638 | Miller | Dec 2003 | B1 |
6685639 | Wang et al. | Feb 2004 | B1 |
6685640 | Fry | Feb 2004 | B1 |
6692450 | Coleman | Feb 2004 | B1 |
6699237 | Weber | Mar 2004 | B2 |
6716184 | Vaezy et al. | Apr 2004 | B2 |
6719449 | Laughlin | Apr 2004 | B1 |
6719694 | Weng | Apr 2004 | B2 |
6726627 | Lizzi et al. | Apr 2004 | B1 |
6733449 | Krishnamurthy et al. | May 2004 | B1 |
6749624 | Knowlton | Jun 2004 | B2 |
6772490 | Toda | Aug 2004 | B2 |
6773409 | Truckai et al. | Aug 2004 | B2 |
6775404 | Pagoulatos et al. | Aug 2004 | B1 |
6790187 | Thompson et al. | Sep 2004 | B2 |
6824516 | Batten et al. | Nov 2004 | B2 |
6825176 | White et al. | Nov 2004 | B2 |
6835940 | Morikawa et al. | Dec 2004 | B2 |
6846290 | Lizzi et al. | Jan 2005 | B2 |
6875176 | Mourad et al. | Apr 2005 | B2 |
6882884 | Mosk et al. | Apr 2005 | B1 |
6887239 | Elstrom | May 2005 | B2 |
6889089 | Behl | May 2005 | B2 |
6896657 | Willis | May 2005 | B2 |
6902536 | Manna | Jun 2005 | B2 |
6905466 | Salgo | Jun 2005 | B2 |
6918907 | Kelly | Jul 2005 | B2 |
6920883 | Bessette | Jul 2005 | B2 |
6921371 | Wilson | Jul 2005 | B2 |
6932771 | Whitmore | Aug 2005 | B2 |
6932814 | Wood | Aug 2005 | B2 |
6936044 | McDaniel | Aug 2005 | B2 |
6936046 | Hissong | Aug 2005 | B2 |
6945937 | Culp et al. | Sep 2005 | B2 |
6948843 | Laugham et al. | Sep 2005 | B2 |
6953941 | Nakano et al. | Oct 2005 | B2 |
6958043 | Hissong | Oct 2005 | B2 |
6971994 | Young et al. | Dec 2005 | B1 |
6974417 | Lockwood | Dec 2005 | B2 |
6976492 | Ingle | Dec 2005 | B2 |
6992305 | Maezawa et al. | Jan 2006 | B2 |
6997923 | Anderson | Feb 2006 | B2 |
7006874 | Knowlton | Feb 2006 | B2 |
7020528 | Neev | Mar 2006 | B2 |
7022089 | Ooba | Apr 2006 | B2 |
7058440 | Heuscher et al. | Jun 2006 | B2 |
7063666 | Weng | Jun 2006 | B2 |
7070565 | Vaezy et al. | Jul 2006 | B2 |
7074218 | Washington et al. | Jul 2006 | B2 |
7094252 | Koop | Aug 2006 | B2 |
7108663 | Talish et al. | Sep 2006 | B2 |
7115123 | Knowlton | Oct 2006 | B2 |
7122029 | Koop et al. | Oct 2006 | B2 |
7142905 | Slayton | Nov 2006 | B2 |
7165451 | Brooks et al. | Jan 2007 | B1 |
7179238 | Hissong | Feb 2007 | B2 |
7189230 | Knowlton | Mar 2007 | B2 |
7229411 | Slayton | Jun 2007 | B2 |
7235592 | Muratoglu | Jun 2007 | B2 |
7258674 | Cribbs | Aug 2007 | B2 |
7273459 | Desilets | Sep 2007 | B2 |
7294125 | Phalen et al. | Nov 2007 | B2 |
7297117 | Trucco | Nov 2007 | B2 |
7303555 | Makin et al. | Dec 2007 | B2 |
7311679 | Desilets et al. | Dec 2007 | B2 |
7327071 | Nishiyama et al. | Feb 2008 | B2 |
7331951 | Eshel et al. | Feb 2008 | B2 |
7332985 | Larson et al. | Feb 2008 | B2 |
7338434 | Haarstad et al. | Mar 2008 | B1 |
7347855 | Eshel | Mar 2008 | B2 |
RE40403 | Cho et al. | Jun 2008 | E |
7393325 | Barthe | Jul 2008 | B2 |
7398116 | Edwards | Jul 2008 | B2 |
7399279 | Abend et al. | Jul 2008 | B2 |
7491171 | Barthe et al. | Feb 2009 | B2 |
7507235 | Keogh et al. | Mar 2009 | B2 |
7510536 | Foley et al. | Mar 2009 | B2 |
7517315 | Willis | Apr 2009 | B2 |
7530356 | Slayton | May 2009 | B2 |
7530958 | Slayton | May 2009 | B2 |
7532201 | Quistgaard et al. | May 2009 | B2 |
7571336 | Barthe | Aug 2009 | B2 |
7601120 | Moilanen et al. | Oct 2009 | B2 |
7615015 | Coleman | Nov 2009 | B2 |
7615016 | Barthe | Nov 2009 | B2 |
7631611 | Dick et al. | Dec 2009 | B1 |
7652411 | Crunkilton et al. | Jan 2010 | B2 |
7662114 | Seip et al. | Feb 2010 | B2 |
7674257 | Pless et al. | Mar 2010 | B2 |
7686763 | Vaezy et al. | Mar 2010 | B2 |
7713203 | Lacoste et al. | Mar 2010 | B2 |
7694406 | Wildes et al. | Apr 2010 | B2 |
7695437 | Quistgaard et al. | Apr 2010 | B2 |
7727156 | Angelsen et al. | Jun 2010 | B2 |
7758524 | Barthe | Jul 2010 | B2 |
7766848 | Desilets et al. | Aug 2010 | B2 |
7789841 | Huckle et al. | Sep 2010 | B2 |
7806839 | Mast et al. | Oct 2010 | B2 |
7815570 | Eshel et al. | Oct 2010 | B2 |
7819826 | Diederich et al. | Oct 2010 | B2 |
7828734 | Azhari et al. | Oct 2010 | B2 |
7824348 | Barthe | Nov 2010 | B2 |
7833162 | Hasegawa et al. | Nov 2010 | B2 |
7841984 | Cribbs et al. | Nov 2010 | B2 |
7846096 | Mast et al. | Dec 2010 | B2 |
7857773 | Desilets et al. | Dec 2010 | B2 |
7875023 | Eshel et al. | Jan 2011 | B2 |
7901359 | Mandrusov et al. | Mar 2011 | B2 |
7905007 | Calisti et al. | Mar 2011 | B2 |
7905844 | Desilets et al. | Mar 2011 | B2 |
7914453 | Slayton et al. | Mar 2011 | B2 |
7914469 | Torbati | Mar 2011 | B2 |
7955281 | Pedersen et al. | Jun 2011 | B2 |
7967764 | Lidgren et al. | Jun 2011 | B2 |
7967839 | Flock et al. | Jun 2011 | B2 |
7955262 | Rosenberg | Jul 2011 | B2 |
7993289 | Quistgaard et al. | Aug 2011 | B2 |
8057465 | Sliwa, Jr. et al. | Sep 2011 | B2 |
8057389 | Barthe et al. | Nov 2011 | B2 |
8066641 | Barthe et al. | Nov 2011 | B2 |
8123707 | Huckle et al. | Feb 2012 | B2 |
8128618 | Gliklich et al. | Mar 2012 | B2 |
8133180 | Slayton et al. | Mar 2012 | B2 |
8133191 | Rosenberg et al. | Mar 2012 | B2 |
8142200 | Crunkilton et al. | Mar 2012 | B2 |
8152904 | Slobodzian et al. | Apr 2012 | B2 |
8162858 | Manna et al. | Apr 2012 | B2 |
8166332 | Barthe et al. | Apr 2012 | B2 |
8182428 | Angelsen et al. | May 2012 | B2 |
8197409 | Foley et al. | Jun 2012 | B2 |
8206299 | Foley et al. | Jun 2012 | B2 |
8208346 | Crunkilton | Jun 2012 | B2 |
8211017 | Foley et al. | Jul 2012 | B2 |
8262591 | Pedersen et al. | Sep 2012 | B2 |
8262650 | Zanelli et al. | Sep 2012 | B2 |
8264126 | Toda et al. | Sep 2012 | B2 |
8273037 | Kreindel et al. | Sep 2012 | B2 |
8282554 | Makin et al. | Oct 2012 | B2 |
8292835 | Cimino | Oct 2012 | B1 |
8298163 | Cimino | Oct 2012 | B1 |
8333700 | Barthe et al. | Dec 2012 | B1 |
8334637 | Crunkilton et al. | Dec 2012 | B2 |
8337407 | Quistgaard et al. | Dec 2012 | B2 |
8343051 | Desilets et al. | Jan 2013 | B2 |
8454540 | Eshel et al. | Jan 2013 | B2 |
8366622 | Slayton et al. | Feb 2013 | B2 |
8398549 | Palmeri et al. | Mar 2013 | B2 |
8409097 | Slayton et al. | Apr 2013 | B2 |
8425435 | Wing et al. | Apr 2013 | B2 |
8388535 | Weng et al. | May 2013 | B2 |
8444562 | Barthe et al. | May 2013 | B2 |
8460193 | Barthe et al. | Jun 2013 | B2 |
8480585 | Slayton et al. | Jul 2013 | B2 |
8486001 | Weyant | Jul 2013 | B2 |
8506486 | Slayton et al. | Aug 2013 | B2 |
8512250 | Quistgaard et al. | Aug 2013 | B2 |
8523775 | Barthe et al. | Sep 2013 | B2 |
8523849 | Liu et al. | Sep 2013 | B2 |
8535228 | Slayton et al. | Sep 2013 | B2 |
8570837 | Toda et al. | Oct 2013 | B2 |
8573392 | Bennett et al. | Nov 2013 | B2 |
8583211 | Salomir et al. | Nov 2013 | B2 |
8585618 | Hunziker et al. | Nov 2013 | B2 |
8604672 | Toda et al. | Dec 2013 | B2 |
8622937 | Weng et al. | Jan 2014 | B2 |
8636665 | Slayton et al. | Jan 2014 | B2 |
8640193 | Shigeeda | Jan 2014 | B2 |
8641622 | Barthe et al. | Feb 2014 | B2 |
8663112 | Slayton et al. | Mar 2014 | B2 |
8672848 | Slayton et al. | Mar 2014 | B2 |
8690778 | Slayton et al. | Apr 2014 | B2 |
8690779 | Slayton et al. | Apr 2014 | B2 |
8690780 | Slayton et al. | Apr 2014 | B2 |
8708935 | Barthe et al. | Apr 2014 | B2 |
8715186 | Slayton et al. | May 2014 | B2 |
8726781 | Eckhoff et al. | May 2014 | B2 |
8728071 | Lischinsky et al. | May 2014 | B2 |
8753295 | Thierman | Jun 2014 | B2 |
8758253 | Sano et al. | Jun 2014 | B2 |
8836203 | Nobles et al. | Sep 2014 | B2 |
8857438 | Barthe et al. | Oct 2014 | B2 |
8858471 | Barthe et al. | Oct 2014 | B2 |
8915853 | Barthe et al. | Dec 2014 | B2 |
8915854 | Slayton et al. | Dec 2014 | B2 |
8915870 | Barthe et al. | Dec 2014 | B2 |
8920320 | Stecco et al. | Dec 2014 | B2 |
8920324 | Slayton et al. | Dec 2014 | B2 |
8926533 | Bockenstedt et al. | Jan 2015 | B2 |
8932224 | Barthe et al. | Jan 2015 | B2 |
8932238 | Wing et al. | Jan 2015 | B2 |
8968205 | Zeng et al. | Mar 2015 | B2 |
9011336 | Slayton et al. | Apr 2015 | B2 |
9039617 | Slayton et al. | May 2015 | B2 |
9039619 | Barthe et al. | May 2015 | B2 |
9050116 | Homer | Jun 2015 | B2 |
9095697 | Barthe et al. | Aug 2015 | B2 |
9107798 | Azhari et al. | Aug 2015 | B2 |
9114247 | Barthe et al. | Aug 2015 | B2 |
9180314 | Desilets et al. | Nov 2015 | B2 |
9216276 | Slayton et al. | Dec 2015 | B2 |
9220915 | Liu et al. | Dec 2015 | B2 |
9272162 | Slayton et al. | Mar 2016 | B2 |
9283409 | Slayton et al. | Mar 2016 | B2 |
9283410 | Slayton et al. | Mar 2016 | B2 |
9295607 | Rosenberg | Mar 2016 | B2 |
9308390 | Youngquist | Apr 2016 | B2 |
9308391 | Liu et al. | Apr 2016 | B2 |
9314650 | Rosenberg et al. | Apr 2016 | B2 |
9320537 | Slayton et al. | Apr 2016 | B2 |
9345910 | Slayton et al. | May 2016 | B2 |
9421029 | Barthe et al. | Aug 2016 | B2 |
9427600 | Barthe et al. | Aug 2016 | B2 |
9427601 | Barthe et al. | Aug 2016 | B2 |
9433803 | Lin et al. | Sep 2016 | B2 |
9440093 | Homer | Sep 2016 | B2 |
9440096 | Barthe et al. | Sep 2016 | B2 |
9492645 | Zhou et al. | Nov 2016 | B2 |
9492686 | Da Silva | Nov 2016 | B2 |
9498651 | Sapozhnikov et al. | Nov 2016 | B2 |
9510802 | Barthe et al. | Dec 2016 | B2 |
9522290 | Slayton et al. | Dec 2016 | B2 |
9532832 | Ron Edoute et al. | Jan 2017 | B2 |
9533174 | Barthe et al. | Jan 2017 | B2 |
9533175 | Slayton et al. | Jan 2017 | B2 |
9545529 | Britva et al. | Jan 2017 | B2 |
9566454 | Barthe et al. | Feb 2017 | B2 |
9623267 | Ulric et al. | Apr 2017 | B2 |
9694211 | Barthe et al. | Jul 2017 | B2 |
9694212 | Barthe et al. | Jul 2017 | B2 |
9700340 | Barthe et al. | Jul 2017 | B2 |
9707412 | Slayton et al. | Jul 2017 | B2 |
9710607 | Ramdas et al. | Jul 2017 | B2 |
9713731 | Slayton et al. | Jul 2017 | B2 |
9802063 | Barthe et al. | Oct 2017 | B2 |
9827449 | Barthe et al. | Nov 2017 | B2 |
9827450 | Slayton et al. | Nov 2017 | B2 |
9833639 | Slayton et al. | Dec 2017 | B2 |
9833640 | Barthe et al. | Dec 2017 | B2 |
9895560 | Barthe et al. | Feb 2018 | B2 |
9907535 | Barthe et al. | Mar 2018 | B2 |
9919167 | Domankevitz | Mar 2018 | B2 |
9974982 | Slayton et al. | May 2018 | B2 |
1001072 | Slayton et al. | Jul 2018 | A1 |
1004618 | Barthe et al. | Aug 2018 | A1 |
20010009997 | Pope | Jul 2001 | A1 |
20010009999 | Kaufman et al. | Jul 2001 | A1 |
20010014780 | Martin | Aug 2001 | A1 |
20010014819 | Ingle | Aug 2001 | A1 |
20010031922 | Weng | Oct 2001 | A1 |
20010039380 | Larson et al. | Nov 2001 | A1 |
20010041880 | Brisken | Nov 2001 | A1 |
20020000763 | Jones | Jan 2002 | A1 |
20020002345 | Marlinghaus | Jan 2002 | A1 |
20020040199 | Klopotek | Apr 2002 | A1 |
20020040442 | Ishidera | Apr 2002 | A1 |
20020055702 | Atala | May 2002 | A1 |
20020062077 | Emmenegger | May 2002 | A1 |
20020062142 | Knowlton | May 2002 | A1 |
20020072691 | Thompson et al. | Jun 2002 | A1 |
20020082528 | Friedman | Jun 2002 | A1 |
20020082529 | Suorsa et al. | Jun 2002 | A1 |
20020082589 | Friedman | Jun 2002 | A1 |
20020087080 | Slayton | Jul 2002 | A1 |
20020095143 | Key | Jul 2002 | A1 |
20020099094 | Anderson | Jul 2002 | A1 |
20020115917 | Honda et al. | Aug 2002 | A1 |
20020128639 | Pless et al. | Aug 2002 | A1 |
20020128648 | Weber | Sep 2002 | A1 |
20020143252 | Dunne et al. | Oct 2002 | A1 |
20020156400 | Babaev | Oct 2002 | A1 |
20020161357 | Anderson | Oct 2002 | A1 |
20020165529 | Danek | Nov 2002 | A1 |
20020168049 | Schriever | Nov 2002 | A1 |
20020169394 | Eppstein et al. | Nov 2002 | A1 |
20020169442 | Neev | Nov 2002 | A1 |
20020173721 | Grunwald et al. | Nov 2002 | A1 |
20020193784 | McHale et al. | Dec 2002 | A1 |
20020193831 | Smith | Dec 2002 | A1 |
20030009153 | Brisken et al. | Jan 2003 | A1 |
20030014039 | Barzell et al. | Jan 2003 | A1 |
20030018255 | Martin | Jan 2003 | A1 |
20030018270 | Makin et al. | Jan 2003 | A1 |
20030023283 | McDaniel | Jan 2003 | A1 |
20030028111 | Vaezy et al. | Feb 2003 | A1 |
20030028113 | Gilbert et al. | Feb 2003 | A1 |
20030032900 | Ella | Feb 2003 | A1 |
20030036706 | Slayton | Feb 2003 | A1 |
20030040739 | Koop | Feb 2003 | A1 |
20030050678 | Sierra | Mar 2003 | A1 |
20030055308 | Friemel et al. | Mar 2003 | A1 |
20030055417 | Truckai et al. | Mar 2003 | A1 |
20030060736 | Martin et al. | Mar 2003 | A1 |
20030040442 | Ishidera | Apr 2003 | A1 |
20030065313 | Koop | Apr 2003 | A1 |
20030066708 | Allison et al. | Apr 2003 | A1 |
20030073907 | Taylor | Apr 2003 | A1 |
20030074023 | Kaplan | Apr 2003 | A1 |
20030083536 | Eshel | May 2003 | A1 |
20030092988 | Makin | May 2003 | A1 |
20030097071 | Halmann et al. | May 2003 | A1 |
20030099383 | Lefebvre | May 2003 | A1 |
20030125629 | Ustuner | Jul 2003 | A1 |
20030135135 | Miwa et al. | Jul 2003 | A1 |
20030139790 | Ingle et al. | Jul 2003 | A1 |
20030149366 | Stringer et al. | Aug 2003 | A1 |
20030153961 | Babaev | Aug 2003 | A1 |
20030171678 | Batten et al. | Sep 2003 | A1 |
20030171701 | Babaev | Sep 2003 | A1 |
20030176790 | Slayton | Sep 2003 | A1 |
20030191396 | Sanghvi | Oct 2003 | A1 |
20030199794 | Sakurai et al. | Oct 2003 | A1 |
20030200481 | Stanley | Oct 2003 | A1 |
20030212129 | Liu et al. | Nov 2003 | A1 |
20030212351 | Hissong | Nov 2003 | A1 |
20030212393 | Knowlton | Nov 2003 | A1 |
20030216648 | Lizzi et al. | Nov 2003 | A1 |
20030216795 | Harth | Nov 2003 | A1 |
20030220536 | Hissong | Nov 2003 | A1 |
20030220585 | Hissong | Nov 2003 | A1 |
20030229331 | Brisken et al. | Dec 2003 | A1 |
20030233085 | Giammarusti | Dec 2003 | A1 |
20030236487 | Knowlton | Dec 2003 | A1 |
20040000316 | Knowlton | Jan 2004 | A1 |
20040001809 | Brisken | Jan 2004 | A1 |
20040002658 | Marian, Jr. | Jan 2004 | A1 |
20040002705 | Knowlton | Jan 2004 | A1 |
20040010222 | Nunomura et al. | Jan 2004 | A1 |
20040015079 | Berger et al. | Jan 2004 | A1 |
20040015106 | Coleman | Jan 2004 | A1 |
20040030227 | Littrup | Feb 2004 | A1 |
20040030268 | Weng et al. | Feb 2004 | A1 |
20040039312 | Hillstead | Feb 2004 | A1 |
20040039418 | Elstrom | Feb 2004 | A1 |
20040041563 | Lewin et al. | Mar 2004 | A1 |
20040041880 | Ikeda et al. | Mar 2004 | A1 |
20040042168 | Yang et al. | Mar 2004 | A1 |
20040044375 | Diederich et al. | Mar 2004 | A1 |
20040049134 | Tosaya et al. | Mar 2004 | A1 |
20040049734 | Tosaya et al. | Mar 2004 | A1 |
20040059266 | Fry | Mar 2004 | A1 |
20040068186 | Ishida et al. | Apr 2004 | A1 |
20040073079 | Altshuler et al. | Apr 2004 | A1 |
20040073113 | Salgo | Apr 2004 | A1 |
20040073115 | Horzewski et al. | Apr 2004 | A1 |
20040073116 | Smith | Apr 2004 | A1 |
20040073204 | Ryan et al. | Apr 2004 | A1 |
20040077977 | Ella et al. | Apr 2004 | A1 |
20040082857 | Schonenberger | Apr 2004 | A1 |
20040082859 | Schaer | Apr 2004 | A1 |
20040102697 | Evron | May 2004 | A1 |
20040105559 | Aylward et al. | Jun 2004 | A1 |
20040106867 | Eshel et al. | Jun 2004 | A1 |
20040122323 | Vortman et al. | Jun 2004 | A1 |
20040122493 | Ishibashi et al. | Jun 2004 | A1 |
20040143297 | Ramsey | Jul 2004 | A1 |
20040152982 | Hwang et al. | Aug 2004 | A1 |
20040158150 | Rabiner et al. | Aug 2004 | A1 |
20040186535 | Knowlton | Sep 2004 | A1 |
20040189155 | Funakubo | Sep 2004 | A1 |
20040206365 | Knowlton | Oct 2004 | A1 |
20040210214 | Knowlton | Oct 2004 | A1 |
20040217675 | Desilets | Nov 2004 | A1 |
20040249318 | Tanaka | Dec 2004 | A1 |
20040254620 | Lacoste | Dec 2004 | A1 |
20040267252 | Washington | Dec 2004 | A1 |
20050033201 | Takahashi | Feb 2005 | A1 |
20050033316 | Kertz | Feb 2005 | A1 |
20050038340 | Vaezy et al. | Feb 2005 | A1 |
20050055018 | Kreindel | Mar 2005 | A1 |
20050055073 | Weber | Mar 2005 | A1 |
20050061834 | Garcia et al. | Mar 2005 | A1 |
20050070961 | Maki | Mar 2005 | A1 |
20050074407 | Smith | Apr 2005 | A1 |
20050080469 | Larson | Apr 2005 | A1 |
20050085731 | Miller et al. | Apr 2005 | A1 |
20050091770 | Mourad et al. | May 2005 | A1 |
20050096542 | Weng et al. | May 2005 | A1 |
20050104690 | Larson et al. | May 2005 | A1 |
20050113689 | Gritzky | May 2005 | A1 |
20050131302 | Poland | Jun 2005 | A1 |
20050137656 | Malak | Jun 2005 | A1 |
20050143677 | Young et al. | Jun 2005 | A1 |
20050154313 | Desilets | Jul 2005 | A1 |
20050154314 | Quistgaard | Jul 2005 | A1 |
20050154332 | Zanelli | Jul 2005 | A1 |
20050154431 | Quistgaard | Jul 2005 | A1 |
20050187495 | Quistgaard | Aug 2005 | A1 |
20050191252 | Mitsui | Sep 2005 | A1 |
20050193451 | Quistgaard | Sep 2005 | A1 |
20050193820 | Sheljaskow et al. | Sep 2005 | A1 |
20050197681 | Barolet et al. | Sep 2005 | A1 |
20050228281 | Nefos | Oct 2005 | A1 |
20050240127 | Seip et al. | Oct 2005 | A1 |
20050240170 | Zhang et al. | Oct 2005 | A1 |
20050251120 | Anderson et al. | Nov 2005 | A1 |
20050251125 | Pless et al. | Nov 2005 | A1 |
20050256406 | Barthe | Nov 2005 | A1 |
20050261584 | Eshel | Nov 2005 | A1 |
20050261585 | Makin et al. | Nov 2005 | A1 |
20050267454 | Hissong | Dec 2005 | A1 |
20050288748 | Li et al. | Dec 2005 | A1 |
20060004306 | Altshuler | Jan 2006 | A1 |
20060020260 | Dover et al. | Jan 2006 | A1 |
20060025756 | Francischelli | Feb 2006 | A1 |
20060042201 | Curry | Mar 2006 | A1 |
20060058664 | Barthe | Mar 2006 | A1 |
20060058671 | Vitek et al. | Mar 2006 | A1 |
20060058707 | Barthe | Mar 2006 | A1 |
20060058712 | Altshuler et al. | Mar 2006 | A1 |
20060074309 | Bonnefous | Apr 2006 | A1 |
20060074313 | Slayton | Apr 2006 | A1 |
20060074314 | Slayton | Apr 2006 | A1 |
20060074355 | Slayton | Apr 2006 | A1 |
20060079816 | Barthe | Apr 2006 | A1 |
20060079868 | Makin | Apr 2006 | A1 |
20060084891 | Barthe | Apr 2006 | A1 |
20060089632 | Barthe | Apr 2006 | A1 |
20060089688 | Panescu | Apr 2006 | A1 |
20060094988 | Tosaya | May 2006 | A1 |
20060111744 | Makin | May 2006 | A1 |
20060116583 | Ogasawara et al. | Jun 2006 | A1 |
20060116671 | Slayton | Jun 2006 | A1 |
20060122508 | Slayton | Jun 2006 | A1 |
20060122509 | Desilets | Jun 2006 | A1 |
20060161062 | Arditi et al. | Jul 2006 | A1 |
20060184069 | Vaitekunas | Aug 2006 | A1 |
20060184071 | Klopotek | Aug 2006 | A1 |
20060189972 | Grossman | Aug 2006 | A1 |
20060206105 | Chopra | Sep 2006 | A1 |
20060224090 | Ostrovsky et al. | Oct 2006 | A1 |
20060229514 | Wiener | Oct 2006 | A1 |
20060241440 | Eshel | Oct 2006 | A1 |
20060241442 | Barthe | Oct 2006 | A1 |
20060241470 | Novak et al. | Oct 2006 | A1 |
20060241576 | Diederich et al. | Oct 2006 | A1 |
20060250046 | Koizumi et al. | Nov 2006 | A1 |
20060282691 | Barthe | Dec 2006 | A1 |
20060291710 | Wang et al. | Dec 2006 | A1 |
20070016039 | Vortman et al. | Jan 2007 | A1 |
20070032784 | Gliklich | Feb 2007 | A1 |
20070035201 | Desilets | Feb 2007 | A1 |
20070055154 | Torbati | Mar 2007 | A1 |
20070055155 | Owen et al. | Mar 2007 | A1 |
20070055156 | Desilets | Mar 2007 | A1 |
20070065420 | Johnson | Mar 2007 | A1 |
20070083120 | Cain et al. | Apr 2007 | A1 |
20070087060 | Dietrich | Apr 2007 | A1 |
20070088245 | Babaev et al. | Apr 2007 | A1 |
20070088346 | Mirizzi et al. | Apr 2007 | A1 |
20070161902 | Dan | Jul 2007 | A1 |
20070166357 | Shaffer et al. | Jul 2007 | A1 |
20070167709 | Slayton | Jul 2007 | A1 |
20070208253 | Slayton | Sep 2007 | A1 |
20070219604 | Yaroslaysky et al. | Sep 2007 | A1 |
20070219605 | Yaroslaysky et al. | Sep 2007 | A1 |
20070238994 | Stecco et al. | Oct 2007 | A1 |
20070239075 | Rosenberg | Oct 2007 | A1 |
20070239077 | Azhari et al. | Oct 2007 | A1 |
20070239079 | Manstein et al. | Oct 2007 | A1 |
20070239142 | Altshuler | Oct 2007 | A1 |
20080015435 | Cribbs et al. | Jan 2008 | A1 |
20080027328 | Klopotek | Jan 2008 | A1 |
20080033458 | McLean et al. | Feb 2008 | A1 |
20080039724 | Seip et al. | Feb 2008 | A1 |
20080071255 | Barthe | Mar 2008 | A1 |
20080086054 | Slayton | Apr 2008 | A1 |
20080086056 | Chang et al. | Apr 2008 | A1 |
20080097214 | Meyers et al. | Apr 2008 | A1 |
20080097253 | Pedersen et al. | Apr 2008 | A1 |
20080114251 | Weymer et al. | May 2008 | A1 |
20080139943 | Deng et al. | Jun 2008 | A1 |
20080139974 | Da Silva | Jun 2008 | A1 |
20080146970 | Litman et al. | Jun 2008 | A1 |
20080167556 | Thompson | Jul 2008 | A1 |
20080183077 | Moreau-Gobard et al. | Jul 2008 | A1 |
20080183110 | Davenport et al. | Jul 2008 | A1 |
20080188745 | Chen et al. | Aug 2008 | A1 |
20080194964 | Randall et al. | Aug 2008 | A1 |
20080195000 | Spooner et al. | Aug 2008 | A1 |
20080200810 | Buchalter | Aug 2008 | A1 |
20080200813 | Quistgaard | Aug 2008 | A1 |
20080214966 | Slayton | Sep 2008 | A1 |
20080214988 | Altshuler et al. | Sep 2008 | A1 |
20080221491 | Slayton | Sep 2008 | A1 |
20080223379 | Stuker et al. | Sep 2008 | A1 |
20080242991 | Moon et al. | Oct 2008 | A1 |
20080243035 | Crunkilton | Oct 2008 | A1 |
20080269608 | Anderson et al. | Oct 2008 | A1 |
20080275342 | Barthe | Nov 2008 | A1 |
20080281206 | Bartlett et al. | Nov 2008 | A1 |
20080281236 | Eshel et al. | Nov 2008 | A1 |
20080281237 | Slayton | Nov 2008 | A1 |
20080281255 | Slayton | Nov 2008 | A1 |
20080294073 | Barthe | Nov 2008 | A1 |
20080319356 | Cain | Dec 2008 | A1 |
20090005680 | Jones et al. | Jan 2009 | A1 |
20090012394 | Hobelsberger et al. | Jan 2009 | A1 |
20090043198 | Milner et al. | Feb 2009 | A1 |
20090043293 | Pankratov et al. | Feb 2009 | A1 |
20090048514 | Azhari et al. | Feb 2009 | A1 |
20090069677 | Chen et al. | Mar 2009 | A1 |
20090093737 | Chomas et al. | Apr 2009 | A1 |
20090156969 | Santangelo | Jun 2009 | A1 |
20090163807 | Sliwa | Jun 2009 | A1 |
20090171252 | Bockenstedt et al. | Jul 2009 | A1 |
20090177122 | Peterson | Jul 2009 | A1 |
20090177123 | Peterson | Jul 2009 | A1 |
20090182231 | Barthe et al. | Jul 2009 | A1 |
20090198157 | Babaev et al. | Aug 2009 | A1 |
20090216159 | Slayton et al. | Aug 2009 | A1 |
20090226424 | Hsu | Sep 2009 | A1 |
20090227910 | Pedersen et al. | Sep 2009 | A1 |
20090230823 | Kushculey et al. | Sep 2009 | A1 |
20090253988 | Slayton et al. | Oct 2009 | A1 |
20090281463 | Chapelon et al. | Nov 2009 | A1 |
20090312693 | Thapliyal et al. | Dec 2009 | A1 |
20090318909 | Debenedictis et al. | Dec 2009 | A1 |
20090326420 | Moonen et al. | Dec 2009 | A1 |
20100011236 | Barthe et al. | Jan 2010 | A1 |
20100022919 | Peterson | Jan 2010 | A1 |
20100022921 | Seip et al. | Jan 2010 | A1 |
20100022922 | Barthe et al. | Jan 2010 | A1 |
20100030076 | Vortman | Feb 2010 | A1 |
20100042020 | Ben-Ezra | Feb 2010 | A1 |
20100049178 | Deem et al. | Feb 2010 | A1 |
20100056925 | Zhang et al. | Mar 2010 | A1 |
20100100014 | Eshel et al. | Apr 2010 | A1 |
20100113983 | Heckerman et al. | May 2010 | A1 |
20100130891 | Taggart et al. | May 2010 | A1 |
20100160782 | Slayton et al. | Jun 2010 | A1 |
20100160837 | Hunziker et al. | Jun 2010 | A1 |
20100168576 | Poland et al. | Jul 2010 | A1 |
20100191120 | Kraus et al. | Jul 2010 | A1 |
20100241035 | Barthe et al. | Sep 2010 | A1 |
20100249602 | Buckley et al. | Sep 2010 | A1 |
20100249669 | Ulric et al. | Sep 2010 | A1 |
20100256489 | Pedersen et al. | Oct 2010 | A1 |
20100274161 | Azhari et al. | Oct 2010 | A1 |
20100280420 | Barthe et al. | Nov 2010 | A1 |
20100286518 | Lee et al. | Nov 2010 | A1 |
20100312150 | Douglas et al. | Dec 2010 | A1 |
20110040171 | Foley et al. | Feb 2011 | A1 |
20110040190 | Jahnke et al. | Feb 2011 | A1 |
20110040213 | Dietz et al. | Feb 2011 | A1 |
20110040214 | Foley et al. | Feb 2011 | A1 |
20110066084 | Desilets et al. | Mar 2011 | A1 |
20110077514 | Ulric et al. | Mar 2011 | A1 |
20110087099 | Eshel et al. | Apr 2011 | A1 |
20110087255 | McCormack et al. | Apr 2011 | A1 |
20110112405 | Barthe et al. | May 2011 | A1 |
20110144490 | Davis et al. | Jun 2011 | A1 |
20110178444 | Slayton et al. | Jul 2011 | A1 |
20110178541 | Azhari | Jul 2011 | A1 |
20110190745 | Uebelhoer et al. | Aug 2011 | A1 |
20110201976 | Sanghvi et al. | Aug 2011 | A1 |
20110251524 | Azhari et al. | Oct 2011 | A1 |
20110251527 | Kushculey et al. | Oct 2011 | A1 |
20110270137 | Goren et al. | Nov 2011 | A1 |
20110319793 | Henrik et al. | Dec 2011 | A1 |
20110319794 | Gertner | Dec 2011 | A1 |
20120004549 | Barthe et al. | Jan 2012 | A1 |
20120016239 | Barthe et al. | Jan 2012 | A1 |
20120029353 | Slayton et al. | Feb 2012 | A1 |
20120035473 | Sanghvi et al. | Feb 2012 | A1 |
20120035475 | Barthe et al. | Feb 2012 | A1 |
20120035476 | Barthe et al. | Feb 2012 | A1 |
20120046547 | Barthe et al. | Feb 2012 | A1 |
20120053458 | Barthe et al. | Mar 2012 | A1 |
20120059288 | Barthe et al. | Mar 2012 | A1 |
20120111339 | Barthe et al. | May 2012 | A1 |
20120123304 | Rybyanets et al. | May 2012 | A1 |
20120136280 | Rosenberg et al. | May 2012 | A1 |
20120136282 | Rosenberg et al. | May 2012 | A1 |
20120143056 | Slayton et al. | Jun 2012 | A1 |
20120143100 | Jeong et al. | Jun 2012 | A1 |
20120165668 | Slayton et al. | Jun 2012 | A1 |
20120165848 | Slayton et al. | Jun 2012 | A1 |
20120191019 | Desilets et al. | Jul 2012 | A1 |
20120191020 | Vitek et al. | Jul 2012 | A1 |
20120197120 | Makin et al. | Aug 2012 | A1 |
20120197121 | Slayton et al. | Aug 2012 | A1 |
20120209150 | Zeng et al. | Aug 2012 | A1 |
20120215105 | Slayton et al. | Aug 2012 | A1 |
20120271202 | Wisdom | Oct 2012 | A1 |
20120271294 | Barthe et al. | Oct 2012 | A1 |
20120296240 | Azhari et al. | Nov 2012 | A1 |
20120302883 | Kong et al. | Nov 2012 | A1 |
20120316426 | Foley et al. | Dec 2012 | A1 |
20120330197 | Makin et al. | Dec 2012 | A1 |
20120330222 | Makin et al. | Dec 2012 | A1 |
20120330223 | Makin et al. | Dec 2012 | A1 |
20120330283 | Hyde et al. | Dec 2012 | A1 |
20120330284 | Hyde et al. | Dec 2012 | A1 |
20130012755 | Slayton | Jan 2013 | A1 |
20130012816 | Slayton et al. | Jan 2013 | A1 |
20130012838 | Jaeger et al. | Jan 2013 | A1 |
20130012842 | Barthe | Jan 2013 | A1 |
20130018285 | Park et al. | Jan 2013 | A1 |
20130018286 | Slayton et al. | Jan 2013 | A1 |
20130046209 | Slayton et al. | Feb 2013 | A1 |
20130051178 | Rybyanets | Feb 2013 | A1 |
20130060170 | Lee et al. | Mar 2013 | A1 |
20130066208 | Barthe et al. | Mar 2013 | A1 |
20130066237 | Smotrich et al. | Mar 2013 | A1 |
20130072826 | Slayton et al. | Mar 2013 | A1 |
20130073001 | Campbell | Mar 2013 | A1 |
20130096471 | Slayton et al. | Apr 2013 | A1 |
20130190659 | Slayton et al. | Jul 2013 | A1 |
20130211293 | Auboiroux et al. | Aug 2013 | A1 |
20130225994 | Hsu et al. | Aug 2013 | A1 |
20130268032 | Neev | Oct 2013 | A1 |
20130274603 | Barthe et al. | Oct 2013 | A1 |
20130281853 | Slayton et al. | Oct 2013 | A1 |
20130281891 | Slayton et al. | Oct 2013 | A1 |
20130296697 | Slayton et al. | Nov 2013 | A1 |
20130296700 | Slayton et al. | Nov 2013 | A1 |
20130296743 | Lee et al. | Nov 2013 | A1 |
20130303904 | Barthe et al. | Nov 2013 | A1 |
20130303905 | Barthe et al. | Nov 2013 | A1 |
20130310714 | Eshel et al. | Nov 2013 | A1 |
20130310863 | Makin et al. | Nov 2013 | A1 |
20130345562 | Barthe et al. | Dec 2013 | A1 |
20140024974 | Slayton et al. | Jan 2014 | A1 |
20140050054 | Toda et al. | Feb 2014 | A1 |
20140081300 | Melodelima et al. | Mar 2014 | A1 |
20140082907 | Barthe et al. | Mar 2014 | A1 |
20140117814 | Toda et al. | May 2014 | A1 |
20140142430 | Slayton et al. | May 2014 | A1 |
20140148834 | Barthe et al. | May 2014 | A1 |
20140180174 | Slayton et al. | Jun 2014 | A1 |
20140187944 | Slayton et al. | Jul 2014 | A1 |
20140188015 | Slayton et al. | Jul 2014 | A1 |
20140188145 | Slayton et al. | Jul 2014 | A1 |
20140194723 | Herzog et al. | Jul 2014 | A1 |
20140208856 | Schmid | Jul 2014 | A1 |
20140221823 | Keogh et al. | Aug 2014 | A1 |
20140236049 | Barthe et al. | Aug 2014 | A1 |
20140236061 | Lee et al. | Aug 2014 | A1 |
20140243713 | Slayton et al. | Aug 2014 | A1 |
20140276055 | Barthe et al. | Sep 2014 | A1 |
20150000674 | Barthe et al. | Jan 2015 | A1 |
20150025420 | Slayton et al. | Jan 2015 | A1 |
20150080723 | Barthe et al. | Mar 2015 | A1 |
20150080771 | Barthe et al. | Mar 2015 | A1 |
20150080874 | Slayton et al. | Mar 2015 | A1 |
20150088182 | Slayton et al. | Mar 2015 | A1 |
20150141734 | Chapelon et al. | May 2015 | A1 |
20150164734 | Slayton et al. | Jun 2015 | A1 |
20150165238 | Slayton et al. | Jun 2015 | A1 |
20150165243 | Slayton et al. | Jun 2015 | A1 |
20150174388 | Slayton | Jun 2015 | A1 |
20150202468 | Slayton et al. | Jul 2015 | A1 |
20150217141 | Barthe et al. | Aug 2015 | A1 |
20150238258 | Palero et al. | Aug 2015 | A1 |
20150321026 | Branson et al. | Nov 2015 | A1 |
20150360058 | Barthe et al. | Dec 2015 | A1 |
20150374333 | Barthe et al. | Dec 2015 | A1 |
20150375014 | Slayton et al. | Dec 2015 | A1 |
20160001097 | Cho et al. | Jan 2016 | A1 |
20160016015 | Slayton et al. | Jan 2016 | A1 |
20160027994 | Toda et al. | Jan 2016 | A1 |
20160151618 | Powers et al. | Jun 2016 | A1 |
20160175619 | Lee et al. | Jun 2016 | A1 |
20160206335 | Slayton | Jul 2016 | A1 |
20160206341 | Slayton | Jul 2016 | A1 |
20160256675 | Slayton | Sep 2016 | A1 |
20160296769 | Barthe et al. | Oct 2016 | A1 |
20160361571 | Bernabei | Dec 2016 | A1 |
20160361572 | Slayton | Dec 2016 | A1 |
20170028227 | Emery et al. | Feb 2017 | A1 |
20170043190 | Barthe et al. | Feb 2017 | A1 |
20170050019 | Ron Edoute et al. | Feb 2017 | A1 |
20170080257 | Paunescu et al. | Mar 2017 | A1 |
20170100585 | Hall et al. | Apr 2017 | A1 |
20170136263 | Reil | May 2017 | A1 |
20170209201 | Slayton et al. | Jul 2017 | A1 |
20170304654 | Blanche et al. | Oct 2017 | A1 |
20180001113 | Streeter | Jan 2018 | A1 |
20180015308 | Reed et al. | Jan 2018 | A1 |
20180043147 | Slayton | Feb 2018 | A1 |
20180099162 | Bernabei | Apr 2018 | A1 |
20180099163 | Bernabei | Apr 2018 | A1 |
20180272156 | Slayton et al. | Sep 2018 | A1 |
20180272157 | Barthe et al. | Sep 2018 | A1 |
20180272158 | Barthe et al. | Sep 2018 | A1 |
20180272159 | Slayton et al. | Sep 2018 | A1 |
Number | Date | Country |
---|---|---|
104027893 | Sep 2014 | CN |
4029175 | Mar 1992 | DE |
10140064 | Mar 2003 | DE |
10219297 | Nov 2003 | DE |
10219217 | Dec 2004 | DE |
20314479 | Dec 2004 | DE |
0142215 | May 1984 | EP |
0344773 | Dec 1989 | EP |
1479412 | Nov 1991 | EP |
0473553 | Apr 1992 | EP |
670147 | Feb 1995 | EP |
0661029 | Jul 1995 | EP |
724894 | Feb 1996 | EP |
763371 | Nov 1996 | EP |
1044038 | Oct 2000 | EP |
1050322 | Nov 2000 | EP |
1234566 | Aug 2002 | EP |
1262160 | Dec 2002 | EP |
1283690 | Feb 2003 | EP |
0659387 | Apr 2003 | EP |
1374944 | Jan 2004 | EP |
1028660 | Jan 2008 | EP |
1874241 | Jan 2008 | EP |
1362223 | May 2008 | EP |
1750804 | Jul 2008 | EP |
1811901 | Apr 2009 | EP |
1785164 | Aug 2009 | EP |
2230904 | Sep 2010 | EP |
1501331 | Jun 2011 | EP |
2066405 | Nov 2011 | EP |
2474050 | Jul 2012 | EP |
2709726 | Nov 2015 | EP |
1538980 | Jan 2017 | EP |
2897547 | Nov 2017 | EP |
2532851 | Sep 1983 | FR |
2685872 | Jan 1992 | FR |
2672486 | Aug 1992 | FR |
2703254 | Mar 1994 | FR |
2113099 | Aug 1983 | GB |
102516 | Jan 1996 | IL |
112369 | Aug 1999 | IL |
120079 | Mar 2001 | IL |
63036171 | Feb 1988 | JP |
03048299 | Mar 1991 | JP |
3123559 | May 1991 | JP |
03136642 | Jun 1991 | JP |
4089058 | Mar 1992 | JP |
4-150847 | May 1992 | JP |
04150847 | May 1992 | JP |
7080087 | Mar 1995 | JP |
07505793 | Jun 1995 | JP |
2007505793 | Jun 1995 | JP |
7184907 | Jul 1995 | JP |
7222782 | Aug 1995 | JP |
09047458 | Feb 1997 | JP |
9108288 | Apr 1997 | JP |
9503926 | Apr 1997 | JP |
11-505440 | May 1999 | JP |
11123226 | May 1999 | JP |
11-506636 | Jun 1999 | JP |
10248850 | Sep 1999 | JP |
2000126310 | May 2000 | JP |
2000166940 | Jun 2000 | JP |
2000233009 | Aug 2000 | JP |
2001170068 | Jun 2001 | JP |
2002-505596 | Feb 2002 | JP |
2002078764 | Mar 2002 | JP |
2002515786 | May 2002 | JP |
2002521118 | Jul 2002 | JP |
2002-537939 | Nov 2002 | JP |
2003050298 | Jul 2003 | JP |
2003204982 | Jul 2003 | JP |
2004-504898 | Feb 2004 | JP |
2004-507280 | Mar 2004 | JP |
2004-509671 | Apr 2004 | JP |
2004-512856 | Apr 2004 | JP |
2004-147719 | May 2004 | JP |
2005503388 | Feb 2005 | JP |
2005527336 | Sep 2005 | JP |
2005323213 | Nov 2005 | JP |
2006520247 | Sep 2006 | JP |
2008515559 | May 2008 | JP |
2009518126 | May 2009 | JP |
2010517695 | May 2010 | JP |
1020010024871 | Mar 2001 | KR |
100400870 | Oct 2003 | KR |
20060121267 | Nov 2006 | KR |
1020060113930 | Nov 2006 | KR |
1020070065332 | Jun 2007 | KR |
1020070070161 | Jul 2007 | KR |
1020070098856 | Oct 2007 | KR |
1020070104878 | Oct 2007 | KR |
1020070114105 | Nov 2007 | KR |
1020000059516 | Apr 2012 | KR |
10-2013-0124598 | Nov 2013 | KR |
10-1365946 | Feb 2014 | KR |
386883 | Sep 2000 | TW |
201208734 | Mar 2012 | TW |
WO9312742 | Jul 1993 | WO |
WO9524159 | Sep 1995 | WO |
WO 9625888 | Aug 1996 | WO |
WO9634568 | Nov 1996 | WO |
WO 9639079 | Dec 1996 | WO |
WO 9735518 | Oct 1997 | WO |
WO 9832379 | Jul 1998 | WO |
WO 9852465 | Nov 1998 | WO |
WO 9933520 | Jul 1999 | WO |
WO 9949788 | Oct 1999 | WO |
WO 200006032 | Feb 2000 | WO |
WO 0015300 | Mar 2000 | WO |
WO 0021612 | Apr 2000 | WO |
WO 0053113 | Sep 2000 | WO |
WO 0128623 | Apr 2001 | WO |
WO01045550 | Jun 2001 | WO |
WO01080709 | Nov 2001 | WO |
WO 0182777 | Nov 2001 | WO |
WO 0182778 | Nov 2001 | WO |
WO 0187161 | Nov 2001 | WO |
WO 2001087161 | Nov 2001 | WO |
WO 0209812 | Feb 2002 | WO |
WO02015768 | Feb 2002 | WO |
WO 0209813 | Feb 2002 | WO |
WO 0224050 | Mar 2002 | WO |
WO 02092168 | Nov 2002 | WO |
WO 03053266 | Jul 2003 | WO |
WO 03065347 | Aug 2003 | WO |
WO 03070105 | Aug 2003 | WO |
WO 03077833 | Sep 2003 | WO |
WO 2002054018 | Sep 2003 | WO |
WO 03086215 | Oct 2003 | WO |
WO 03096883 | Nov 2003 | WO |
WO 03099382 | Dec 2003 | WO |
WO 03099177 | Dec 2003 | WO |
WO 03101530 | Dec 2003 | WO |
WO 2004000116 | Dec 2003 | WO |
WO 2004080147 | Sep 2004 | WO |
WO 2004110558 | Dec 2004 | WO |
WO 2005011804 | Feb 2005 | WO |
WO 2005065408 | Jul 2005 | WO |
WO2005065409 | Jul 2005 | WO |
WO 2005090978 | Sep 2005 | WO |
WO 2005113068 | Dec 2005 | WO |
WO 2006036870 | Apr 2006 | WO |
WO 2006042163 | Apr 2006 | WO |
WO 2006042168 | Apr 2006 | WO |
WO 2006042201 | Apr 2006 | WO |
WO 2006065671 | Jun 2006 | WO |
WO 2006082573 | Aug 2006 | WO |
WO2006104568 | Oct 2006 | WO |
WO 2007067563 | Jun 2007 | WO |
WO 2008036622 | Mar 2008 | WO |
WO 2008036479 | Nov 2008 | WO |
WO 2009013729 | Jan 2009 | WO |
WO2009149390 | Oct 2009 | WO |
WO 2008144274 | Jan 2010 | WO |
WO 2012134645 | Jan 2013 | WO |
WO2013048912 | Apr 2013 | WO |
WO2013178830 | Dec 2013 | WO |
WO 2014045216 | Mar 2014 | WO |
WO2014055708 | Apr 2014 | WO |
WO 2014057388 | Apr 2014 | WO |
WO2014127091 | Aug 2014 | WO |
WO2015160708 | Oct 2015 | WO |
WO2016054155 | Apr 2016 | WO |
WO2017127328 | Jul 2017 | WO |
WO2017149506 | Sep 2017 | WO |
WO2017165595 | Sep 2017 | WO |
WO2017212489 | Dec 2017 | WO |
WO2018035012 | Feb 2018 | WO |
Entry |
---|
Agren, Magnus S. et al., Collagenase in Wound Healing: Effect of Wound Age and Type. The Journal of Investigative Dermatology, vol. 99/No. 6, (Dec. 1992). |
Alam, M., “The future of noninvasive procedural dermatology”. Semin Cutan Med Surg. Mar. 2013; 32(1):59-61. |
Alam, M., et al., “Ultrasound tightening of facial and neck skin: a rater-blinded prospective cohort study”. J Am Acad Dermatol, 2010. 62(2): p. 262-9. |
Alexiades-Armenakas, M., “Ultrasound Technologies for Dermatologic Techniques”. J Drugs Derm. 2014. 12 (11): p. 1305. |
Alster, T.S., et. al., “Noninvasive lifting of arm, thigh, and knee skin with transcutaneousintense focused ultrasound”. Dermatol Surg, 2012. 38(5): p. 754-9. |
Arosarena, O., “Options and Challenges for Facial Rejuvenation in Patients With Higher Fitzpatrick Skin Phototypes”. JAMA Facial Plastic Surgery, 2015. |
Bozec, Laurent et al., Thermal Denaturation Studies of Collagen by Microthermal Analysis and Atomic Force Microscopy, Biophysical Journal, vol. 101, pp. 228-236. (Jul. 2001). |
Brobst, R.W., et. al., “Noninvasive Treatment of the Neck”. Facial Plast Surg Clin North Am, 2014. 22(2): p. 191-202. |
Brobst, R.W., et., al., “Ulthera: initial and six month results”. Facial Plast Surg Clin North Am, 2012. 20(2): p. 163-76. |
Casabona, G., et. al., “Microfocused Ultrasound With Visualization and Fillers for Increased Neocollagenesis: Clinical and Histological Evaluation”. Dermatol Surg 2014;40:S194-S198. |
Chan, N.P., et al.,“Safety study of transcutaneous focused ultrasound for non-invasive skin tightening in Asians”. Lasers Surg Med, 2011. 43(5): p. 366-75. |
Chapelon et al., “Effects of Cavitation In The High Intensity Therapeutic Ultrasound”, Ultrasonics Symposium—1357 (1991). |
Chapelon, et al., “Thresholds for Tissue Ablation by Focused Ultrasound” (1990). |
Dayan, S.H., et al., “Prospective, Multi-Center, Pivotal Trial Evaluating the Safety and Effectiveness of Micro-Focused Ultrasound with Visualization (MFU-V) for Improvement in Lines and Wrinkles of the Décolletage”. Plast Reconstr Surg. Oct. 2014; 134(4 Suppl 1):123-4. |
Dierickx, Christine C., “The Role of Deep Heating for Noninvasive Skin Rejuvenation” Lasers in Surgery and Medicine 38:799-807 (2006). |
Dobke, M.K., et al., “Tissue restructuring by energy-based surgical tools”. Clin Plast Surg, 2012. 39(4): p. 399-408. |
Dong, Yuan-Lin et al., “Effect of Ibuprofen on the Inflammatory Response to Surgical Wounds” The Journal of Trauma, vol. 35, No. 3. (1993). |
Dvivedi, Sanjay, et al. “Effect of Ibuprofen and diclofenac sodium on experimental wound healing” Indian Journal of Experimental Biology, vol. 35, pp. 1243-1245. (Nov. 1997). |
Fabi, S.G., “Microfocused Ultrasound With Visualization for Skin Tightening and Lifting: My Experience and a Review of the Literature”. Dermatol Surg. Dec. 2014; 40 Suppl 12:S164-7. |
Fabi, S.G., “Noninvasive skin tightening: focus on new ultrasound techniques”. Clin Cosmet Investig Dermatol. Feb. 5, 2015; 8:47-52. |
Fabi, S.G., et. al., “A prospective multicenter pilot study of the safety and efficacy of microfocused ultrasound with visualization for improving lines and wrinkles of the décolleté”. Dermatol Surg. Mar. 2015; 41(3):327-35. |
Fabi, S.G., et. al., “Evaluation of microfocused ultrasound with visualization for lifting, tightening, and wrinkle reduction of the decolletage”. J Am Acad Dermatol, 2013. 69(6): p. 965-71. |
Fabi, S.G., et. al., “Future directions in cutaneous laser surgery”. Dermatol Clin, 2014. 32(1): p. 61-9. |
Fabi, S.G., et. al., “Retrospective Evaluation of Micro-focused Ultrasound for Lifting and Tightening the Face and Neck”. Dermatol Surg, 2014. |
Friedmann D.P., “Comments on evaluation of microfocused ultrasound system for improving skin laxity and tightening in the lower face”. Aesthet Surg J. Mar. 2015;35(3):NP81-2. |
Friedmann, D.P., et. al., “Combination of intense pulsed light, Sculptra, and Ultherapy for treatment of the aging face”. J Cosmet Dermatol, 2014. 13(2): p. 109-18. |
Fujimoto, et al., “A New Cavitation Suppression Technique for Local Ablation Using High-Intensity Focused Ultrasound” Ultrasonics Symposium—1629 (1995). |
Gold, M.H., et. al., “Use of Micro-Focused Ultrasound with Visualization to Lift and Tighten Lax Knee Skin”. J Cosmet Laser Ther, 2014: p. 1-15. |
Goldberg, D.J., et. al., “Safety and Efficacy of Microfocused Ultrasound to Lift, Tighten, and Smooth the Buttocks”. Dermatol Surg 2014; 40:1113-1117. |
Greene, R.M., et al., “Skin tightening technologies”. Facial Plast Surg. Feb. 2014; 30(1):62-7. |
Greenhalgh, David G., “Wound healing and diabetes mellitus” Clinics in Plastic Surgery 30; 37-45. (2003). |
Guo, S. et al., “Factors Affecting Wound Healing” Critical Reviews in Oral Biology & Medicine, J Dent Res 89(3), pp. 219-229. (2010). |
Hantash, Basil M. et al., “Bipolar Fractional Radiofrequency Treatment Induces Neoelastogenesis and Neocollagenesis” Lasers in Surgery and Medicine 41:1-9 (2009). |
Hantash, Basil M. et al., “In Vivo Histological Evaluation of a Novel Ablative Fractional Resurfacing Device” Lasers in Surgery and Medicine 39:96-107 (2007). |
Harris, M.O., “Safety of Microfocused Ultrasound With Visualization in Patients With Fitzpatrick Skin Phototypes III to VI”. JAMA Facial Plast. Surg, 2015. |
Hart, et. al., “Current Concepts in the Use of PLLA:Clinical Synergy Noted with Combined Use of Microfocused Ultrasound and Poly-I-Lactic Acid on the Face, Neck, and Décolletage”. Amer. Soc. Plast. Surg. 2015. 136; 180-187S. |
Hitchcock, T.M . et. al., “Review of the safety profile for microfocused ultrasound with Visualization”. Journal of Cosmetic Dermatology, 13, 329-335. (2014). |
Hynynen et al., Temperature Distributions During Local Ultrasound Induced Hyperthermia In Vivo, Ultrasonics Symposium—745 (1982). |
Jeong, K.H., et al., “Neurologic complication associated with intense focused ultrasound”. J Cosmet Laser Ther, 2013. |
Kim, H.J., et al., “Coagulation and ablation patterns of high-intensity focused ultrasound on a tissue mimicking phantom and cadaveric skin”. Laser Med Sci. Sep. 4, 2015. |
Kornstein, A.N., “Ulthera for silicone lip correction”. Plast Reconstr Surg, 2012. 129(6): p. 1014e-1015e. |
Kornstein, A.N., “Ultherapy shrinks nasal skin after rhinoplasty following failure of conservative measures”. Plast Reconstr Surg, 2013. 131(4): p. 664e-6e. |
Krischak, G.D., et al., “The effects of non-steroidal anti-inflammatory drug application on incisional wound healing in rats” Journal of Wound Care, vol. 6, No. 2, (Feb. 2007). |
Laubach, H.J., et. al., “Confined Thermal Damage with Intense Ultrasound (IUS)” [abstr.] American Society for Laser Medicine and Surgery Abstracts, p. 15 #43 (Apr. 2006). |
Laubach, H.J., et. al., “Intense focused ultrasound: evaluation of a new treatment modality for precise microcoagulation within the skin”. Dermatol Surg, 2008. 34(5): p. 727-34. |
Lee, H.J., et. al., “The efficacy and safety of intense focused ultrasound in the treatment of enlarged facial pores in Asian skin”. J Dermatolog Treat, 2014. |
Lee, H.S., et al., “Multiple Pass Ultrasound Tightening of Skin Laxity of the Lower Face and Neck”. Dermatol Surg, 2011. |
Lin, Sung-Jan, et al., “Monitoring the thermally induced structural transitions of collagen by use of second-harmonic generation microscopy” Optics Letters, vol. 30, No. 6, (Mar. 15, 2005). |
MacGregor J.L., et. al., “Microfocused Ultrasound for Skin Tightening”. Semin Cutan Med Surg 32:18-25. (2013). |
Meshkinpour, Azin, et al., “Treatment of Hypertrophic Scars and Keloids With a Radiofrequency Device: A Study of Collagen Effects” Lasers in Surgery and Medicine 37:343-349 (2005). |
Minkis, K., et. al., “Ultrasound skin tightening”. Dermatol Clin, 2014. 32(1): p. 71-7. |
Mosser, David M. et al., “Exploring the full spectrum of macrophage activation” Nat Rev Immunol; 8(12): 958-969. (Dec. 2008). |
Murota, Sei-Itsu, et al., “Stimulatory Effect of Prostaglandins on the Production of Hexosamine-Containing Substances by Cultured Fibroblasts (3) Induction of Hyaluronic Acid Synthetase by Prostaglandin” Department of Pharmacology, Tokyo Metropolitan Institute of Gerontology, Itabashiku, Tokyo-173, Japan. (Nov. 1977, vol. 14, No. 5). |
Murota, Sei-Itsu, et al., “The Stimulatory Effect of Prostaglandins on Production of Hexosamine-Containing Substances by Cultured Fibroblasts” Department of Pharmacology, Tokyo Metropolitan Institute of Gerontology, Itabashiku, Tokyo-173, Japan. (Aug. 1976, vol. 12, No. 2). |
Nestor, M.S. et. al., “Safety and Efficacy of Micro-focused Ultrasound Plus Visualization for the Treatment of Axillary Hyperhidrosis”. J Clin Aesthet Dermatol, 2014. 7(4): p. 14-21. |
Oni, G., et. al. “Response to ‘comments on evaluation of microfocused ultrasound system for improving skin laxity and tightening in the lower face’”. Aesthet Surg J. Mar. 2015;35(3):NP83-4. |
Oni, G., et. al., “Evaluation of a Microfocused Ultrasound System for Improving Skin Laxity and Tightening in the Lower Face”. Aesthet Surg J, 2014. 38:861-868. |
Pak, C.S., et. al., “Safety and Efficacy of Ulthera in the Rejuvenation of Aging Lower Eyelids: A Pivotal Clinical Trial”. Aesthetic Plast Surg, 2014. |
Pritzker, R.N., et. al., “Updates in noninvasive and minimally invasive skin tightening”. Semin Cutan Med Surg. Dec. 2014;33(4):182-7. |
Pritzker, R.N., et. al., “Comparison of different technologies for noninvasive skin tightening”. Journal of Cosmetic Dermatology, 13, 315-323. (2014). |
Rappolee, Daniel A., et al., “Wound Macrophages Express TGF and Other Growth Factors in Vivo: Analysis by mRNA Phenotyping” Science, vol. 241, No. 4866 (Aug. 1988). |
Rokhsar, C., et. al., “Safety and efficacy of microfocused ultrasound in tightening of lax elbow skin”. Dermatol Surg. 2015; 41(7):821-6. |
Rosenberg, Carol S. “Wound Healing in the Patient with Diabetes Mellitus” Nursing Clinics of North America, vol. 25, No. 1, (Mar. 1990). |
Sabet-Peyman, E.J. et. al., “Complications Using Intense Ultrasound Therapy to TreatDeep Dermal Facial Skin and Subcutaneous Tissues”. Dermatol Surg 2014; 40:1108-1112. |
Sandulache, Vlad C. et al., “Prostaglandin E2 inhibition of keloid fibroblast migration, contraction, and transforming growth factor (TGF)—B1-induced collagen synthesis” Wound Rep Reg 15 122-133, 2007. (2007). |
Sasaki, G.H. et. al., “Clinical Efficacy and Safety of Focused-Image Ultrasonography: A 2-Year Experience”. Aesthet Surg J, 2012. |
Sasaki, G.H. et. al., “Microfocused Ultrasound for Nonablative Skin and Subdermal Tightening to the Periorbitum and Body Sites: Preliminary Report on Eighty-Two Patients”. Journal of Cosmetics, Dermatological Sciences and Applications, 2012, 2, 108-116. |
Sklar, L.R., et. al., “Use of transcutaneous ultrasound for lipolysis and skin tightening: a review”. Aesthetic Plast Surg, 2014. 38(2): p. 429-41. |
Suh, D.H., et. al., “A intense-focused ultrasound tightening for the treatment of infraorbital laxity”. J Cosmet Laser Ther, 2012. 14(6): p. 290-5. |
Suh, D.H., et. al., “Comparative histometric analysis of the effects of high-intensity focused ultrasound and radiofrequency on skin”. J Cosmet Laser Ther. Mar. 24, 2015:1-7. |
Suh, D.H., et. al., “Intense Focused Ultrasound Tightening in Asian Skin: Clinical and Pathologic Results” American Society for Dermatologic Surgery, Inc.; 37:1595-1602. (2011). |
Suh, D.H., et. al., “Intense focused ultrasound tightening in asian skin: clinical and pathologic results”. Dermatol Surg, 2011. 37(11): p. 1595-602. |
Verhofstad, Michiel H.J. et al., “Collagen Synthesis in rat skin and ileum fibroblasts is affected differently by diabetes-related factors” Int. J. Exp. Path. (1998), 79, 321-328. |
Weiss, M., “Commentary: noninvasive skin tightening: ultrasound and other technologies: where are we in 2011?” Dermatol Surg, 2012. 38(1): p. 28-30. |
White, W. M., et al., “Selective Transcutaneous Delivery of Energy to Facial Subdermal Tissues Using the Ultrasound Therapy System” [abstr]. American Society for Laser Medicine and Surgery Abstracts, p. 37 #113 (Apr. 2006). |
White, W. Matthew, et al., “Selective Transcutaneous Delivery of Energy to Porcine Soft Tissues Using Intense Ultrasound (IUS)” Lasers in Surgery and Medicine 40:67-75 (2008). |
Woodward, J.A., et. al. “Safety and Efficacy of Combining Microfocused Ultrasound With Fractional CO2 Laser Resurfacing for Lifting and Tightening the Face and Neck”. Dermatol Surg, Dec. 2014 40:S190-S193. |
Zelickson, Brian D. et al., “Histological and Ultrastructural Evaluation of the Effects of a Radiofrequency-Based Nonablative Dermal Remodeling Device, A Pilot Study” Arch Dermatol, vol. 140, (Feb. 2004). |
U.S. Appl. No. 12/996,616, filed Jan. 12, 2011, Hand Wand for Ultrasonic Cosmetic Treatment and Imaging. |
U.S. Appl. No. 13/245,822, filed Sep. 26, 2011, System and Method for Cosmetic Treatment. |
U.S. Appl. No. 13/245,852, filed Sep. 26, 2011, Systems for Cosmetic Treatment. |
U.S. Appl. No. 13/245,864, filed Sep. 27, 2011, Methods for Non-Invasive Cosmetic Treatment of the Eye Region. |
U.S. Appl. No. 13/246,117, filed Sep. 27, 2011, Methods for Non-Invasive Lifting and Tightening of the Lower Face and Neck. |
U.S. Appl. No. 13/246,112, filed Sep. 27, 2011, Tissue Imaging and Treatment Method. |
U.S. Appl. No. 14/193,234, filed Feb. 28, 2014, Devices and Methods for Multi-Focus Ultrasound Therapy. |
U.S. Appl. No. 08/950,353, filed Oct. 14, 1997, Imaging, Therapy and Temperature Monitoring Ultrasonic System. |
U.S. Appl. No. 09/502,174, filed Feb. 10, 2000, Imaging, Therapy and Temperature Monitoring Ultrasonic System. |
U.S. Appl. No. 10/193,419, filed Jul. 10, 2002, Imaging, Therapy and Temperature Monitoring Ultrasonic System. |
U.S. Appl. No. 10/944,499, filed Sep. 16, 2004, Method and System for Ultrasound Treatment With a Multi-Directional Transducer. |
U.S. Appl. No. 11/163,177, filed Oct. 7, 2005, Method and System for Treating Acne and Sebaceous Glands. |
U.S. Appl. No. 10/950,112, filed Sep. 24, 2004, Method and System for Combined Ultrasound Treatment. |
U.S. Appl. No. 11/163,178, filed Oct. 7, 2005, Method and System for Treating Stretch Marks. |
U.S. Appl. No. 11/245,999, filed Oct. 6, 2005, System and Method for Ultra-High Frequency Ultrasound Treatment. |
U.S. Appl. No. 10/944,500, filed Sep. 16, 2004, System and Method for Variable Depth Ultrasound Treatment. |
U.S. Appl. No. 11/744,655, filed May 4, 2007, Imaging, Therapy and Temperature Monitoring Ultrasonic System. |
U.S. Appl. No. 12/135,962, filed Jun. 9, 2008, Method and System for Ultrasound Treatment With a Multi-Directional Transducer. |
U.S. Appl. No. 12/792,934, filed Jun. 3, 2010, System and Method for Ultra-High Frequency Ultrasound Treatment. |
U.S. Appl. No. 12/834,754, filed Jul. 12, 2010, System and Method for Variable Depth Ultrasound Treatment. |
U.S. Appl. No. 11/126,760, filed May 11, 2005, Method and System for Three-Dimensional Scanning and Imaging. |
U.S. Appl. No. 13/564,552, filed Aug. 1, 2012, Method and System for Controlled Scanning, Imaging and/or Therapy. |
U.S. Appl. No. 12/437,726, filed May 8, 2009 Method and System for Combined Ultrasound Treatment. |
U.S. Appl. No. 11/163,148, filed Oct. 6, 2005, Method and System for Controlled Thermal Injury of Human Superficial Tissue. |
U.S. Appl. No. 13/444,688, filed Apr. 11, 2012, Customized Cosmetic Treatment. |
U.S. Appl. No. 11/163,152, filed Oct. 6, 2005, Method and System for Treatment of Sweat Glands. |
U.S. Appl. No. 13/444,485, filed Apr. 11, 2012, Methods for Treatment of Sweat Glands. |
U.S. Appl. No. 13/603,159, filed Sep. 4, 2012, Methods for Treatment of Hyperhidrosis. |
U.S. Appl. No. 13/603,279, filed Sep. 4, 2012, Energy Based Hyperhidrosis Treatment. |
U.S. Appl. No. 13/950,728, filed Jul. 25, 2013, Energy Based Hyperhidrosis Treatment. |
U.S. Appl. No. 11/163,151, filed Oct. 6, 2005, Method and System for Noninvasive Face Lifts and Deep Tissue Tightening. |
U.S. Appl. No. 13/444,336, filed Apr. 11, 2012, Treatment of Sub-Dermal Regions for Cosmetic Effects. |
U.S. Appl. No. 13/679,430, filed Nov. 16, 2012, Ultrasound Treatment of Sub-Dermal Tissue for Cosmetic Effects. |
U.S. Appl. No. 13/924,376, filed Jun. 21, 2013, Noninvasive Tissue Tightening for Cosmetic Effects. |
U.S. Appl. No. 13/924,355, filed Jun. 21, 2013, Noninvasive Aesthetic Treatment for Tightening Tissue. |
U.S. Appl. No. 13/924,323, filed Jun. 21, 2013, Energy-Based Tissue Tightening. |
U.S. Appl. No. 14/200,852, filed Mar. 7, 2014, Noninvasive Tissue Tightening System. |
U.S. Appl. No. 14/200,961, filed Mar. 7, 2014, Energy-Based Tissue Tightening System. |
U.S. Appl. No. 12/028,636, filed Feb. 8, 2008, Method and System for Noninvasive Face Lifts and Deep Tissue Tightening. |
U.S. Appl. No. 13/964,820, filed Aug. 12, 2013, Methods for Noninvasive Skin Tightening. |
U.S. Appl. No. 14/201,256, filed Mar. 7, 2014, System for Noninvasive Skin Tightening. |
U.S. Appl. No. 11/163,150, filed Oct. 6, 2005, Method and System for Photoaged Tissue. |
U.S. Appl. No. 13/230,498, filed Sep. 12, 2011, Method and System for Photoaged Tissue. |
U.S. Appl. No. 14/169,709, filed Jan. 31, 2014, Methods for Treating Skin Laxity. |
U.S. Appl. No. 11/163,176, filed Oct. 7, 2005, Method and System for Treating Blood Vessel Disorders. |
U.S. Appl. No. 13/601,742, filed Aug. 31, 2012, Method and System for Treating Blood Vessel Disorders. |
U.S. Appl. No. 12/574,512, filed Oct. 6, 2009, Method and System for Treating Stretch Marks. |
U.S. Appl. No. 11/857,989, filed Sep. 19, 2007, Method and System for Treating Muscle, Tendon, Ligament and Cartilage Tissue. |
U.S. Appl. No. 13/494,856, filed Jun. 12, 2012, Method and System for Treating Muscle, Tendon, Ligament and Cartilage Tissue. |
U.S. Appl. No. 13/835,635, filed Mar. 15, 2013, Methods for Face and Neck Lifts. |
U.S. Appl. No. 13/965,741, filed Aug. 13, 2013, Methods for Preheating Tissue for Cosmetic Treatment of the Face and Body. |
U.S. Appl. No. 12/954,484, filed Nov. 24, 2010, Methods and Systems for Generating Thermal Bubbles for Improved Ultrasound Imaging and Therapy. |
U.S. Appl. No. 12/350,383, filed Jan. 8, 2009, Method and System for Treating Acne and Sebaceous Glands. |
U.S. Appl. No. 12/116,845, filed May 7, 2008, Method and System for Combined Energy Profile. |
U.S. Appl. No. 08/766,083, filed Dec. 16, 1996, Method and Apparatus for Surface Ultrasound Imaging. |
U.S. Appl. No. 09/113,227, filed Jul. 10, 1998, Method and Apparatus for Three Dimensional Ultrasound Imaging. |
U.S. Appl. No. 08/944,261, filed Oct. 6, 1997, Wideband Acoustic Transducer. |
U.S. Appl. No. 09/434,078, filed Nov. 5, 1999, Method and Apparatus for Three Dimensional Ultrasound Imaging. |
U.S. Appl. No. 09/523,890, filed Mar. 13, 2000, Method and Apparatus for Three Dimensional Ultrasound Imaging. |
U.S. Appl. No. 09/419,543, filed Oct. 18, 1999, Peripheral Ultrasound Imaging System. |
U.S. Appl. No. 09/750,816, filed Dec. 28, 2000, Visual Imaging System for Ultrasonic Probe. |
U.S. Appl. No. 10/358,110, filed Feb. 4, 2003, Visual Imaging System for Ultrasonic Probe. |
U.S. Appl. No. 11/380,161, filed Apr. 25, 2006, Method and System for Enhancing Computer Peripheral Safety. |
U.S. Appl. No. 11/554,272, filed Oct. 30, 2006, Visual Imaging System for Ultrasonic Probe. |
U.S. Appl. No. 13/071,298, filed Mar. 24, 2011, Visual Imaging System for Ultrasonic Probe. |
U.S. Appl. No. 13/854,936, filed Mar. 25, 2013, Visual Imaging System for Ultrasonic Probe. |
U.S. Appl. No. 12/509,254, filed Jul. 24, 2009, Method and System for Enhancing Computer Peripheral Safety. |
U.S. Appl. No. 13/453,847, filed Apr. 23, 2012, Method and System for Enhancing Computer Peripheral Safety. |
U.S. Appl. No. 11/528,794, filed Oct. 4, 2006, Ultrasound System and Method for Imaging and/or Measuring Displacement of Moving Tissue and Fluid. |
U.S. Appl. No. 09/502,175, filed Feb. 10, 2000, Method and Apparatus for Safely Delivering Medicants to a Region of Tissue, Using Imaging, Therapy and Temperature Monitoring. |
U.S. Appl. No. 08/943,728, filed Oct. 3, 1997, Method and Apparatus for Safely Delivering Medicants to a Region of Tissue Using Ultrasound. |
U.S. Appl. No. 12/415,945, filed Mar. 31, 2009, Method and System for Noninvasive Mastopexy. |
U.S. Appl. No. 11/163,155, filed Oct. 6, 2005, Method and System for Noninvasive Mastopexy. |
U.S. Appl. No. 11/163,154, filed Oct. 6, 2005, Method and System for Treatment of Cellulite. |
U.S. Appl. No. 13/356,405, filed Jan. 23, 2012, Method and System for Treatment of Cellulite. |
U.S. Appl. No. 13/789,562, filed Mar. 7, 2013, Method and System for Ultrasound Treatment of Fat. |
U.S. Appl. No. 14/164,598, filed Jan. 27, 2013, Method for Fat and Cellulite Reduction. |
U.S. Appl. No. 11/738,682, filed Apr. 23, 2007, Method and System for Non-Ablative Acne Treatment and Prevention. |
U.S. Appl. No. 12/116,810, filed May 7, 2008, Methods and Systems for Modulating Medicants Using Acoustic Energy. |
U.S. Appl. No. 12/116,828, filed May 7, 2008, Methods and Systems for Coupling and Focusing Acoustic Energy Using a Coupler Member. |
U.S. Appl. No. 12/646,609, filed Dec. 23, 2009, Methods and System for Fat Reduction and/or Cellulite Treatment. |
U.S. Appl. No. 14/192,520, filed Feb. 27, 2014, Energy Based Fat Reduction. |
U.S. Appl. No. 13/291,312, filed Nov. 11, 2011, Devices and Methods for Acoustic Shielding. |
U.S. Appl. No. 13/136,538, filed Aug. 2, 2011, Systems and Methods for Treating Acute and/or Chronic Injuries in Soft Tissue. |
U.S. Appl. No. 13/136,542, filed Aug. 2, 2011, System and Method for Treating Cartilage. |
U.S. Appl. No. 13/163,541, filed Aug. 2, 2011, Methods and Systems for Treating Plantar Fascia. |
U.S. Appl. No. 13/136,544, filed Aug. 2, 2011, Systems and Methods for Ultrasound Treatment. |
U.S. Appl. No. 13/547,023, filed Jul. 11, 2012, Systems and Methods for Coupling an Ultrasound Source to Tissue. |
U.S. Appl. No. 13/545,931, filed Jul. 10, 2012, Methods and Systems for Controlling Acoustic Energy Deposition Into a Medium. |
U.S. Appl. No. 13/545,953, filed Jul. 10, 2012, Systems and Methods for Accelerating Healing of Implanted Material and/or Native Tissue. |
U.S. Appl. No. 13/547,011, filed Jul. 11, 2012, Systems and Methods for Monitoring and Controlling Ultrasound Power Output and Stability. |
U.S. Appl. No. 13/545,954, filed Jul. 10, 2012, Systems and Methods for Improving an Outside Appearance of Skin Using Ultrasound As an Energy Source. |
U.S. Appl. No. 13/545,945, filed Jul. 10, 2012, Systems and Methods for Treating Injuries to Joints and Connective Tissue. |
U.S. Appl. No. 13/863,249, filed Apr. 15, 2013, Systems for Cosmetic Treatment. |
U.S. Appl. No. 13/863,281, filed Apr. 15, 2013, Methods for Non-invasive Cosmetic Treatment. |
U.S. Appl. No. 14/225,189, filed Mar. 25, 2014, Reflective Ultrasound Technology for Dermatological Treatments. |
A Validated Photonumeric Cellulite Severity Scale; Hexsel et al; J Eur Acad Dermatol Venereol. May 2009;23(5):523-8, 6 pages. |
Delon Martin, C., et al, “Venous Thrombosis Generation by Means of High-Intensity Focused Ultrasound” Ultrasound in Med. & Biol., vol. 21, No. 1, pp. 113-119 (1995). |
Microfocused Ultrasound with Visualization and Calcium Hydroxylapatite for Improving Skin Laxity and Cellulite Appearance; Casabona et al.; Plast Reconstr Surg Glob Open. Jul. 25, 2017;5(7):e1388, 8 pages. |
Microfocused Ultrasound With Visualization and Fillers for Increased Neocollagenesis: Clinical and Histological Evaluation;I Casabona et al.; Dermatol Surg. Dec. 2014; 40 Suppl 12:S194-8, 5 pages. |
Decision on Institution of Inter Partes Review in Re U.S. Pat. No. 6,113,559; IPR2016-01459; 20 pages [011] (Dated Jan. 23, 2017). |
DERMAFOCUS Response to Institution of Inter Partes Review in Re U.S. Pat. No. 6,113,559; IPR2016-01459; 73 pages [018] (Dated Apr. 26, 2017). |
DERMAFOCUS Exhibit List in Re U.S. Pat. No. 6,113,559; IPR2016-01459; 5 pages [019] (Dated Apr. 26, 2017). |
DERMAFOCUS Exhibit 2002, Declaration of Mark Palmeri, in Re U.S. Pat. No. 6,113,559; IPR2016-01459; 136 pages (Filed Apr. 26, 2017). |
DERMAFOCUS Exhibit 2003, Deposition of Dr. Mark Schafer, in Re U.S. Pat. No. 6,113,559; IPR2016-01459; 327 pages (Filed Apr. 26, 2017). |
DERMAFOCUS Exhibit 2004, Amendment No. 4 to Ulthera Form S-1, in Re U.S. Pat. No. 6,113,559; IPR2016-01459; 308 pages (Filed Apr. 26, 2017). |
DERMAFOCUS Exhibit 2005, Excerpt from Churchill Livingstone, Gray's Anatomy (38th ed. 1995), in Re U.S. Pat. No. 6,113,559; IPR2016-01459; 7 pages (Filed Apr. 26, 2017). |
DERMAFOCUS Exhibit 2006, Bo Eklof et al., “Revision of the CEAP Classification for Chronic Venous Disorders: Consensus Statement,” ACTA FAC MED NAISS, vol. 25, No. 1 (2008), 3-10 in Re U.S. Pat. No. 6,113,559; IPR2016-01459; 7 pages (Filed Apr. 26, 2017). |
DERMAFOCUS Exhibit 2007, WebMD, “Varicose Veins and Spider Veins” downloaded from http://www.webmd.com/skin-problems-andtreatments/guide/varicose-spider-veins#1 in Re.U.S. Pat. No. 6,113,559; IPR2016-01459; 3 pages (Filed Apr. 26, 2017). |
DERMAFOCUS Exhibit 2008, John M. Porter et al, “Reporting Standards in Venous Disease: An Update,” Journal of Vascular Surgery, vol. 21, No. 4 (1995), 635-645 in Re U.S. Pat. No. 6,113,559; IPR2016-01459; 11 pages (Filed Apr. 26, 2017). |
DERMAFOCUS Exhibit 2009, Kullervo Hynynen, “Review of Ultrasound Therapy,” 1997 Ultrasonics Symposium (1997), 1305-1313, in Re U.S. Pat. No. 6,113,559; IPR2016-01459; 9 pages (Filed Apr. 26, 2017). |
DERMAFOCUS Exhibit 2010, A.G. Visioli et al, “Prelimiary Results of a Phase I Dose Escalation Clinical Trial Using Focused Ultrasound in the Treatment of Localised Tumours,” European Journal of Ultrasound, vol. 9 (1999), 11-18, in Re U.S. Pat. No. 6,113,559; IPR2016-01459; 8 pages (Filed Apr. 26, 2017). |
DERMAFOCUS Exhibit 2011, U.S. Pat. No. 5,143,063, issued on Sep. 1,1992, Fellner, in Re U.S. Pat. No. 6,113,559; IPR2016-01459; 6 pages (Filed Apr. 26, 2017). |
DERMAFOCUS Exhibit 2012, Hugh G. Beebe et al, “Consensus Statement: Classification and Grading of Chronic Venous Disease in the Lower Limbs,” European Journal of Vascular and Endovascular Surgery, vol. 12 (1996), 487-492, in Re U.S. Pat. No. 6,113,559; IPR2016-01459; 6 pages (Filed Apr. 26, 2017). |
DERMAFOCUS Exhibit 2013, Excerpt from Mosby's Medical Dictionary (3rd ed. 1990), in Re U.S. Pat. No. 6,113,559; IPR2016-01459; 4 pages (Filed Apr. 26, 2017). |
DERMAFOCUS Exhibit 2014, Excerpt from Miller-Keane Encyclopedia & Dictionary of Medicine, Nursing, & Allied Health (5th ed. 1992), in Re U.S. Pat. No. 6,113,559; IPR2016-01459; 6 pages (Filed Apr. 26, 2017). |
DERMAFOCUS Exhibit 2015, David J. Tibbs et al, Varicose Veins, Venous Disorders, and Lymphatic Problems in the Lower Limbs (1997), Chapter 4: Clinical Patterns of Venous Disorder I, 47-67, in Re U.S. Pat. No. 6,113,559; IPR2016-01459; 24 pages (Filed Apr. 26, 2017). |
DERMAFOCUS Exhibit 2016, Mitchel P. Goldman et al, Varicose Veins and Telangiectasias (2nd ed. 1999), Chapter 22: Treatment of Leg Telangiectasias with Laser and High-Intensity Pulsed Light, 470-497, in Re U.S. Pat. No. 6,113,559; IPR2016-01459; 31 pages (Filed Apr. 26, 2017). |
DERMAFOCUS Exhibit 2017, Email from Anderson to Klopotek dated May 25, 2004, in Re U.S. Pat. No. 6,113,559; IPR2016-01459; 1 page (Filed Apr. 26, 2017). |
DERMAFOCUS Exhibit 2018, List of Klopotek Patents, in Re U.S. Pat. No. 6,113,559; IPR2016-01459; 411 pages (Filed Apr. 26, 2017). |
DERMAFOCUS Exhibit 2019, Declaration of Peter Klopotek Civil Action 15-cv-654-SLR, dated Nov. 2, 2016, in Re U.S. Pat. No. 6,113,559; IPR2016-01459; 1 page (Filed Apr. 26, 2017). |
DERMAFOCUS Exhibit 2020, “Our Technology,” downloaded from http://jobs.ulthera.com/about on Apr. 10, 2017, in Re U.S. Pat. No. 6,113,559; IPR2016-01459; 4 pages (Filed Apr. 26, 2017). |
DERMAFOCUS Exhibit 2021, C. Damianou and K. Hynynen, “Focal Spacing and Near-Field Heating During Pulsed High Temperature Ultrasound Therapy,” Ultrasound in Medicine & Biology, vol. 19, No. 9 (1993), 777-787, in Re U.S. Pat. No. 6,113,559; IPR2016-01459; 11 pages (Filed Apr. 26, 2017). |
DERMAFOCUS Exhibit 2022, Excerpt from Mosby's Medical Dictionary (5th ed. 1997), in Re U.S. Pat. No. 6,113,559; IPR2016-01459; 5 pages (Filed Apr. 26, 2017). |
DERMAFOCUS Exhibit 2023, Excerpt from Miller-Keane Encyclopedia & Dictionary of Medicine, Nursing, & Allied Health (6th ed. 1997), in Re U.S. Pat. No. 6,113,559; IPR2016-01459; 7 pages (Filed Apr. 26, 2017). |
DERMAFOCUS Exhibit 2024, Excerpt from Stedman 's Concise Medical Dictionary (3 rd ed. 1997), in Re U.S. Pat. No. 6,113,559; IPR2016-01459; 4 pages (Filed Apr. 26, 2017). |
DERMAFOCUS Exhibit 2025, Excerpt from Taber's Cyclopedic Medical Dictionary (18th ed. 1997), in Re U.S. Pat. No. 6,113,559; IPR2016-01459; 9 pages (Filed Apr. 26, 2017). |
DERMAFOCUS Exhibit 2026, Bo Eklof et al, “Revision of the CEAP Classification for Chronic Venous Disorders: Consensus Statement,” Journal ofVascular Surgery, vol. 40, No. 6 (2004), 1248-1252.el, in Re U.S. Pat. No. 6,113,559; IPR2016-01459; 6 pages (Filed Apr. 26, 2017). |
Ulthera, Inc., Reply in Support of Petition for Inter Partes Review in Re U.S. Pat. No. 6,113,559; IPR2016-01459; 33 pages (Filed Aug. 2, 2017). |
ULTHERA Exhibit 1022, Use of the Argon and Carbon Dioxide Lasers for Treatment of Superficial Venous Varicosities of the Lower Extremity, D. Apfelberg et al., Lasers in Surgery and Medicine, vol. 4.3, pp. 221-231 (1984) (filed Aug. 2, 2017 in re IPR2016-01459). |
ULTHERA Exhibit 1023, 532-Nanometer Green Laser Beam Treatment of Superficial Varicosities of the Lower Extremities, T. Smith et al., Lasers in Surgery and Medicine, vol. 8.2, pp. 130-134 (1988) (filed Aug. 2, 2017 in re IPR2016-01459). |
ULTHERA Exhibit 1024, Deposition Transcript of Dr. Mark Palmeri on Jul. 11, 2017 (filed Aug. 2, 2017 in re IPR2016-01459). |
ULTHERA Exhibit 1025, Ulthera Oral Proceeding Demonstrative Slides (filed Oct. 2, 2017 in re IPR2016-01459). |
DERMAFOCUS Exhibit 2027, DermaFocus Oral Proceeding Demonstrative Slides (filed Oct. 2, 2017 in re IPR2016-01459). |
PTAB Record of Oral Hearing held Oct. 4, 2017 in Re U.S. Pat. No. 6,113,559; IPR2016-01459; 67 pages (PTAB Document sent to Ulthera on Nov. 1, 2017). |
Ulthera, Inc., Petition for Inter Partes Review filed Jul. 19, 2016 in Re U.S. Pat. No. 6,113,559; IPR2016-01459; 63 pages. |
ULTHERA Exhibit 1001, U.S. Pat. No. 6,113,559 to Klopotek, filed Jul. 19, 2016 in re IPR2016-01459. |
ULTHERA Exhibit 1002, Patent file history of U.S. Pat. No. 6,113,559 Klopotek. |
ULTHERA Exhibit 1003, Declaration of Expert Witness Mark E. Schafer, Ph.D. |
ULTHERA Exhibit 1004, Curriculum Vitae of Mark E. Schafer, Ph.D. |
ULTHERA Exhibit 1005, International PCT Publication WO96/34568 Knowlton. |
ULTHERA Exhibit 1006, French Patent No. 2,672,486, Technomed patent. |
ULTHERA Exhibit 1007, English translation of French Patent No. 2,672,486, Technomed. |
ULTHERA Exhibit 1008, International PCT Publication WO93/12742, Technomed PCT. |
ULTHERA Exhibit 1009, English translation of International PCT Publication WO93/12742, Technomed PCT. |
ULTHERA Exhibit 1010, U.S. Pat. No. 5,601,526, which claims priority to Technomed PCT. |
ULTHERA Exhibit 1011, Patent file history for European Patent Application No. 98964890.2, Klopotek. |
ULTHERA Exhibit 1012, Translator Declaration. |
ULTHERA Exhibit 1013, U.S. Pat. No. 5,230,334 to Klopotek. |
ULTHERA Exhibit 1014, U.S. Pat. No. 5,755,753 to Knowlton. |
ULTHERA Exhibit 1015, Excerpts from The American Medical Association Encyclopedia of Medicine (1989). |
ULTHERA Exhibit 1016, The Simultaneous Study of Light Emissions and Shock Waves Produced by Cavitation Bubbles, G. Gimenez, J. Acoust. Soc. Am. 71(4), Apr. 1982, pp. 839-847. |
ULTHERA Exhibit 1017, Excerpts from Gray's Anatomy (1995). |
ULTHERA Exhibit 1018, Anatomy of the Superficial Venous System, Comjen G.M., Dermatol. Surg., 1995; 21:35-45. |
ULTHERA Exhibit 1019, Section 2.6 from Ultrasonics Theory and Application, by G.L. Gooberman (Hart Publishing Co., 1969). |
ULTHERA Exhibit 1020, Deep Local Hyperthermia for Cancer Therapy: External Electromagnetic and Ultrasound Techniques, A.Y. Cheung and A. Neyzari, Cancer Research (Suppl.), vol. 44, pp. 4736-4744 (1984). |
Calderhead et al., “One Mechanism Behind LED Photo-Therapy for Wound Healing and Skin Rejuvenation: Key Role of the Mast Cell” Laser Therapy 17.3: 141-148 (2008). |
Carruthers et al., “Consensus Recommendations for Combined Aesthetic Interventions in the Face Using Botulinum Toxin, Fillers,and Energy-Based Devices” Dermatol Surg 2016 (pp. 1-12). |
Final Written Decision of Inter Partes Review in Re U.S. Pat. No. 6,113,559; IPR2016-01459; 37 pages [030] (Entered Jan. 19, 2018). |
Ulthera, Inc., Petitioner Notice of Appeal to Federal Circuit 2018-1542 re: IPR2016-01459; 4 pages from [001] (no appendices) (Filed Feb. 9, 2018). |
Federal Circuit Order Granting Ulthera Motion to Remand, re: 2018-1542; 4 pages [022] (Dated May 25, 2018). |
MICROCHIP microlD 125 kHz EFID System Design Guide, Microchip Technology Inc. (2004). |
Alster, Tinas S., Tanzi, Elizabeth L., “Cellulite Treatment using a Novel Combination Radiofrequency, Infrared Light, and Mechanical Tissue Manipulation Device,” Journal of Cosmetic & Laser Therapy, Jun. 2005, vol. 7, Issue 2, pp. 81-85. |
Arthur et al., “Non-invasive estimation of hyperthermia temperatures with ultrasound,” Int. J. Hyperthermia, Sep. 2005, 21(6), pp. 589-600. |
Barthe et al., “Ultrasound therapy system and ablation results utilizing miniature imaging/therapy arrays,” Ultrasonics Symposium, 2004 IEEE, Aug. 23, 2004, pp. 1792-1795, vol. 3. |
Chen, L. et al., “Effect of Blood Perfusion on the ablation of liver parenchyma with high intensity focused ultrasound,” Phys. Med. Biol; 38:1661-1673; 1993b. |
Coon, Joshua et al., “Protein identification using sequential ion/ion reactions and tandem mass spectrometry” Proceedings of the National Academy of Sciences of the USA, vol. 102, No. 27, Jul. 27, 2005, pp. 9463-9468. |
Corry, Peter M., et al., “Human Cancer Treatment with Ultrasound”, IEEE Transactions on Sonics and Ultrasonics, vol. SU-31, No. 5, Sep. 1984, pp. 444, 456. |
Damianou et al., “Application of the Thermal Dose Concept for Predicting the Necrosed Tissue Volume During Ultrasound Surgery,” 1993 IEEE Ultrasound Symposium, pp. 1199-1202. |
Daum, et al., Design and Evaluation of a Feedback Based Phased Array System for Ultrasound Surgery, IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, vol. 45, No. 2, Mar. 1998, pp. 431-438. |
Davis, Brian J., et al., “An Acoustic Phase Shift Technique for the Non-Invasive Measurement of Temperature Changes in Tissues”, 1985 Ultrasonics Symposium, pp. 921-924. |
Decision of the Korean Intellectual Property Tribunal dated Jun. 28, 2013 regarding Korean Patent No. 10-1142108, which is related to the pending application and/or an application identified in the Table on pp. 2-5 of the Information Disclosure Statement herein (English translation, English translation certification, and Korean decision included). |
Fry, W.J. et al., “Production of Focal Destructive Lesions in the Central Nervous System with Ultrasound,” J. Neurosurg., 11:471-478; 1954. |
Gliklich et al., Clinical Pilot Study of Intense Ultrasound therapy to Deep Dermal Facial Skin and Subcutaneous Tissues, Arch Facial Plastic Surgery, Mar. 1, 2007, vol. 9, No. 1. |
Haar, G.R. et al., “Tissue Destruction with Focused Ultrasound in Vivo,” Eur. Urol. 23 (suppl. 1):8-11; 1993. |
Hassan et al., “Structure and Applications of Poly(vinyl alcohol) Hydrogels Produced by Conventional Crosslinking or by Freezing/Thawing Methods,” advanced in Polymer Science, 2000, pp. 37-65, vol. 153. |
Hassan et al., “Structure and Morphology of Freeze/Thawed PVA Hydrogels,” Macromolecules, Mar. 11, 2000, pp. 2472-2479, vol. 33, No. 7. |
Husseini et al, “The Role of Cavitation in Acoustically Activated Drug Delivery,” J. Control Release, Oct. 3, 2005, pp. 253-261, vol. 107(2). |
Husseini et al. “Investigating the mechanism of acoustically activated uptake of drugs from Pluronic micelles,” BMD Cancer 2002, 2:20k, Aug. 30, 2002, pp. 1-6. |
Jeffers et al., “Evaluation of the Effect of Cavitation Activity on Drug-Ultrasound Synergisms,” 1993 IEEE Ultrasonics Symposium, pp. 925-928. |
Jenne, J., et al., “Temperature Mapping for High Energy US-Therapy”, 1994 Ultrasonics Symposium, pp. 1879-1882. |
Johnson, S.A., et al., “Non-Intrusive Measurement of Microwave and Ultrasound-Induced Hyperthermia by Acoustic Temperature Tomography”, Ultrasonics Symposium Proceedings, pp. 977-982. (1977). |
Madersbacher, S. et al., “Tissue Ablation in Benign Prostatic Hyperplasia with High Intensity Focused Ultrasound,” Dur. Urol., 23 (suppl. 1):39-43; 1993. |
Makin et al, “B-Scan Imaging and Thermal Lesion Monitoring Using Miniaturized Dual-Functionality Ultrasound Arrays,” Ultrasonics Symposium, 2004 IEEE, Aug. 23, 2004, pp. 1788-1791, vol. 3. |
Makin et al, “Confirmed Bulk Ablation and Therapy Monitoring Using Intracorporeal Image-Treat Ultrasound Arrays,” 4th International Symposium on Therapeutic Ultrasound, Sep. 19, 2004. |
Makin et al., “Miniaturized Ultrasound Arrays for Interstitial Ablation and Imaging,” UltraSound Med. Biol. 2005, Nov. 1, 2005, pp. 1539-1550, vol. 31(11). |
Manohar et al, “Photoacoustic mammography laboratory prototype: imaging of breast tissue phantoms,” Journal of Biomedical Optics, Nov./Dec. 2004, pp. 1172-1181, vol. 9, No. 6. |
Mast et al, “Bulk Ablation of Soft Tissue with Intense Ultrasound; Modeling and Experiments,” J. Acoust. Soc. Am., Oct. 1, 2005, pp. 2715-2724, vol. 118(4). |
Mitragotri, S., “Healing sound: the use of ultrasound in drug delivery and other therapeutic applications,” Nature Reviews; Drug Delivery, pp. 255-260, vol. 4 (Mar. 2005). |
Paradossi et al., “Poly(vinyl alcohol) as versatile biomaterial for potential biomedical applications,” Journal of Materials Science: Materials in Medicine, 2003, pp. 687-691, vol. 14. |
Reid, Gavin, et al., “Tandem Mass spectrometry of ribonuclease A and B: N-linked glycosylation site analysis of whole protein ions,” Analytical Chemistry. Feb. 1, 2002, vol. 74, No. 3, pp. 577-583. |
Righetti et al, “Elastographic Characterization of HIFU-Induced Lesions in Canine Livers,” 1999, Ultrasound in Med & Bio, vol. 25, No. 7, pp. 1099-1113. |
Saad et al., “Ultrasound-Enhanced Effects of Adriamycin Against Murine Tumors,” Ultrasound in Med. & Biol. vol. 18, No. 8, pp. 715-723 (1992). |
Sanghvi, N.T., et al., “Transrectal Ablation of Prostrate Tissue Using Focused Ultrasound,” 1993 Ultrasonics Symposium, IEEE, pp. 1207-1210. |
Sassen, Sander, “ATI's R520 architecture, the new king of the hill?” http://www.hardwareanalysis.com/content/article/1813, Sep. 16, 2005, 2 pages. |
Seip, Ralf, et al., “Noninvasive Detection of Thermal Effects Due to Highly Focused Ultrasonic Fields,” IEEE Symposium, pp. 1229-1232, vol. 2, Oct. 3-Nov. 1993. |
Seip, Ralf, et al., “Noninvasive Estimation of Tissue Temperature Response to Heating Fields Using Diagnostic Ultrasound,” IEEE Transactions on Biomedical Engineering, vol. 42, No. 8, Aug. 1995, pp. 828-839. |
Simon et al., “Applications of Lipid-Coated Microbubble Ultrasonic Contrast to Tumor Therapy,” Ultrasound in Med. & Biol. vol. 19, No. 2, pp. 123-125 (1993). |
Smith, Nadine Barrie, et al., “Non-invasive In Vivo Temperature Mapping of Ultrasound Heating Using Magnetic Resonance Techniques”, 1994 Ultrasonics Symposium, pp. 1829-1832, vol. 3. |
Surry et al., “Poly(vinyl alcohol) cryogel phantoms for use in ultrasound and MR imaging,” Phys. Med. Biol., Dec. 6, 2004, pp. 5529-5546, vol. 49. |
Syka J. E. P. et al., “Peptide and Protein Sequence Analysis by Electron Transfer Dissociation Mass Spectrometry,” Proceedings of the National Academy of Sciences of USA, National Academy of Science, Washington, DC, vol. 101, No. 26, Jun. 29, 2004, pp. 9528-9533. |
Talbert, D. G., “An Add-On Modification for Linear Array Real-Time Ultrasound Scanners to Produce 3D Displays,” UTS Int'l 1977 Brighton, England (Jun. 28-30, 1977) pp. 57-67. |
Tata et al., “Interaction of Ultrasound and Model Membrane Systems: Analyses and Predictions,” American Chemical Society, Phys. Chem. 1992, 96, pp. 3548-3555. |
Ueno, S., et al., “Ultrasound Thermometry in Hyperthermia”, 1990 Ultrasonic Symposium, pp. 1645-1652. |
Wang, H., et al., “Limits on Focused Ultrasound for Deep Hyperthermia”, 1994 Ultrasonic Symposium, Nov. 1-4, 1994, pp. 1869-1872, vol. 3. |
Wasson, Scott, “NVIDIA's GeForce 7800 GTX graphics processor Power MADD,” http://techreport.com/reviews/2005q2/geforce-7800gtx/index.x?pg=1, Jun. 22, 2005, 4 pages. |
White et al “Selective Creating of Thermal Injury Zones in the Superficial Musculoaponeurotic System Using Intense Ultrasound Therapy,” Arch Facial Plastic Surgery, Jan./Feb. 2007, vol. 9, No. 1. |
Number | Date | Country | |
---|---|---|---|
20140257145 A1 | Sep 2014 | US |
Number | Date | Country | |
---|---|---|---|
61774785 | Mar 2013 | US |